EP0568493A2 - Innenachsige Drehkolbenmaschine - Google Patents

Innenachsige Drehkolbenmaschine Download PDF

Info

Publication number
EP0568493A2
EP0568493A2 EP93810203A EP93810203A EP0568493A2 EP 0568493 A2 EP0568493 A2 EP 0568493A2 EP 93810203 A EP93810203 A EP 93810203A EP 93810203 A EP93810203 A EP 93810203A EP 0568493 A2 EP0568493 A2 EP 0568493A2
Authority
EP
European Patent Office
Prior art keywords
rotor
eccentricity
outer rotor
rotary piston
piston machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93810203A
Other languages
English (en)
French (fr)
Other versions
EP0568493A3 (en
EP0568493B1 (de
Inventor
Peter Prof. Dr.-Ing. Kuhn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TES WANKEL TECHNISCHE FORSCHUNGS- und ENTWICKLUNGSSTELLE LINDAU GmbH
Original Assignee
TES WANKEL TECHNISCHE FORSCHUNGS- und ENTWICKLUNGSSTELLE LINDAU GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TES WANKEL TECHNISCHE FORSCHUNGS- und ENTWICKLUNGSSTELLE LINDAU GmbH filed Critical TES WANKEL TECHNISCHE FORSCHUNGS- und ENTWICKLUNGSSTELLE LINDAU GmbH
Publication of EP0568493A2 publication Critical patent/EP0568493A2/de
Publication of EP0568493A3 publication Critical patent/EP0568493A3/de
Application granted granted Critical
Publication of EP0568493B1 publication Critical patent/EP0568493B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/10Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F01C1/103Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member the two members rotating simultaneously around their respective axes

Definitions

  • the invention relates to an inner-axis rotary lobe machine, with an outer rotor sealed by a common housing and an inner rotor, which rotate at a speed ratio of 2: 3 about axes which have constant eccentricity to one another, so that the outer rotor has three engagement parts with a radial width corresponding to twice Eccentricity and the inner rotor has two engagement parts, the inner rotor and outer rotor being in constant mutual engagement during the rotation.
  • US-A-1 753 476 (Richer) proposed that the inner surface of the engaging parts of the outer rotor be arc-shaped and the inner rotor be arena-shaped, i.e. limited by two arcs and two straight lines. Due to this shape, however, no exact kinematic shape of the rotors could be achieved, so that due to a non-permanent mutual intervention of the rotors or due to changing and too large engagement gaps, an application would only make sense for machines for conveying liquid media and at correspondingly low speeds.
  • the shape mentioned was proposed with a distance of the center of the circle of the circular arcs of the outer rotor from its center equal to 8 times the eccentricity and with a radius of curvature corresponding to 6 times the eccentricity.
  • the invention has for its object to find a rotary piston machine of the type mentioned, which has a simple volumetric shape of its rotor has a good volumetric efficiency and which is particularly suitable for gas production at high speeds.
  • a rotary piston machine of the type mentioned is proposed, which is characterized in accordance with the invention in that the radial cross sections of the engagement parts of the outer rotor are delimited by two circular arcs, the center of the circle of the inner surface of these engagement parts being at a distance from their geometric axis of rotation which is at least and is at least approximately 9 times eccentricity, and its radius is 7 to 7.5 times eccentricity.
  • the shape of the inner rotor is kinematically determined by the envelope curve.
  • the outer rotor 1 and the inner rotor 2 of the rotary piston machine 3 are enclosed by a common housing 4, on which there are two nozzles 5, 6 for sucking in and blowing off a gaseous medium.
  • the outer rotor 1 moves with the circular-arc-shaped outer surfaces 7 of its three engagement parts 8, 9, 10 on two diametrically opposite sides at a small, gap-forming distance along circular-arc-shaped inner surfaces 11, 12 of the housing 4. Since the engagement spaces 13, 14, 15 are thus only opened to the outside in the area of the blow-off spigot 6, such a rotary piston machine 3 works with internal compression, ie it does not have to continuously convey against a counterpressure in the outflow channel.
  • both runners 1, 2 are located in three areas 15, 16, 17 and 18, 19, 20 (FIG. 2) in mutual engagement forming a sealing gap.
  • This contact-free engagement is ensured by a drive connection between the two rotors 1, 2 via external gears, not shown.
  • the width of the sealing gap should be as small as possible without contact.
  • the inner surfaces 21, 22, 23 of the engaging parts 8, 9, 10 of the outer rotor 1 are preferably provided with a porous plastic layer 24, so that the sealing gaps can automatically work in to a minimum due to abrasion. This minimum is determined by the accuracy of the rotor design, its mounting and its drive coupling.
  • the quality of the gap seal is determined by the degree of mutual nestling between the respective surface areas of the runners 1, 2 that come into engagement with one another. This is illustrated by the enlarged representation of FIG. 3. With a smaller average radius of the engagement parts 25, 26 of the inner rotor and correspondingly poor fitting, the length of the gap in the direction of the pressure reduction is shorter, as illustrated by the more curved profile curve 25 '.
  • the porous plastic layer 24 is used, the pressure is reduced by the pores 27 which open after it has run in, in the manner of a labyrinth seal.
  • the engagement parts 8, 9, 10 of the outer rotor 1 must have a sufficient width in the radial direction in order to avoid their bending by centrifugal forces.
  • the shape of the runners 1, 2 between them should result in the largest possible maximum delivery space, which results in the relative rotational position on the engagement space 14 shown in FIG.
  • the runners should have one for their economic manufacture have advantageous convex shape.
  • the larger values for "k” should preferably be selected for particularly fast rotating rotors 1, 2, so that the centrifugal force bend is low. In the case of slower-rotating runners, the lower value "k” of this area should be preferred at least approximately equal to 7, so that the contact between the runners is even better.
  • the value "m” greater than 9 ensures that the long side surfaces 30, 31 of the inner rotor 2 also do not have any concave areas which would make machining the surface more difficult by shaping.
  • the value for "m” should not be significantly greater than 9, so that the side surfaces have a very little curved convex shape or only a little of that straight from, as shown in the example shown.
  • a value of m 10 should not be exceeded.
  • the curvature of the two end regions 25, 26 of the inner rotor 2 results from the kinematic generation, deviating from the circular arc shape, from the circular inner surfaces 21, 22, 23 of the outer rotor 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

