EP0554808B1 - Procédé de fabrication des pièces métalliques - Google Patents

Procédé de fabrication des pièces métalliques Download PDF

Info

Publication number
EP0554808B1
EP0554808B1 EP93101454A EP93101454A EP0554808B1 EP 0554808 B1 EP0554808 B1 EP 0554808B1 EP 93101454 A EP93101454 A EP 93101454A EP 93101454 A EP93101454 A EP 93101454A EP 0554808 B1 EP0554808 B1 EP 0554808B1
Authority
EP
European Patent Office
Prior art keywords
grain
process according
solidus
temperature
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93101454A
Other languages
German (de)
English (en)
Other versions
EP0554808A1 (fr
Inventor
Gang Dr.-Ing. Wan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Efu Gesellschaft fur Ur-/umformtechnik Mbh
Original Assignee
Efu Gesellschaft fur Ur-/umformtechnik Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Efu Gesellschaft fur Ur-/umformtechnik Mbh filed Critical Efu Gesellschaft fur Ur-/umformtechnik Mbh
Publication of EP0554808A1 publication Critical patent/EP0554808A1/fr
Application granted granted Critical
Publication of EP0554808B1 publication Critical patent/EP0554808B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/12Making non-ferrous alloys by processing in a semi-solid state, e.g. holding the alloy in the solid-liquid phase

