EP0549439B1 - Method and apparatus for optimising the transport of multiphase flows by pumping - Google Patents

Method and apparatus for optimising the transport of multiphase flows by pumping Download PDF

Info

Publication number
EP0549439B1
EP0549439B1 EP92403475A EP92403475A EP0549439B1 EP 0549439 B1 EP0549439 B1 EP 0549439B1 EP 92403475 A EP92403475 A EP 92403475A EP 92403475 A EP92403475 A EP 92403475A EP 0549439 B1 EP0549439 B1 EP 0549439B1
Authority
EP
European Patent Office
Prior art keywords
pump
value
effluents
glra
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92403475A
Other languages
German (de)
French (fr)
Other versions
EP0549439A1 (en
Inventor
Emile Levallois
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9116230A external-priority patent/FR2685737A1/en
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0549439A1 publication Critical patent/EP0549439A1/en
Application granted granted Critical
Publication of EP0549439B1 publication Critical patent/EP0549439B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D31/00Pumping liquids and elastic fluids at the same time
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/20Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by changing the driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0066Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine

Definitions

  • the present invention relates to a method and a device for optimizing the transfer by pumping of effluents consisting of at least one gaseous phase and at least one liquid phase, in a transfer pipe between a source of effluents and a place of destination in adapting the flow rate of the pump used to the fluctuating conditions upstream and downstream of it.
  • fluids or effluents can come from various sources, in particular from wells drilled such as oil wells.
  • the essential function of the pump is to apply to the fluids or effluents admitted at its inlet with a certain intake pressure or suction pressure, a compression or increase in pressure sufficient to compensate for the pressure losses that they may suffer downstream. during their transfer.
  • upstream and downstream refer to the pump by considering the direction of flow of the effluents, and the term flow generally designates the volumetric flow.
  • the method according to the invention aims to optimize the transfer of effluents in a transfer pipe by means of a multiphase pump capable of pumping both liquid and gaseous phases by adapting its flow to fluctuating conditions upstream, such as the variation in the flow rate of the effluent source and the variation in the value of the volumetric ratio of the gas phase to the liquid phase, hereinafter abbreviated as GLR (Gaz Liquid Ratio) which is representative of the variation in the composition of the fluid during its transfer, and downstream such as the pressure drops appearing in the pipe.
  • GLR Gaz Liquid Ratio
  • the method can be applied to the transport of a multiphase fluid from a well to a place of destination such as a treatment terminal or an underwater or land treatment platform.
  • the transport of a multiphase fluid is dependent on different parameters such as the variation of the source flow of effluents, or / and the variation in flow rate of the multiphase pump linked to the pressure losses downstream of the pump and to the variation in the volumetric ratio at the pump suction and at the suction pressure (hereinafter designated respectively by GLRa and Pa).
  • GLRa and Pa the variation in flow rate of the multiphase pump linked to the pressure losses downstream of the pump and to the variation in the volumetric ratio at the pump suction and at the suction pressure
  • the devices and methods currently employed for transporting multiphase type fluids by pipeline combine, in general, a pump adapted to discharge a multiphase fluid consisting of at least one liquid phase and one gaseous phase whose volumetric ratio varies within relatively narrow limits. . It is therefore necessary to use in combination a device which makes it possible to homogenize the fluid and thus to obtain a fluid whose volumetric ratio to suction GLRa has a value compatible with the characteristics of the latter, which requires bulky equipment and expensive investments.
  • the pumping devices known from the prior art are not designed to take into account the flow fluctuations of the wells as well as the pressure losses suffered during transfers. Also, the well flow is closely dependent on the flow rate of pumps used. The production capacities of wells can be significantly reduced.
  • US Pat. No. 3,568,771 describes a method for regulating the speed of a pump as a function of a measured parameter.
  • This parameter is, for example, the density of the oil, the pressure taken between two points, or the quantity of oil after separation.
  • the method described in this document does not allow the speed to be calculated by taking into account the variation of several parameters.
  • the patent FR-A-2685737 describes a method and a device which make it possible to obtain at the output of the pump a flow rate which varies like the flow rate of the well in a wide range of variations, by regulating the speed of rotation.
  • the rotation speed is determined using parameters that fluctuate upstream and downstream. These parameters may however be incompatible with the operating range of the pump; the transport of effluents to the terminal sometimes requires a pump outlet pressure which is impossible to achieve if it is run only at the speed which can be calculated from the actual value of the GLR.