Die radialen Querschnitte der drei Eingriffsteile (8-10) des Aussenläufers (1) der innenachsigen Drehkolbenmaschine (3) sind durch einen äusseren (7) und inneren (21-23) Kreisbogen begrenzt. Die Form ihres zwei Eingriffsteile (25,26) aufweisenden Innenläufers (2) ist kinematisch exakt dem Aussenläufer (1) angepasst. Damit sich auch der Innenläufer (2) einfach und mit hoher Formgenauigkeit herstellen lässt und ausserdem ein guter volumetrischer Wirkungsgrad und eine gute Abdichtung zwischen den Läufern (1,2) auch bei hohen Drehgeschwindigkeiten gegeben ist, hat der Kreismittelpunkt der Innenflächen (21-23) der Eingriffsteile (8-10) des Aussenläufers (1) von seiner Drehachse einen Abstand, der mindestens und mindestens angenähert dem 9-fachen der Grösse der Exzentrizität zwischen beiden Läufern (1,2) entspricht, und der Radius dieser Innenflächen (21-23) ist gleich dem 7 bis 7,5-fachen dieser Exzentrizität. <IMAGE>

Description

  • Die Erfindung betrifft eine innenachsige Drehkolbenmaschine, mit einem von einem gemeinsamen Gehäuse dichtend umschlossenen Aussenläufer und einem Innenläufer, die sich im Drehzahlverhältnis von 2:3 um eine konstante Exzentrizität zueinander aufweisende Achsen drehen, so dass der Aussenläufer drei Eingriffsteile mit einer radialen Breite entsprechend der doppelten Exzentrizität und der Innenläufer zwei Eingriffsteile aufweist, wobei sich Innenläufer und Aussenläufer während der Drehung in dauerndem gegenseitigen Eingriff befinden.
  • Ein dauernder gegenseitiger Eingriff ist erforderlich, um einen zufriedenstellenden Wirkungsgrad einer derartigen Drehkolbenmaschine zu erreichen. Er bedeutet jedoch, dass beide Läufer sich an den Eingriffsstellen nur bis auf einen sehr engen, einen Dichtspalt bildenden Abstand nähern. Ein unmittelbarer Eingriffskontakt würde bei den für die Gasförderung angestrebten hohen Drehgeschwindigkeiten zur Beschädigung der Läufer führen. Die minimal mögliche Breite des Dichtspaltes an den jeweiligen Eingriffsstellen ist durch die Genauigkeit bei der Herstellung der Läufer und die Genauigkeit ihrer Montage bestimmt.
  • Die für eine minimale Breite des Dichtspaltes erforderliche, kinematisch exakte Form der in gegenseitigen Eingriff gelangenden Läuferteile lässt sich für bekannte Drehkolbenmaschinen dieser Art nur mit grossem Aufwand herstellen. Eine Maschine der eingangs genannten Art, die sich durch einen besonders guten volumetrischen Wirkungsgrad auszeichnet, ist bekannt durch die EP-A-0 167 846 (Wankel).
  • Zur Verringerung des Fertigungsaufwandes wurde durch die US-A-1 753 476 (Richer) vorgeschlagen, die Innenfläche der Eingriffsteile des Aussenläufers kreisbogenförmig und den Innenläufer arenaförmig, d.h. begrenzt durch zwei Kreisbögen und zwei Gerade auszubilden. Aufgrund dieser Formgebung liess sich jedoch keine exakte kinematische Form der Läufer erzielen, so dass aufgrund eines nicht dauernden gegenseitigen Eingriffs der Läufer bzw. aufgrund sich ändernder und zu grosser Eingriffsspalte eine Anwendung nur für Maschinen zur Förderung flüssiger Medien und mit entsprechend niedrigen Drehzahlen sinnvoll wäre. Die genannte Form wurde mit einem Abstand des Kreismittelpunktes der Kreisbögen des Aussenläufers von seinem Zentrum gleich dem 8-fachen der Exzentrizität vorgeschlagen und mit einem Krümmungsradius entsprechend dem 6-fachen der Exzentrizität.