Definitions

  • the invention relates to a process for the production of moldings from metal alloys with the addition of a grain refining agent, for which the dependence of the grain refinement on the amount of the grain refining agent added is shown in a diagram of a diagram known for individual alloys and grain refining agents, in which the grain size is in .mu.m above the Addition of grain refining agent is applied in percent by weight and which has a strongly sloping first branch and an asymptotic second branch running against an end value of the grain size, in which the metal alloys are brought into a molten state and cast into geometrically simple shapes using conventional casting processes and then, by heating to a temperature between the Solidus and Liquidus lines, a thixotropic slip consisting of a solid-liquid mixture of rounded primary particles homogeneously distributed in a melt matrix is formed, which is fed to a molding system after a holding time.
  • the shaping in the semi-solid state is characterized as a method with energy saving potential.
  • a key advantage is the low casting temperature, which means that the rollers, molds etc. of subsequent molding systems are exposed to less thermal stress.
  • the material also solidifies much faster due to the proportionally lower solidification heat and forms fewer cavities, since the slurry is partially solidified and has a smaller volume jump during further solidification.
  • a thixotropic slip as a special raw material that consists of a primary and a low-melting matrix phase.
  • this primary material is heated to a temperature between solidus and liquidus, hereinafter referred to as the processing temperature.
  • the matrix melts first, while the solid phase is dispersed in the form of rounded fine particles in the matrix.
  • This slip is then used for shaping and then further processing System, hereinafter molding system, for example a die casting machine or a forging press, fed and brought into a final shape due to the thixotropic properties of the slip.
  • the primary material is referred to below as the rheo primary material.
  • the aim is to produce primary particles that are as fine and spherical as possible in the slip, because the slip with fine particles not only has a high fluidity but also leads to a better surface quality.
  • the required fineness of the particles is mainly determined by the shaping process, component geometry and quality . There is no quantitative information about this.
  • the grain refinement also depends on the amount of grain refining agent added, which can be represented in a curve of a diagram. It is known for the individual alloys and the usual grain refining agents and is available in diagrams. As already mentioned at the beginning, these have a strongly sloping first branch, in which an increase in the addition of grain refinement thus results in a large reduction in the grain size, and a second branch, which runs asymptotically against an end value of the grain size, in which an increase in the addition of grain refinement therefore practically no reduction the grain size causes more, see e.g. B. Sigworth / Guzowski "Grain Refining of Hypoeutectic Al-Si Alloys" in AFS Transactions 85-172, pages 907-912. The addition of grain refining agent in this area of the second, asymptotic branch is therefore no longer useful for reducing the grain size.
  • Group 1 procedures are characterized by forced convection during solidification.
  • the usually dendritic crystallizing primary phases are wholly or partly broken into rounded solid particles which are in the melt. After it has solidified, a rheo pre-material is produced which is suitable for processing in the semi-solid state.
  • SIMA Strain Induced Melt Activated
  • the conventionally cast metal alloys are cold-formed, for example by stretching, rolling or upsetting.
  • the cold-formed primary material is transferred to the slip during the subsequent heating at a temperature between solidus and liquidus before further processing.
  • additional hot working is required before cold working, for example by extrusion.
  • the particle size that can be achieved is 30 ⁇ m, [EP 0090253].
  • Group 3 processes make use of a special heat treatment.
  • a conventionally cast alloy is heated to a temperature between solidus and liquidus, isothermally kept at the temperature for a few minutes to a few hours and then sent for further processing.
  • Achieving rounded solid particles for Al alloys takes several hours.
  • the particle size is between 100 and 400 ⁇ m.
  • Electromagnetic stirring for the production of the rheo pre-material has found industrial use, but the low energy efficiency can be regarded as a serious disadvantage. Part of the electromagnetic energy introduced is lost as electricity heat loss and leads to undesired heating. The power loss increases with increasing frequency, decreasing number of poles and decreasing mold conductivity. In addition, the structure is not homogeneous over the entire volume.
  • the heat treatment process requires such long-term annealing at a temperature between solidus and liquidus that technical problems arise and the economic viability of the process is questioned.
  • the strong oxidation of the slip during heating is very difficult or only with great technical effort, e.g. by heating in a vacuum chamber under vacuum or protective gas.
