EP0566435B1 - Echangeur de chaleur à ruissellement et installation de distillation d'air comportant un tel échangeur - Google Patents

Echangeur de chaleur à ruissellement et installation de distillation d'air comportant un tel échangeur Download PDF

Info

Publication number
EP0566435B1
EP0566435B1 EP93400746A EP93400746A EP0566435B1 EP 0566435 B1 EP0566435 B1 EP 0566435B1 EP 93400746 A EP93400746 A EP 93400746A EP 93400746 A EP93400746 A EP 93400746A EP 0566435 B1 EP0566435 B1 EP 0566435B1
Authority
EP
European Patent Office
Prior art keywords
exchanger
liquid
passages
exchanger according
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93400746A
Other languages
German (de)
English (en)
Other versions
EP0566435A1 (fr
Inventor
Jean-Yves Lehman
Christiane Muller
Frédéric Rousseau
Cécile Tosi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP0566435A1 publication Critical patent/EP0566435A1/fr
Application granted granted Critical
Publication of EP0566435B1 publication Critical patent/EP0566435B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04878Side by side arrangement of multiple vessels in a main column system, wherein the vessels are normally mounted one upon the other or forming different sections of the same column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • F25J5/005Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger in a reboiler-condenser, e.g. within a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • F28D9/0068Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements with means for changing flow direction of one heat exchange medium, e.g. using deflecting zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/04Down-flowing type boiler-condenser, i.e. with evaporation of a falling liquid film
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/32Details on header or distribution passages of heat exchangers, e.g. of reboiler-condenser or plate heat exchangers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/902Apparatus
    • Y10S62/903Heat exchange structure

Definitions

  • the present invention relates to a liquid flow heat exchanger for vaporizing a liquid by heat exchange with a second fluid, of the type comprising a parallelepipedic body formed by an assembly of parallel vertical plates defining between them a multitude of flat passages distributed in a set of vaporization passages and in a set of heating passages, each passage, in its current heat exchange part, containing a spacer wave with vertical generators, means for distributing the liquid being provided at the upper end of the exchanger for distributing the liquid over the entire length of the vaporization passages, and means being provided for sending the second fluid into the heating passages.
  • Such an exchanger is known, for example, from document EP-A-0 130 122. It applies in particular to air distillation installations.
  • the liquid oxygen which is in the bottom of the low pressure column is vaporized by heat exchange with the nitrogen gas at the head of the medium pressure column.
  • the temperature difference between oxygen and nitrogen made necessary by the structure of the heat exchanger imposes the operating pressure of the medium pressure column. It is therefore desirable that this temperature difference is as small as possible, in order to minimize the expenses linked to the compression of the air to be treated injected into the medium pressure column.
  • EP-A-0 130 122 in the name of The Applicant has proposed a particularly efficient method of distributing liquid oxygen.
  • the object of the invention is to make it possible to increase the height of such a heat exchanger or, at a given height, to reduce the pressure drop of the flow of vaporized oxygen.
  • a heat exchanger of the aforementioned type characterized in that said distribution means are arranged in compartments closed at their upper end and each located above a heating passage, of which it is separated by a horizontal bar, in that a horizontal slot, extending over the entire length of the exchanger, just above the bar, puts the lower part of the compartment in free communication with an adjacent vaporization passage, and in that the spray passages are open at their two upper and lower ends, over their entire length, and contain at most one wave-spacer with vertical generators at any point of their height.
  • the invention also relates to an air separation installation by distillation, of the type comprising a first distillation column. operating under relatively high pressure, a second distillation column operating under relatively low pressure, and a heat exchanger enabling the liquid oxygen in the tank of the second column to be placed in heat exchange relationship with the top nitrogen gas of the first column, characterized in that the heat exchanger is as defined above, and in that the installation comprises supply means for supplying liquid oxygen to said liquid distribution means, and means for supplying the heating passages with gaseous nitrogen.
  • Figure 1 illustrates a possibility of installing an oxygen-nitrogen heat exchanger in an air distillation installation of the double column type.
  • This installation comprises a medium pressure column 1 at the bottom of which the air to be treated is injected, under a pressure of the order of 6 bars absolute.
  • the oxygen-enriched liquid which is collected in the tank of column 1 is sent under reflux in the middle of the height of a second column (not shown), called low pressure column, which operates slightly above atmospheric pressure.
  • the nitrogen gas which is at the head of column 1 is brought into indirect heat exchange relationship with the liquid oxygen collected in the bottom of the low pressure column; the resulting condensed nitrogen serves as reflux in column 1 and in the low pressure column, while the resulting vaporized oxygen is returned to the bottom of the low pressure column.
  • the two distillation columns can in particular be of the packed type, which also contributes to the energy gain by lowering the operating pressure of the installation, which is that of column 1.
  • the exchanger 2 consists of a sealed envelope 3, the main height of which contains a set of parallel plates 4 of rectangular aluminum shape, with a length of the order of 1 to 1.5 m and a height of the order of 3 to 7 m, between which waves also made of aluminum are fixed by brazing.
  • the latter can be controlled by a bath level regulator 5, or, alternatively, by a flow regulator.
  • the casing 3 forms a dome 7 which contains the bath 5. From this dome leaves a pipe 8 for returning to the bottom of the low pressure column of the vaporized oxygen coming from the bath 5, resulting from the heat inputs at the level of the pump and the pipes, and part of the oxygen vaporized in the exchanger 2.
  • the set of plates 4 is supplied at its upper part with nitrogen gas at 6 bars by a horizontal supply box 9, located under the bath 5, which communicates by a pipe 10 with the head of the medium pressure column.
  • the evacuation of the condensed nitrogen is carried out at the base of the plates 4 by a horizontal collecting box 11 which communicates by a pipe 12 with a guarded channel 13 arranged at the head of the column 1.
  • On the box 11 is stuck a pipe 14 evacuation of uncondensable rare gases.
  • a pipe 15 connects the tank of the low pressure column to the space located in the casing 3, below the plates 4. This pipe penetrates vertically into this space through the bottom point of the casing 3, and its upper end is surmounted by a conical deflector 16. From the bottom of the casing 3 also leaves a pipe 17 intended to return to the bottom of the low pressure column the excess liquid oxygen.
  • the exchanger has a parallelepiped shape, and the casing 3 is defined by the edges of the plates 4 and by spacer bars which close the passages that these plates define, except at the entry and exit locations of the fluids.
  • the plates 4 define a multitude of passages intended alternately for the flow of oxygen (passages 18) and for the flow of nitrogen (passages 19). Over most of their height, the passages 18 and 19 each contain a spacer wave 20 made of a corrugated perforated aluminum sheet with vertical generators.
  • the waves 20 of the nitrogen passages end, at the top as well as the bottom, before the waves 20 of the oxygen passages.
  • these waves of the passages 20 are extended by oblique waves of nitrogen collection (not shown) which lead to the entry of the manifold 11.
  • these same waves 20 are extended by oblique waves 21 of nitrogen distribution which emerge, through a side window 21A of the exchanger, at the outlet of the feed box 9.
  • the nitrogen passages 19 are closed by horizontal bars 22.
  • Other horizontal bars (not shown) close the lower end of the nitrogen passages below the nitrogen collection areas.
  • each nitrogen passage is extended by a compartment 23 for distributing liquid oxygen closed at the upper end of the exchanger by a horizontal bar 24.
  • the compartment 23 contains, from top to bottom: an oblique spacer wave 25 (or, as a variant, a perforated wave with horizontal generators) for rough distribution of liquid oxygen over the entire length of the compartment, this wave opening out laterally, via a side window 26 of the exchanger, in bath 5 ( Figure 2); a perforated bar 27 for predistribution of liquid oxygen; and a lining 28 for fine distribution of liquid oxygen.
  • a free space 29 is provided between this lining and the upper surface of the bar 22.
  • the perforated bar 27 is machined from a rectangular blank whose thickness is equal to the spacing of the plates 4, ie of the order of 5 to 15 mm, and whose length is equal to that of these plates.
  • Each recess 31 is located longitudinally opposite a recess 30 and overlaps the latter in height, so that there is, roughly halfway through the thickness of the bar (FIG. 4), a thin vertical wall 32 common to the two recesses. This wall is pierced with a circular hole 33.
  • the holes 33 are distributed at regular intervals along the perforated bar 27.
  • the lining 28 is constituted by a wave with horizontal generators (so-called “hard way” arrangement with respect to the flow of liquid oxygen) not perforated but of the "serrated" type. This means that at regular intervals, each horizontal or pseudo-horizontal facet of the wave is provided with a flat offset upward by a quarter of a wave step.
  • the width of the punctures, measured along a generatrix of the wave, is of the same order as the distance which separates each of them from the two adjacent punctures located on the same facet.
  • the oxygen vaporization passages 18 are open at their upper and lower ends. They contain the wave 20 from the lower end to the level of the bars 22, are devoid of any wave opposite the space 29, then, from the upper level of this space 29 to their upper end, they contain another spacer wave 20A similar to wave 20 but not larger.
  • the region of each wave-free passage 18 communicates freely with the space 29 of an adjacent passage 19 through a horizontal slot 34 of the same height extending over the entire length of the exchanger.
  • one plate out of two is continuous over the whole the extent of the exchanger, while one plate out of two is in fact made up of a rectangular plate 4A which extends upwards only to the bar 22, and of a rectangular plate 4B which delimits compartment 23 for dispensing liquid oxygen.
  • the upper surface 35 of the bar 22 is inclined laterally so as to descend from the adjacent plate 4 to the upper edge of the facing plate 4A. By virtue of a recess of the bar 22, this surface extends slightly beyond the face of the plate 4A which delimits the passage 18.
  • the liquid oxygen bath 5 is maintained at an approximately constant level, without exceeding the upper face of a vertical plate 5A welded on the exchanger above the windows 26.
  • the liquid oxygen penetrates laterally in the compartments 23, by one of their ends through the windows 26.
  • the nitrogen gas at 6 absolute bars enters the upper part of the passages 19, by one end of these passages, via the box 9 and the waves distribution 21.
  • the liquid oxygen thus forms a column of liquid of practically uniform height above all the holes 33. It is predistributed over the entire length of the passages 18 into a number of jets 36 by these holes 33, then falls freely on the lining 28, which, by its constitution and its arrangement, ensures a fine distribution of the liquid oxygen all along the passages 18. The liquid oxygen therefore falls uniformly on the inclined surface 35 of the bars 22, then pours through the slots 34 in the passages 18.
  • a film of liquid oxygen thus flows over all the metal surfaces contained in the passages 18, that is to say on the plates 4 and 4A and on waves 20, and it partially vaporizes by indirect heat exchange with nitrogen being condensed from top to bottom in the alternate passages 19.
  • the passages 18 are not only open upwards and downwards, but also free as much as possible, over their entire height, of obstacles to the flow of oxygen gas. Indeed, at any point of their height, these passages are either empty (opposite the slot 34), or provided with a simple wave 20, 20A with vertical generators and with relatively large pitch. Wave 20 improves the heat exchange with nitrogen by fin effect, while wave 20A only serves as a spacer and can even possibly be partially eliminated.
  • the holes 33 have a horizontal axis and there is a dead end 37 on the rear face of the bar, below these holes. Any solid impurities contained in the liquid oxygen can thus be deposited in these dead ends, which protects the holes 33 against the risks of clogging.
  • the configuration of the envelope 3 in the region of the liquid oxygen bath 5 forms a cul-de-sac 38 adjacent to the entry windows 26 and located under these, which allows the largest solid impurities to settle in this dead end, leaving the supply line 6, as indicated in 39 in Figure 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

  • La présente invention est relative à un échangeur de chaleur à ruissellement de liquide pour vaporiser un liquide par échange de chaleur avec un deuxième fluide, du type comprenant un corps parallélépipédique formé d'un assemblage de plaques verticales parallèles définissant entre elles une multitude de passages plats répartis en un ensemble de passages de vaporisation et en un ensemble de passages de chauffage, chaque passage, dans sa partie courante d'échange de chaleur, contenant une onde-entretoise à génératrices verticales, des moyens de distribution du liquide étant prévus à l'extrémité supérieure de l'échangeur pour distribuer le liquide sur toute la longueur des passages de vaporisation, et des moyens étant prévus pour envoyer le deuxième fluide dans les passages de chauffage. Un tel échangeur est connu, par exemple, du document EP-A-0 130 122. Elle s'applique en particulier aux installations de distillation de l'air.
  • Dans les installations de distillation d'air du type à double colonne, l'oxygène liquide qui se trouve en cuve de la colonne basse pression est vaporisé par échange de chaleur avec l'azote gazeux de tête de la colonne moyenne pression. Pour une pression de fonctionnement donnée de la colonne basse pression, l'écart de température entre l'oxygène et l'azote rendu nécessaire par la structure de l'échangeur de chaleur impose la pression de fonctionnement de la colonne moyenne pression. Il est donc souhaitable que cet écart de température soit le plus faible possible, afin de minimiser les dépenses liées à la compression de l'air à traiter injecté dans la colonne moyenne pression.
  • Pour atteindre ce but en bénéficiant de la technologie très avantageuse des échangeurs de chaleur à plaques brasées, le EP-A-0 130 122 au nom de la Demanderesse a proposé un mode particulièrement efficace de distribution de l'oxygène liquide.
  • Cependant, quel que soit le mode de distribution adopté, la technologie actuelle connaît certaines limites. Celles-ci sont dues au fait que, alors que l'oxygène liquide se trouve à une pression qui n'est que légèrement supérieure à la pression atmosphérique, l'oxygène gazeux résultant de la vaporisation doit s'évacuer de lui-même de l'échangeur. La perte de charge du trajet de l'oxygène gazeux doit donc être très faible. Dans toutes les solutions connues, cette contrainte limite la hauteur de l'échangeur, et plus généralement ses performances.
  • L'invention a pour but de permettre d'augmenter la hauteur d'un tel échangeur de chaleur ou, à hauteur donnée, de réduire la perte de charge de l'écoulement de l'oxygène vaporisé. A cet effet, elle a pour objet un échangeur de chaleur du type précité, caractérisé en ce que lesdits moyens de distribution sont disposés dans des compartiments fermés à leur extrémité supérieure et situés chacun au-dessus d'un passage de chauffage, dont il est séparé par une barrette horizontale, en ce qu'une fente horizontale, s'étendant sur toute la longueur de l'échangeur, juste au-dessus de la barrette, met la partie inférieure du compartiment en communication libre avec un passage de vaporisation adjacent, et en ce que les passages de vaporisation sont ouverts à leurs deux extrémités supérieure et inférieure, sur toute leur longueur, et contiennent au plus une onde-entretoise à génératrices verticales en tout point de leur hauteur.
  • Suivant des modes particuliers de réalisation de l'invention :
    • les passages de vaporisation sont dépourvus de toute onde-entretoise en regard des fentes;
    • la surface supérieure de la barrette est inclinée latéralement vers la fente;
    • les moyens de distribution du liquide comprennent, d'une part, une barre horizontale s'étendant sur toute la longueur de chaque compartiment, à un niveau intermédiaire de celui-ci, cette barre ayant une épaisseur égale à l'espacement mutuel des plaques et comportant des ouvertures de prédistribution du liquide, et d'autre part, au-dessous de cette barre, un garnissage de distribution fine du liquide sur toute la longueur horizontale du compartiment;
    • lesdites ouvertures forment une rangée horizontale de trous équidistants les uns des autres;
    • la barre comporte sur une face verticale un ou plusieurs évidements arrière fermés en bas et ouverts vers le haut et sur son autre face verticale un ou plusieurs évidements avant ouverts vers le bas et fermés vers le haut, et en ce que lesdites ouvertures sont ménagées à travers une paroi verticale commune aux évidements avant et arrière;
    • la barre comporte plusieurs évidements arrière espacés les uns des autres, et plusieurs évidements avant espacés les uns des autres;
    • les évidements avant ont une forme évasée vers le bas;
    • le garnissage est une onde à génératrices horizontales dont les flancs sont munis de crevés;
    • le garnissage est espacé de la surface supérieure de la barrette;
    • l'échangeur comporte une boîte d'entrée latérale de liquide dans lesdits compartiments, le point bas de cette boîte se trouvant au-dessous du point bas de la fenêtre d'entrée de ces compartiments.
  • L'invention a également pour objet une installation de séparation d'air par distillation, du type comprenant une première colonne de distillation fonctionnant sous une pression relativement élevée, une deuxième colonne de distillation fonctionnant sous une pression relativement faible, et un échangeur de chaleur permettant de mettre l'oxygène liquide de cuve de la deuxième colonne en relation d'échange thermique avec l'azote gazeux de tête de la première colonne, caractérisée en ce que l'échangeur de chaleur est tel que défini ci-dessus, et en ce que l'installation comprend des moyens d'alimentation pour fournir l'oxygène liquide auxdits moyens de distribution du liquide, et des moyens d'alimentation des passages de chauffage en azote gazeux.
  • Des exemples de mise en oeuvre de l'invention vont maintenant être décrits en regard des dessins annexés. Sur ces dessins :
    • la Figure 1 est un schéma partiel d'une installation de distillation d'air conforme à l'invention;
    • la Figure 2 représente en coupe verticale, à plus grande échelle, la région II de la Figure 1, la coupe étant prise suivant la ligne II-II de la Figure 4;
    • la Figure 3 est une vue partielle en plan prise suivant la flèche III de la Figure 2;
    • la Figure 4 est une vue prise en coupe suivant la ligne IV-IV de la Figure 2; et
    • la Figure 5 est une vue analogue d'une variante.
  • La Figure 1 illustre une possibilité d'implantation d'un échangeur de chaleur oxygène-azote dans une installation de distillation d'air du type à double colonne. Cette installation comprend une colonne moyenne pression 1 au bas de laquelle est injecté l'air à traiter, sous une pression de l'ordre de 6 bars absolus. Le liquide enrichi en oxygène qui est recueilli en cuve de la colonne 1 est envoyé en reflux au milieu de la hauteur d'une deuxième colonne (non représentée), dite colonne basse pression, qui fonctionne légèrement au-dessus de la pression atmosphérique. L'azote gazeux qui se trouve en tête de la colonne 1 est mis en relation d'échange de chaleur indirect avec l'oxygène liquide recueilli en cuve de la colonne basse pression; l'azote condensé résultant sert de reflux dans la colonne 1 et dans la colonne basse pression, tandis que l'oxygène vaporisé résultant est renvoyé au bas de la colonne basse pression.
  • Les deux colonnes de distillation peuvent notamment être du type à garnissage, ce qui contribue également au gain en énergie par abaissement de la pression de marche de l'installation, qui est celle de la colonne 1.
  • L'échange de chaleur entre l'oxygène et l'azote s'opère dans un échangeur 2 qui est monté au-dessus de la colonne 1, tandis que la colonne basse pression est juxtaposée à cette dernière.
  • L'échangeur 2 est constitué d'une enveloppe étanche 3 dont l'essentiel de la hauteur contient un ensemble de plaques parallèles 4 de forme rectangulaire en aluminium, d'une longueur de l'ordre de 1 à 1,5 m et d'une hauteur de l'ordre de 3 à 7 m, entre lesquelles des ondes également en aluminium sont fixées par brasage.
  • Un espace sous une pression légèrement supérieure à celle de la colonne basse pression (par exemple de l'ordre de 1,4 bar), situé au niveau de l'extrémité supérieure des plaques 4, en regard de l'une de leurs tranches verticales, renferme un bain d'oxygène liquide 5 alimenté en pluie par une conduite 6 provenant de la cuve de la colonne basse pression et munie d'une pompe (non représentée). Cette dernière peut être commandée par un régulateur du niveau du bain 5, ou, en variante, par un régulateur de débit. Au sommet de l'échangeur 2, l'enveloppe 3 forme un dôme 7 qui contient le bain 5. De ce dôme part une conduite 8 de renvoi au bas de la colonne basse pression de l'oxygène vaporisé provenant du bain 5, résultant des entrées de chaleur au niveau de la pompe et des tuyauteries, et d'une partie de l'oxygène vaporisé dans l'échangeur 2.
  • L'ensemble des plaques 4 est alimenté à sa partie supérieure en azote gazeux sous 6 bars par une boîte d'alimentation horizontale 9, située sous le bain 5, qui communique par une conduite 10 avec la tête de la colonne moyenne pression. L'évacuation de l'azote condensé s'effectue à la base des plaques 4 par une boîte collectrice horizontale 11 qui communique par une conduite 12 avec une rigole gardée 13 disposée en tête de la colonne 1. Sur la boîte 11 est piqué un tuyau 14 d'évacuation des gaz rares incondensables.
  • Une conduite 15 relie la cuve de la colonne basse pression à l'espace situé dans l'enveloppe 3, au-dessous des plaques 4. Cette conduite pénètre verticalement dans cet espace par le point bas de l'enveloppe 3, et son extrémité supérieure est surmontée d'un déflecteur conique 16. Du fond de l'enveloppe 3 part également une conduite 17 destinée à ramener en cuve de la colonne basse pression l'oxygène liquide en excès.
  • La structure de la partie active de l'échangeur 2, c'est-à-dire de l'ensemble de plaques 4, va maintenant être décrite en regard des Figures 2 à 4.
  • Dans cette région, l'échangeur a une forme parallélépipédique, et l'enveloppe 3 est définie par les tranches des plaques 4 et par des barrettes-entretoises qui ferment les passages que ces plaques définissent, sauf aux emplacements d'entrée et de sortie des fluides. Les plaques 4 définissent une multitude de passages destinés alternativement à l'écoulement de l'oxygène (passages 18) et à l'écoulement de l'azote (passages 19). Sur la majeure partie de leur hauteur, les passages 18 et 19 contiennent chacun une onde-entretoise 20 constituée d'une tôle d'aluminium perforée ondulée à génératrices verticale.
  • Les ondes 20 des passages d'azote se terminent, en haut comme en bas, avant les ondes 20 des passages d'oxygène. En bas des plaques 4, ces ondes des passages 20 sont prolongées par des ondes obliques de collection d'azote (non représentées) qui aboutissent à l'entrée de la boîte collectrice 11. A leur extrémité supérieure, ces mêmes ondes 20 sont prolongées par des ondes obliques 21 de distribution d'azote qui débouchent, par une fenêtre latérale 21A de l'échangeur, à la sortie de la boîte d'alimentation 9. Au-dessus des ondes 21, les passages 19 d'azote sont fermés par des barrettes horizontales 22. D'autres barrettes horizontales (non représentées) ferment l'extrémité inférieure des passages d'azote au-dessous des zones de collection de l'azote. Au-dessus des barrettes 22, chaque passage d'azote est prolongé par un compartiment 23 de distribution d'oxygène liquide fermé à l'extrémité supérieure de l'échangeur par une barrette horizontale 24. Le compartiment 23 contient, de haut en bas : une onde-entretoise oblique 25 (ou, en variante, une onde perforée à génératrices horizontales) de distribution grossière de l'oxygène liquide sur toute la longueur du compartiment, cette onde débouchant latéralement, via une fenêtre latérale 26 de l'échangeur, dans le bain 5 (Figure 2); une barre perforée 27 de prédistribution d'oxygène liquide; et un garnissage 28 de distribution fine d'oxygène liquide. Un espace libre 29 est ménagé entre ce garnissage et la surface supérieure de la barrette 22.
  • La barre perforée 27 est usinée à partir d'une ébauche parallélépipédique dont l'épaisseur est égale à l'espacement des plaques 4, soit de l'ordre de 5 à 15 mm, et dont la longueur est égale à celle de ces plaques. Dans l'une de ses grandes faces sont usinés une série d'évidements arrière (en considérant la Figure 2) 30 en U, ouverts vers le haut, et dans son autre face sont usinés une série d'évidements avant 31 à peu près en demi-cercle, ouverts vers le bas. Chaque évidement 31 se trouve longitudinalement en regard d'un évidement 30 et chevauche celui-ci en hauteur, de sorte qu'il existe, à peu près à mi-épaisseur de la barrette (Figure 4), une mince paroi verticale 32 commune aux deux évidements. Cette paroi est percée d'un trou circulaire 33. Les trous 33 sont répartis à intervalles réguliers le long de la barre perforée 27.
  • Le garnissage 28 est constitué par une onde à génératrices horizontales (disposition dite "en hard way" par rapport à l'écoulement de l'oxygène liquide) non perforée mais du type "serrated". Ceci signifie qu'à intervalles réguliers, chaque facette horizontale ou pseudo-horizontale de l'onde est pourvue d'un crevé décalé vers le haut d'un quart de pas d'onde. La largeur des crevés, mesurée le long d'une génératrice de l'onde, est du même ordre que la distance qui sépare chacun d'eux des deux crevés adjacents situés sur la même facette.
  • Les passages 18 de vaporisation d'oxygène sont ouverts à leurs deux extrémités supérieure et inférieure. Ils contiennent l'onde 20 de l'extrémité inférieure jusqu'au niveau des barrettes 22, sont dépourvus de toute onde en regard de l'espace 29, puis, du niveau supérieur de cet espace 29 jusqu'à leur extrémité supérieure, ils contiennent une autre onde-entretoise 20A analogue à l'onde 20 mais à pas plus grand. La région de chaque passage 18 dépourvue d'onde communique librement avec l'espace 29 d'un passage 19 adjacent à travers une fente horizontale 34 de même hauteur s'étendant sur toute la longueur de l'échangeur. Ainsi, une plaque 4 sur deux est continue sur toute l'étendue de l'échangeur, tandis qu'une plaque sur deux est en fait constituée d'une plaque rectangulaire 4A qui ne s'étend vers le haut que jusqu'à la barrette 22, et d'une plaque rectangulaire 4B qui délimite le compartiment 23 de distribution d'oxygène liquide. La surface supérieure 35 de la barrette 22 est inclinée latéralement de façon à descendre de la plaque 4 adjacente jusqu'au bord supérieur de la plaque 4A en regard. Grâce à un décrochement de la barrette 22, cette surface s'étend légèrement au-delà de la face de la plaque 4A qui délimite le passage 18.
  • En fonctionnement, le bain d'oxygène liquide 5 est maintenu à un niveau à peu près constant, sans dépasser la face supérieure d'une plaque verticale 5A soudée sur l'échangeur au-dessus des fenêtres 26. Ainsi, l'oxygène liquide pénètre latéralement dans les compartiments 23, par une de leurs extrémités à travers les fenêtres 26. Simultanément, l'azote gazeux sous 6 bars absolus pénètre dans la partie supérieure des passages 19, par une extrémité de ces passages, via la boîte 9 et les ondes de distribution 21.
  • L'oxygène liquide forme ainsi une colonne de liquide de hauteur pratiquement uniforme au-dessus de tous les trous 33. Il est prédistribué sur toute la longueur des passages 18 en un certain nombre de jets 36 par ces trous 33, puis tombe librement sur le garnissage 28, lequel, de par sa constitution et sa disposition, assure une distribution fine de l'oxygène liquide tout le long des passages 18. L'oxygène liquide tombe donc uniformément sur la surface inclinée 35 des barrettes 22, puis se déverse à travers les fentes 34 dans les passages 18.
  • Un film d'oxygène liquide ruisselle ainsi sur toutes les surfaces métalliques contenues dans les passages 18, c'est-à-dire sur les plaques 4 et 4A et sur les ondes 20, et il se vaporise partiellement par échange de chaleur indirecte avec l'azote en cours de condensation du haut vers le bas dans les passages 19 alternés.
  • Comme indiqué plus haut, les passages 18 sont non seulement ouverts vers le haut et vers le bas, mais encore dépourvus au maximum, sur toute leur hauteur, d'obstacles à l'écoulement de l'oxygène gazeux. En effet, en n'importe quel point de leur hauteur, ces passages sont soit vides (en regard de la fente 34), soit pourvus d'une simple onde 20, 20A à génératrices verticales et à pas relativement grand. L'onde 20 améliore l'échange de chaleur avec l'azote par effet d'ailettes, tandis que l'onde 20A sert uniquement d'entretoise et peut même éventuellement être partiellement supprimée.
  • Il résulte de ceci qu'une partie de l'oxygène vaporisé peut sortir de l'échangeur par le haut et donc s'ajouter, dans le dôme supérieur 7, aux évaporations du bain 5 (Figure 1), le reste de l'oxygène vaporisé sortant de l'échangeur par le bas en même temps que l'oxygène liquide en excès puis s'évacuant via la conduite 15. Les deux trajets de sortie de l'oxygène vaporisé sont parcourus par un débit gazeux réduit, et chaque trajet impose de plus une perte de charge minimale à l'écoulement de ce gaz. Finalement, la hauteur de l'échangeur peut être augmentée.
  • Il est à noter que grâce à la structure des barres perforées 27, les trous 33 sont à axe horizontal et il existe un cul-de-sac 37 sur la face arrière de la barre, au-dessous de ces trous. Les éventuelles impuretés solides contenues dans l'oxygène liquide peuvent ainsi se déposer dans ces culs-de-sac, ce qui protège les trous 33 contre les risques de bouchage.
  • De même, la configuration de l'enveloppe 3 dans la région du bain d'oxygène liquide 5 forme un cul-de-sac 38 adjacent aux fenêtres d'entrée 26 et situé sous celles-ci, ce qui permet aux impuretés solides les plus grosses de se décanter dans ce cul-de-sac, en sortant de la conduite d'alimentation 6, comme indiqué en 39 sur la Figure 2.
  • Si, dans une application particulière, cette décantation est jugée suffisante pour éviter tout risque de bouchage des trous 33, on peut avoir recours à la variante de la Figure 5. Celle-ci ne diffère de la précédente que par la constitution simplifiée de la barre perforée 27, laquelle est une simple barre à section rectangulaire munie à intervalles réguliers de trous 33 à axe vertical. Ces trous peuvent avoir un diamètre élargi sur la plus grande partie de leur hauteur à partir du bas, comme expliqué dans le EP-A-0 130 122 précité.