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Drehkolbenmaschine der eingangs genannten Art zu finden, die bei einfach herstellbarer Form ihrer Läufer einen guten volumetrischen Wirkungsgrad hat und die insbesondere für die Gasförderung bei hohen Drehgeschwindigkeiten geeignet ist. Zur Lösung dieser Aufgabe wird eine Drehkolbenmaschine der eingangs genannten Art vorgeschlagen, die erfindungsgemäss dadurch gekennzeichnet ist, dass die radialen Querschnitte der Eingriffsteile des Aussenläufers durch zwei Kreisbogen begrenzt sind, wobei der Kreismittelpunkt der Innenfläche dieser Eingriffsteile von ihrer geometrischen Drehachse einen Abstand aufweist, der mindestens und mindestens angenähert der 9-fachen Exzentrizität entspricht und wobei ihr Radius gleich dem 7 bis 7,5-fachen der Exzentrizität ist.
  • Durch den eingangs genannten ununterbrochenen, dichtspaltbildenden Eingriff des Aussenläufers mit dem Innenläufer ist die Form des Innenläufers durch die Hüllkurve kinematisch bestimmt.
  • Aufgrund der erfindungswesentlichen Merkmale ergibt sich eine Form beider Läufer, die einfach herzustellen ist, die ein relativ grosses Fördervolumen bewirkt, die zu einer die Abdichtung begünstigenden Eingriffsschmiegung zwischen den Eingriffsteilen führt und durch die die durch zentrifugale Biegekräfte belasteten Eingriffsteile des Aussenläufers eine gute Steifigkeit aufweisen, so dass enge Dichtspalte möglich sind. Eine derartige Drehkolbenmaschine ist somit bei gutem Wirkungsgrad für hohe Gasförderleistungen geeignet.
  • Im folgenden wird die Erfindung anhand der Zeichnungen weiter erläutert. Es zeigt:
  • Fig.1
    einen radialen Schnitt durch eine erfindungsgemässe Drehkolbenmaschine,
    Fig.2
    eine Ansicht der Läufer der Drehkolbenmaschine nach Fig.1 in einer anderen Drehposition und
    Fig.3
    eine vergrösserte Darstellung des Bereichs II der Fig.2, mit einem Teil der Kontur von zweiverschieden geformten Innenläufern.
  • Der Aussenläufer 1 und der Innenläufer 2 der Drehkolbenmaschine 3 sind von einem gemeinsamen Gehäuse 4 umschlossen, an dem sich zwei Stutzen 5,6 zum Ansaugen und Abblasen eines gasförmigen Mediums befinden. Der Aussenläufer 1 bewegt sich mit den kreisbogenförmigen Aussenflächen 7 seiner drei Eingriffsteile 8,9,10 auf zwei diametral einander gegenüberliegenden Seiten in geringem, dichtspaltbildendem Abstand an kreisbogenförmigen Innenflächen 11,12 des Gehäuses 4 entlang. Da somit die Eingriffsräume 13,14,15 erst im Bereich des Abblasstutzens 6 nach aussen geöffnet werden, arbeitet eine derartige Drehkolbenmaschine 3 mit innerer Verdichtung, d.h. sie muss nicht ständig gegen einen Gegendruck im Abströmkanal fördern.