  • the resulting structure is so coarse that it can have a negative effect both on the fluidity during further processing, in particular when filling the mold at thin-walled locations on the component, and on the mechanical properties.
  • the object of the present invention is to eliminate the disadvantages of the previous methods in a method of the type mentioned at the outset and to provide an economical method for the production of rheovor material with a fine-grained and homogeneous structure on the basis of a sophisticated technology.
  • This object is achieved according to the invention in a method of the type mentioned at the outset in that an increased amount of grain refining agent is added to the metal alloys in the molten state compared to the known grain refinement in the region of the steeply falling first branch, which is selected as a value on the second branch of the curve which is in a range in which the grain refinement effect ⁇ D2 / ⁇ C2 (change in grain size / change in the addition quantity) is less than 1/20 of the amount of the mean slope ⁇ D1 / ⁇ C1 in the first branch of the curve, that the metal alloys then become one any temperature below the Solidus line are cooled and then heated to a holding temperature between the Solidus and Liquidus lines and held for a holding time of less than 15 minutes.
  • the preliminary material formed with an increased amount of grain refining agents differs from the conventional rheo pre-materials in that it shows a dendritic structure before further processing. Only when they are reheated to a temperature between the solidus and liquidus lines do the dendrites turn into isolated rounded spherical particles. The time required to round off the particles is a few seconds to minutes, depending on the alloys and grain fineness.
  • the slip formed from the rheoforming material according to the invention can then be fed directly to a shaping plant and brought into a final shape.
  • the process according to the invention can be carried out in such a way that the increased amount of grain refining agent lies in a range in which the grain refining effect ⁇ D2 / ⁇ C2 (change in the grain size / change in the addition quantity) is less than 1/50 of the amount of the mean gradient ⁇ D1 / ⁇ C1 in the first Branch of the curve is.
  • the process according to the invention can be carried out for the production of molded parts made of copper alloys in such a way that the elements which form a peritectic with aluminum are used alone or in combination as the grain refining agent.
  • the process according to the invention can be carried out in such a way that Ti, B, Nb are used alone or in combination as grain refinement agents.
  • the inventive method can be carried out so that Ti is used together with C.
  • the process according to the invention can be carried out by using Zr alone or in combination with B as the grain refining agent.
  • the process according to the invention can be carried out in such a way that in the case of an aluminum alloy with 0 to 9% by weight Si, 0 to 5% by weight Cu, 0 to 5% by weight Zn and 0 to 3% by weight Mg as grain refining agents Ti and B with a total proportion of 0.05 to 0.6% by weight can be used.
  • the process according to the invention can be carried out in such a way that an aluminum alloy AlSi7Mg is melted and degassed and that a Ti content of 0,2 0.25% is set in the melt, the aluminum alloy is reheated and kept between solidus and liquidus line for 5 minutes.
  • the process according to the invention can be carried out in such a way that an aluminum wrought alloy AlMg1SiCu is melted and degassed and that a Ti content of 0,0 0.025% is set in the melt, the aluminum alloy is reheated and held between solidus and liquidus line for 5 minutes.
  • the process according to the invention can be carried out such that Zr and / or B and P as deoxidizing agents as grain refining agents be used.
  • the process according to the invention can be carried out by additionally adding Mg for desulfurization.
  • the process according to the invention can be carried out in such a way that in the case of a copper alloy with 0 to 30% by weight of Zn and 0 to 20% by weight of Sn as grain refining agent Zr and / or B with a total proportion of 0.05 to 1.0% by weight and P can be used.
  • the process according to the invention can be carried out in such a way that a copper alloy CuSn12 is melted and deoxidized, then adjusted to a Zr content of ⁇ 0.05% and then kept at a temperature between the Liqidus and Solidus lines for one minute.
  • the process according to the invention can be carried out in such a way that the temperature of the alloy is kept isothermal between the solidus and liquidus lines.
  • the method according to the invention can be carried out in such a way that the temperature of the alloy is stepped between the solidus and liquidus lines.
  • the process according to the invention can be carried out in such a way that the metal alloys provided with grain refining agent in the molten state are cast in precisely metered amounts in a metal mold cooled by a cooling medium in a quantity required for the shaping.
  • the method according to the invention can be carried out in such a way that the metal alloys between the solidus and liquidus lines are heated to a temperature above the holding temperature, the total duration within the solidus-liquidus range being 1 to 15 minutes.
  • the selection of the quantity of grain refining agent added uses a diagram known for the respective alloy and the associated grain refining agent, as is typically shown in FIG. 2.
  • the grain is refined in the area of the steeply falling branch of the curve in this diagram.
  • increasing the amount of the grain refining agent has a great effect on reducing the grain size.
  • the curve has a second branch, which approaches an end value of the grain size asymptotically.
  • the increase in The addition of the grain refining agent does not result in a noticeable reduction in the grain size.
  • the amounts of grain refining agent used according to the invention lie in the region of this second branch of the curve.
  • the cast cylinders were then heated in an induction system to a temperature of approximately 578 ° C. and held at this temperature for different lengths of time and then quenched. During the holding it was observed that at a Ti content below 0.18% the melt emerged from the cylinder and collected on the cylinder bottom. The cylinder was difficult to pierce with a 10 mm diameter graphite rod. Cracks were also found. In contrast, no melt escaped above 0.19% Ti and the cylinder is easily pierced with the graphite rod.
  • Figure 3b shows the structure with a Ti content of 0.01% after a holding time of 14 minutes.
  • Figure 3d shows the structure with a Ti content of 0.19% and a holding time of 10 minutes.
  • Isolated fine but not rounded primary particles were found between 0.19 and 0.25% Ti, the form factor decreasing with increasing Ti content. Isolated rounded primary particles were obtained within a holding time of 5 minutes above 0.25% Ti (Fig. 3f). The structure was homogeneous over the entire volume. The mean diameter of the rounded particles was 110 ⁇ m after 5 minutes of isothermal annealing. Extending the hold time resulted in an increase in the mean diameter and a decrease in the shape factor of the rounded particles. Refining with Sr only affected the eutectic and not the formation of the primary phase.
  • Figure 4 shows the structure according to this example, whereby in Figure 4a with 0.26%, in Figure 4b with 0.34% and in Figure 4c with 0.50% titanium.
  • the average diameter of the rounded particles was 95 ⁇ m.
  • Figure 5 shows the structure according to this example, with images arranged next to each other showing the structure with the same Ti content, but on the left before reheating and on the right after reheating.
  • the Ti content was 0.01% according to Figures 5a and 5b, 0.15% according to Figures 5c and 5d and 0.36% according to Figures 5e and 5f.
  • the samples were quenched at 572 ° C.
  • the average diameter of the rounded particles was 100 ⁇ m.
  • Example 2 An aluminum wrought alloy AlZn6Mg2Cu with 6% Zn, 2% Mg and 1% Cu was melted as in Example 1 and grain-refined both in an oven and in a trough by the addition of pre-alloy wire made of AlTi5B.
  • the melt was cast in a vertical continuous caster into strands with a diameter of 100 mm.
  • the strands were then separated into cylinders with a length of 100 mm, which were reheated in an induction system as in Examples 1 and 2. With a holding time of 5 minutes, a minimum content of approx. 0.06% Ti was determined in order to achieve the desired structure.
  • Adjacent images show the structure with the same Ti content, left before reheating and right after reheating.
  • the Ti content was 0.04% according to Fig. 6a, b and 0.09% according to Fig. 6c, d.
  • Reheating was carried out at 610 ° C for 5 minutes. An average diameter of the rounded particles of 50 ⁇ m was achieved.
  • Example 4 The process according to Example 4 was carried out using an aluminum wrought alloy AlMg1SiCu with 0.6-1.2% Mg, 0.7-1.5% Si, 5.0% Cu, 0.4-1.0% Mn and 0.3 - 0.5% Fe carried out. A result similar to Example 4 was achieved. With a given holding time of 5 minutes, a minimum content of 0.025% Ti was determined to achieve the desired structure.
  • the average diameter of the rounded particles was approx. 70 ⁇ m after reheating.
  • a copper alloy CuSn12 was melted at 1020 ° C. in a conventional manner and deoxidized with CuP7 master alloy. The amount added was 1 to 2 kg / t based on the amount of melt.
  • the structure after casting with different Zr content was predominantly dendritic, as shown in Fig. 7a, c, e.
  • the cast cylinders were then heated to a temperature of approximately 900 ° C. in an induction system, kept at the temperature isothermally and quenched at different times. Due to the rapid formation of a thick oxide layer during reheating a short stopping time was necessary in the atmosphere. During the heating it was observed that the melt emerged from the cylinder at a Zr content below 0.03% and collected on the cylinder bottom. The cylinder could not be pierced with a 10 mm diameter graphite rod without forming cracks. In contrast, no melt emerged above 0.04% Zr and the cylinder could be pierced with the graphite rod.
  • the primary phase with a Zr content below 0.04% consisted mainly of long dendrites.
  • Isolated rounded primary particles were obtained within a holding time of 1 minute above 0.05% Zr, as shown in Figure 7f.
  • the structure was homogeneous over the entire volume.
  • the minimum content was 0.05% Zr with a holding time of 1 minute.
  • the average diameter of the rounded particles was 70 ⁇ m.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Forging (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Claims (19)

  1. Procédé de fabrication de pièces de forme en alliages métalliques avec addition d'un agent d'affinement des grains, pour lesquelles la dépendance de l'affinement des grains, en fonction de la quantité de l'agent d'affinement des grains ajouté, se représente dans une courbe d'un diagramme connue pour les alliages individuels et l'agent d'affinement des grains, dans lequel diagramme la grandeur de grain en microns est représenté en pour cent en poids par l'intermédiaire de l'addition en agent d'affinement des grains et qui présente une première branche fortement décroissante et une deuxième branche se prolongeant de manière asymptotique en direction d'une valeur finale de la grandeur de grain,
    lors duquel procédé on procède à la fusion des alliages métalliques et à leur coulée pour former, conformément à des procédés de coulée classiques, des formes géométriquement simples, et lors duquel on forme alors, par chauffage à une température comprise entre les lignes de solidus et de liquidus, un coulis de barbotine thixotrope, se composant de particules primaires arrondies réparties de manière homogène dans une matrice de masse fondue, qui est introduit après un temps de maintien dans une installation de formage,
    caractérisé en ce que,
    l'on ajoute aux alliages métalliques à l'état de masse fondue une quantité d'agent d'affinement des grains plus élevée par rapport à l'affinement des grains connu dans le domaine de la première branche fortement décroissante, qui est choisie comme valeur sur la deuxième branche de la courbe, qui se situe dans un domaine dans lequel l'action d'affinement des grains δD2/δC2 (variation de la grandeur de grain/variation de la quantité d'addition) est inférieure à 1/20 du montant de la pente moyenne δD1/δC1 dans la première branche de la courbe,
    en ce que l'on refroidit alors les alliages métalliques à une température quelconque endessous de la ligne de solidus et l'on réchauffe subséquemment à un température de maintien comprise entre les lignes de solidus et de liquidus et l'on y maintient ces derniers pendant un temps de maintien de moins de 15 minutes.
  2. Procédé selon la revendication 1, caractérisé en ce que la quantité plus élevée d'agent d'affinement des grains se situe dans une domaine dans lequel l'action d'affinement des grains δD2/δC2 (variation de la grandeur de grain/variation de la quantité d'addition) est inférieure à 1/50 du montant de la pente moyenne δD1/δC1 dans la première branche de la courbe.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la quantité à ajouter d'agent d'affinement des grains est précisée en ce que l'on ajoute à des échantillons des alliages métalliques à l'état de masse fondue des quantités différentes d'agent d'affinement des grains, que l'on refroidit alors à une température quelconque endessous de la ligne de solidus, et que l'on chauffe à nouveau à une température de maintien comprise entre les lignes de solidus et de liquidus, que l'on maintient ces derniers à cette température pendant un temps de maintien que l'on peut choisir, de moins de 15 minutes, que l'on procède ensuite à une trempe et en ce que l'on examine de manière métallographique la structure cristalline ayant subi la trempe et que l'on détermine la teneur minimale en agent d'affinement des grains, à partir de laquelle la phase primaire se compose en majeure partie de particules arrondies, isolées les unes des autres, ayant un facteur de forme FF = ≥ 0,5 pour une grandeur de grain moyenne ≤ 150 microns.
  4. Procédé, selon l'une quelconque des revendications précédentes, de fabrication de pièces de forme en alliages d'aluminium, caractérisé en ce que l'on utilise, à chaque fois, seul ou en combinaison, en tant qu'agent d'affinement des grains, les éléments formant un péritectique avec l'aluminium.
  5. Procédé selon la revendication 4, caractérisé en ce que l'on utilise, en tant qu'agent d'affinement des grains, seul ou en combinaison, Ti, B, Nb.
  6. Procédé selon la revendication 4 ou 5, caractérisé en ce que l'on utilise Ti conjointement à C.
  7. Procédé selon la revendication 4, caractérisé en ce que l'on utilise en tant qu'agent d'affinement des grains Zr, seul, ou en combinaison avec B.
  8. Procédé selon la revendication 4, caractérisé en ce que l'on utilise, pour un alliage d'aluminium ayant de 0 à 9 % en poids de Si, de 0 à 5 % en poids de Cu, de 0 à 5 % en poids de Zn et de 0 à 3 % en poids de Mg, en tant qu'agent d'affinement des grains, Ti et B avec une proportion totale de 0,05 à 0,6 % en poids.
  9. Procédé selon la revendication 8, caractérisé en ce que l'on fait fondre et l'on dégaze un alliage d'aluminium AlSi7Mg, et en ce que l'on ajuste dans la masse fondue une teneur en Ti de ≥ 0,25 % en poids, l'on chauffe à nouveau l'alliage d'aluminium et l'on maintient ce dernier pendant plus de 5 minutes entre les lignes de solidus et de liquidus.
  10. Procédé selon la revendication 8, caractérisé en ce que l'on fait fondre et l'on dégaze un alliage de corroyage d'aluminium AlMg1SiCu, et en ce que l'on ajuste dans la masse fondue une teneur en Ti de ≥ 0,025 % en poids, l'on réchauffe l'alliage d'aluminium et l'on maintient ce dernier pendant plus de 5 minutes entre les lignes de solidus et de liquidus.
  11. Procédé selon la revendication 8, caractérisé en ce que l'on fait fondre et l'on dégaze un alliage d'aluminium AlMg1SiCu, et en ce que l'on ajuste dans la masse fondue une teneur en Ti de ≥ 0,07 % en poids, l'on chauffe à nouveau l'alliage d'aluminium et l'on maintient ce dernier pendant plus de 5 minutes entre les lignes de solidus et de liquidus.
  12. Procédé selon la revendication 1 à 3, de fabrication de pièces de forme en alliages de cuivre, caractérisé en ce que l'on utilise Zr et/ou B, en tant qu'agent d'affinement des grains, et P en tant qu'agent de désoxydation.
  13. Procédé selon la revendication 12, caractérisé en ce que l'on ajoute en plus Mg en vue de la désulfuration.
  14. Procédé, selon la revendication 12 ou 13, de fabrication de pièces de forme en alliages de cuivre, caractérisé en ce que l'on utilise pour un alliage de cuivre ayant de 0 à 30 % en poids de Zn et de 0 à 20 % en poids de Sn, en tant qu'agent d'affinement des grains, Zr et/ou B, avec une proportion totale de 0,05 à 1,0 % en poids, et P.
  15. Procédé selon la revendication 14, caractérisé en ce que l'on fait fondre et désoxyder un alliage de cuivre CuSn12, que l'on ajuste alors à une teneur en Zr de ≥ 0,05 % et que l,on maintient ensuite pendant plus d'une minute à une température comprisé entre les lignes de liquidus et de solidus.
  16. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l,on maintient la température de l'alliage de manière isotherme entre la ligne de solidus et la ligne de liquidus.
  17. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on conduit la température de l'alliage par incrément entre les lignes de solidus et de liquidus.
  18. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on procède, avec un dosage exact, à la coulée, dans une quantité requise pour le formage, dans une coquille métallique refroidie par un milieu réfrigérant, des alliages métalliques, à l'état de masse fondue, pourvus d'agent d'affinement des grains.
  19. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on chauffe les alliages métalliques entre les lignes de solidus et de liquidus à une température au-dessus de la température de maintien, la durée totale au sein du domaine solidus-liquidus étant de 1 à 15 minutes.
EP93101454A 1992-01-30 1993-01-29 Procédé de fabrication des pièces métalliques Expired - Lifetime EP0554808B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4202562 1992-01-30
DE4202562 1992-01-30

Publications (2)

Publication Number Publication Date
EP0554808A1 EP0554808A1 (fr) 1993-08-11
EP0554808B1 true EP0554808B1 (fr) 1997-05-02

Family

ID=6450567

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93101454A Expired - Lifetime EP0554808B1 (fr) 1992-01-30 1993-01-29 Procédé de fabrication des pièces métalliques

Country Status (3)

Country Link
EP (1) EP0554808B1 (fr)
AT (1) ATE152378T1 (fr)
DE (1) DE59306300D1 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1278069B1 (it) * 1994-05-17 1997-11-17 Honda Motor Co Ltd Materiale in lega per tissofusione, procedimento per la preparazione del materiale in lega semi-fuso per tissofusione e procedimento di
DE4420533A1 (de) * 1994-06-14 1995-12-21 Salzburger Aluminium Ag Verfahren zur Herstellung von Formgußteilen aus Aluminiumlegierungen
NO950843L (no) * 1994-09-09 1996-03-11 Ube Industries Fremgangsmåte for behandling av metall i halvfast tilstand og fremgangsmåte for stöping av metallbarrer til bruk i denne fremgangsmåte
US5968292A (en) * 1995-04-14 1999-10-19 Northwest Aluminum Casting thermal transforming and semi-solid forming aluminum alloys
US5571346A (en) * 1995-04-14 1996-11-05 Northwest Aluminum Company Casting, thermal transforming and semi-solid forming aluminum alloys
US5911843A (en) * 1995-04-14 1999-06-15 Northwest Aluminum Company Casting, thermal transforming and semi-solid forming aluminum alloys
IT1278230B1 (it) * 1995-05-31 1997-11-17 Reynolds Wheels Spa Metodo per portare masselli in lega di alluminio quali lingotti, billette e simili allo stato semisolido-semiliquido atto a consentire
FR2788788B1 (fr) * 1999-01-21 2002-02-15 Pechiney Aluminium Produit en alliage aluminium-silicium hypereutectique pour mise en forme a l'etat semi-solide
EP1230409B1 (fr) * 1999-07-28 2004-01-21 RUAG Components Procede de production d'une matiere premiere constituee d'un alliage metallique
US6901991B2 (en) 2002-01-31 2005-06-07 Tht Presses Inc. Semi-solid molding apparatus and method
US20050056394A1 (en) 2002-01-31 2005-03-17 Tht Presses Inc. Semi-solid molding method and apparatus
US20030141033A1 (en) 2002-01-31 2003-07-31 Tht Presses Inc. Semi-solid molding method
FR2839779B1 (fr) 2002-05-16 2004-07-30 Cit Alcatel Procede de prevention des effets des protons d'origine solaire permettant une reconfiguration d'un senseur d'etoile et systeme de controle d'attitude mettant en oeuvre le procede
AU2003303575A1 (en) * 2003-01-03 2004-07-29 Singapore Institute Of Manufacturing Technology Transformable and recyclable semi-solid metal processing
US7025113B2 (en) 2003-05-01 2006-04-11 Spx Corporation Semi-solid casting process of aluminum alloys with a grain refiner
US6880613B2 (en) * 2003-05-01 2005-04-19 Spx Corporation Semi-solid metal casting process of hypoeutectic aluminum alloys
DE102005022506B4 (de) * 2005-05-11 2007-04-12 Universität Stuttgart Verfahren zum Schmieden eines Bauteils aus einer Titanlegierung

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4415374A (en) * 1982-03-30 1983-11-15 International Telephone And Telegraph Corporation Fine grained metal composition
GB2156855B (en) * 1984-04-06 1988-04-07 Nat Res Dev Alloying process

Also Published As

Publication number Publication date
DE59306300D1 (de) 1997-06-05
ATE152378T1 (de) 1997-05-15
EP0554808A1 (fr) 1993-08-11

Similar Documents

Publication Publication Date Title
EP0554808B1 (fr) Procédé de fabrication des pièces métalliques
EP0224016B1 (fr) Alliage d'aluminium forgeable du type Al-Cu-Mg à haute résistance dans la gamme des températures entre 0 et 250o C
EP1840235B1 (fr) Alliage de magnésium et son procédé de fabrication
DE2423597C3 (de) Verfahren zur Herstellung dispersionsverfestigter Aluminlegierungsbleche und -folien mit gleichmäßig verteilten feinen intermetallischen Teilchen
DE112005000511B4 (de) Magnesiumknetlegierung mit verbesserter Extrudierbarkeit und Formbarkeit
DE2813986C2 (fr)
DE2514386A1 (de) Verfahren zur verbesserung der umformbarkeit von leichtmetall-legierungen
DE4436481A1 (de) Aluminiumlegierung zum Schmieden, Verfahren zum Gießen derselben und Verfahren zur Hitzebehandlung derselben
DE69737048T2 (de) Verfahren zur Herstellung eines halbfesten Thixogiessmaterials
DE102019130108A1 (de) Verfahren zur Herstellung eines Aluminiumgussteils und hierdurch hergestelltes Aluminiumgussteil
EP3638820A1 (fr) Alliage monotectique pour palier lisse à base d'aluminium et son procédé de fabrication ainsi que palier lisse ainsi fabriqué
DE102009048450A1 (de) Hochduktile und hochfeste Magnesiumlegierungen
DE2647391A1 (de) Herstellung von strangpressprodukten aus aluminiumlegierungen
DE19538243C2 (de) Verfahren zur Herstellung von semi-geschmolzenem Thixogieß-Gießmaterial
DE2242235C3 (de) Superplastische Aluminiumlegierung
WO1995005490A1 (fr) Agent de traitement d'un materiau en fusion, sa production et son utilisation
DE2339747B2 (de) Verfahren zur herstellung einer fluessig-fest-legierungsphase ausserhalb der giessform fuer giessprozesse
EP1047803B1 (fr) Alliage d'aluminium pour palier lisse
EP1012353B1 (fr) Alliage et procede de production d'objets a partir de cet alliage
DE10110769C1 (de) Verfahren zur Herstellung eines thixotropen Vormaterials für die Herstellung von Kolben
DE102020106125A1 (de) Aluminiumlegierungszusammensetzung für ein vereinfachtes halbfestes giessverfahren und verfahren zum halbfesten giessen
DE1483265B2 (de) Verwendung einer magnesiumlegierung
DE2300073A1 (de) Verfahren zur herstellung von schleifkorn
DE2239071A1 (de) Aluminiumgrundlegierung und verfahren zu ihrer herstellung
EP0692328B1 (fr) Procédé pour la fabrication de pièces moulées, en alliage d'aluminium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WAN, GANG, DR.-ING.

17P Request for examination filed

Effective date: 19930915

17Q First examination report despatched

Effective date: 19950706

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 152378

Country of ref document: AT

Date of ref document: 19970515

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59306300

Country of ref document: DE

Date of ref document: 19970605

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970625

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990115

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990118

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19990121

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990125

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990331

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000129

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050129