  • the operating range of the pump is defined by the range of parameter variations for which the pump operates correctly.
  • the method and the device according to the invention make it possible to obtain a flow rate at the outlet of the pump which follows the variation in the flow rate of the well by controlling the values of the parameters so that they correspond to the operating range of the pump, so that the rotation speed determined from these parameters is compatible with the characteristics of the pump and the conditions necessary for transfer.
  • the method according to the invention makes it possible to optimize the transfer of effluents consisting of at least one liquid phase and one gaseous phase in a transfer pipe connecting a source of effluents whose flow has variations, to a place of destination, for variations in the volumetric ratio of the gaseous phase to the liquid phase, as well as variations in pressure drop during fluid transfer, a multiphase pump whose speed of rotation is regulated being interposed between the source of effluents and the place of destination, the pump applying ⁇ P compression to the effluents.
  • the method is characterized in that the speed of rotation is regulated so as to adapt the flow rate of said multiphase pump to at least one of said variations and in that the speed of rotation of the pump is determined by a combination of values of four parameters which are the inlet pressure at the input of the multiphase pump, the volumetric ratio at the inlet of the pump (GLRa), the compression applied by the pump and the total flow rate of the effluents produced by said source.
  • the speed of rotation is regulated so as to adapt the flow rate of said multiphase pump to at least one of said variations and in that the speed of rotation of the pump is determined by a combination of values of four parameters which are the inlet pressure at the input of the multiphase pump, the volumetric ratio at the inlet of the pump (GLRa), the compression applied by the pump and the total flow rate of the effluents produced by said source.
  • any parameter whose value is outside said range is assigned a limit value making it possible to determine an operating speed compatible with the range of possible variation of the speed of said range. pump.
  • the volumetric ratio at pump suction (GLRa) can be reduced, if necessary, to a value belonging to a range of variation of the parameters for which the pump has a correct functioning by adding a certain quantity of liquid, the quantity of liquid to be added to the effluents being determined as a function of the maximum value of the volumetric gas-liquid ratio of the effluents which can be treated by the pump.
  • the ratio (GLRa) can be determined by interposing between a source of effluents and the multiphase pump, a reservoir crossed by a tube pierced with a plurality of orifices, by measuring the height of the pierced tube immersed in the gas and taking account of the distribution of the orifices along this tube.
  • Compression can be determined by an iterative process by adding to a previously determined value the successive variations of the discharge pressure.
  • the value of the effluent flow can be determined by an iterative process.
  • the method can be applied to the transfer of a multiphase petroleum effluent between a source of effluents, such as a well, and a place of reception of said effluent.
  • the invention also relates to a device for implementing the method comprising in combination means for determining said volumetric ratio (GLRa), means for measuring the intake pressure, means for measuring the discharge pressure, and a programmed processing set allowing to memorize these values and values of the parameters determined at the start and a programmed processing set making it possible to calculate the new value of the speed of rotation of the pump so as to adapt the flow rate of the pump to variations at least one of the following three parameters: the flow rate of the effluents, the value of the volumetric ratio, or the pressure losses downstream of the pump, the speed of rotation being determined by a combination of values of four parameters which are the pressure intake at the multiphase pump inlet, the volumetric ratio at the suction inlet of the pump, the compression applied by the p ompe and the total flow of effluents produced by the source.
  • GLRa volumetric ratio
  • the means for determining said volumetric ratio may be constituted by a tank equipped with a perforated tube, and means for measuring the temperature prevailing in said tank.
  • the programmed processing unit may include means for memorizing all of said limit values.
  • It may include at least one auxiliary pipe for injecting a liquid phase as well as auxiliary means necessary for controlling the amount of liquid added.
  • the method according to the invention is implemented, for example, by a first embodiment described in FIG. 1.
  • the method according to the invention makes it possible to optimize the transfer of effluents comprising at least one liquid phase and at least one gaseous phase originating from a source such as a well head S, for example, up to a receiving installation.
  • the effluents are conveyed from the source S by a pipe 1, to the suction inlet of a multiphase pump 2.
  • a device 3 suitable for determining the value of the volumetric ratio at intake GLRa which is likely to vary.