  • Durch ihre kinematisch einander angepasste Form befinden sich beide Läufer 1,2 an drei Bereichen 15,16,17 bzw. 18, 19,20 (Fig.2) in dichtspaltbildendem gegenseitigen Eingriff. Dieser berührungsfreie Eingriff ist durch eine Antriebsverbindung zwischen beiden Läufern 1,2 über äussere, nicht dargestellte Zahnräder gewährleistet. Für einen guten Wirkungsgrad soll die Breite des Dichtspaltes möglichst klein sein, ohne dass ein Kontakt erfolgt. Vorzugsweise sind hierzu die Innenflächen 21,22,23 der Eingriffsteile 8,9,10 des Aussenläufers 1 mit einer porigen Kunststoffschicht 24 versehen, so dass sich die Dichtspalte durch Abrieb selbsttätig auf ein Minimum einarbeiten können. Dieses Minimum ist durch die Genauigkeit der Fromgebung der Läufer, ihrer Lagerung und ihrer Antriebskopplung bestimmt. Zusätzlich wird die Qualität der Spaltdichtung durch den Grad der gegenseitigen Anschmiegung der miteinander in Eingriff gelangenden jeweiligen Flächenbereiche der Läufer 1,2 bestimmt. Dies veranschaulicht die vergrösserte Darstellung der Fig. 3. Bei kleinerem durchschnittlichen Radius der Eingriffsteile 25,26 des Innenläufers und entsprechend schlechter Anschmiegung ist die Länge des Spaltraumes in Richtung des Druckabbaus kürzer, wie durch die stärker gekrümmte Profilkurve 25' veranschaulicht ist. Der Druckabbau erfolgt bei Anwendung der porigen Kunststoffschicht 24 durch deren nach Einlaufen offene Poren 27 nach Art einer Labyrinthdichtung.
  • Für eine optimale Formgebung der Läufer 1,2 ist somit einerseits ein grosser durchschnittlicher Krümmungsradius der Eingriffsteile 25,26 des Innenläufers anzustreben. Andererseits müssen die Eingriffsteile 8,9,10 des Aussenläufers 1 in radialer Richtung eine ausreichende Breite haben, um ihre Verbiegung durch Zentrifugalkräfte zu vermeiden. Weiterhin soll die Formgebung der Läufer 1,2 zwischen ihnen einen möglichst grossen maximalen Förderraum bewirken, der sich bei der in Fig.1 dargestellten relativen Drehposition am Eingriffsraum 14 ergibt. Schliesslich sollen aufgrund der erfindungsgemässen Aufgabenstellung die Läufer eine für ihre wirtschaftliche Herstellung vorteilhafte konvexe Form haben. Diese Bedingungen werden optimal erfüllt, wenn der in Fig.2 mit "m" bezeichnete Abstand des Kreismittelpunktes 28 des Kreisbogens der Innenflächen 21,22,23 des Aussenläufers 1 von dessen Mitte mindestens dem 9-fachen der Exzentrizität "e" zwischen Innenläufer 2 und Aussenläufer entspricht, und ausserdem der Radius "k" dieser Kreisbögen im Bereich des 7 bis 7,5-fachen dieser Exzentrizität liegt.
  • Die grösseren Werte für "k" sind vorzugsweise für besonders schnell drehende Läufer 1,2 zu wählen, so dass die Zentrifugalkraftbiegung gering ist. Bei langsamer drehenden Läufern ist der niedrigere Wert "k" dieses Bereiches entsprechend mindestens angenähert gleich 7 vorzuziehen, so dass die Anschmiegung zwischen den Läufern noch besser ist.
  • Durch den Wert "m" grösser als 9 wird gewährleistet, dass auch die langen Seitenflächen 30,31 des Innenläufers 2 keine konkaven Bereiche aufweisen, die eine Bearbeitung der Oberfläche durch Formschleifen erschweren würden. Für einen grossen maximalen Förderraum zwischen den Läufern 1,2 bzw. für eine guten volumetrischen Wirkungsgrad sollte andererseits der Wert für "m" nicht wesentlich grösser als 9 sein, so dass die Seitenflächen eine sehr wenig gekrümmte konvexe Form haben bzw. nur wenig von der geraden From abweichen, wie das dargestellte Beispiel zeigt. Ein Wert von m = 10 sollte nicht überschritten werden.
  • Die Krümmung der beiden Endbereiche 25,26 des Innenläufers 2 ergibt sich durch kinematische Erzeugung, abweichend von der Kreisbogenform, durch die kreisbogenförmigen Innenflächen 21,22,23 des Aussenläufers 1.

