EP0558337B1 - Aspirateur sous-marin auto-propulsé et méthode de nettoyage - Google Patents

Aspirateur sous-marin auto-propulsé et méthode de nettoyage Download PDF

Info

Publication number
EP0558337B1
EP0558337B1 EP93301462A EP93301462A EP0558337B1 EP 0558337 B1 EP0558337 B1 EP 0558337B1 EP 93301462 A EP93301462 A EP 93301462A EP 93301462 A EP93301462 A EP 93301462A EP 0558337 B1 EP0558337 B1 EP 0558337B1
Authority
EP
European Patent Office
Prior art keywords
cleaner
oscillator
housing
suction
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93301462A
Other languages
German (de)
English (en)
Other versions
EP0558337A1 (fr
Inventor
Pavel Sebor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/978,237 external-priority patent/US5404607A/en
Application filed by Individual filed Critical Individual
Publication of EP0558337A1 publication Critical patent/EP0558337A1/fr
Application granted granted Critical
Publication of EP0558337B1 publication Critical patent/EP0558337B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H4/00Swimming or splash baths or pools
    • E04H4/14Parts, details or accessories not otherwise provided for
    • E04H4/16Parts, details or accessories not otherwise provided for specially adapted for cleaning
    • E04H4/1654Self-propelled cleaners

Definitions

  • the invention generally relates to suction cleaners for use on surfaces submerged in a liquid.
  • the suction cleaner is attached to a flexible hose and pump for its source of suction.
  • the invention relates to a device for automatically cleaning the submerged surfaces of swimming pools and the like.
  • Self-propelled suction cleaners are customarily used for cleaning the submerged surfaces of pools and in particular, swimming pools having various surface finishes and contoured shapes.
  • Various techniques have been employed in the mechanisms that drive these self-propelled cleaners.
  • Three of the more common mechanisms use either a shut off valve, turbine drive or drive wheels. In some cases, combinations of these mechanisms are used.
  • the United States Patent no. 4,536,908 issued to Johann N. Raubenheimer on August 27, 1985 discloses a suction cleaner for a swimming pool that is supported on a bogie or truck assembly with inclined supporting feet.
  • the bogie assembly is mechanically rocked by means of a turbine through which water is pulled by suction to cause the cleaner to move.
  • a second turbine drives a hose connection at the top of the cleaner in opposite directions with long periods of dwell in between. In other words, the device is continuously driven in the forward or turning directions.
  • a turbine driven swimming pool cleaner is also disclosed in the United States Patent no. 4,939,806 issued to Carl F. Supra on July 10, 1990.
  • a cleaner having a head is mounted on wheels.
  • a cleaner for a submerged surface comprises a body that defines a suction passage and pressure passage.
  • the suction passage extends between an inlet and outlet in the body and is connectable to the inlet of a filtration system by flexible hose.
  • a second hose connects the inlet on the device to an outlet of the system. Water flowing under pressure to the inlet drives a turbine which in turn drives hind wheels to displace the apparatus over the surface while debris or the like is sucked up through the suction passage and out through the hose that is attached to the filtration system.
  • the suction and return hoses are those of the flexible kind typically used in swimming pool cleaning systems.
  • an apparatus for cleaning swimming pools in a stepwise movement over the pool walls comprises a balanced operating head having an inlet and an outlet, the outlet adapted to be swivelably connected to a longitudinally resilient and flexible suction hose.
  • the inlet axis is inclined at an angle to that of the outlet.
  • a passage extends through the head from inlet to outlet, and an oscillator valve in the head is adapted to alternately open and close said passage.
  • a baffle plate is disposed in the head between the inlet and valve to form a restricted suction connection between inlet and outlet around the valve when the passage is closed. The flow of water causes the valve to oscillate between its two terminal positions.
  • an automatic pool cleaner which also operates on the interruption of an induced flow of water through the cleaner.
  • the interruption in the flow of water drawn through the pool cleaner is used to provide a propulsive force to cause the cleaner to move over submerged pool surfaces.
  • the control of the interruption is effected through a tubular axially resilient diaphragm one end of which is closed and adapted to hold normally closed a passage from the head of the pool cleaner to the usual form of flexible hose connecting the pool cleaner to the filtration unit.
  • the flow of water through the pool cleaner causes a suction in a passageway greater than that in a connection, the result being that a spring and diaphragm force the closure of the passageway.
  • the intermittent interruption of flow through the passageway and hose, and the simultaneous release of the force holding the cleaner and disc against the submerged surface causes the cleaner to move in a stepwise manner over' the surface to be cleaned.
  • valve intake tends to clog with larger debris and in order to correct this condition, the cleaning device must be removed from the pool and disassembled for cleaning.
  • the membranes used in these units have a tendency to break and require replacement.
  • the dramatic reduction of flow needed to create the step by step movement of the cleaning device results in severe changes in the pressure head at the suction pump thus placing additional wear on this pump and motor.
  • Cleaning devices using turbine styled systems must depend on the high speed movement of the turbine, large number of bearings and the needed multitude of parts to convert the high speed to the relatively slow cleaning movement.
  • the many bearing surfaces perform poorly after performance in the sand which grinds down the bearing parts.
  • the cleaning devices relying on wheels for their traction encounter problems when climbing the vertical walls of typical swimming pools. The wheels slip in attempting to manoeuvre on the vertical wall and will slip under certain conditions when climbing from the deep end to the shallow end of the pool.
  • DE-A-2 620 119 discloses a submersible suction cleaner including an oscillating member that serves to vary the flow path through the device (preamble of claims 1 and 20).
  • EP-A-0 476 413 discloses a submersible suction cleaner using an oscillating member acting in conjunction with angled bristles on its shoe to impart self-propelled motion.
  • EP-A-0 476 413 is relevant under Article 54(3) EPC for novelty purposes only in respect of the designated states DE, ES, FR and GB.
  • An embodiment of the invention provides a self-propelled suction cleaner used in conjunction with a pool suction pump and motor for removing dirt and debris from the submerged surfaces of the pool. It is also contemplated that the system and method are useful in other environments.
  • the cleaner is connected at a coupling located on top of a housing.
  • the coupling is connected to the suction pump and motor using a flexible elongated hose.
  • the cleaner housing incorporates a suction chamber located within the housing.
  • the suction chamber comprises an entrance end in proximity to the submerged surface to be cleaned and an exit end communicating with the coupling.
  • An oscillator is pivotably mounted within the suction chamber. As the water flows past the oscillator, a to and fro motion results.
  • the shape and size of the chamber between the oscillator and the coupling cause abrupt changes in water flow and a continuous vibratory movement of the housing.
  • the housing has peripheral walls.
  • a shoe is formed around the periphery of the housing and adapted to engage the submerged surface to be cleaned.
  • the shoe comprises three or more rows of tread elements which are angled in a forward direction with respect to the surface. The element angles and the vibratory motion of the housing cause the cleaner to advance in a random pattern over the submerged surfaces including a vertical surface of the pool.
  • the elements of the shoe which engage the surface take on elongated tracks parallel to each other and perpendicular to the forward movement or can be a plurality of finger elements with each element angled.
  • the angles range from a more perpendicular angle in front of the housing shoe than in the back with each track or element changing angle progressively away from perpendicular as the elements go from front to back.
  • the cleaner By making the coupling rotatable, the cleaner can be made to turn at established intervals throughout the random path and allow the cleaner to free itself from pool obstructions.
  • Means is provided for converting a reciprocal angular movement or to and fro movement of the oscillator to an angular movement in one direction for purposes of driving a shaft by incorporating a ratchet and pawl assembly.
  • a drive gear essentially affixed to the shaft engages a gear train.
  • the gear train engages the rotatable coupling at defined intervals to generate rotation of the coupling at these defined intervals.
  • Means for limiting the elevation of the cleaner as it climbs a vertical wall of the pool comprises a limiter member affixed to and extending forward and out from the housing.
  • the member is dimensioned and disposed such that when the upper end of the member breaks the surface of the water, gravitational force diminishes any forward impetus of the housing and the extended member acting as a moment arm has the effect of turning the cleaner back toward the water.
  • the suction chamber comprises a pressure relief valve.
  • the pressure relief valve comprises a by-pass opening in a housing wall communicating with the suction chamber.
  • a by-pass closure is fitted over the by-pass opening and moveable between a closed position in which the water is prevented from flowing through the opening and an open position in which the water flows from the by-pass opening and into the coupling on to the pump.
  • the by-pass closure is held closed using a spring biasing means in the preferred embodiment.
  • the opening in the housing wall is a plurality of slots in the preferred embodiment.
  • a gap is located between oscillator side walls and the suction chamber walls. This gap should be as small as possible for optimum flow through the chamber and resulting optimum oscillator forces. As the gap size increases, flow through the gap inhibits oscillator vibration. Grit and debris can fill the gap and impair oscillator movement.
  • the preferred embodiment comprises an oscillator having an elongated groove along the edge of the oscillator and a sealing strip extending into the groove and extensible across the gap.
  • the present art includes a variety of suction cleaners.
  • a sample of the more typical suction cleaners using vibrator valves, turbine assemblies, and wheels were described in the introduction to this specification.
  • Debris clogs cleaners using vibrator valves and membranes to a point where the membrane breaks and needs replacement or as a minimum the cleaner requires disassembly before clearing and reassembly.
  • Turbine mechanisms have a high speed movement. The high speed movement demands bearing surfaces and complex speed reducing parts.
  • the sand and grit found in a typical swimming pool quickly wears the bearing surfaces and the sand generally grinds down these parts.
  • Wheeled cleaners have problems climbing walls.
  • the wheels slip when encountering the vertical walls and the steep inclines running from the deep end of typical pools to the shallow end.
  • the present cleaning devices tend to slip on the contemporary surfaces made from fiberglass and vinyl. Most of the cleaning devices require smooth transition areas and can get hung up on a step as an example. Many cleaners form a pattern within the pool which is not efficient for cleaning all surfaces.
  • the shut off valve styled cleaners use a stepping motion to propel the cleaner forward that intermittently and dramatically cuts the flow and induces high suction and pressure causing excess strain for the pump and motor.
  • Embodiments of the present invention avoid the problems inherent in the designs described and provide a self-propelled suction cleaner using continuous suction flow through the cleaner and this continuous flow to provide the vibrating motion needed to advance the cleaner forward.
  • Embodiments provide means for limiting the elevation of the cleaner above the water line of the pool and thus prevent the pump from sucking unwanted air.
  • the random pattern of the cleaner as it advances over the pool surface is enhanced by a turning means that prevents the cleaner from becoming hung up at obstacles such as pool steps and abrupt surface changes. Should debris clog the cleaner suction chamber, a pressure relief valve will be activated and will eliminate excess strain on the pump and motor.
  • nominal pressures ranging between 10 kPa were measured at a position proximate to the weir in a pool cleaning system. Open hose pressures were measured at approximately 8 kPa. In contrast, devices relying on flow cut off to initiate movement generate nominal pressures ranging from 22 kPa to 30 kPa when measured at the same weir position. (1 kPa equals 1000 Pascal units, a metric measure of pressure. One pound per square inch is equivalent to 6.89 kPa units.)
  • a self-propelled submersible suction cleaner 10 particularly describes a swimming pool cleaner 10 which makes use of the flow of water through a cleaner housing 12 .
  • the housing 12 contains a suction chamber 14 having a mouth 16 located at an entrance end 18 in which water flows.
  • the chamber exit end 24 communicates with a coupling 26 located on top of the housing 12 .
  • the coupling is rotatable.
  • the propulsion mechanism for the cleaner 10 includes an oscillator 20 pivotally mounted to side walls 22 of the chamber 14 .
  • the oscillator 20 is disposed within the flow path of the water through the suction chamber 14 .
  • the flow is caused by connecting the suction chamber 14 to a filter pump and motor by a suitable flexible hose as is typically done in the pool cleaning art.
  • the hose is connected at the coupling 26 .
  • the oscillator 20 is so shaped that flow therepast causes it to move to and fro about its pivot point and impact the forward 28 and aft 30 walls of the chamber 14 to create a vibratory movement of the chamber 14 and housing 12 to which the chamber 14 is an integral part.
  • This vibratory movement acting on the housing 12 causes a shoe 32 attached at the periphery 34 of the housing 12 and in contact with the pool submerged surface 36 to vibrate.
  • the shoe 32 has three or more rows of tread elements 38 contacting the submerged surface 36 at an angle 40 . This angle 40 is such to drive the housing 12 in a forward direction and thus propel the cleaner 10 over the submerged surface 36 of the pool.
  • the cleaner 10 being propelled in this forward direction 42 would typically take a somewhat random path determined by the pool surface contours peculiar to any given swimming pool.
  • the preferred embodiment of this invention incorporates a turning mechanism 200 using a rotatable coupling 26 and means for converting the vibratory motion to a rotating motion for turning the cleaner 10 at intervals through at least a 90° turn.
  • a turn during the random path will insure that the path does not establish a pattern, typically a figure eight in many swimming pools.
  • the 90° or greater turn will permit the cleaner to maneuver away from the step.
  • the preferred embodiment includes an elevation limiter 100 which turns the cleaner back toward the water as it attempts to climb out.
  • This limiter 100 allows the suction chamber 14 to always see a flow of water and avoids the detrimental sucking of air by the pump.
  • the suction chamber 14 is configured to accept the sand and even larger debris such as leaves typically found in swimming pools and not clog. However, should the suction chamber clog up and severely increase pressure in the chamber 14 and to the pump, a pressure relief valve 300 is a part of the preferred embodiment. The following further describes the embodiment with additional detailed descriptions of the elements making up the preferred embodiment of the cleaner 10 and alternative embodiments for some of these elements.
  • the Oscillator 20 and suction chamber 14 can be further described as follows:
  • the oscillator 20 In order for the oscillator 20 to operate efficiently it must be located in a suction chamber 14 so that the oscillator 20 pivots in close proximity to side walls 22 of the chamber 14 . This is necessary so that the bulk of flow past the oscillator 20 moves along surfaces designed to provide the to and fro movement of the oscillator.
  • the suction chamber located within the housing 12 is comprised of side walls 22 , forward wall 28 and aft wall 30 , the forward and aft walls defined by the housing 12 in the preferred embodiment as illustrated in FIG. 2 and FIG. 3.
  • the oscillator 20 (shown in FIG. 3 and FIG. 5) is pivotally mounted within the suction chamber on a hinge pin 92 extending through a boss 44 on the oscillator, the hinge pin being journalled on the side walls 22.
  • the liquid flow 90 into the suction chamber 14 via the mouth 16 of the housing impinges on the oscillator 20 flowing around the edges 46 causing the oscillator 20 to swing to and fro on its hinge pin 92 impacting against the chamber forward 28 and aft 30 walls.
  • Buffer formations 70 are placed between the edges 46 of the oscillator 20 and chamber walls.
  • the flow has an abrupt change at the top of the chamber as the flow 90 moves past the oscillator 20 toward the chamber exit and coupling 26 .
  • the efficiency of the operation of the oscillator 20 depends on the strength of flow over the oscillator edges 46 . If this flow is dissipated around the side edges 48 and 50 of the oscillator between the latter and the chamber side walls 22 , the strength of the flow past the oscillator edge 46 will be diminished with a consequent drop in the efficiency of the propelling action of the oscillator.
  • the arrangement may be one in which the oscillator 20 is neatly located between the chamber side walls 22 so that little flow is dissipated. In this event, however, grit drawn into the suction chamber 14 is liable to lodge between the oscillator 20 and side walls 22 thereby causing loss of efficiency of the oscillator 20 through friction, or the oscillator 20 may even stick.
  • the oscillator 20 (shown in FIG. 5) and suction chamber 14 are designed so that the edges 48 and 50 are suitably spaced from the side walls 22 of the suction chamber 14 to enable grit to pass easily therethrough.
  • Retractable elongated seals 54 are provided at each edge of the oscillator 20 to seal the gap 52 between the edges 48 and 50 of the oscillator 20 and the side walls 22 of the suction chamber (shown in FIG. 6).
  • Elongated seals 54 are located in slot 56 in the respective edges 48 and 50 of the oscillator 20 , the width of the strips being no greater than the depth of the slots 56 .
  • seals 54a are contoured to the oscillator 20 and have their ends 54b riding in slots 56a located at the oscillator edges 46 (as shown in FIGS. 5a and 5b ).
  • Slide bars 54c are affixed to the seals 54a to provide a means for sliding the seals 54a back and forth so as to dislodge grit during a cleaning process for the cleaner 10 .
  • the oscillator 20 is split into two sections 20a and 20b .
  • the oscillator sections 20a and 20b have a groove 60 .
  • a tongue 58 is slidable into and out of the groove 60 .
  • the oscillator sections 20a and 20b are simply forced to retract along the tongue 58 and into the groove 60 of oscillator sections 20a and 20b thereby opening a gap between elongated seals 54 and side chamber walls 22 of the suction chamber 14 and thus allowing the grit easily to pass through the suction chamber 14 into the pool system filter.
  • a second alternative is provided in the form of a suction chamber 14 having side walls 62 and 64 mounted so as to allow end sections 62a and 62b and 64a and 64b to be slidable into and out of guide tracks 66a , 66b and 68a , 68b , respectively.
  • buffer formations 70 are affixed to the chamber wall 28 and 30 at the impact location between the impacting oscillator edge 46 and chamber wall.
  • these buffer formations 70 are rubber-like pads. These buffer formations thus protect the housing 12 and in general the cleaner 10 from damage resulting from the action of the oscillator.
  • the hoe 32 assembly 32 can be further described as follows:
  • the shoe 32 comprises three or more rows of tread elements 38 .
  • the tread elements 38 can be in the form of elongated tracks 72 as shown in the preferred embodiment of FIG 4 having the track elements 72 spaced and generally parallel to each other with the elongated element perpendicular to the forward direction 42 of the cleaner movement.
  • the elements 72 are angled forward with respect to the submerged surface. In the preferred embodiment shown in FIG 1 , the elements 72 form an acute angle 40 with respect to a perpendicular to the shoe. As the elements progress from the front of the housing 74 to the rear 76 , the angle 40 increases progressively for each respective element 72 .
  • the first few rows of elements 72 at the front 74 are shorter than in the middle or rear in order to better execute the climbing of a steep vertical pool wall.
  • a coupling bellows 78 is fitted to the coupling 26 .
  • This bellows 78 provides added flexibility to the end of the flexible hose and permits improved execution of the steep vertical pool wall.
  • FIG 1 discloses this coupling bellows 78 configuration.
  • the shoe 32 is configured with three or more rows of tread elements 38 that are made from a plurality of finger elements 80 set in a matrix array as described in FIG 10 .
  • the matrix is made from parallel rows of finger elements 80 spaced in a similar manner as the parallel rows of track elements 72 .
  • Each row of finger elements 80 is angled and configured as the track elements 72 with a tread element angle 40 and progression of increasing angles when moving from front to back as described earlier.
  • the outside portion of the shoe 32 making contact with the surface has an outside dimension defined by the housing periphery 34 and an inside dimension to provide sufficient contact with the surface to be cleaned and an opening to allow access to the mouth 16 .
  • the tread elements 38 whether finger elements 80 or track elements 72 , define a shoe removably affixed to the housing periphery passing partially around the mouth 16 of the suction chamber 14 .
  • a flap 82 (illustrated in FIG. 4 and FIG. 9) is pivotally affixed to the housing periphery directly behind the suction chamber aft wall 30 . In an alternate embodiment, the flap is made an integral part of the shoe which shoe then passes completely around the mouth 16 .
  • the flap 82 is a means for flow adjustment and control by pivoting open and closed during variations in suction.
  • an internal skirt 84 (refer to FIG. 4 and FIG. 10) and external skirt 86 are positioned near the periphery and prevent the free flow of water through the shoe elements thus causing the suction to increase.
  • the skirts can be made a part of the shoe elements or a part of the housing. In the preferred embodiment, both methods are incorporated.
  • An internal skirt portion 88 is comprised of an extension of the forward chamber wall.
  • the balance of the internal skirt 84 is a part of the shoe as is the external skirt 86 .
  • the height of both skirts is slightly shorter than the tread elements 38 to permit the elements 38 to flex during their vibratory and propelling movement.
  • skirts project downwardly as described.
  • the external skirt 86 is configured such that the tread elements 38 are almost fully exposed at the front of the housing 12 but project only slightly beyond skirt at the rear of the housing as illustrated in FIG. 9.
  • the internal skirt portion 84 can be molded integrally with the housing 12 and be located adjacent the elements and internally thereof and extends from one side of the suction chamber 14 the other along the front thereof. Both the external skirt 84 and internal skirt 88 are also laterally spaced from elements so that the elements are able to flex under the vibratory action of the oscillator 20 .
  • the leading edge of the oblong shape of the shoe is a straight edge disposed substantially at right angles to the direction of movement of the cleaner 10 .
  • the rear edge will likewise is a straight edge as shown in FIG. 2. It has been found that the straight, front and rear edges of the shoe 32 and tread elements 38 enhance the mobility and climbing ability of the cleaner.
  • the elevation limiter 100 can further be described as follows:
  • the housing 12 includes a limiter member 110 which for the preferred embodiment comprises an inverted U-shaped pipe connected at its ends to the housing 12 towards the sides thereof so that the open ends 112 of the pipe communicate with the housing 12 .
  • a limiter member 110 which for the preferred embodiment comprises an inverted U-shaped pipe connected at its ends to the housing 12 towards the sides thereof so that the open ends 112 of the pipe communicate with the housing 12 .
  • the member 110 extends upwardly and forwardly with respect to the housing 12 and when the latter is immersed in a pool the member 110 fills with water.
  • the cleaner With forward motions of the cleaner 10 up the side wall of a pool, the cleaner rises until the upper end of the member 110 breaks the surface of the water whilst the suction chamber 14 of the housing 12 is still located just below the surface.
  • the member 110 As the member 110 emerges from the surface of the water it undergoes an apparent gain in weight and the upward and forward extent of the member 110 and its dimensions are designed so that the gain in weight balances the forward impetus of the head when the latter is just beneath the surface. In this way the member 110 operates as an elevation-limiting device preventing the suction chamber 14 from breaking the surface of the water and drawing in air which would impair the operation of the pump.
  • bellows couplings 114 are affixed to the limiter member 110 .
  • the flexible nature of the bellows 114 provides a sufficiently reduced moment arm and provides the smoother forward movement for the cleaner 10 .
  • the turning mechanism 200 can further be described as follows:
  • FIGS. 14 through 18 An embodiment for a drive mechanism is described hereunder with reference to the accompanying drawings of FIGS. 14 through 18.
  • a drive mechanism 210 illustrated in FIG. 14 through FIG. 17) is used with the submersible cleaner 10 for translating reciprocating angular movement 212 of a drive shaft 214 into one directional angular movement 216 of a driven gear 218 .
  • the driven gear 218 can perform a number of functions for the pool cleaner and it is in particular envisaged that it will drive a gear train 220 mechanism for a pool cleaner through a number of reduction gears 222 , such as that shown in FIG. 18 and used to turn a rotatable coupling gear 254 and thus the coupling 26 .
  • the drive mechanism comprises a peripheral ring 226 of teeth 228 secured or integrally formed within a drum 230 defined at the end of the driven gear 218 .
  • the teeth are periodically engaged by a plurality of pawl or sprag elements 232 which are pivotally mounted in pockets 234 defined in a collar formation 236 at the end of the drive shaft 214 .
  • the collar 236 of the drive shaft 214 and the sprag elements 232 are thus disposed within the drum 230 of the driven gear 218 to enable the sprag elements 232 periodically to engage the internal teeth 228 .
  • the pockets 234 which pivotally mount the sprag elements 232 define opposed abutment surfaces 234a , 234b , which act to limit pivotal movement of the sprag elements 232 between a first extreme position (shown in FIG. 15) wherein the sprag elements 232 are substantially radially disposed to engage the teeth 228 ; and a second extreme position (shown in FIG. 16) wherein the sprag elements 232 are angled relative to the radial and out of engagement with the teeth 228 .
  • the sprag elements 232 operate in a liquid medium, such as water, preferably the same liquid in which the surface to be cleaned is immersed, and this medium tends to impart a high degree of inertia to the sprag elements 232 .
  • the free ends 232a of the sprag elements 232 thus tend to remain stationary during angular movement of the drive shaft 214 in one direction or the other.
  • rotational movement of the drive shaft 214 for example, in an anticlockwise direction causes the sprag elements 232 to move to the second extreme position (FIG.
  • the embodiment further provides a pawl 240 and ratchet 242 arrangement comprising peripheral ratchet teeth 242 defined on the outer periphery of the drum 230 which are engaged by means of the pawl 240 which is mounted independently of the drum 230 .
  • the driven gear 218 will rotate during the movement of the cleaner 10 through the described translation of reciprocating angular movement 212 into one direction angular movement or rotation.
  • This rotating driven gear 218 can be coupled with a variety of drive mechanisms including a mechanism to lift the suction chamber to break suction, and drop the cleaner off a vertical wall as an alternative embodiment for the elevation limiter 200 discussed earlier.
  • the driven gear 218 is used in conjunction with a gear train 220 (described in FIGS. 18 through 22) that engages a coupling gear 254 engaged with the coupling 26 .
  • the driven gear 218 engages a first gear 244 and a series of reduction gears 222 to engage an interval drive gear 248 .
  • the interval drive gear 248 contains a set of interval teeth 250 that engage the coupling gear 254 through a translational intermediate gear 252 . Sufficient teeth 250 are placed on the interval drive gear 248 to allow the coupling 26 to rotate through at least a 90° turn.
  • a friction drive is adapted to translate oscillating angular movement of a drive shaft 214 into periodic one directional angular movement of a driven gear 218 .
  • the driven gear 218 can then drive further gears as earlier described to cause the rotation of the cleaner 10 .
  • the friction drive illustrated in FIG. 23 through 25 comprises a first friction surface 260 defined by a disc element 262 , to which the drive shaft 214 is secured or with which it is integrally formed.
  • the friction disc 262 is urged into contact with a second friction surface 264 defined by a second disc 266 , by means of a compression spring 268 and the second friction disc 266 is in turn associated with a driven gear 218 .
  • the second friction disc 266 is secured to a drum formation 236 to which the driven gear 218 is secured or with which it is integrally formed so that rotational movement of the friction disc 266 causes rotational movement of the gear 218 .
  • the driven gear 218 is secured to a friction disc such as that shown at 262 which is urged into frictional engagement with a friction surface defined by the interior blind face 268 of the drum formation 236 , with the drive shaft 214 secured directly to the drum 236 or to the friction disc 262 .
  • the friction disc 262 is induced into frictional engagement with the friction surfaces 264 by means of a compression spring 268 which terminates in washers 270 and 272 .
  • a pawl 240 and ratchet 242 arrangement is also provided, with teeth of the ratchet 242 being defined on the outer surface of the drum 236 .
  • a pawl 240 in the form of a resilient leaf spring 240 is provided to engage the teeth 242 to prevent reverse rotation of the drum 236 and thus the driven shaft 218 .
  • the pressure relief valve 300 is further described as follows:
  • the housing 12 incorporated a suction chamber 14 comprised of side walls 22 and end walls 28 and 30 defined by the housing itself.
  • the coupling 26 is provided on the housing 12 for a suction hose (not shown) used to connect the suction head to the filter pump of a swimming pool. Coupling the housing 12 and chamber 14 to the filter pump causes flow into the suction chamber 14 via the mouth 16 and the flow impinges first on one edge 46 and then on the other edge 46 of the oscillator 20 causing the latter to swing to and fro.
  • the housing 12 includes by-pass apertures 310 in the suction chamber 14 at the upper end thereof close to coupling 26 for the suction hoses. These by-pass apertures 310 are closed off by a by-pass closure 312 pivotally mounted within suction chamber 14 on hinge pin 314 .
  • Leaf springs 316 are secured at their ends 316a on to the housing 12 within the suction chamber 14 and at their opposite ends 316b to the by-pass closure 312 . Thus the leaf springs 316 bias the closure 312 to a position closing the by-pass apertures 310 .
  • FIG. 11 describes this embodiment.
  • springs 316 is balanced to ensure that water is drawn in via the by-pass valve in a controlled way providing an additional means for regulating the speed of the oscillator and thus the suction at the suction chamber mouth 16 .
  • coil spring 320 can be used to hold the by-pass closure 312 against the by-pass apertures 310 .
  • the by-pass apertures 310 are closed using a flexible plate 322 biased against the apertures 310 by affixing one end of the plate 322a to the chamber wall adjacent the apertures as described in FIG. 13.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Cleaning In General (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Nozzles For Electric Vacuum Cleaners (AREA)

Claims (21)

  1. Nettoyeur par aspiration, submersible, automoteur, comprenant :
    un carter (12) comportant un raccord (26) adapté pour être relié à un tuyau flexible accouplé à une pompe et à un moteur d'un système de nettoyage ;
    une chambre d'aspiration (14) placée à l'intérieur du carter, la chambre ayant une entrée (18) proche d'une surface immergée et une sortie (24) communiquant avec le raccord ;
    un oscillateur (20) monté pivotant à l'intérieur de la chambre d'aspiration ; et
    un patin (32) formé sensiblement autour de la périphérie du carter et s'étendant globalement latéralement dans le carter vers l'entrée et adapté pour venir au contact de la surface immergée ;
       caractérisé en ce que :
    l'oscillateur (20) produit un mouvement vibratoire continu, lorsque le fluide passe dans l'oscillateur avec un interstice (52) entre un bord de l'oscillateur (20) et une paroi de la chambre ; et
    le patin comprend trois rangées ou plus d'éléments hélicoïdaux (38), inclinés de manière à venir en contact avec la surface immergée, sous un angle (40), l'inclinaison étant vers l'avant par rapport à la normale à la surface immergée.
  2. Nettoyeur selon la revendication 1, dans lequel les éléments hélicoïdaux sont allongés, la direction de chaque élément hélicoïdal étant transversale par rapport au carter.
  3. Nettoyeur selon l'une quelconque des revendications 1 à 2, dans lequel l'oscillateur comprend en outre des moyens d'étanchéité (54) montés coulissants sur le bord de l'oscillateur afin de s'étendre dans l'interstice, mais rétractables à l'écart de la paroi de chambre sous l'action de l'insertion de grosses particules entre les moyens d'étanchéité et la paroi de chambre, afin de cette manière d'ouvrir l'interstice et permettre aux grosses particules de passer à travers.
  4. Nettoyeur selon la revendication 3, dans lequel :
    l'oscillateur a une gorge allongée (56) s'étendant sur le bord de l'oscillateur ;
    les moyens d'étanchéité comprennent une bande d'étanchéité (54), s'étendant dans la gorge et extensible sur l'interstice.
  5. Nettoyeur selon l'une quelconque des revendications 1 et 2, dans lequel l'oscillateur est formé d'au moins deux parties (20a, 20b), les parties communiquant par une languette (58) et une gorge (60), la languette et la gorge étant alignées l'une par rapport à l'autre, afin de s'adapter lorsque l'oscillateur fonctionne.
  6. Nettoyeur selon l'une quelconque des revendications précédentes, dans lequel :
    les éléments hélicoïdaux sont sensiblement parallèles les uns aux autres et entourent au moins partiellement l'entrée de la chambre d'aspiration ; et
    le nettoyeur comprend en outre un volet (82) fixé de façon amovible sur la périphérie du carter, le volet communiquant avec un bord de queue de l'entrée de la chambre d'aspiration proche de la surface, le volet et l'élément hélicoïdal entourant conjointement sensiblement l'entrée de la chambre d'aspiration.
  7. Nettoyeur selon l'une quelconque des revendications précédentes, comprenant en outre au moins une formation tampon (70) contre laquelle l'oscillateur vient frapper lorsque le mouvement oscillatoire se produit, la ou chaque formation de tampon transférant les forces d'impact de l'oscillateur sur le carter de nettoyeur.
  8. Nettoyeur selon l'une quelconque des revendications précédentes, comprenant en outre :
    une jupe externe (86) définie par des parois avant, arrière et latérales opposées du carter, la totalité des parois de carter définissant la jupe externe, la jupe externe s'étendant au moins partiellement autour de la chambre d'aspiration, la jupe externe étant dimensionnée sur la paroi avant de manière à exposer sensiblement les éléments hélicoïdaux sur l'avant;
    une jupe interne (84) s'étendant autour d'au moins une partie de la chambre d'aspiration.
  9. Nettoyeur selon l'une quelconque des revendications précédentes, dans lequel :
       le raccord est un raccord tournant relié à un tuyau flexible, le tuyau flexible étant fixé à une pompe et à un moteur d'un système de nettoyage ;
       le nettoyeur comprenant en outre :
       des moyens (200) destinés à faire tourner le nettoyeur autour de l'axe du raccord.
  10. Nettoyeur selon la revendication 9, dans lequel les moyens de rotation comprennent:
    un arbre d'entraînement (214) pouvant fonctionner en un mouvement alterné ;
    un collier (236) monté sur l'arbre d'entraînement, le collier ayant des éléments d'embrayage (232) s'étendant radialement depuis le collier ;
    un anneau (226) encerclant le collier, l'anneau ayant des dents intérieures (228) susceptibles d'être engrenées par les éléments d'embrayage, les éléments d'embrayage étant dimensionnés et sélectionnés pour agir dans un milieu dense servant à maintenir les éléments d'embrayage stationnaires par rapport à un arbre d'entraînement couplé en rotation à l'anneau équipé de dents, en provoquant, lors de son déplacement angulaire, le déplacement des éléments d'embrayage en une première position externe lors de la rotation de l'arbre dans un premier sens et, dans une deuxième position extrême, lors de la rotation de l'arbre dans le sens inverse, de manière à s'engrener avec les dents de l'anneau pendant ce déplacement ;
    des moyens (240, 242) destinés à limiter la rotation de l'anneau dans un sens ;
    un engrenage d'entraînement (218) fixé à l'anneau ;
    un train d'engrenages (220) ayant un premier engrenage (244) engrené à rotation par l'engrenage d'entraînement, et un engrenage de réduction (252) engrené à rotation avec un engrenage d'accouplement (254), l'engrenage d'accouplement étant fixé au raccord tournant ; et
    un engrenage intermédiaire (240) ayant un engrenage d'accouplement s'engrenant sur des dents (250) espacées à des intervalles définis, de manière à générer une rotation du raccord à des intervalles définis.
  11. Nettoyeur selon l'une quelconque des revendications précédentes, comprenant en outre des moyens (100) destinés à limiter l'élévation de la chambre d'aspiration du nettoyeur lorsqu'il se trouve dans un liquide dans lequel la surface est immergée.
  12. Nettoyeur selon la revendication 11, dans lequel les moyens limiteurs d'élévation comprennent un organe limitateur (110) s'étendant en avant et hors du carter du nettoyeur, l'organe de limitation étant dimensionné et disposé de manière que, lorsqu'une extrémité supérieure de l'organe traverse la surface du liquide quand la tête d'aspiration monte sur une surface immergée sensiblement verticale, la force de gravitation diminue toute impulsion d'avancement de la chambre du nettoyeur à aspiration, et le déploiement de l'organe a pour effet de faire tourner le nettoyeur pour le faire revenir vers le liquide.
  13. Nettoyeur selon la revendication 12, dans lequel l'organe limiteur d'élévation comprend un organe sensiblement creux (110) connecté à une extrémité au carter, le carter ayant des ouvertures (112) placées en communication avec l'extrémité de l'organe creux, de manière à permettre au liquide remplissant le carter de remplir également l'organe limiteur creux.
  14. Nettoyeur selon la revendication 13, comprenant en outre une partie flexible (114) entre l'organe creux et le carter.
  15. Nettoyeur selon l'une quelconque des revendications précédentes, comprenant en outre des moyens (300) destinés à limiter l'aspiration dans la chambre, les moyens étant constituées par une décharge de pression agissant sur la pompe du système et sur son moteur, créant l'aspiration.
  16. Nettoyeur selon la revendication 15, dans lequel les moyens limiteurs d'élévation comprennent des moyens destinés à expulser le patin de nettoyeur lorsqu'il monte sur une surface verticale immergée, en coupant l'aspiration de la chambre d'aspiration et en permettant au nettoyeur de se dégager de la paroi verticale.
  17. Nettoyeur selon la revendication 15 ou 16, dans lequel les moyens de limitation d'aspiration dans la chambre d'aspiration comprennent :
    une ouverture de dérivation (310) ménagée dans l'une des parois de carter communiquant avec la chambre d'aspiration ;
    une fermeture de dérivation (312 ; 322), montée sur l'ouverture de dérivation et déplaçable, entre une position fermée dans laquelle le liquide est empêché de s'écouler par l'ouverture de dérivation et une position ouverte dans laquelle le liquide s'écoule depuis l'ouverture de dérivation et dans le raccord ; et
    des moyens (316 ; 320 ; 322, 322a) destinés à placer la fermeture en position fermée, les moyens de déplacement étant sélectionnés pour être surmontés par une pression d'aspiration élevée prédéterminée dans le raccord.
  18. Nettoyeur selon la revendication 17, dans lequel les moyens de déplacement sont constitués par un ressort (316, 320) et l'ouverture est formée par une pluralité de trous (310) ménagés dans la paroi périphérique.
  19. Nettoyeur selon l'une quelconque des revendications précédentes, dans lequel le raccord comprend un organe flexible (18).
  20. Procédé de nettoyage d'une surface immergée dans un liquide, le procédé comprenant les étapes consistant à:
    fournir un nettoyeur (10) ayant une chambre d'aspiration (14), la chambre ayant des parois de chambre (22, 28, 30) situées à l'intérieur d'un carter (12), la chambre ayant une extrémité d'entrée (18) à proximité de la surface, et une extrémité de sortie (24) communiquant avec un raccord tournant (26) ;
    raccorder le raccord tournant à un tuyau flexible, le tuyau flexible assurant la fixation à un système de pompe d'aspiration et de moteur ;
    déplacer un oscillateur (20), fixé de façon pivotante sur un axe aux parois de la chambre, dans un sens et dans l'autre, autour de l'axe, de manière à permettre au liquide d'être aspiré dans la chambre en passant autour d'un premier côté et d'un autre côté de l'oscillateur ;
    fixer un patin (32) formé au moins partiellement autour d'une périphérie du carter et adapté pour venir en contact avec la surface immergée ;
       caractérisé en ce que :
    le patin contient trois rangées d'éléments hélicoïdaux (38) ou plus, faisant un angle dans une direction avant par rapport à la surface ;
    former des parois de chambre de manière à créer des modifications abruptes de l'écoulement de liquide à l'intérieur de la chambre, les modifications abruptes provoquant un mouvement vibratoire du nettoyeur ;
    fixer un volet (82), monté amovible sur la périphérie du carter, le volet communiquant avec un bord de queue de l'extrémité d'entrée de la chambre d'aspiration, le volet et les éléments hélicoïdaux entourant sensiblement l'extrémité d'entrée de la chambre d'aspiration;
    convertir le mouvement alternatif de l'oscillateur en un mouvement de rotation ;
    faire tourner le nettoyeur autour d'un axe du raccord tournant à des intervalles sélectionnés, par utilisation d'un train d'engrenages (220) connectant le raccord tournant à un arbre d'entraînement (214) monté tournant sur l'oscillateur ;
    limiter l'élévation du nettoyeur pendant la montée sur une surface verticale immergée en fixant un organe d'extension (100) au carter, l'organe d'extension provoquant la rotation en sens inverse du nettoyeur vers le liquide lorsque le nettoyeur monte sur la surface du liquide ; et
    limiter l'aspiration dans la chambre d'aspiration en créant un chemin d'écoulement de dérivation autour de l'extrémité d'entrée de la chambre d'aspiration ;
  21. Procédé selon la revendication 20, dans lequel l'étape de conversion du mouvement alternatif de l'oscillateur en un mouvement rotatif comprend en outre les étapes consistant à :
    faire fonctionner en mouvement alternatif l'arbre d'entraînement ;
    monter un collier (236) sur l'arbre d'entraînement, le collier ayant des éléments d'embrayage (232) s'étendant radialement depuis le collier ;
    encercler un anneau (226) autour du collier et des éléments d'embrayage, l'anneau ayant une denture intérieure (228) pouvant être engrenée par les éléments d'embrayage, l'anneau ayant une surface extérieure d'encliquetage (242) ;
    créer un cliquet d'encliquetage (240), le cliquet étant fixé au carter ;
    limiter la rotation de l'anneau dans un sens par utilisation de la surface d'encliquetage d'anneau et du cliquet ;
    fixer un engrenage d'entraînement (218) à l'anneau ; et
    entraîner le train d'engrenages (220) par engrènement de l'engrenage d'entraînement (218) et d'un engrenage d'accouplement (254) fixé sur le raccord tournant ;
    un engrenage intermédiaire (248) se trouvant à l'intérieur du train d'engrenages et s'engrenant selon des intervalles prédéterminés.
EP93301462A 1992-02-28 1993-02-26 Aspirateur sous-marin auto-propulsé et méthode de nettoyage Expired - Lifetime EP0558337B1 (fr)