  • Two pressure sensors 4, 5 are respectively arranged at the outlet and at the inlet of the pump 2 to measure the outlet or discharge pressure Pref and the inlet or suction pressure Pa.
  • the effluents from the pump 2 are conveyed by a CT pipeline to the installation I which is, for example, a platform on land or at sea, possibly submerged, and provided with the usual equipment for treating multiphase effluents.
  • the operation of the pump 2 is regulated by means of a computer C from the data received from the device 3 and from the sensors 4, 5.
  • This computer is, for example, a microcomputer equipped with a card. acquisition of a known and programmed type to conduct the steps of the method which will be defined in the following description.
  • Step 1
  • the value of the GLRa ratio is first determined using a device 3 for measuring the volumetric ratio of a known type placed in the vicinity of the intake of the pump such as that described in patent FR-2,647,549 .
  • the device described in FIG. 2 can also be used for this purpose according to specific methods which will be defined below.
  • Step 2
  • the value of the compression ⁇ P communicated by the pump to the multiphase fluid is then determined by measuring using the pressure sensor 4 the value of the discharge pressure P'ref of the pump and the value of the pressure at suction. or inlet pressure Pa using the sensor 5 placed on line 1 at the inlet of the pump, then making the difference between the two values.
  • One can also proceed by iterations by adding to the value of the compression previously determined ⁇ P p , the successive variations of the discharge pressure (P'ref - Pref) obtained by comparison of the successive measurements of pressure sensor 4 at the outlet of the pump. 2: ⁇ P ⁇ P p + (P'ref - Pref)
  • Step 3
  • the value of the total flow Qt of the effluents from the source S is determined by an iterative process by adding to a previously determined value Q, a variation of the total flow Qp obtained by applying Mariotte's law to the volume variation gas and pressure in a space considered between the source of effluents S and the pump 2, in our case, line 1.
  • the initial characteristic parameters measured or known such as the value of the volumetric ratio GLR of the well measured at the start of its operation, and the value of the volume Vo occupied by the gas in the space considered.
  • Mariotte's law expresses the fact that, in the volume Vo considered, in this case the pipe 1, the increase in flow during the time dt multiplied by the pressure P prevailing in the space Vo is equal to the volume Vo multiplied by the pressure increase dP during the time dt.
  • the pressure is taken as being equal to the value of the suction pressure, in the same way the pressure increase relates to the pressure increase that there is at the inlet of the pump.
  • the variation in effluent flow in line 1 is equal to the difference in variations in total flow from well Qp and total flow Qa of the pump.
  • the variation Qp in total well flow comes from the variation of gas flow and the variation of liquid flow from the effluent source.
  • the respective terms of said variations in gas or liquid flow rates are obtained, as is well known to specialists, by multiplying the variation in total flow rate Qp respectively by the factors GLR / (1 + GLR) and 1 / (1 + GLR).
  • the variation in total flow of the pump Qa can be obtained from the curve shown in Figure 4.
  • the value of the total flow rate Qa of the pump has been plotted as a function of the suction or intake pressure and as a function of the GLRa for a given speed of rotation and overpressure value ⁇ P.
  • the curve was determined by second degree models with a linear interpolation between two curves of the same sub-network, for example constant ⁇ P and variable GLRa.
  • the term which must be taken into account is the variation in gas flow rate of the pump which is obtained from the variation in total flow rate (Qa2 - Qa1) multiplied by the factor representative of the quantity of gas, i.e. say, GLRa / (1 + GLRa).
  • the new value of the speed of rotation which the pump must have in order to adapt is deduced by means of a programmed computer C the flow rate of the multiphase pump to at least one of said variations.
  • a program which implements a quadratic method making it possible to calculate the speed of the pump from the combination of the four parameters.
  • the method described above is particularly well suited when the values of the parameters, from which the speed of the pump is determined, vary within an area for which the pump has correct operation.
  • the program also offers the possibility of carrying out a check of the measured values for the four parameters and of assigning, if necessary, to values located outside the range a limit value making it possible to determine an operating speed of the pump compatible with the data. pump techniques.
  • the domain for which the pump operates correctly is defined by the set of values that can be taken at the same time by the parameters GLRa, Qt, ⁇ P, Pa and N.
  • the fifth parameter in this case the speed of rotation, is determined using the previously defined interpolation program.
  • the microcomputer C delivers a signal which acts on the speed of rotation of the pump drive motor so as to correct it if necessary.
  • the motor is for example an electric motor of a known type, the speed of which depends on the frequency of the electric signal applied to it.