Claims (4)

  1. Innenachsige Drehkolbenmaschine, mit einem von einem gemeinsamen Gehäuse dichtend umschlossenen Aussenläufer (1) und einem Innenläufer (2), die sich im Drehzahlverhältnis von 2:3 um eine konstante Exzentrizität (e) zueinander aufweisende Achsen drehen, so dass der Aussenläufer (1) drei Eingriffsteile (8-10) mit einer radialen Breite entsprechend der doppelten Exzentrizität (2e) und der Innenläufer (2) zwei Eingriffsteile (25,26) aufweist, wobei sich Innenläufer (2) und Aussenläufer (1) während der Drehung in dauerndem gegenseitigen Eingriff befinden, dadurch gekennzeichnet, dass die radialen Querschnitte der Eingriffsteile (8-10) des Aussenläufers durch zwei Kreisbogen (7 ;21-23) begrenzt sind, wobei der Kreismittelpunkt (28) der Innenflächen (21-23) dieser Eingriffsteile (8-10) von ihrer geometrischen Drehachse einen Abstand (m) aufweist, der mindestens und mindestens angenähert der 9-fachen Exzentrizität (9 x e) entspricht und wobei ihr Radius (k) gleich dem 7 bis 7,5-fachen der Exzentrizität (7 bis 7,5 x e) ist.
  2. Drehkolbenmaschine nach Anspruch 1, dadurch gekennzeichnet, dass die mit dem anderen Läufer (1,2) in Eingriff gelangenden Flächen (21-23) eines der Läufer (1,2) mit einer porigen Kunststoffschicht (24) verbunden ist, deren Poren (27) geöffnet sind.
  3. Drehkolbenmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Radius (k) der Innenflächen (21-23) des Aussenläufers mindestens angenähert gleich dem 7-fachen der Exzentrizität (7 x e) ist.
  4. Drehkolbenmaschine nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die langen Seitenflächen (30, 31) des Innenläufers (2) eben oder geringfügig nach aussen gewölbt sind.
EP93810203A 1992-04-01 1993-03-22 Innenachsige Drehkolbenmaschine Expired - Lifetime EP0568493B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1048/92A CH685447A5 (de) 1992-04-01 1992-04-01 Innenachsige Drehkolbenmaschine.
CH1048/92 1992-04-01

Publications (3)