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
ZA921506 1992-02-28
ZA921506 1992-02-28
ZA921505 1992-02-28
ZA921507 1992-02-28
ZA921501 1992-02-28
ZA921505 1992-02-28
ZA921500 1992-02-28
ZA921501 1992-02-28
ZA921504 1992-02-28
ZA921502 1992-02-28
ZA921503 1992-02-28
ZA921507 1992-02-28
ZA921500 1992-02-28
ZA921503 1992-02-28
ZA921504 1992-02-28
ZA921502 1992-02-28
US978237 1992-11-18
US07/978,237 US5404607A (en) 1992-05-11 1992-11-18 Self-propelled submersible suction cleaner

Publications (2)

Publication Number Publication Date
EP0558337A1 EP0558337A1 (fr) 1993-09-01
EP0558337B1 true EP0558337B1 (fr) 1997-01-15

Family

ID=27578916

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93301462A Expired - Lifetime EP0558337B1 (fr) 1992-02-28 1993-02-26 Aspirateur sous-marin auto-propulsé et méthode de nettoyage

Country Status (5)

Country Link
EP (1) EP0558337B1 (fr)
BR (1) BR9300705A (fr)
DE (1) DE69307358T2 (fr)
ES (1) ES2096201T3 (fr)
NZ (1) NZ245991A (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2735437B1 (fr) * 1995-06-19 1997-08-14 Sevylor International Vehicule roulant, notamment robot de nettoyage en particulier de piscine, a changement automatique de direction de deplacement devant un obstacle
AUPR382301A0 (en) * 2001-03-20 2001-04-12 K.K. Australia Pty Ltd An improved valve arrangement for an automatic pool cleaner
CZ12706U1 (cs) * 2002-07-25 2002-10-23 Oldřich Navrátil Vysavač pro čiątění nádrľí
CN110271654A (zh) * 2019-04-11 2019-09-24 邓冰冰 一种船底清理机
CN112461748B (zh) * 2020-11-25 2022-07-22 西南科技大学 一种超低摩擦的轮-阜结构摩擦副
CN117451965B (zh) * 2023-12-21 2024-03-12 淄博市特种设备检验研究院 一种压力容器焊缝无损探伤装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2620119C2 (de) * 1976-05-06 1985-02-14 Chauvier, Fernand Louis Oscar Joseph, Selcourt Springs Gerät zum Reinigen in Flüssigkeit eingetauchter Oberflächen
AU502993B2 (en) * 1976-08-23 1979-08-16 Baracuda (Proprietary) Ltd. Underwater suction cleaner
US4208752A (en) 1976-08-23 1980-06-24 Hofmann Helmut J Cleaning apparatus for submerged surfaces
US4351077A (en) * 1979-12-18 1982-09-28 Hofmann Helmut J Cleaning apparatus for submerged surfaces
FR2520422A1 (fr) * 1982-01-26 1983-07-29 Tubsud Automation Sa Appareil de nettoyage automatique d'une surface immergee, en particulier de parois de piscine
AU552554B2 (en) 1982-04-02 1986-06-05 Hayward Pool Products (Australia) Pty Ltd Suction cleaner head for submerged surfaces
AU584526B2 (en) 1986-10-21 1989-05-25 Sweepy International S.A. Suction operated cleaner
US5099535A (en) 1988-02-18 1992-03-31 Daniel J. D. Chauvier Cleaner for submerged surfaces
EP0476413B1 (fr) 1990-09-21 1996-12-11 Sta-Rite Industries, Inc. Appareil automatique pour nettoyage de piscines

Also Published As

Publication number Publication date
DE69307358T2 (de) 1997-06-12
DE69307358D1 (de) 1997-02-27
NZ245991A (en) 1995-07-26
BR9300705A (pt) 1993-08-31
EP0558337A1 (fr) 1993-09-01
ES2096201T3 (es) 1997-03-01

Similar Documents

Publication Publication Date Title
US5404607A (en) Self-propelled submersible suction cleaner
EP0994995B1 (fr) Appareil de nettoyage des surfaces immergees d'une piscine
US6751822B2 (en) Submerged surface pool cleaning device
US5797156A (en) Vibratory cleaner and method
US6782578B1 (en) Swimming pool pressure cleaner with internal steering mechanism
AU725207B2 (en) Swimming pool cleaner
EP1040241B1 (fr) Dispositif de nettoyage par aspiration pour piscines
US6125492A (en) Automatic swimming pool cleaning device
EP0558337B1 (fr) Aspirateur sous-marin auto-propulsé et méthode de nettoyage
EP0556029A1 (fr) Appareil de nettoyage automatique de piscine et son dispositif de direction
EP1543206B1 (fr) Appareil nettoyeur de piscines
US6834410B2 (en) Device and method of assembling a submersible pool cleaner
EP0726999B1 (fr) Nettoyeur automatique pour piscines
US5428854A (en) Replaceable brush rings for pool cleaners
CA2090195C (fr) Aspirateur submersible automoteur
AU663921B2 (en) Self propelled submersible suction cleaner
US5664275A (en) Vibratory oscillator swimming pool cleaner employing means for facilitating self starting and for avoiding clogging
US20060143841A1 (en) Intake assembly for self-propelled pool cleaner
EP1338727A1 (fr) Appareil de nettoyage des surfaces immergées d'une piscine
WO1999024683A1 (fr) Dispositif de nettoyage d'une surface immergee
ZA200302320B (en) Swimming pool pressure cleaner with internal steering mechanism.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB PT

17P Request for examination filed

Effective date: 19931222

17Q First examination report despatched

Effective date: 19940823

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB PT

REF Corresponds to:

Ref document number: 69307358

Country of ref document: DE

Date of ref document: 19970227

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2096201

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20100204

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100202

Year of fee payment: 18

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20110826

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110226

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120221

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120222

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69307358

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120307

Year of fee payment: 20

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130227