  • the computer C is adapted to modify the frequency of the motor control signal as a function of the speed correction to be made.
  • Installation I can be a treatment platform located on land or at sea on the water or submerged (positioned between two waters or on the seabed) equipped with the usual devices for treating multiphase fluids.
  • the treatment assembly thus makes it possible to determine, in particular, the quantity of liquid which must be added to the effluent so as to reduce the value of GLRa to a value forming part of the operating range.
  • the quantity of liquid to be added is calculated as follows: knowing the value of the measured GLRa and the closest limit GLR value belonging to the previously defined operating range, we deduce the flow rate of the liquid that we must have for reduce the GLRa value to a value that can be processed by the pump.
  • the microcomputer delivers a signal which acts on a valve so as to allow the passage of a quantity of liquid reducing the value of GLRa measured to a value of GLR compatible with the operation of the pump.
  • the device 3 comprises a buffer tank, or reservoir or container 6 receiving the effluents from the source S.
  • the effluents sucked in by the pump 2 are taken from the tank 6 by means of a sampling tube TP passing through it and provided with orifices O distributed over at least part of its length.
  • a pressure sensor 8 measures the pressure prevailing in the reservoir 6 and a temperature sensor 7 makes it possible to know at all times the value of the temperature T prevailing in the reservoir 6. All the data are transmitted to the acquisition card of the computer. vs.
  • Step 1
  • the value of the volumetric ratio GLRa is determined using fixed parameters such as the total height of the tube H, the values of the specific masses of the liquid and of the gas, the value of the drilling coefficient of the tube Co, the characteristic function of the drilling of the tube fitted to the regulating flask f (h, H) and of the measurement of the height h of the portion of the pierced tube TP immersed in the gas, of the measurement of the temperature T and of the pressure Pbt prevailing in the regulating flask and the suction pressure Pa at the pump inlet. It is also advisable to take account of the physical phenomena which occur between the exit of the balloon and the aspiration of the pump in particular of the losses of load and the possible adiabatic expansion of the gas. Another way to do this is to measure the level of liquid in the flask.
  • Step 2
  • ⁇ P ⁇ P I + (P'ref - Pref) + (Pbt - Pa) - (Pbtc - Po) a curve similar to the curve described in FIG. 4 has been drawn. The difference between the two curves comes from the corrective factor due to the adiabatic relaxation.
  • Step 3
  • the value of the total flow Qt of the effluents from the source is determined as in step 3 defined with reference to FIG. 1, but taking into account the presence of the buffer tank 6.
  • a correction coefficient linked to the expansion is introduced. adiabatic which exists between the buffer tank 6 and the inlet of the pump. This coefficient only applies to the terms representative of the variation in gas volume in the pipe and it is equal to (Pa / Pbt) 1 / ⁇ where Pbt is the pressure prevailing in the regulating tank measured using the sensor 8 and ⁇ a coefficient equal to Cc (where C and c are respectively the values of specific heats respectively at constant pressure and volume).
  • FIG. 3 shows another embodiment in which the pumped effluent can be treated in a separator 9 recycling a certain quantity of liquid in the flask 6 via a recycling line 10.
  • the recycling line 10 is equipped with a remote-controlled and controlled valve 11 ensuring the passage of the liquid to be added, and flow measurement means 12 which make it possible to control the quantity of liquid that is added so as to bring the value of the GLRa ratio to a value can be treated by the pump.
  • the implementation of the method comprises steps 1 and 2 described with reference to FIG. 2.
  • the preceding step 3 is modified by the fact that during the control of the values of the parameters, the value of the volumetric ratio GLRa is reduced to the closest value that can be processed by the pump by adding a certain amount of liquid to the fluid.
  • the quantity of liquid to be added having been determined in the manner previously described, the microcomputer C sends a signal allowing the progressive opening of the valve until the flow of liquid to be added has reached a value such as the value measured by the volumetric ratio GLRa is equal to the value allowing the pump to treat the effluents.
  • the GLRa value can be checked in two ways. We can measure, for example, the value of the flow of liquid passing through the recycling line. When the value is reached, the valve is then kept in its position. It is also possible to measure the quantity of liquid to be added by checking the value of the volumetric ratio GLRa.
  • FIG. 5 shows a network of curves F (V1) ... F (V6) obtained during tests carried out with a multiphase pump.
  • the network of curves has been drawn for constant suction pressure Pa and volumetric ratio GLRa values and shows the variations as a function of the total flow rate of the pump and as a function of the value of the compression ⁇ P, for several determined speeds.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Pipeline Systems (AREA)