Publication Number Publication Date
EP0568493A2 true EP0568493A2 (de) 1993-11-03
EP0568493A3 EP0568493A3 (en) 1993-12-15
EP0568493B1 EP0568493B1 (de) 1996-01-31

Family

ID=4201241

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93810203A Expired - Lifetime EP0568493B1 (de) 1992-04-01 1993-03-22 Innenachsige Drehkolbenmaschine

Country Status (5)

Country Link
US (1) US5358393A (de)
EP (1) EP0568493B1 (de)
JP (1) JP3045362B2 (de)
CH (1) CH685447A5 (de)
DE (1) DE59301527D1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1753476A (en) * 1927-06-29 1930-04-08 Joseph R Richer Rotary pump or blower
US3346176A (en) * 1965-10-11 1967-10-10 Gen Motors Corp Rotary mechanism including abradable lubricating and sealing means
EP0167846A1 (de) * 1984-06-12 1986-01-15 Wankel, Felix, Dr. h.c. Innenachsige Drehkolbenmaschine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623753Y2 (ja) * 1985-07-26 1994-06-22 トヨタ自動車株式会社 ル−ツ式ポンプ
SE470337B (sv) * 1986-09-05 1994-01-24 Svenska Rotor Maskiner Ab Rotor till en skruvrotormaskin samt förfarande för dess tillverkning
DE3715597A1 (de) * 1987-05-09 1989-01-05 Kurt Gerhard Fickelscher Innenachsige drehkolbenmaschine
DE3916858A1 (de) * 1989-05-24 1990-11-29 Kuehnle Kopp Kausch Ag Innenachsige drehkolbenmaschine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1753476A (en) * 1927-06-29 1930-04-08 Joseph R Richer Rotary pump or blower
US3346176A (en) * 1965-10-11 1967-10-10 Gen Motors Corp Rotary mechanism including abradable lubricating and sealing means
EP0167846A1 (de) * 1984-06-12 1986-01-15 Wankel, Felix, Dr. h.c. Innenachsige Drehkolbenmaschine

Also Published As

Publication number Publication date
US5358393A (en) 1994-10-25
JPH0610861A (ja) 1994-01-21
CH685447A5 (de) 1995-07-14
EP0568493A3 (en) 1993-12-15
EP0568493B1 (de) 1996-01-31
JP3045362B2 (ja) 2000-05-29
DE59301527D1 (de) 1996-03-14

Similar Documents

Publication Publication Date Title
EP0167846B1 (de) Innenachsige Drehkolbenmaschine
EP0254077B1 (de) Innenzahnradpumpe
EP2137378A1 (de) Pumpe oder motor
DE4337813A1 (de) Schwenkmotor
DD161222A5 (de) Schraubenrotormaschine fuer ein beliebiges arbeitsfluid
WO1993023670A1 (de) Hydrostatische maschine mit leckölabführung
DE2911415A1 (de) Rotationskolbenmaschine
EP3224479A1 (de) Verdichter mit einem dichtkanal
EP0209099A1 (de) Stator für Exzenterschneckenpumpen
DE10222418A1 (de) Wellendichtring
CH661318A5 (de) Rotationskolbenmaschine.
EP0568493B1 (de) Innenachsige Drehkolbenmaschine
DE19623242C1 (de) Sperrflügelpumpe
DE2160047A1 (de) Radialgeblaese
EP3507495B1 (de) Schraubenvakuumpumpe
DE2029832B2 (de) Parallel- und aussenachsiger drehkolbenverdichter
CH663446A5 (de) Aussenachsige rotationskolbenmaschine.
DE522845C (de) Drehkolbenpumpe
WO2003044372A1 (de) Drehkolbenpumpe
DE19806507B4 (de) Sogpumpe
DE3519170C2 (de)
DE7630369U1 (de) Hydraulische maschine mit axial angeordneten kolben
DE2911609A1 (de) Membranpumpe
DE2414760A1 (de) Zahnradpumpe
DE1550935B2 (de) Dreiteiliger hydrodynamischer Drehmomentwandler

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19940606

17Q First examination report despatched

Effective date: 19950517

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 59301527

Country of ref document: DE

Date of ref document: 19960314

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960221

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020222

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020309

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020315

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031127

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST