EP0556486B1 - Double sheet detector - Google Patents

Double sheet detector Download PDF

Info

Publication number
EP0556486B1
EP0556486B1 EP92122138A EP92122138A EP0556486B1 EP 0556486 B1 EP0556486 B1 EP 0556486B1 EP 92122138 A EP92122138 A EP 92122138A EP 92122138 A EP92122138 A EP 92122138A EP 0556486 B1 EP0556486 B1 EP 0556486B1
Authority
EP
European Patent Office
Prior art keywords
flow
measuring
feeler
distance
products
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92122138A
Other languages
German (de)
French (fr)
Other versions
EP0556486A1 (en
Inventor
Rudolf Infanger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ferag AG
Original Assignee
Ferag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ferag AG filed Critical Ferag AG
Publication of EP0556486A1 publication Critical patent/EP0556486A1/en
Application granted granted Critical
Publication of EP0556486B1 publication Critical patent/EP0556486B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H7/00Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles
    • B65H7/02Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors
    • B65H7/04Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors responsive to absence of articles, e.g. exhaustion of pile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H5/00Feeding articles separated from piles; Feeding articles to machines
    • B65H5/24Feeding articles in overlapping streams, i.e. by separation of articles from a pile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H7/00Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles
    • B65H7/02Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H7/00Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles
    • B65H7/02Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors
    • B65H7/06Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors responsive to presence of faulty articles or incorrect separation or feed
    • B65H7/08Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors responsive to presence of faulty articles or incorrect separation or feed responsive to incorrect front register
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H7/00Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles
    • B65H7/02Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors
    • B65H7/06Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors responsive to presence of faulty articles or incorrect separation or feed
    • B65H7/12Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors responsive to presence of faulty articles or incorrect separation or feed responsive to double feed or separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H7/00Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles
    • B65H7/02Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors
    • B65H7/14Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors by photoelectric feelers or detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2511/00Dimensions; Position; Numbers; Identification; Occurrences
    • B65H2511/20Location in space
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2511/00Dimensions; Position; Numbers; Identification; Occurrences
    • B65H2511/20Location in space
    • B65H2511/21Angle
    • B65H2511/212Rotary position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2511/00Dimensions; Position; Numbers; Identification; Occurrences
    • B65H2511/50Occurence
    • B65H2511/51Presence
    • B65H2511/514Particular portion of element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2511/00Dimensions; Position; Numbers; Identification; Occurrences
    • B65H2511/50Occurence
    • B65H2511/52Defective operating conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2511/00Dimensions; Position; Numbers; Identification; Occurrences
    • B65H2511/50Occurence
    • B65H2511/52Defective operating conditions
    • B65H2511/524Multiple articles, e.g. double feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2515/00Physical entities not provided for in groups B65H2511/00 or B65H2513/00
    • B65H2515/60Optical characteristics, e.g. colour, light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2553/00Sensing or detecting means
    • B65H2553/40Sensing or detecting means using optical, e.g. photographic, elements
    • B65H2553/41Photoelectric detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2553/00Sensing or detecting means
    • B65H2553/60Details of intermediate means between the sensing means and the element to be sensed
    • B65H2553/61Mechanical means, e.g. contact arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/13Parts concerned of the handled material
    • B65H2701/131Edges
    • B65H2701/1311Edges leading edge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/13Parts concerned of the handled material
    • B65H2701/131Edges
    • B65H2701/1313Edges trailing edge

Definitions

  • the invention is in the field of further processing of printed products and relates to a device and a method according to the preambles of the corresponding independent claims for the detection of errors in a shingled stream, in particular in a shingled stream consisting of printed products (US-A-3 826 487).
  • shingled streams are monitored by measuring their thickness in various ways, for example with a deflectable measuring wheel that rolls over the surface of the shingled stream and whose deflection is evaluated as a measure of the thickness of the shingled stream relative to the support of the shingled stream.
  • a corresponding device is described, for example, in EP-A-0 242 622.
  • fault locations in the scale flow can be identified.
  • Such monitoring is particularly suitable in large scale streams, that is to say in those in which only the edges of successive products lie on one another and each product lies neither on nor below another product in a central region.
  • the object of the invention to provide a method and a corresponding device with which it is possible, without moving the products in the shingled stream in any way specifically for the measurement, to identify more different types of defects in more different shingled stream environments than is possible with corresponding arrangements according to the prior art.
  • it should also be used in very narrow scale streams, in which several printed products lie on each other at each point, and both in scale streams of flexible printed products, for example newspapers, which adapt to the shape of the scale stream, as well as of stiff printed products, for example stapling with stiff cover sheets, be able to detect errors more reliably and identify them more precisely.
  • the surface of the scale flow is continuously scanned at two closely spaced measuring points arranged one behind the other in the conveying direction, the level difference of the two scans being measured.
  • This difference is very small or zero as long as the two sampling points are on the same product. It becomes large if there is a product edge between the two scanning points.
  • the method and the device can be applied both to scale streams with product edges at the top and with product edges at the top.
  • the thickness of each product is actually measured across its edge on the surface of the scale stream, regardless of the thickness of the other products below the product and therefore independent of defects in these products.
  • a thickness error as a result it also becomes larger in percentage terms than when measuring the thickness of the entire current.
  • the edge can also be recorded precisely in time, so that clock errors can also be determined.
  • the device according to the invention has a probe element and a measuring element, the probe element and the measuring element sensing the scale flow and the measuring element being designed at the same time in such a way that it measures the difference between the two scans.
  • the shingled stream shown in line a has defects: in cycle T.7 a product is missing, cycle T.9 two products appear, cycle T.10 one product is missing and cycle T.13 shows a quarter of the cycle time late product.
  • the clocks T.1 and T.2 or T.16 and T.17 also have irregularities, since they represent a beginning of a stream or an end of a stream.
  • Lines b and c now represent measurement signals from thickness measurements over the entire scale flow (prior art). For the time being, only the solid signal curve is to be considered; an explanation of the dotted signal curve follows in connection with the description of lines e and f.
  • Line b shows the signal curve of a distance measurement between the support and the shingled stream surface, specifically in the case of a shingled stream made of extremely flexible printed products which completely adapt to the contour of the shingled stream and which lie on top of one another in such a way that there are no gaps under the shingled stream at any point in the shingled stream or occur between the printed products.
  • a corresponding signal course is described in EP-A-0 242 622, already mentioned at the beginning, the course of the signal between values 2 and 3 being used for monitoring the scale flow. From this signal curve, as line b shows, an empty space (T.7) can be recognized as an error location.
  • the extended signal curve of line b when compared with a proper signal curve, as occurs, for example, in cycles T.3 to T.5, identifies the following cycles as error points: (T.1, T.2), T.7, (T.8), T.9, T.10, (T.11, T.12), T.13, (T.15, T.16, T.17) , but the measures in brackets effectively have no errors.
  • the first time an error occurs it must be assessed according to type and then the target course for all other cycles, to which the error extends, must be adjusted accordingly, which is obviously associated with a large amount of calculation.
  • Line c shows (drawn out) a signal curve generated using the same method as line b.
  • a scale flow of stiff products is measured, in which the products lie at an angle to one another and gaps arise under the individual products, i.e. a scale flow as effectively shown in row a.
  • the signal curve is very different compared to line b and that it should be difficult to monitor the two curves, which in principle represent the same scale streams, with the same signal evaluation.
  • Line d represents the signal curve which is obtained with a method and a device according to EP-A-0 479 717, also cited at the beginning, when measuring the scale flow shown in line a.
  • the synchronization between the current and the measurement is such that the reference surface is positioned under the product in the second eighth of the cycle time and the thickness of the product is measured in this period.
  • the error points in clocks T.7, T.9 and T.10 are simple and corresponding Type of fault location can be detected and interpreted.
  • the fault location in cycle T.13 leads to an incorrect interpretation, namely that of an empty space.
  • a wrongly clocked product is interpreted either as a blank or as a correct product depending on the size of the shift and the arrangement of the measuring time within the clock. From the signal curve of line d it can also be seen that the beginning of the shingled stream (T.1 and T.2) and the end of the shingled stream (T.16 and T.17) can be interpreted without errors and without any computational effort.
  • the extended signal curve is to be understood as an ideal measurement of the scale flow thickness at a first measuring point M.1, the dotted curve as a measurement of the same scale flow thickness at a second measuring point M.2, with each scale flow element first is conveyed past the first measuring point M.1, then past the second measuring point M.2.
  • the distance d between the two measuring points corresponds to a quarter of the edge distance D or temporally a quarter of the cycle time T, a ratio that was chosen for reasons of illustration only.
  • the dotted waveform is exactly the same as the solid waveform, but shows a phase shift that corresponds to distance d.
  • the difference between the two signal profiles is measured. These are shown in lines e and f. It can be clearly seen from the two lines e and f, which, in accordance with lines b and c, in turn represent the signal curve for a shingled stream of flexible products and a shingled stream of rigid products, that the two profiles are not fundamentally different in the first half of the cycle differ, but essentially only by their position relative to a zero line, so that they can be easily interpreted with the same evaluation.
  • FIG. 2 shows in the same schematic representation as FIG. 1 the influence of the distance d between the measuring points M.1 and M.2 on the signal curve generated by the method according to the invention, parts selected from a scale flow in a line g and h in a line h corresponding measurement signals corresponding to line f of Figure 1 are recorded.
  • Case A shows that the distance d between the two measuring points M.1 and M.2 must be greater than the extent of the edge in the conveying direction.
  • the edge height can only be clearly determined with such a large measuring point distance, since in one certain point in time that one measuring point has already passed the edge while the second has not yet reached it. It is ideal if the measuring point M.2 is positioned immediately in front of the product edge when the measuring point M.1 has scanned the entire product edge and has just reached the highest point.
  • Cases B, C, D and E show that the detection of multiple products (in the representation of double products) depends on the ratio of the distance between the two measuring points M.1 and M.2 and the distance of the detected edges of the individual products of the double product.
  • the four cases have the same distance d between the measuring points M.1 and M.2 and different edge distances k.
  • the double product produces a signal deflection with double the height and the same shape compared to the target deflection for a simple product.
  • k ⁇ d case C
  • there is a graded deflection that can be interpreted with a correspondingly precise measurement and evaluation.
  • With k d (Case D) there is an excursion with twice the latitude and for k> d (case E) there are two excursions which are to be interpreted as a time-shifted product.
  • FIG. 2 also shows that differentiated scale flows can also be monitored with the method according to the invention.
  • Differentiated scale flows are scale flows in which products are conveyed in groups, the edge distances within the groups being smaller than the edge distance between the last product of a group and the first product of the following group. If, for example, the distance between the measuring points M.1 and M.2 is selected in such a way that it corresponds to the target edge distance within the group, a time-wise deflection is generated for a group (according to case D), as is the number of products in the group. If the distances are too large, separate rashes occur according to case E, if it is too small, rashes graded according to case C arise, both of which can be detected as defects.
  • Figure 3 now shows an exemplary embodiment of the device for performing the previously described inventive method. It is a device with a double scanning roller, the deflection of the second roller compared to the first roller being evaluated as the differential measurement signal.
  • a first feeler roller 11 is arranged on an arm 13 so as to be freely rotatable about a first axis of rotation 12, the arm 13 being arranged so as to be pivotable about a first pivot axis 14 arranged in a stationary manner.
  • a second feeler roller 21 is arranged in a freely rotatable manner about a second axis of rotation 22 on a lever 23, the lever 23 being fastened on the arm 13 so as to be pivotable about a second pivot axis 24.
  • the arm 13 is arranged relative to the contact surface 30 of a shingled stream 31 such that the first sensing roller 11 rests on the shingled stream surface and is slightly pressed onto this surface by the weight of the arm 13 and / or, for example, a spring force.
  • the feeler roller 11 rolls on the shingled stream surface.
  • the lever 23 is arranged on the arm 13 in such a way that the second sensing roller 21 also rests on the scale flow surface, specifically in such a way that the support points of the two rollers are at a distance d from one another in the conveying direction.
  • the second feeler roller 21 is also lightly pressed onto the scale stream surface, for example by a spring.
  • the second sensing roller 22 is in a middle pivoted position as long as there is no product edge between the support points of the two sensing rollers (measuring points). If there is a leading edge between the two support points, as shown in the figure, the lever 23 is pivoted in the direction of the arrow S with respect to the central pivot position, and the higher the edge, the more so. A trailing edge between the two support points causes a pivoting in the opposite direction. The pivoting of the lever 23 is absolutely independent of the total thickness of the scale flow and therefore not dependent on the fluctuations in the deflection of the first sensing roller.
  • the pivoting of the lever 23 In order to monitor the edges of a shingled stream, the pivoting of the lever 23 must be measured.
  • the lever 23 is designed as a two-armed lever with a roller arm 23.1 on which the second Probe roller 21 is attached and a measuring arm 23.2, which is arranged such that it actuates a probe 40 when pivoting, which is shifted depending on the pivoting position of the lever 23 in the direction of arrow L and provides a measurement signal corresponding to this shift.
  • the pivoting of the lever 23 can also be limited by a stop 41 in such a way that it can only be pivoted in one direction from the middle position (same contact level of the first and second sensing roller).
  • the button of the illustrated embodiment will accordingly only register leading edges, while it does not detect rear edges, since a lower level of the second sensing roller 21 relative to the first sensing roller 11 is prevented by the stop 41.
  • the device can be adapted to different applications, it is advantageous to design it in such a way that the distance between the support points of the first and the second sensing roller can be adjusted.
  • This can be achieved, for example, by a lever 23, the length of which can be adjusted.
  • the deflection of the second sensing roller can also be measured using other means, for example an angle encoder.
  • the function of the second sensing roller can also be taken over by a distance meter which is firmly connected to the arm 13 and is arranged at a distance from the support point of the first sensing roller 11. This distance meter can function without contact, for example optically.
  • Figures 4 and 5 show a further embodiment of the device according to the invention. Compared to the embodiment according to FIG. 3, this is better adapted for monitoring scale flows of very different thicknesses and for monitoring scale flows from very thick products. It can be seen from FIG. 3 that the thickness of the scale flow which can be measured with the device is limited by the distance between the pivot axis 14 and the shape of the arm 13. In the case of a thick scale flow (arm 13 pivoted upwards strongly), the printed products become with the lower one Edge of the arm 13 come into contact, which must be prevented.
  • the device has a second feeler roller 21, which can be freely rotated about an axis of rotation 22 arranged on a lever 23.
  • This lever 23 is in turn pivotable about a first pivot axis 24 on an arm 13 ', this arm 13' having the same function as the arm 13 of the embodiment according to FIG. 3. It is therefore pivotable according to the thickness of the scale flow and carries the first measuring point M.1.
  • the arm is designed as a parallel pair of levers 41.1 and 41.2 with a holding plate 42.
  • the two parallel levers 41.1 and 41.2 are each pivotable about a fixed pivot axis 43.1 and 43.2 and in turn each carry a further pivot axis 44.1 and 44.2, which are arranged spatially relative to one another in the same way as the pivot axes 43.1 and 43.2.
  • the holding plate 42 is pivotably arranged on the pivot axes 44.1 and 44.2.
  • the device according to FIGS. 4 and 5 is adapted for the monitoring of scale flows from dense printed products (high product edges).
  • the function of the first sensing roller 11 of the embodiment according to FIG. 3 corresponds to a pair of rollers 45.1 and 45.2, the two rollers of which are arranged on the holding plate 42 in a freely rotatable manner about the axes of rotation 46.1 and 46.2.
  • a probe tape 47 for example a fine toothed belt, runs over the pair of rollers 45.1 and 45.2 and rolls on the scale stream passing under the measuring arrangement.
  • the probe tape 47 lies in the area of the roller 45.1 on the scale stream (extended position in FIG. 5) until the measuring arrangement approaches a high edge. This comes into contact with the touch tape 47 between the two rollers 45.1 and 45.2 (positions 45, 1 'and 47' shown in dash-dot lines in FIG. 5), whereby the roller 45.1 is raised to the level of the edge.
  • An arrangement with a touch tape 47 instead of a single first touch roller (11, FIG. 3) is a continuous movement over the stream of shingles ensured.
  • a single tracer roller could get stuck on very high product edges, which could lead to discontinuities in the signal curve and to product shifts in the stream.
  • the measuring arrangement is to be designed in such a way that the angle between the scanning tape 47 and the contact surface 30 is small enough to ensure a continuous movement of the measuring arrangement, but on the other hand it is large enough to still be able to reliably detect an edge. good results have been obtained with an angle ⁇ of approximately 15 °. As already described, this angle ⁇ can be kept constant regardless of the scale flow thickness by using an arm 13 'which has a pair of parallel levers (41.1 and 41.2) and a holding plate (42).
  • measuring arrangements are also conceivable that have a simple arm and a feeler tape, or those that have an arm with a parallel lever and holding plate and a simple first feeler roller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Controlling Sheets Or Webs (AREA)
  • Lubricants (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Control Of Conveyors (AREA)
  • Inking, Control Or Cleaning Of Printing Machines (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)

Abstract

A device according to the invention is mounted above a support (30) on which printed products are conveyed in the form of an imbricated stream (31). With the aid of said device according to the invention, the surface of the imbricated stream is sensed at two measuring points (M.1 and M.2) at a distance from one another in the conveying direction. During this, according to the process according to the invention, the difference in level of the imbricated stream surface between the two measuring points is recorded as a measurement signal and used for detecting fault locations in the imbricated stream. This difference in level is high when a product edge is located between the two measuring points and small when the two measuring points are located on the same product. The difference in level is always independent of the thickness of the entire imbricated stream. The device according to the invention has, for example, two sensing rolls (11, 21) which roll on the imbricated stream surface, the first sensing roll (11) being fixed on a pivotably arranged arm (13), the second sensing roll (21) being fixed on a lever (23) which, for its part, is pivotably arranged on the arm (13) and the pivoting-out of the lever (23) being measured by means of sensors. <IMAGE>

Description

Die Erfindung liegt auf dem Gebiete der Weiterverarbeitung von Druckprodukten und betrifft eine Vorrichtung und ein Verfahren gemäss den Oberbegriffen der entsprechenden unabhängigen Patentansprüche zur Erkennung von Fehlern in einem Schuppenstrom, insbesondere in einem Schuppenstrom bestehend aus Druckprodukten (US-A-3 826 487).The invention is in the field of further processing of printed products and relates to a device and a method according to the preambles of the corresponding independent claims for the detection of errors in a shingled stream, in particular in a shingled stream consisting of printed products (US-A-3 826 487).

Ein Schuppenstrom ist eine beispielsweise auf einem Transportband geförderte Reihe gleichartiger, einander schuppenförmig überlappender, flächiger Gegenstände, insbesondere Druckprodukte. Derartige Schuppenströme von Druckprodukten werden beispielsweise von Rotationspressen oder Anlegern ausgelegt oder ab wickelförmigen Speichern abgewickelt. In Schuppenströmen können Fehlerstellen auftreten, und zwar:

  • Eine Stelle ist leer, das heisst, ein Produkt fehlt, bedingt beispielsweise durch Funktionsfehler des Anlegers oder der Rotationspresse, Makulaturlücken, Wickelwechsel oder Probeentnahme.
  • Eine Stelle weist nicht die richtige Anzahl von Produkten auf, beispielsweise ein Doppelprodukt in einem Strom von Einzelprodukten, bedingt durch Fehlfunktion des Anlegers.
  • Eine Stelle weist ein fehlerhaftes Produkt auf, beispielsweise ein Produkt, das nicht die richtige Anzahl Seiten umfasst, bedingt durch Fehlfunktion eines vorangehenden Verarbeitungsschrittes.
  • Eine Stelle weist ein verschobenes Produkt auf, das heisst, dieses Produkt wird nicht im Takt gefördert, bedingt beispielsweise durch Fehlfunktion des Anlegers oder Wickelwechsel.
  • Fehlerstellen im Sinne von Unregelmässigkeiten, die aber keiner Korrektur bedürfen, stellen auch Anfang und Ende des Schuppenstromes dar, denn auch hier liegen die Produkte anders aufeinander als innerhalb des ordnungsgemässen Schuppenstromes. Schuppenstromanfang und -ende entstehen nicht nur bei Produktionsbeginn und -ende, sondern auch bei mehreren fehlenden Produkten.
A shingled stream is a row of similar, flat, overlapping objects, in particular printed products, which are conveyed on a conveyor belt, for example. Such shingled streams of printed products are designed, for example, by rotary presses or feeders, or are processed from winding-shaped stores. Flaws can occur in scale streams, namely:
  • A position is empty, which means that a product is missing, for example due to malfunctions on the part of the feeder or the rotary press, gaps in the spoilage, changing of the winding or taking a sample.
  • A job does not have the correct number of products, for example a double product in a stream of single products, due to the malfunction of the investor.
  • A job has a defective product, for example a product that does not contain the correct number of pages, due to the malfunction of a previous processing step.
  • A position has a shifted product, which means that this product is not being conveyed in time, for example due to malfunction of the feeder or changing the winding.
  • Defects in the sense of irregularities, but which do not require correction, also represent the beginning and end of the shingled stream, because here too the products lie on top of each other differently than within the normal shingled stream. The beginning and end of scale flow not only occur at the start and end of production, but also when several products are missing.

Werden diese Fehlerstellen bei der Übernahme der Druckprodukte aus dem Schuppenstrom von einer folgenden Verarbeitungseinheit unkontrolliert übernommen, können sie zur Herstellung fehlerhafter Produkte, zu Produktionsunterbrüchen oder gar zu Maschinenbeschädigungen führen. Aus diesem Grunde ist es wichtig, jede Fehlerstelle in einem Schuppenstrom als bestimmten Platz im Schuppenstrom zu identifizieren. Zusätzlich wäre es auch vorteilhaft, die Art des Fehlers zu identifizieren.If these error points are taken over in an uncontrolled manner by a subsequent processing unit when the printed products are taken over from the shingled stream, they can lead to the production of defective products, to production interruptions or even to machine damage. For this reason, it is important to identify each fault location in a shingled stream as a specific location in the shingled stream. In addition, it would also be advantageous to identify the type of error.

Gemäss dem Stande der Technik werden Schuppenströme überwacht, indem auf verschiedene Arten ihre Dicke gemessen wird, beispielsweise mit einem auslenkbaren Messrädchen, das über die Oberfläche des Schuppenstromes abrollt und dessen Auslenkung gegenüber der Auflage des Schuppenstromes als Mass der Dicke des Schuppenstromes ausgewertet wird. Eine entsprechende Vorrichtung wird beispielsweise beschrieben in EP-A-0 242 622. Durch Vergleich des Messsignales mit einem entsprechenden Sollwert können Fehlerstellen im Schuppenstrom erkannt werden. Eine derartige Überwachung eignet sich vor allem in weiten Schuppenströmen, das heisst in solchen, in denen nur die Kanten von aufeinanderfolgenden Produkten aufeinander liegen und jedes Produkt in einem mittleren Bereich weder auf noch unter einem anderen Produkt liegt. In einem derartigen Strom können alle vier obengenannten Arten von Fehlerstellen durch Messung der Schuppenstromdicke erkannt werden, auch wenn sie unmittelbar aufeinander folgen. Ist der Schuppenstrom aber eng, das heisst, es liegen an jeder Stelle des Stromes mehrere Produkte aufeinander, wird es schwierig oder unmöglich, aufeinanderfolgende Fehlerstellen zu erkennen. Auch wird es schwierig, Anfang und Ende eines Schuppenstromes als solche zu identifizieren. Auch rein messtechnisch hat eine derartige Überwachung ihre Nachteile, denn in einem engen Schuppenstrom macht die Dicke eines einzelnen Produktes nur einen kleinen Teil der Gesamtdicke des Stromes aus, sodass der Messfehler eine ähnliche Grösse haben kann wie die Dickendifferenz zwischen einem guten und einem fehlerhaften Produkt, sodass die Erkennung fehlerhafter Produkte unzuverlässig wird.According to the prior art, shingled streams are monitored by measuring their thickness in various ways, for example with a deflectable measuring wheel that rolls over the surface of the shingled stream and whose deflection is evaluated as a measure of the thickness of the shingled stream relative to the support of the shingled stream. A corresponding device is described, for example, in EP-A-0 242 622. By comparing the measurement signal with a corresponding setpoint, fault locations in the scale flow can be identified. Such monitoring is particularly suitable in large scale streams, that is to say in those in which only the edges of successive products lie on one another and each product lies neither on nor below another product in a central region. In such a stream, all four types of defects mentioned above can be recognized by measuring the scale stream thickness, even if they follow one another directly. However, if the stream of shingles is narrow, i.e. there are several products on top of each other at each point in the stream, it becomes difficult or impossible to identify successive defects. It also becomes difficult to identify the beginning and end of a stream of shingles as such. Monitoring of this type also has its disadvantages purely in terms of measurement technology, because in a narrow scale stream, the thickness of an individual product only makes up a small part of the total thickness of the stream, so that the measurement error can be of a size similar to the thickness difference between a good and a defective product, making the detection of defective products unreliable.

Um diesen Nachteilen abzuhelfen wurde eine Dickenmessung entwickelt, bei der die Dicke jedes einzelen Produktes gemessen wird. Diese ist beschrieben in EP-A-0 479 717. Diese Messung arbeitet ebenfalls mit einem über die Oberfläche der Druckprodukte abrollenden Messrädchen, das aber nicht die Distanz zur Auflage des Schuppenstromes misst, sondern die Distanz zu einer beweglichen Referenzfläche, die getaktet unter jedes Druckprodukt geschoben wird. Mit einer derartigen Anordnung kann die Dicke jedes Produktes mit hoher Genauigkeit gemessen werden, sie bedingt aber eine Interaktion mit dem Produkt, das heisst wenigstens ein Randbereich jedes Produktes muss von der Referenzfläche leicht aus dem Schuppenstrom angehoben werden. Besteht der Schuppenstrom nicht aus relativ schweren, relativ gut aufeinander haftenden Produkten, dann müssen diese für die Interaktion vorteilhalterweise durch Klammern festgehalten werden. Ein weiterer Nachteil einer derartigen Anordnung besteht darin, dass Produkte, die im Strom verschoben sind, die also nicht im Takt gefördert werden, nicht sicher als solche erkannt werden können und dass sie sogar durch die sich bewegende Referenzfläche beschädigt werden können.To remedy these disadvantages, a thickness measurement was developed, in which the thickness of each individual product is measured. This is described in EP-A-0 479 717. This measurement also works with a measuring wheel which rolls over the surface of the printed products, but which does not measure the distance to the scale flow but the distance to a movable reference surface, which is clocked under each printed product is pushed. With such an arrangement, the thickness of each Product are measured with high accuracy, but it requires an interaction with the product, that is, at least one edge area of each product must be raised slightly from the scale flow from the reference surface. If the stream of shingles does not consist of relatively heavy products that adhere relatively well to one another, then these must advantageously be held in place by brackets for the interaction. Another disadvantage of such an arrangement is that products that are shifted in the flow, that is to say that are not conveyed in time, cannot be reliably recognized as such and that they can even be damaged by the moving reference surface.

Es ist nun die Aufgabe der Erfindung, ein Verfahren und eine entsprechende Vorrichtung zu schaffen, mit der es möglich ist, ohne die Produkte im Schuppenstrom in irgend einer Art speziell für die Messung zu bewegen, mehr verschiedene Arten von Fehlerstellen in mehr verschiedenen Schuppenstromumgebungen zu identifizieren, als dies mit entsprechenden Anordnungen gemäss dem Stande der Technik möglich ist. Nach dem erfindungsgemässen Verfahren und mit der erfindungsgemässen Vorrichtung soll es auch in sehr engen Schuppenströmen, in denen an jeder Stelle mehrere Druckprodukte aufeinander liegen, und sowohl in Schuppenströmen von flexiblen, sich in ihrer Form der Kontur des Schuppenstroms anpassenden Druckprodukten, beispielsweise Zeitungen, als auch von steifen Druckprodukten, beispielsweise Heften mit steifen Deckblättern, möglich sein, Fehler sicherer zu erkennen und genauer zu identifizieren.It is now the object of the invention to provide a method and a corresponding device with which it is possible, without moving the products in the shingled stream in any way specifically for the measurement, to identify more different types of defects in more different shingled stream environments than is possible with corresponding arrangements according to the prior art. According to the method according to the invention and with the device according to the invention, it should also be used in very narrow scale streams, in which several printed products lie on each other at each point, and both in scale streams of flexible printed products, for example newspapers, which adapt to the shape of the scale stream, as well as of stiff printed products, for example stapling with stiff cover sheets, be able to detect errors more reliably and identify them more precisely.

Diese Aufgabe wird gelöst durch das Verfahren und die Vorrichtung gemäss den entsprechenden, unabhängigen Patentansprüchen.This object is achieved by the method and the device according to the corresponding, independent patent claims.

Gemäss dem erfindungsgemässen Verfahren wird die Oberfläche des Schuppenstromes an zwei in Förderrichtung mit kleinem Abstand hintereinander angeordneten eng beieinanderliegenden Messstellen kontinuierlich abgetastet, wobei die Niveaudifferenz der beiden Abtastungen gemessen wird. Diese Differenz ist sehr klein oder Null, solange sich die beiden Abtaststellen auf dem gleichen Produkt befinden. Sie wird gross, wenn zwischen den beiden Abtaststellen eine Produktekante liegt. Das Verfahren und die Vorrichtung lassen sich sowohl an Schuppenströmen mit obenliegenden Produktevorderkanten als auch mit obenliegenden Produktehinterkanten anwenden. Es wird eigentlich die Dicke jedes Produktes über dessen an der Oberfläche des Schuppenstromes liegende Kante gemessen, unabhängig von der Dicke der unter dem Produkt liegenden anderen Produkte und dadurch unabhängig von Fehlern in diesen Produkten. Ein Dickenfehler wird dadurch auch prozentual grösser als bei einer Dickenmessungen des ganzen Stromes. Die Kante kann auch zeitlich genau erfasst werden, sodass Taktfehler ebenfalls ermittelt werden können.According to the method according to the invention, the surface of the scale flow is continuously scanned at two closely spaced measuring points arranged one behind the other in the conveying direction, the level difference of the two scans being measured. This difference is very small or zero as long as the two sampling points are on the same product. It becomes large if there is a product edge between the two scanning points. The method and the device can be applied both to scale streams with product edges at the top and with product edges at the top. The thickness of each product is actually measured across its edge on the surface of the scale stream, regardless of the thickness of the other products below the product and therefore independent of defects in these products. A thickness error as a result it also becomes larger in percentage terms than when measuring the thickness of the entire current. The edge can also be recorded precisely in time, so that clock errors can also be determined.

Die erfindungsgemässe Vorrichtung weist ein Tastelement und ein Messelement auf, wobei das Tastelement und das Messelement den Schuppenstrom abtasten und das Messelement geleichzeitig derart ausgestaltet ist, dass es die Differenz der beiden Abtastungen misst.The device according to the invention has a probe element and a measuring element, the probe element and the measuring element sensing the scale flow and the measuring element being designed at the same time in such a way that it measures the difference between the two scans.

Anhand der folgenden Figuren soll nun das erfindungsgemässe Verfahren und eine beispielhafte Ausführungsform der erfindungsgemässen Vorrichtung erläutert werden. Dabei zeigen:

Figur 1
ein schematischer Schuppenstrom mit Fehlerstellen und verschiedene nach verschiedenen Verfahren erhaltene entsprechende Verläufe von Messsignalen;
Figur 2
einige spezielle Fehlerstellen zur Erläuterung des Einflusses, den der Abstand der beiden Messstellen auf das Messsignal hat;
Figur 3
eine beispielhafte Ausführungsform der erfindungsgemässen Vorrichtung mit Blickrichtung quer zur Förderrichtung des Schuppenstromes;
Figuren 4 und 5
eine weitere beispielhafte Ausführungsform der erfindungsgemässen Vorrichtung, die sich vor allem zur Dickenmessung von Druckprodukten mit sehr unterschiedlicher Dicke eignet (Blickrichtung quer zur Förderrichtung)
Figur 1 zeigt in der Zeile a einen schematischen Schuppenstrom, der in Richtung des Pfeiles F gefördert und an zwei stationären, mit einem Abstand d voneinander beabstandeten Messstellen M.1 und M.2 abgetastet wird, oder in einer anderen Betrachtungsweise, ein stationärer Schuppenstrom, über den sich in entgegengesetzter Richtung von Pfeil F zwei Messstellen M.1 und M.2 bewegen. Die im dargestellten Schuppenstrom obenliegenden Vorderkanten der Druckprodukte haben einen Abstand D voneinander, der zusammen mit der Fördergeschwindigkeit die Taktzeit T bestimmt. In den Zeilen b bis f sind nun Messsignale von verschiedenen Dickenmessungen je auf einer Zeitachse t aufgezeichnet, die sich über die Takte T.1 bis T.17 erstreckt. Die Ordinate ist jeweils eingeteilt in Einheiten, die je dem einer Produktedicke entsprechenden Messsignalunterschied entsprechen.The method according to the invention and an exemplary embodiment of the device according to the invention will now be explained with reference to the following figures. Show:
Figure 1
a schematic scale flow with fault locations and various corresponding curves of measurement signals obtained by different methods;
Figure 2
some special error points to explain the influence that the distance between the two measuring points has on the measuring signal;
Figure 3
an exemplary embodiment of the device according to the invention looking in the direction transverse to the conveying direction of the shingled stream;
Figures 4 and 5
a further exemplary embodiment of the device according to the invention, which is particularly suitable for measuring the thickness of printed products with very different thicknesses (viewing direction transverse to the conveying direction)
FIG. 1 shows in line a a schematic scale flow which is conveyed in the direction of arrow F and is scanned at two stationary measuring points M.1 and M.2 spaced apart by a distance d, or in another way of looking at it, a stationary scale flow, over which two measuring points M.1 and M.2 move in the opposite direction of arrow F. The leading edges of the printed products lying at the top in the shingled stream shown are at a distance D from one another which, together with the conveying speed, determines the cycle time T. Lines b to f now contain measurement signals of different thickness measurements a time axis t recorded, which extends over the clocks T.1 to T.17. The ordinate is divided into units, each of which corresponds to the measurement signal difference corresponding to a product thickness.

Der in der Zeile a dargestellte Schuppenstrom weist Fehlerstellen auf: Im Takt T.7 fehlt ein Produkt, im Takt T.9 erscheinen zwei Produkte, im Takt T.10 fehlt ein Produkt und im Takt T.13 erscheint ein um einen Viertel der Taktzeit verspätetes Produkt. Auch die Takte T.1 und T.2 bzw. T.16 und T.17 weisen Unregelmässigkeiten auf, da sie einen Schuppenstromanfang, bzw. ein Schuppenstromende darstellen.The shingled stream shown in line a has defects: in cycle T.7 a product is missing, cycle T.9 two products appear, cycle T.10 one product is missing and cycle T.13 shows a quarter of the cycle time late product. The clocks T.1 and T.2 or T.16 and T.17 also have irregularities, since they represent a beginning of a stream or an end of a stream.

Die Zeilen b und c stellen nun Messsignale von Dickenmessungen über den ganzen Schuppenstrom dar (Stand der Technik). Dabei ist vorerst nur der ausgezogene Signalverlauf zu betrachten, eine Erläuterung zum punktierten Signalverlauf folgt im Zusammenhang mit der Beschreibung der Zeilen e und f.Lines b and c now represent measurement signals from thickness measurements over the entire scale flow (prior art). For the time being, only the solid signal curve is to be considered; an explanation of the dotted signal curve follows in connection with the description of lines e and f.

Die Zeile b zeigt den Signalverlauf einer Distanzmessung zwischen Auflage und Schuppenstromoberfläche und zwar für den Fall eines Schuppenstromes aus extrem flexiblen, sich der Kontur des Schuppenstromes vollständig anpassenden Druckprodukten, die in einer Art aufeinander liegen, dass an keiner Stelle des Schuppenstromes Lücken unter dem Schuppenstrom oder zwischen den Druckprodukten auftreten. Ein entsprechender Signalverlauf wird beschrieben in der eingangs bereits erwähnten EP-A-0 242 622, wobei der Verlauf des Signales zwischen den Werten 2 und 3 zur Überwachung des Schuppenstromes herangezogen wird. Aus diesem Signalverlauf kann, wie die Zeile b zeigt, eine Leerstelle (T.7) als Fehlerstelle erkannt werden. Soll aber das auf die Leerstelle folgende Produkt (T.8) als korrektes Produkt erkannt werden, ist bereits ein rechnerischer Aufwand notwendig, der den Verlauf des Sollwertes als Folge der Leerstelle verändert. Wird das Messsignal nur mit einem konstant sich wiederholenden Sollverlauf über einen Takt verglichen, wird im Takt T.8 eine Fehlerstelle detektiert. Auch die Fehlerstelle im Takt T.9, die durch das Auftreten eines Doppelproduktes bedingt ist, ist nur mit Rechenaufwand exakt zu interpretieren, denn sie fällt zusammen mit dem Fehlen der Hinterkante des in Takt T.7 fehlenden Produktes. Ähnliches gilt für die Fehlerstelle in Takt T.13, die weitere Auswirkungen auf den Signalverlauf in Takt T.15 hat, welche ohne entsprechenden Rechenaufwand als weitere Fehlerstelle interpretiert werden müssten.Line b shows the signal curve of a distance measurement between the support and the shingled stream surface, specifically in the case of a shingled stream made of extremely flexible printed products which completely adapt to the contour of the shingled stream and which lie on top of one another in such a way that there are no gaps under the shingled stream at any point in the shingled stream or occur between the printed products. A corresponding signal course is described in EP-A-0 242 622, already mentioned at the beginning, the course of the signal between values 2 and 3 being used for monitoring the scale flow. From this signal curve, as line b shows, an empty space (T.7) can be recognized as an error location. However, if the product following the empty space (T.8) is to be recognized as the correct product, a computational effort is already necessary which changes the course of the setpoint as a result of the empty space. If the measurement signal is only compared with a constantly repeating set course over a cycle, an error point is detected in cycle T.8. The error point in bar T.9, which is caused by the occurrence of a double product, can only be interpreted exactly with computational effort, because it coincides with the lack of the trailing edge of the product missing in bar T.7. The same applies to the fault location in cycle T.13, which has further effects on the signal curve in cycle T.15, which would have to be interpreted as a further error location without corresponding computing effort.

Daraus folgt, dass der ausgezogene Signalverlauf der Zeile b, wenn er zur Fehlerstellenerkennung mit einem ordnungsgemässen Signalverlauf, wie er beispielsweise in den Takten T.3 bis T.5 auftritt, verglichen wird, die folgenden Takte als Fehlerstellen erkennt: (T.1, T.2), T.7, (T.8), T.9, T.10, (T.11, T.12), T.13, (T.15, T.16, T.17), wobei aber die in Klammern notierten Takte effektiv keine Fehlerstellen aufweisen. Um den wahren Tatbestand zu eruieren, muss beim ersten Auftreten einer Fehlerstelle diese nach Art beurteilt werden und dann muss der Sollverlauf für alle weiteren Takte, auf die sich der Fehler weiter erstreckt, entsprechend angeglichen werden, was offensichtlich mit einem grossen Rechenaufwand verbunden ist.It follows from this that the extended signal curve of line b, when compared with a proper signal curve, as occurs, for example, in cycles T.3 to T.5, identifies the following cycles as error points: (T.1, T.2), T.7, (T.8), T.9, T.10, (T.11, T.12), T.13, (T.15, T.16, T.17) , but the measures in brackets effectively have no errors. In order to determine the true facts, the first time an error occurs, it must be assessed according to type and then the target course for all other cycles, to which the error extends, must be adjusted accordingly, which is obviously associated with a large amount of calculation.

Die Zeile c zeigt (ausgezogen) einen mit einem gleichen Verfahren erzeugten Signalverlauf, wie die Zeile b. Hier wird aber ein Schuppenstrom von steifen Produkten vermessen, in dem die Produkte schräg aufeinander liegen und unter den einzelnen Produkten Lücken entstehen, also ein Schuppenstrom, wie er in der Zeile a effektiv dargestellt ist. Es ist offensichtlich, dass der Signalverlauf gegenüber der Zeile b sehr verändert ist und dass es schwierig sein dürfte, die beiden Verläufe, die prinzipiell gleiche Schuppenströme darstellen, mit einer gleichen Signalauswertung zu überwachen.Line c shows (drawn out) a signal curve generated using the same method as line b. Here, however, a scale flow of stiff products is measured, in which the products lie at an angle to one another and gaps arise under the individual products, i.e. a scale flow as effectively shown in row a. It is obvious that the signal curve is very different compared to line b and that it should be difficult to monitor the two curves, which in principle represent the same scale streams, with the same signal evaluation.

Es ist offensichtlich, dass ein realer Schuppenstrom nie dem Idealfall des in der Zeile b repräsentierten Schuppenstromes von flexiblen Produkten entsprechen wird. Vielmehr wird ein realer Schuppenstrom in den meisten Fällen irgendwo zwischen den beiden Extremen, die in den Zeilen b und c dargestellt sind, liegen.It is obvious that a real scale flow will never correspond to the ideal case of the scale flow of flexible products represented in row b. Rather, in most cases, a real scale flow will be somewhere between the two extremes shown in lines b and c.

Aus den beiden Signalverläufen der Zeilen b und c ist auch ersichtlich, dass ein Produkt mit einer falschen Dicke erkannt werden kann, wenn der Dickenfehler grösser ist als der Messfehler, und dass auch ein derartiges Produkt die Messwerte für die folgenden Produkte beeinflusst.It can also be seen from the two signal curves of lines b and c that a product with an incorrect thickness can be recognized if the thickness error is greater than the measurement error, and that such a product also influences the measurement values for the following products.

Die Zeile d stellt den Signalverlauf dar, der mit einem Verfahren und einer Vorrichtung gemäss der ebenfalls eingangs zitierten EP-A-0 479 717 bei der Ausmessung des in der Zeile a dargestellten Schuppenstromes erhalten wird. Dabei sei die Synchronisation zwischen dem Strom und der Messung derart, dass die Referenzfläche im zweiten Achtel der Taktzeit unter dem Produkt positioniert ist und in diesem Zeitabschnitt die Dicke des Produktes gemessen wird. Aus dem Signalverlauf ist ersichtlich, dass die Fehlerstellen in den Takten T.7, T.9 und T.10 einfach und entspreder Art der Fehlerstelle detektiert und interpretiert werden können. Es geht aber ebenfalls aus dem Signalverlauf der Zeile d hervor, dass die Fehlerstelle im Takt T.13 zu einer falschen Interpretation, nämlich derjenigen einer Leerstelle führt. Ein taktfalsches Produkt wird nach diesem Messverfahren je nach Grösse der Verschiebung und je nach Anordnung des Messzeitpunktes innerhalb des Taktes entweder als Leerstelle oder als korrektes Produkt interpretiert. Aus dem Signalverlauf der Zeile d ist auch erkennbar, dass Schuppenstromanfang (T.1 und T.2) sowie Schuppenstromende (T.16 und T.17) fehlerlos und ohne Rechenaufwand interpretiert werden können.Line d represents the signal curve which is obtained with a method and a device according to EP-A-0 479 717, also cited at the beginning, when measuring the scale flow shown in line a. The synchronization between the current and the measurement is such that the reference surface is positioned under the product in the second eighth of the cycle time and the thickness of the product is measured in this period. From the signal curve it can be seen that the error points in clocks T.7, T.9 and T.10 are simple and corresponding Type of fault location can be detected and interpreted. However, it also emerges from the signal curve of line d that the fault location in cycle T.13 leads to an incorrect interpretation, namely that of an empty space. According to this measuring method, a wrongly clocked product is interpreted either as a blank or as a correct product depending on the size of the shift and the arrangement of the measuring time within the clock. From the signal curve of line d it can also be seen that the beginning of the shingled stream (T.1 and T.2) and the end of the shingled stream (T.16 and T.17) can be interpreted without errors and without any computational effort.

In den Zeile b und c ist nun im Sinne des erfindungsgemässen Verfahrens der ausgezogene Signalverlauf als ideelle Messung der Schuppenstromdicke an einer ersten Messstelle M.1 zu verstehen, der punktierte Verlauf als Messung derselben Schuppenstromdicke an einer zweiten Messstelle M.2, wobei jedes Schuppenstromelement zuerst an der ersten Messstelle M.1, dann an der zweiten Messstelle M.2 vorbeigefördert wird. Im vorliegenden Fall entspricht die Distanz d zwischen den beiden Messstellen einem Viertel der Kantendistanz D oder zeitlich einem Viertel der Taktzeit T, ein Verhältnis, das aus rein darstellungsbedingten Gründen gewählt wurde. Der punktiert dargestellte Signalverlauf ist exakt derselbe wie der ausgezogene Signalverlauf, zeigt aber eine Phasenverschiebung, die der Distanz d entspricht.In line b and c, in the sense of the method according to the invention, the extended signal curve is to be understood as an ideal measurement of the scale flow thickness at a first measuring point M.1, the dotted curve as a measurement of the same scale flow thickness at a second measuring point M.2, with each scale flow element first is conveyed past the first measuring point M.1, then past the second measuring point M.2. In the present case, the distance d between the two measuring points corresponds to a quarter of the edge distance D or temporally a quarter of the cycle time T, a ratio that was chosen for reasons of illustration only. The dotted waveform is exactly the same as the solid waveform, but shows a phase shift that corresponds to distance d.

Gemäss dem erfindungsgemässen Verfahren wird nun die Differenz der beiden Signalverläufe, die je in den Zeilen b und c dargestellt sind, gemessen. Diese sind in den Zeilen e und f dargestellt. Es ist aus den beiden Zeilen e und f, die entsprechend den Zeilen b und c wiederum den Signalverlauf für einen Schuppenstrom aus flexiblen und einen Schuppenstrom aus steifen Produkten darstellen, deutlich ersichtlich, dass die beiden Verläufe sich in jeweils der ersten Hälfte des Taktes nicht grundsätzlich unterscheiden, sondern im wesentlichen nur durch ihre Lage relativ zu einer Nullinie, dass sie also ohne weiteres mit derselben Auswertung interpretiert werden können. Auch ist daraus klar ersichtlich, dass die Fehlerstellen in den Takten T.7, T.9, T.10 und T.13 anhand des durch die Vorderkante der Produkte bedingten Ausschlages als Leerstelle (kein Ausschlag), als mehrfaches oder falsches Produkt (falsche Höhe des Ausschlages) oder verschobenes Produkt (falscher Zeitpunkt des Ausschlages innerhalb des Taktes) interpretiert werden kann.According to the method according to the invention, the difference between the two signal profiles, which are each shown in lines b and c, is measured. These are shown in lines e and f. It can be clearly seen from the two lines e and f, which, in accordance with lines b and c, in turn represent the signal curve for a shingled stream of flexible products and a shingled stream of rigid products, that the two profiles are not fundamentally different in the first half of the cycle differ, but essentially only by their position relative to a zero line, so that they can be easily interpreted with the same evaluation. It is also clear from this that the error points in bars T.7, T.9, T.10 and T.13 based on the deflection caused by the front edge of the products as an empty space (no deflection), as a multiple or incorrect product (incorrect Amount of the deflection) or shifted product (wrong time of the deflection within the cycle) can be interpreted.

Die Variante der Zeile e (flexible Produkte) zeigt, dass in der zweiten Hälfte des Taktes auch ein Signalausschlag durch die Hinterkante jedes Produktes erzeugt wird. Damit der dadurch bedingte Signalausschlag den Ausschlag bedingt durch die Vorderkante nicht beeinträchtigt, muss in diesem Falle für den ausgemessenen Schuppenstrom die Bedingung erfüllt sein, dass Hinterkanten und Vorderkanten der Druckprodukte nicht genau übereinander liegen. Ist diese Bedingung erfüllt, macht eine Überwachung des ganzen Taktbereiches nicht nur die Überwachung auf fehlende, in bezug auf Dicke falsche und verschobene Produkte möglich, sondern zusätzlich eine Überwachung auf in bezug auf Länge falsche Produkte (falsche Distanz zwischen negativem Ausschlag bedingt durch Vorderkante und positivem Ausschlag bedingt durch Hinterkante). Dabei ist aber zu beachten, dass die Interpretation von einer verschobenen Vorderkante, wenn diese mit einer Hinterkante zusammenfällt, auch in diesem Falle schwierig oder unmöglich ist.The variant of line e (flexible products) shows that in the second half of the cycle a signal deflection is also generated by the trailing edge of each product. So that the resulting signal deflection does not affect the deflection caused by the leading edge, in this case the condition must be met for the measured scale flow that the trailing edges and leading edges of the printed products are not exactly one above the other. If this condition is met, monitoring the entire cycle range not only makes it possible to monitor for missing, incorrect and shifted products in terms of thickness, but also monitoring for products that are incorrect in terms of length (wrong distance between negative deflection due to leading edge and positive Rash due to trailing edge). However, it should be noted that the interpretation of a shifted leading edge, if it coincides with a trailing edge, is difficult or impossible in this case too.

Der einfachste und am eindeutigsten interpretierbare Signalverlauf stellt die Zeile f dar. Dieser braucht lediglich auf negative Flanken und auf Ausschlaghöhe interpretiert zu werden. Negative Flanke in Taktabständen und Ausschlaghöhe gemäss Sollwert (T.1/2/3/4/5/6/8/11/12/14/15) bedeuten ein korrektes Produkt, auch im Bereiche des Schuppenstromanfanges und -endes. Keine negative Flanke (T.7/10) bedeutet eine Leerstelle. Falsche Ausschlaghöhe (T.9) bedeutet ein mehrfaches oder in Bezug auf Dicke falsches Produkt und negative Flanke im Takt verschoben (T.13) bedeutet ein verschobenes Produkt.The simplest and most unambiguously interpretable signal curve is line f. It only needs to be interpreted on negative edges and at the deflection level. Negative flanks at cycle intervals and deflection height according to the target value (T.1 / 2/3/4/5/6/8/11/12/14/15) mean a correct product, also in the area of the beginning and end of shingled stream. No negative edge (T.7 / 10) means an empty space. Incorrect deflection height (T.9) means a product that is multiple or wrong in terms of thickness and negative flank shifted in time (T.13) means a shifted product.

Die Förderrichtung in der Figur 1 ist mit dem Pfeil F bezeichnet. Dies bedeutet, dass im Schuppenstrom vorlaufende Produktekanten, wie in der Zeile a dargestellt, zuerst die Messstelle M.1 und dann die Messstelle M.2 erreichen. Prinzipiell ändert sich aber am erfindungsgemässen Verfahren nichts, wenn die Förderrichtung umgekehrt wird und die Produktehinterkanten an der Oberfläche des Schuppenstromes liegen.The direction of conveyance in FIG. 1 is indicated by the arrow F. This means that product edges leading in the shingled stream, as shown in line a, first reach measuring point M.1 and then measuring point M.2. In principle, however, nothing changes in the method according to the invention if the conveying direction is reversed and the product trailing edges lie on the surface of the scale flow.

Figur 2 zeigt in gleicher schematischer Darstellungsweise wie Figur 1 den Einfluss des Abstandes d zwischen den Messstellen M.1 und M.2 auf den nach dem erfindungsgemässen Verfahren erzeugten Signalverlauf, wobei in einer Zeile g ausgewählte Teile aus einem Schuppenstrom und in einer Zeile h die entsprechenden Messsignale entsprechend der Zeile f der Figur 1 aufgezeichnet sind. FIG. 2 shows in the same schematic representation as FIG. 1 the influence of the distance d between the measuring points M.1 and M.2 on the signal curve generated by the method according to the invention, parts selected from a scale flow in a line g and h in a line h corresponding measurement signals corresponding to line f of Figure 1 are recorded.

Fall A zeigt, dass der Abstand d zwischen den beiden Messstellen M.1 und M.2 grösser sein muss als die Ausdehnung der Kante in Förderrichtung. Nur mit einer derart grossen Messstellendistanz kann die Kantenhöhe eindeutig ermittelt werden, da in einem bestimmten Zeitpunkt die eine Messstelle die Kante bereits überschritten hat, während die zweite sie noch nicht erreicht hat. Ideal ist, wenn die Messstelle M.2 in dem Moment unmittelbar vor der Produktekante positioniert ist, in dem die Messstelle M.1 die ganze Produktekante abgetastet hat und eben den höchsten Punkt erreicht hat.Case A shows that the distance d between the two measuring points M.1 and M.2 must be greater than the extent of the edge in the conveying direction. The edge height can only be clearly determined with such a large measuring point distance, since in one certain point in time that one measuring point has already passed the edge while the second has not yet reached it. It is ideal if the measuring point M.2 is positioned immediately in front of the product edge when the measuring point M.1 has scanned the entire product edge and has just reached the highest point.

Fälle B, C, D und E zeigen, dass die Erkennung von Mehrfachprodukten (in der Darstellung Doppelprodukte) vom Verhältnis des Abstandes zwischen den beiden Messstellen M.1 und M.2 und dem Abstand der erfassten Kanten der einzelnen Produkte des Doppelproduktes abhängig ist. Die vier Fälle weisen gleichen Abstand d zwischen den Messstellen M.1 und M.2 und verschiedene Kantenabstände k auf. Für k << d oder sogar k = 0 (Fall B) erzeugt das Doppelprodukt einen Signalausschlag mit doppelter Höhe und einer gleichen Form, verglichen mit dem Sollausschlag für ein einfaches Produkt. Für k < d (Fall C) ergibt sich ein gestufter Ausschlag, der mit entsprechend exakter Messung und Auswertung entsprechend interpretiert werden kann. Mit k = d

Figure imgb0001
(Fall D) ergibt sich ein Ausschlag mit der doppelten zeitlichen Breite und für k > d (Fall E) ergeben sich zwei Ausschläge, die als ein zeitlich verschobenes Produkt zu interpretieren sind.Cases B, C, D and E show that the detection of multiple products (in the representation of double products) depends on the ratio of the distance between the two measuring points M.1 and M.2 and the distance of the detected edges of the individual products of the double product. The four cases have the same distance d between the measuring points M.1 and M.2 and different edge distances k. For k << d or even k = 0 (case B), the double product produces a signal deflection with double the height and the same shape compared to the target deflection for a simple product. For k <d (case C) there is a graded deflection that can be interpreted with a correspondingly precise measurement and evaluation. With k = d
Figure imgb0001
(Case D) there is an excursion with twice the latitude and for k> d (case E) there are two excursions which are to be interpreted as a time-shifted product.

Aus der Figur 2 geht hervor, dass die Wahl des Abstandes d entsprechend dem zu überwachenden Schuppenstrom und entsprechend der zu erwartenden und tolerierbaren Taktgenauigkeit der Produkte bestimmt werden muss, dass er also für verschiedene Anwendungen vorteilhafterweise einstellbar ist.It can be seen from FIG. 2 that the choice of the distance d must be determined in accordance with the scale flow to be monitored and the expected and tolerable cycle accuracy of the products, so that it can advantageously be set for different applications.

Aus der Figur 2 geht auch hervor, dass mit dem erfindungsgemässen Verfahren auch differenzierte Schuppenströme überwacht werden können. Differenzierte Schuppenströme sind Schuppenströme, in denen Produkte in Gruppen gefördert werden, wobei die Kantenabstände innerhalb der Gruppen Kleiner sind als der Kantenabstand zwischen dem letzten Produkt einer Gruppe und dem ersten Produkt der folgenden Gruppe. Wird nun beispielsweise der Abstand zwischen den Messstellen M.1 und M.2 derart gewählt, dass er dem Soll-Kantenabstand innerhalb der Gruppe entspricht, wird für eine Gruppe (gemäss Fall D) ein zeitlich derart breiter Ausschlag erzeugt, wie dies der Anzahl Produkte in der Gruppe entspricht. Sind die Abstände zu gross, entstehen gemäss Fall E separate Ausschläge, ist er zu klein, entstehen gemäss Fall C gestufte Ausschläge, was beides als Fehlerstellen detektiert werden kann.FIG. 2 also shows that differentiated scale flows can also be monitored with the method according to the invention. Differentiated scale flows are scale flows in which products are conveyed in groups, the edge distances within the groups being smaller than the edge distance between the last product of a group and the first product of the following group. If, for example, the distance between the measuring points M.1 and M.2 is selected in such a way that it corresponds to the target edge distance within the group, a time-wise deflection is generated for a group (according to case D), as is the number of products in the group. If the distances are too large, separate rashes occur according to case E, if it is too small, rashes graded according to case C arise, both of which can be detected as defects.

Figur 3 zeigt nun eine beispielhafte Ausführungsform der Vorrichtung zur Durchführung des bis anhin beschriebenen, erfindungsgemässen Verfahrens. Es handelt sich dabei um eine Vorrichtung mit doppelter Abtastrolle, wobei als Differenz-Messsignal die Auslenkung der zweiten Rolle gegenüber der ersten Rolle ausgewertet wird. Figure 3 now shows an exemplary embodiment of the device for performing the previously described inventive method. It is a device with a double scanning roller, the deflection of the second roller compared to the first roller being evaluated as the differential measurement signal.

Eine erste Tastrolle 11 ist frei um eine erste Drehachse 12 drehbar an einem Arm 13 angeordnet, wobei der Arm 13 um eine ortsfest angeordnete erste Schwenkachse 14 schwenkbar angeordnet ist. Eine zweite Tastrolle 21 ist frei drehbar um eine zweite Drehachse 22 an einem Hebel 23 angeordnet, wobei der Hebel 23 um eine zweite Schwenkachse 24 schwenkbar am Arm 13 befestigt ist. Der Arm 13 ist relativ zur Auflagefläche 30 eines Schuppenstromes 31 derart angeordnet, dass die erste Tastrolle 11 auf der Schuppenstromoberfläche aufliegt und durch das Gewicht des Armes 13 und/oder beispielsweise eine Federkraft leicht auf diese Oberfläche gepresst wird. Bei gefördertem Schuppenstrom rollt die Tastrolle 11 auf der Schuppenstromoberfläche ab. Der Hebel 23 ist derart am Arm 13 angeordnet, dass die zweite Tastrolle 21 ebenfalls auf der Schuppenstromoberfläche aufliegt und zwar derart, dass die Auflagepunkte der beiden Rollen in Förderrichtung einen Abstand d voneinander haben. Auch die zweite Tastrolle 21 wird beispielsweise durch eine Feder leicht auf die Schuppenstromoberfläche gedrückt.A first feeler roller 11 is arranged on an arm 13 so as to be freely rotatable about a first axis of rotation 12, the arm 13 being arranged so as to be pivotable about a first pivot axis 14 arranged in a stationary manner. A second feeler roller 21 is arranged in a freely rotatable manner about a second axis of rotation 22 on a lever 23, the lever 23 being fastened on the arm 13 so as to be pivotable about a second pivot axis 24. The arm 13 is arranged relative to the contact surface 30 of a shingled stream 31 such that the first sensing roller 11 rests on the shingled stream surface and is slightly pressed onto this surface by the weight of the arm 13 and / or, for example, a spring force. When the shingled stream is conveyed, the feeler roller 11 rolls on the shingled stream surface. The lever 23 is arranged on the arm 13 in such a way that the second sensing roller 21 also rests on the scale flow surface, specifically in such a way that the support points of the two rollers are at a distance d from one another in the conveying direction. The second feeler roller 21 is also lightly pressed onto the scale stream surface, for example by a spring.

Bewegt sich unter der Messanordnung mit den beiden Tastrollen nun der Schuppenstrom in der Förderrichtung F, dann ist die zweite Tastrolle 22 in einer mittleren Schwenkstellung, solange sich zwischen den Auflagepunkten der beiden Tastrollen (Messtellen) keine Produktekante befindet. Liegt zwischen den beiden Auflagepunkten eine Vorderkante, wie dies in der Figur dargestellt ist, ist der Hebel 23 gegenüber der mittleren Schwenkstellung in der Richtung des Pfeiles S verschwenkt und zwar umso mehr, je höher die Kante ist. Eine Hinterkante zwischen den beiden Auflagepunkten bewirkt eine Schwenkung in der entgegengesetzten Richtung. Dabei ist die Verschwenkung des Hebels 23 absolut unabhängig von der totalen Dicke des Schuppenstromes und damit auch nicht abhängig von den Schwankungen in der Auslenkung der ersten Tastrolle.If the scale flow in the conveying direction F now moves under the measuring arrangement with the two sensing rollers, then the second sensing roller 22 is in a middle pivoted position as long as there is no product edge between the support points of the two sensing rollers (measuring points). If there is a leading edge between the two support points, as shown in the figure, the lever 23 is pivoted in the direction of the arrow S with respect to the central pivot position, and the higher the edge, the more so. A trailing edge between the two support points causes a pivoting in the opposite direction. The pivoting of the lever 23 is absolutely independent of the total thickness of the scale flow and therefore not dependent on the fluctuations in the deflection of the first sensing roller.

Um die Kanten eines Schuppenstromes zu überwachen, muss also die Verschwenkung des Hebels 23 gemessen werden. Dies wird beispielsweise realisiert, indem der Hebel 23 als zweiarmiger Hebel ausgebildet ist mit einem Rollenarm 23.1, an dem die zweite Tastrolle 21 befestigt ist und einem Messarm 23.2, der derart angeordnet ist, dass er beim Verschwenken einen Messtaster 40 betätigt, der je nach Schwenkstellung des Hebels 23 in Richtung des Pfeiles L verschoben wird und ein dieser Verschiebung entsprechendes Messsignal liefert. Die Schwenkung des Hebels 23 kann auch durch einen Anschlag 41 derart limitiert sein, dass er nur in einer Richtung aus der mittleren Stellung (gleiches Auflageniveau von erster und zweiter Tastrolle) verschwenkt werden kann. Der Taster der dargestellten Ausführungsform wird demgemäss nur Vorderkanten registrieren, während er Hinterkanten nicht detektiert, da ein tieferes Niveau der zweiten Tastrolle 21 relativ zur ersten Tastrolle 11 durch den Anschlag 41 verhindert wird.In order to monitor the edges of a shingled stream, the pivoting of the lever 23 must be measured. This is realized, for example, in that the lever 23 is designed as a two-armed lever with a roller arm 23.1 on which the second Probe roller 21 is attached and a measuring arm 23.2, which is arranged such that it actuates a probe 40 when pivoting, which is shifted depending on the pivoting position of the lever 23 in the direction of arrow L and provides a measurement signal corresponding to this shift. The pivoting of the lever 23 can also be limited by a stop 41 in such a way that it can only be pivoted in one direction from the middle position (same contact level of the first and second sensing roller). The button of the illustrated embodiment will accordingly only register leading edges, while it does not detect rear edges, since a lower level of the second sensing roller 21 relative to the first sensing roller 11 is prevented by the stop 41.

Es ist vorteilhaft, den Schuppenstrom im Bereiche der beiden Messstellen durch entsprechende Anpressrollen gegen die Auflage zu pressen.It is advantageous to press the scale flow in the area of the two measuring points against the support by appropriate pressure rollers.

Damit die Vorrichtung an verschiedene Anwendungen anpassbar ist, ist es vorteilhaft, sie derart zu gestalten, dass die Distanz zwischen den Auflagepunkten der ersten und der zweiten Tastrolle einstellbar ist. Dies kann beispielsweise realisiert werden durch einen Hebel 23, dessen Länge eingestellt werden kann.So that the device can be adapted to different applications, it is advantageous to design it in such a way that the distance between the support points of the first and the second sensing roller can be adjusted. This can be achieved, for example, by a lever 23, the length of which can be adjusted.

Die Auslenkung der zweiten Tastrolle kann auch mit anderen Mitteln, beispielsweise einem Winkelgeber gemessen werden. Die Funktion der zweiten Tastrolle kann auch durch einen Distanzmesser, der fest mit dem Arm 13 verbunden und vom Auflagepunkt der ersten Tastrolle 11 beabstandet angeordnet ist, übernommen werden. Dieser Distanzmesser kann berührungslos, beispielsweise optisch funktionieren.The deflection of the second sensing roller can also be measured using other means, for example an angle encoder. The function of the second sensing roller can also be taken over by a distance meter which is firmly connected to the arm 13 and is arranged at a distance from the support point of the first sensing roller 11. This distance meter can function without contact, for example optically.

Figuren 4 und 5 zeigen eine weitere Ausführungsform der erfindungsgemässen Vorrichtung. Diese ist verglichen mit der Ausführungsform gemäss Figur 3 besser adaptiert zur Überwachung von Schuppenströmen sehr verschiedener Dicke und zur Überwachung von Schuppenströmen aus sehr dicken Produkten. Aus der Figur 3 ist ersichtlich, dass die Dicke des mit der Vorrichtung messbaren Schuppenstromes begrenzt ist durch die Distanz zwischen der Schwenkachse 14 und der Form des Armes 13. Bei einem dicken Schuppenstrom (stark nach oben geschwenktem Arm 13) werden die Druckprodukte mit der unteren Kante des Armes 13 in Berührung kommen, was verhindert werden muss. Figures 4 and 5 show a further embodiment of the device according to the invention. Compared to the embodiment according to FIG. 3, this is better adapted for monitoring scale flows of very different thicknesses and for monitoring scale flows from very thick products. It can be seen from FIG. 3 that the thickness of the scale flow which can be measured with the device is limited by the distance between the pivot axis 14 and the shape of the arm 13. In the case of a thick scale flow (arm 13 pivoted upwards strongly), the printed products become with the lower one Edge of the arm 13 come into contact, which must be prevented.

Die in den Figuren 4 und 5 dargestellte Ausführungsform ist ohne entsprechende Einstellung benützbar für die Messung von sehr dünnen Schuppenströmen (Figur 4) und von sehr dicken Schuppenströmen (Figur 5). Die Vorrichtung weist auch in dieser Ausführungsform eine zweite Tastrolle 21, die um eine an einem Hebel 23 angeordnete Drehachse 22 frei drehbar ist. Dieser Hebel 23 ist seinerseits verschwenkbar um eine erste Schwenkachse 24 an einem Arm 13' angeordnet, wobei dieser Arm 13' dieselbe Funktion hat wie der Arm 13 der Ausführungsform gemäss Figur 3. Er ist also entsprechend der Dicke des Schuppenstromes verschwenkbar und trägt die erste Messstelle M.1.The embodiment shown in FIGS. 4 and 5 can be used without the appropriate setting for measuring very thin scale streams (FIG. 4) and very thick scale streams (FIG. 5). In this embodiment too, the device has a second feeler roller 21, which can be freely rotated about an axis of rotation 22 arranged on a lever 23. This lever 23 is in turn pivotable about a first pivot axis 24 on an arm 13 ', this arm 13' having the same function as the arm 13 of the embodiment according to FIG. 3. It is therefore pivotable according to the thickness of the scale flow and carries the first measuring point M.1.

Damit auch bei dickem Schuppenstrom (Figur 5) die Druckprodukte nicht mit dem Arm 13' in Berührung kommen ist dieser als paralleles Hebelpaar 41.1 und 41.2 mit einer Halteplatte 42 ausgebildet. Die beiden parallelen Hebel 41.1 und 41.2 sind um je eine ortsfeste Schwenkachse 43.1 und 43.2 schwenkbar angeordnet und tragen ihrerseits je eine weitere Schwenkachse 44.1 und 44.2, die relativ zueinander gleich räumlich angeordnet sind wie die Schwenkachsen 43.1 und 43.2. An den Schwenkachsen 44.1 und 44.2 ist schwenkbar die Halteplatte 42 angeordnet. Durch diese Anordnung wird sichergestellt, dass die räumliche Orientierung (bspw. der Winkel zwischen Auflagefläche 30 und der Halteplatte 42) unabhängig von der Schwenklage der Parallelhebel 41.1 und 41.2 immer dieselbe ist, dass also die Position der Halteplatte 42 bei dünnem Schuppenstrom dieselbe ist wie bei dickem Schuppenstrom. Dies geht aus einem Vergleich der Figuren 4 und 5 deutlich hervor.So that the printed products do not come into contact with the arm 13 ', even with a thick shingled stream (FIG. 5), the arm is designed as a parallel pair of levers 41.1 and 41.2 with a holding plate 42. The two parallel levers 41.1 and 41.2 are each pivotable about a fixed pivot axis 43.1 and 43.2 and in turn each carry a further pivot axis 44.1 and 44.2, which are arranged spatially relative to one another in the same way as the pivot axes 43.1 and 43.2. The holding plate 42 is pivotably arranged on the pivot axes 44.1 and 44.2. This arrangement ensures that the spatial orientation (for example the angle between the support surface 30 and the holding plate 42) is always the same regardless of the pivoting position of the parallel levers 41.1 and 41.2, that is to say the position of the holding plate 42 is the same in the case of a thin shingled stream as in thick stream of scales. This is clear from a comparison of Figures 4 and 5.

Ferner ist die Vorrichtung gemäss Figuren 4 und 5 adaptiert für die Überwachung von Schuppenströmen aus diken Druckprodukten (hohe Produktekanten). Dafür entspricht der ersten Tastrolle 11 der Ausführung nach Figur 3 funktionsmässig ein Rollenpaar 45.1 und 45.2, dessen beide Rollen frei drehbar um die Drehachsen 46.1 und 46.2 an der Halteplatte 42 angeordnet sind. Über das Rollenpaar 45.1 und 45.2 läuft ein Tastband 47, beispielsweise ein feiner Zahnriemen, der auf dem unter der Messanordnung durchlaufenden Schuppenstrom abrollt.Furthermore, the device according to FIGS. 4 and 5 is adapted for the monitoring of scale flows from dense printed products (high product edges). For this purpose, the function of the first sensing roller 11 of the embodiment according to FIG. 3 corresponds to a pair of rollers 45.1 and 45.2, the two rollers of which are arranged on the holding plate 42 in a freely rotatable manner about the axes of rotation 46.1 and 46.2. A probe tape 47, for example a fine toothed belt, runs over the pair of rollers 45.1 and 45.2 and rolls on the scale stream passing under the measuring arrangement.

Das Tastband 47 liegt im Bereiche der Rolle 45.1 auf dem Schuppenstrom auf (ausgezogene Position in der Figur 5), bis sich die Messanordnung einer hohen Kante nähert. Diese kommt mit dem Tastband 47 zwischen den beiden Rollen 45.1 und 45.2 in Berührung (strichpunktiert angedeutete Position 45,1' und 47' in der Figur 5), wodurch die Rolle 45.1 auf das Niveau der Kante gehoben wird. Durch eine Anordnung mit Tastband 47 anstelle einer einzelnen ersten Tastrolle (11, Figur 3) wird eine kontinuierliche Bewegung über den Schuppenstrom sichergestellt. Eine einzelne Tastrolle könnte an sehr hohen Produktekanten hängenbleiben, was zu Unstetigkeiten im Signalverlauf und zu Verschiebungen von Produkten im Strom führen könnte.The probe tape 47 lies in the area of the roller 45.1 on the scale stream (extended position in FIG. 5) until the measuring arrangement approaches a high edge. This comes into contact with the touch tape 47 between the two rollers 45.1 and 45.2 (positions 45, 1 'and 47' shown in dash-dot lines in FIG. 5), whereby the roller 45.1 is raised to the level of the edge. An arrangement with a touch tape 47 instead of a single first touch roller (11, FIG. 3) is a continuous movement over the stream of shingles ensured. A single tracer roller could get stuck on very high product edges, which could lead to discontinuities in the signal curve and to product shifts in the stream.

Die Messanordnung ist so zu gestalten, dass der Winkel zwischen dem Tastband 47 und der Auflagefläche 30 klein genug ist, um eine kontinuierliche Bewegung der Messanordnung sicherzustellen, dass er aber andererseits gross genug ist, um eine Kante noch sicher detektieren zu können. gute Ergebnisse haben sich ergeben mit einem Winkel α von ca. 15°. Dieser Winkel α kann wie bereits beschrieben durch die Verwendung eines Armes 13', der ein Parallelhebelpaar (41.1 und 41.2) und eine Halteplatte (42) aufweist, unabhängig von der Schuppenstromdicke konstant gehalten werden.The measuring arrangement is to be designed in such a way that the angle between the scanning tape 47 and the contact surface 30 is small enough to ensure a continuous movement of the measuring arrangement, but on the other hand it is large enough to still be able to reliably detect an edge. good results have been obtained with an angle α of approximately 15 °. As already described, this angle α can be kept constant regardless of the scale flow thickness by using an arm 13 'which has a pair of parallel levers (41.1 and 41.2) and a holding plate (42).

Selbstverständlich sind auch Messanordnungen vorstellbar, die einen einfachen Arm aufweisen und ein Tastband, oder solche, die einen Arm mit Parallelhebel und Halteplatte und eine einfache erste Tastrolle aufweisen.Of course, measuring arrangements are also conceivable that have a simple arm and a feeler tape, or those that have an arm with a parallel lever and holding plate and a simple first feeler roller.

Claims (20)

  1. A method for detecting faulty points in a flow (31) of flat products, in particular printed products, conveyed on a bearing surface (30) and overlapping one another, in which arrangement the product edges lying at the upper surface of the flow can be the front edges, or rear edges of the products; and at a first measuring point (M.1), it is in essence the level of the upper surface of the flow above the bearing surface that is scanned, characterized in that at a second measuring point (M.2), which is interspaced in the conveyance direction from the first measuring point (M.1), the relative level is measured with reference to the level of the first measuring point (M.1); and that a measurement signal generated by the measurement of the relative level is used for detecting faulty points in the flow.
  2. A method according to claim 1, characterized in that the distance (d) between the two measuring points (M.1 and M.2) is greater than the dimension in the conveyance direction of the product edges lying at the upper surface of the flow.
  3. A method according to one of claims 1 or 2, characterized in that the distance between the two measuring points (M.1 and M.2) is adjustable.
  4. A method according to one of claims 1 to 3, characterized in that the products are conveyed in the flow with substantially equal interspacings; and that the distance (d) between the two measuring points (M.1 and M.2) is smaller than the distance between the product edges lying at the upper surface of the flow.
  5. A method according to one of claims 1 to 3, characterized in that the products in the flow are conveyed in groups, in which arrangement the distances between the edges of the products of one group lying at the upper surface of the flow is smaller than the distances in each case between the edge of the last product of one group lying at the upper surface of the flow and the edge of the first product of the following group; and that the distance (d) between the two measuring points (M.1 and M.2) is equal to, or smaller than, the distance of the edges of the products lying at the upper surface of the flow in one group.
  6. A method according to one of claims 1 to 5, characterized in that, relative to a measured value corresponding to the same level at the first and at the second measuring points, only changes in level in one direction are measured.
  7. A method according to one of claims 1 to 5, characterized in that, relative to a measured value corresponding to the same level at the first and at the second measuring points, changes in level in both directions are measured.
  8. An apparatus for operating the method according to one of claims 1 to 7, wherein a feeler element (11, 47, 45.1) is movably arranged in such a way that its position is correlated with the level of the upper surface of the flow (31) above the bearing surface (30) at a first measuring point, characterized in that it has a measuring element (21, 23, 40) which is connected to the feeler element (11, 47, 45.1) in such a way that it follows movements of the feeler element due to fluctuations in level of the upper surface of the flow relative to the bearing surface (30).
  9. An apparatus according to claim 8, characterized in that the measuring element is connected to the feeler element for displacement in such a way that the distance (d) between the first and the second measuring points is adjustable.
  10. An apparatus according to one of claims 8 or 9, characterized in that the feeler element is a first feeler roller (11) which is mounted for rotation on an arm (13, 13') arranged for pivoting round a first pivot pin (14) that is fixed in position in such a way that the roller runs off on the upper surface of the conveyed flow.
  11. An apparatus according to one of claims 8 or 9, characterized in that the feeler element is a feeler band (47) circulating round a pair of rollers (45.1 and 45.2), in which arrangement the rollers of the roller pair are arranged for free rotation on the arm (13, 13') in such a way that the feeler band rolls off on the upper surface of the conveyed flow, and that the parts extending in a straight line of the movement path of the feeler band form an acute angle (α) with the bearing surface (30) for the printed products.
  12. An apparatus according to one of claims 8 to 11, characterized in that it has force means, by means of which the feeler element (11, 47, 45.1) is pressed onto the upper surface of the flow.
  13. An apparatus according to one of claims 8 or 11, characterized in that the feeler element has a second feeler roller (21) which is arranged for free rotation on a lever (23), in which arrangement the lever (23) is mounted on an arm (13, 13') for pivoting round a second pivot pin (24) in such a way that the second feeler roller (21) rolls off on the upper surface of the flow at a distance from the feeler element (11, 47, 45.1) in the conveyance direction; and that the measuring element has a sensor means which generates a measurement signal corresponding to the pivoting of the lever (23).
  14. An apparatus according to claim 13 characterized in that provision is made on the arm (13, 13') for a stop (41) which limits the pivoting of the lever (23).
  15. An apparatus according to one of claims 13 or 14, characterized in that it has force means, by means of which the second feeler roller is kept down to the upper surface of the flow.
  16. An apparatus according to one of claims 13 to 15, characterized in that as the sensor means, provision is made for a measuring feeler which is actuated by a measuring arm (23.2) of the lever (23).
  17. An apparatus according to one of claims 13 to 15, characterized in that provision is made for an angle indicator as the sensor means.
  18. An apparatus according to one of claims 11 or 12, characterized in that the measuring element has a contactless distance sensor which is rigidly connected to the arm (13) in such a way that it measures its distance from the upper surface of the flow at a measuring point interspaced in the conveyance direction from the bearing point of the feeler element (11, 47, 45.1).
  19. An apparatus according to claim 18, characterized in that the contactless distance sensor is an optical sensor.
  20. An apparatus according to one of claims 10 to 19, characterized in that the arm (13') has a pair of parallel levers (41.1 and 41.2) pivotable round one pivot pin (43.1 and 43.2) each which are fixed in position, and a holding plate (42) pivotably arranged at both parallel levers on one pivot pin (44.1 and 44.2) each.
EP92122138A 1992-02-19 1992-12-30 Double sheet detector Expired - Lifetime EP0556486B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CH510/92 1992-02-19
CH51092 1992-02-19
CH210592 1992-07-03
CH2105/92 1992-07-03