Claims (12)

  1. Echangeur de chaleur à ruissellement de liquide pour vaporiser un liquide par échange de chaleur avec un deuxième fluide, du type comprenant un corps parallélépipédique formé d'un assemblage de plaques verticales parallèles (4) définissant entre elles une multitude de passages plats (18, 19) répartis en un ensemble de passages de vaporisation (18), et en un ensemble de passages de chauffage (19), chaque passage, dans sa partie courante d'échange de chaleur, contenant une onde-entretoise (20) à génératrices verticales, des moyens de distribution du liquide étant prévus à l'extrémité supérieure de l'échangeur (2) pour distribuer le liquide sur toute la longueur des passages de vaporisation (18), et des moyens (9) étant prévus pour envoyer le deuxième fluide dans les passages de chauffage (19), caractérisé en ce que lesdits moyens de distribution sont disposés dans des compartiments (23) fermés à leur extrémité supérieure et situés chacun au-dessus d'un passage de chauffage (19), dont il est séparé par une barrette horizontale (22), en ce qu'une fente horizontale (34), s'étendant sur toute la longueur de l'échangeur, juste au-dessus de la barrette (22), met la partie inférieure du compartiment (23) en communication libre avec un passage de vaporisation (18) adjacent, et en ce que les passages de vaporisation (18) sont ouverts à leurs deux extrémités supérieure et inférieure, sur toute leur longueur, et contiennent au plus une onde-entretoise (20A) à génératrices verticales en tout point de leur hauteur.
  2. Echangeur suivant la revendication 1, caractérisé en ce que les passages de vaporisation (18) sont dépourvus de toute onde-entretoise en regard des fentes (34).
  3. Echangeur suivant la revendication 1 ou 2, caractérisé en ce que la surface supérieure (35) de la barrette (22) est inclinée latéralement vers la fente (34).
  4. Echangeur suivant l'une quelconque des revendications 1 à 3, caractérisé en ce que les moyens de distribution du liquide comprennent, d'une part, une barre horizontale (27) s'étendant sur toute la longueur de chaque compartiment, à un niveau intermédiaire de celui-ci, cette barre ayant une épaisseur égale à l'espacement mutuel des plaques (4) et comportant des ouvertures (33) de prédistribution du liquide, et d'autre part, au-dessous de cette barre, un garnissage (28) de distribution fine du liquide sur toute la longueur horizontale du compartiment (23).
  5. Echangeur suivant la revendication 4, caractérisé en ce que lesdites ouvertures (33) forment une rangée horizontale de trous équidistants les uns des autres.
  6. Echangeur suivant la revendication 4 ou 5, caractérisé en ce que la barre (27) comporte sur une face verticale un ou plusieurs évidements arrière (30) fermés en bas et ouverts vers le haut et sur son autre face verticale un ou plusieurs évidements avant (31) ouverts vers le bas et fermés vers le haut, et en ce que lesdites ouvertures (33) sont ménagées à travers une paroi verticale (32) commune aux évidements avant et arrière.
  7. Echangeur suivant la revendication 6, caractérisé en ce que la barre (27) comporte plusieurs évidements arrière (30) espacés les uns des autres, et plusieurs évidements avant (31) espacés les uns des autres.
  8. Echangeur suivant la revendication 7, caractérisé en ce que les évidements avant (31) ont une forme évasée vers le bas.
  9. Echangeur suivant l'une quelconque des revendications 4 à 8, caractérisé en ce que le garnissage (28) est une onde à génératrices horizontales dont les flancs sont munis de crevés.
  10. Echangeur suivant l'une quelconque des revendications 4 à 9, caractérisé en ce que le garnissage (28) est espacé de la surface supérieure (35) de la barrette (22).
  11. Echangeur suivant l'une quelconque des revendications 1 à 10, caractérisé en ce qu'il comporte une boîte d'entrée latérale de liquide dans lesdits compartiments (23), le point bas de cette boîte se trouvant au-dessous du point bas de la fenêtre d'entrée (26) de ces compartiments.
  12. Installation de séparation d'air par distillation, du type comprenant une première colonne de distillation (1) fonctionnant sous une pression relativement élevée, une deuxième colonne de distillation fonctionnant sous une pression relativement faible, et un échangeur de chaleur (2) permettant de mettre l'oxygène liquide de cuve de la deuxième colonne en relation d'échange thermique avec l'azote gazeux de tête de la première colonne, caractérisée en ce que l'échangeur de chaleur est conforme à l'une quelconque des revendications 1 à 11, et en ce que l'installation comprend des moyens d'alimentation (6) pour fournir l'oxygène liquide auxdits moyens de distribution du liquide, et des moyens (9) d'alimentation des passages de chauffage en azote gazeux.
EP93400746A 1992-04-17 1993-03-23 Echangeur de chaleur à ruissellement et installation de distillation d'air comportant un tel échangeur Expired - Lifetime EP0566435B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9204804 1992-04-17
FR9204804A FR2690231B1 (fr) 1992-04-17 1992-04-17 Echangeur de chaleur a ruissellement et installation de distillation d'air comportant un tel echangeur.