Publications (2)

Publication Number Publication Date
EP0556486A1 EP0556486A1 (en) 1993-08-25
EP0556486B1 true EP0556486B1 (en) 1996-03-06

Family

ID=25684784

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92122138A Expired - Lifetime EP0556486B1 (en) 1992-02-19 1992-12-30 Double sheet detector

Country Status (7)

Country Link
US (1) US5356130A (en)
EP (1) EP0556486B1 (en)
JP (1) JP2766152B2 (en)
AT (1) ATE134973T1 (en)
DE (1) DE59205602D1 (en)
ES (1) ES2084260T3 (en)
FI (1) FI106627B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0568883B1 (en) * 1992-05-07 1995-08-30 Ferag AG Management system for faults in overlapping formations of printed products
EP0651231B1 (en) * 1993-10-29 1997-06-18 Ferag AG Procedure and device to measure the thickness of printed matter, like papers, magazines and parts thereof
JP3473648B2 (en) * 1995-03-22 2003-12-08 セイコーエプソン株式会社 Printer paper detector
DE19606832C2 (en) * 1996-02-23 1999-04-22 Boewe Systec Ag Device for generating a shingled stream with adjustable shingled stream thickness
DE19802955C1 (en) * 1998-01-27 1999-06-24 Boewe Systec Ag Thickness measuring device for paper web, sheet or foil
US6012312A (en) * 1998-09-14 2000-01-11 Budd Canada, Inc. Double blank detector apparatus and method of operation
WO2003024849A1 (en) * 2001-09-12 2003-03-27 Wincor Nixdorf International Gmbh Method and device for detecting multiple sheet removal when individual sheets are removed from a packet
DE50205040D1 (en) * 2002-09-26 2005-12-29 Leuze Electronic Gmbh & Co Kg Method for operating a sensor for detecting sheets in a sheet-processing machine
DE20305381U1 (en) * 2003-04-03 2003-06-12 Pfankuch Maschinen Gmbh Measuring device for measuring the density of sheets of paper or similar flat products
DE102009002755A1 (en) 2009-04-30 2010-11-04 Koenig & Bauer Aktiengesellschaft Method for ground control in ground processing machine, particularly sheet-fed letterpress rotary, involves continuous scanning of height profile of sheet sequence and continuous processing of detected profile height
EP2923957A1 (en) * 2014-03-26 2015-09-30 UHLMANN PAC-SYSTEME GmbH & Co. KG Device for adapting the control of a system for processing foil webs
CN109911264B (en) * 2017-08-24 2021-01-22 日照方源机械科技有限公司 Material racking machine without energy consumption
WO2022004102A1 (en) * 2020-06-30 2022-01-06 トタニ技研工業株式会社 Defect detecting device and bag-making machine
IT202100031379A1 (en) * 2021-12-15 2023-06-15 Iri S R L EQUIPMENT FOR DETECTING THE THICKNESS OF A MOVING TILE
CN114834854B (en) * 2022-07-04 2022-10-28 佛山市重一远大机电有限公司 Control method for preventing stone production line equipment from being fried in operation

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH382477A (en) * 1961-03-30 1964-09-30 Ferag Ag Counting device
US3176981A (en) * 1963-05-06 1965-04-06 Harris Intertype Corp Sheet detector
DE1204243B (en) * 1964-04-23 1965-11-04 Roland Offsetmaschf Sheet filling device for sheet feeders
DE1238492B (en) * 1966-02-14 1967-04-13 R & M Leuze Device for shutting down a sheet processing machine when double sheets or imperfections occur
DE2226048A1 (en) * 1971-07-21 1973-02-01 Polygraph Leipzig DEVICE FOR SWITCHING OFF A SHEET PROCESSING MACHINE WHEN DOUBLE OR MULTIPLE SHEETS APPEAR
US3826487A (en) * 1972-01-24 1974-07-30 Polygraph Leipzig Control apparatus and method for transporting sheets
JPS5210158B2 (en) * 1972-09-12 1977-03-22
US3948153A (en) * 1974-07-12 1976-04-06 Mildred L. Taylor Count separator for a stream of overlapped articles
JPS54126369A (en) * 1978-03-24 1979-10-01 Ricoh Co Ltd Residual amount detector for copy paper in copier
EP0064523B1 (en) * 1980-11-07 1986-07-23 De La Rue Systems Limited Apparatus for detecting the thickness of sheets
DE3217815C2 (en) * 1982-05-12 1985-07-18 Johannes Menschner Maschinenfabrik Gmbh & Co Kg, 4060 Viersen Scanning device for determining web seams
US4550282A (en) * 1983-03-09 1985-10-29 Institut Cerac S.A. Method and device for controlling a brushless alternating current motor
CH660350A5 (en) * 1983-06-14 1987-04-15 Ferag Ag DEVICE FOR DETERMINING MULTIPLE-USED PLACES IN A CONTINUOUSLY REQUIRED FLOW OF UNIFORM DISTANCES FROM PRINTING PRODUCTS AND THE USE OF THIS DEVICE.
JPH0620973B2 (en) * 1983-10-20 1994-03-23 株式会社リコー Paper detection device for copiers, etc.
DE3613969A1 (en) * 1986-04-24 1987-10-29 Heidelberger Druckmasch Ag MONITORING DEVICE FOR THE SCORED SHEET FEEDER FOR PRINTING MACHINES
JPH0731042B2 (en) * 1986-11-20 1995-04-10 新光電気工業株式会社 Device for detecting thickness change of strip continuum
JPS63143142A (en) * 1986-12-05 1988-06-15 Minolta Camera Co Ltd Document carrying device
JPH0679944B2 (en) * 1987-11-12 1994-10-12 ローレルバンクマシン株式会社 Foreign currency processing device for banknote deposit machine
JP2607556B2 (en) * 1987-11-13 1997-05-07 株式会社日立製作所 Seat abnormality detection device
GB2240093A (en) * 1990-01-19 1991-07-24 De La Rue Syst Sheet sensing apparatus
EP0479717B1 (en) * 1990-10-05 1995-03-22 Ferag AG Device for measuring the thickness of printed products in a shingled formation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 13, no. 373 (M-861)(3721) 18. August 1989 18 August 1989 & JP-A-1127543 (HITACHI LTD) 19 Mai 1989 *

Also Published As

Publication number Publication date
DE59205602D1 (en) 1996-04-11
JP2766152B2 (en) 1998-06-18
JPH0672627A (en) 1994-03-15
FI106627B (en) 2001-03-15
FI930689A (en) 1993-08-20
ATE134973T1 (en) 1996-03-15
FI930689A0 (en) 1993-02-17
US5356130A (en) 1994-10-18
ES2084260T3 (en) 1996-05-01
EP0556486A1 (en) 1993-08-25

Similar Documents

Publication Publication Date Title
EP0556486B1 (en) Double sheet detector
DE3325125C1 (en) Arrangement for marking defects on fast moving material webs
EP0431267B1 (en) Sheet aligning device
EP0348537B1 (en) Apparatus for measuring the thickness of a sheet lying on a surface
DD201435A1 (en) METHOD AND DEVICE FOR DETERMINING FALL DEVIATIONS
EP1542811B1 (en) Device for measuring the bending strength of flat consignments
DE10063528A1 (en) Method and device for determining the accuracy of a fold position
EP0460712A2 (en) Method and device for laying fabric webs having faults
CH681019A5 (en)
EP2147879A2 (en) Method and device for aligning front and side edges of a board-shaped item
DE3336127C2 (en)
EP1000891B1 (en) Device for measuring the thickness of flat products
EP0093865B1 (en) Feeler for detecting web seams
DE19832871C1 (en) Method and device for longitudinally cutting a material web
EP1953685B1 (en) Device for counting printing products in a layer transport flow
EP0479717B1 (en) Device for measuring the thickness of printed products in a shingled formation
EP4237788A1 (en) Method for determining the thickness of a material strip during the feed of the material strip to the machining zone of a machine tool
EP1980516B1 (en) Method and device for determining the position of webs of material
EP0576801A1 (en) Device and method for detecting a sheet
EP1170236B1 (en) Method for aligning a sheet material to a reference edge
EP0897887B1 (en) Method and device for checking the thickness of sheetlike objects conveyed continuously
DE102017209151A1 (en) Apparatus and method for non-destructive testing of a component
EP1699719B1 (en) Method and assembly for identifying overlapped flat mail items
DE10023127B4 (en) Method for operating a scanning device for optical density measurement
DE102004053891B4 (en) Method and device for the capacitive identification of false sheets, in particular of double sheets, on a printing machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI SE

17P Request for examination filed

Effective date: 19930715

17Q First examination report despatched

Effective date: 19950620

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI SE

REF Corresponds to:

Ref document number: 134973

Country of ref document: AT

Date of ref document: 19960315

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHAAD, BALASS & PARTNER AG

REF Corresponds to:

Ref document number: 59205602

Country of ref document: DE

Date of ref document: 19960411

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2084260

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19961118

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19961122

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19961230

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19971231

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19971231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010301

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021128

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031230

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031230

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: FERAG AG

Free format text: FERAG AG#ZUERICHSTRASSE 74#CH-8340 HINWIL (CH) -TRANSFER TO- FERAG AG#PATENTABTEILUNG Z. H. MARKUS FELIX ZUERICHSTRASSE 74#8340 HINWIL (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20051214

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

EUG Se: european patent has lapsed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20071212

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071221

Year of fee payment: 16

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231