Publications (2)

Publication Number Publication Date
EP0566435A1 EP0566435A1 (fr) 1993-10-20
EP0566435B1 true EP0566435B1 (fr) 1996-04-24

Family

ID=9429022

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93400746A Expired - Lifetime EP0566435B1 (fr) 1992-04-17 1993-03-23 Echangeur de chaleur à ruissellement et installation de distillation d'air comportant un tel échangeur

Country Status (9)

Country Link
US (1) US5321954A (fr)
EP (1) EP0566435B1 (fr)
JP (1) JPH0618166A (fr)
CN (1) CN1078801A (fr)
CA (1) CA2094087A1 (fr)
DE (1) DE69302319T2 (fr)
ES (1) ES2086896T3 (fr)
FR (1) FR2690231B1 (fr)
RU (1) RU2077010C1 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5438836A (en) * 1994-08-05 1995-08-08 Praxair Technology, Inc. Downflow plate and fin heat exchanger for cryogenic rectification
FR2728669B1 (fr) * 1994-12-21 1997-04-11 Air Liquide Appareil a circulation de fluide
FR2728670B1 (fr) * 1994-12-23 1997-03-21 Air Liquide Chambre d'entree/sortie de fluide, et appareil a circulation de fluide correspondant
FR2733039B1 (fr) * 1995-04-14 1997-07-04 Air Liquide Echangeur de chaleur a plaques brassees, et procede correspondant de traitement d'un fluide diphasique
US5649433A (en) * 1995-06-29 1997-07-22 Daido Hoxan Inc. Cold evaporator
US5709264A (en) * 1996-03-18 1998-01-20 The Boc Group, Inc. Heat exchanger
GB2316478A (en) * 1996-08-20 1998-02-25 Imi Marston Ltd Liquefaction heat exchanger
FR2786858B1 (fr) * 1998-12-07 2001-01-19 Air Liquide Echangeur de chaleur
ES2204380T3 (es) * 1999-03-17 2004-05-01 Linde Aktiengesellschaft Dispositivo y procedimiento para descomponer una mezcla gaseosa a baja temperatura.
US6349566B1 (en) 2000-09-15 2002-02-26 Air Products And Chemicals, Inc. Dephlegmator system and process
US6393866B1 (en) 2001-05-22 2002-05-28 Praxair Technology, Inc. Cryogenic condensation and vaporization system
US7266976B2 (en) * 2004-10-25 2007-09-11 Conocophillips Company Vertical heat exchanger configuration for LNG facility
FR2895069B1 (fr) * 2005-12-20 2014-01-31 Air Liquide Appareil de separation d'air par distillation cryogenique
CN102650491B (zh) * 2012-05-10 2013-10-16 西安交通大学 空分板翅型膜式主冷液体分布器
JP5913245B2 (ja) * 2013-09-24 2016-04-27 株式会社フィルテック 張り合わせ流体熱交換装置
US10962294B2 (en) * 2018-12-07 2021-03-30 Hamilton Sundstrand Corporation Dual pass heat exchanger with drain system
US11774189B2 (en) * 2020-09-29 2023-10-03 Air Products And Chemicals, Inc. Heat exchanger, hardway fin arrangement for a heat exchanger, and methods relating to same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3282334A (en) * 1963-04-29 1966-11-01 Trane Co Heat exchanger
US3992168A (en) * 1968-05-20 1976-11-16 Kobe Steel Ltd. Heat exchanger with rectification effect
FR2547898B1 (fr) * 1983-06-24 1985-11-29 Air Liquide Procede et dispositif pour vaporiser un liquide par echange de chaleur avec un deuxieme fluide, et leur application a une installation de distillation d'air
US4721164A (en) * 1986-09-04 1988-01-26 Air Products And Chemicals, Inc. Method of heat exchange for variable-content nitrogen rejection units
FR2665755B1 (fr) * 1990-08-07 1993-06-18 Air Liquide Appareil de production d'azote.
US5122174A (en) * 1991-03-01 1992-06-16 Air Products And Chemicals, Inc. Boiling process and a heat exchanger for use in the process

Also Published As

Publication number Publication date
ES2086896T3 (es) 1996-07-01
EP0566435A1 (fr) 1993-10-20
CA2094087A1 (fr) 1993-10-18
CN1078801A (zh) 1993-11-24
DE69302319T2 (de) 1996-09-12
JPH0618166A (ja) 1994-01-25
FR2690231B1 (fr) 1994-06-03
RU2077010C1 (ru) 1997-04-10
FR2690231A1 (fr) 1993-10-22
US5321954A (en) 1994-06-21
DE69302319D1 (de) 1996-05-30

Similar Documents

Publication Publication Date Title
EP0566435B1 (fr) Echangeur de chaleur à ruissellement et installation de distillation d'air comportant un tel échangeur
EP0130122B1 (fr) Dispositif pour vaporiser un liquide par échange de chaleur avec un deuxième fluide et installation de distillation d'air comprenant un tel dispositif
EP0546947B1 (fr) Echangeur de chaleur indirect du type à plaques
EP1008826B1 (fr) Vaporiseur à film ruisselant et installations de distillation d'air correspondantes
EP0019508B1 (fr) Ensemble d'échange thermique du genre échangeur de chaleur à plaques
CA2048432A1 (fr) Appareil de production d'azote
EP1179724B1 (fr) Echangeur thermique à blocs échangeurs multiples à ligne d'alimentation en fluide à distribution uniforme, et vaporiseur-condenseur comportant un tel échangeur
EP3479044A1 (fr) Echangeur de chaleur comprenant un dispositif de distribution d'un melange liquide/gaz
EP1088578A1 (fr) Vaporiseur-condenseur à thermosiphon et installation de distillation d'air correspondante
FR2571837A1 (fr) Appareil de rechauffage de fluide
FR2774755A1 (fr) Condenseur a plaques brasees perfectionne et son application aux doubles colonnes de distillation d'air
EP0738862B1 (fr) Echangeur de chaleur à plaques brasées
EP2265368A2 (fr) Colonne à garnissage d'échange de chaleur et/ou matière
EP1067344B1 (fr) Vaporiseur-condenseur à bain à plaques brasées et son application à un appareil de distillation d'air
WO2011110782A1 (fr) Echangeur de chaleur
EP3105520B1 (fr) Colonne de séparation d'air par distillation cryogénique, appareil de séparation d'air comportant une telle colonne et procédé de fabrication d'une telle colonne
EP2368084B1 (fr) Échangeur de chaleur
WO2011110772A2 (fr) Echangeur de chaleur
FR2793548A1 (fr) Vaporiseur-condenseur a plaques fonctionnant en thermosiphon, et double colonne de distillation d'air comportant un tel vaporiseur-condenseur
FR2798598A1 (fr) Vaporiseur-condenseur a bain et appareil de distillation d'air correspondant
EP1230522A1 (fr) Vaporiseur-condenseur et installation de distillation d'air correspondante
FR2797943A1 (fr) Appareil a circulation de fluide
FR2670394A1 (fr) Colonne de distillation a garnissage, et distributeur combine pour une telle colonne.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930326

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 19950727

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

REF Corresponds to:

Ref document number: 69302319

Country of ref document: DE

Date of ref document: 19960530

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2086896

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970210

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970220

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970224

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19970313

Year of fee payment: 5

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19980324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20000201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050323