Description

La présente invention concerne une méthode et un dispositif pour optimiser le transfert par pompage d'effluents constitués d'au moins une phase gazeuse et au moins une phase liquide, dans une conduite de transfert entre une source d'effluents et un lieu de destination en adaptant le débit de la pompe utilisée aux conditions fluctuantes en amont et en aval de celle-ci.The present invention relates to a method and a device for optimizing the transfer by pumping of effluents consisting of at least one gaseous phase and at least one liquid phase, in a transfer pipe between a source of effluents and a place of destination in adapting the flow rate of the pump used to the fluctuating conditions upstream and downstream of it.

Ces fluides ou effluents peuvent provenir de sources diverses en particulier de puits forés tels les puits pétroliers. La pompe a pour fonction essentielle d'appliquer aux fluides ou effluents admis à son entrée avec une certaine pression d'admission ou pression d'aspiration, une compression ou augmentation de pression suffisante pour compenser les pertes de charge qu'ils peuvent subir en aval durant leur transfert.These fluids or effluents can come from various sources, in particular from wells drilled such as oil wells. The essential function of the pump is to apply to the fluids or effluents admitted at its inlet with a certain intake pressure or suction pressure, a compression or increase in pressure sufficient to compensate for the pressure losses that they may suffer downstream. during their transfer.

Dans le présent texte, les termes d'amont et d'aval se rapportent à la pompe en considérant le sens d'écoulement des effluents, et le terme débit désigne généralement le débit volumétrique.In this text, the terms upstream and downstream refer to the pump by considering the direction of flow of the effluents, and the term flow generally designates the volumetric flow.

La méthode selon l'invention, plus particulièrement, a pour objet d'optimiser le transfert d'effluents dans une conduite de transfert au moyen d'une pompe polyphasique capable de pomper aussi bien les phases liquides que les phases gazeuses en adaptant son débit aux conditions fluctuantes en amont, telles que la variation du débit de la source d'effluents et la variation de la valeur du rapport volumétrique de la phase gazeuse à la phase liquide, dénommé ci-après en abrégé GLR (Gaz Liquid Ratio) qui est représentatif de la variation de la composition du fluide au cours de son transfert, et en aval telles que les pertes de charge apparaissant dans la conduite.The method according to the invention, more particularly, aims to optimize the transfer of effluents in a transfer pipe by means of a multiphase pump capable of pumping both liquid and gaseous phases by adapting its flow to fluctuating conditions upstream, such as the variation in the flow rate of the effluent source and the variation in the value of the volumetric ratio of the gas phase to the liquid phase, hereinafter abbreviated as GLR (Gaz Liquid Ratio) which is representative of the variation in the composition of the fluid during its transfer, and downstream such as the pressure drops appearing in the pipe.

La méthode peut être appliquée au transport d'un fluide polyphasique d'un puits jusqu'à un lieu de destination tel qu'un terminal de traitement ou une plateforme de traitement sous-marine ou terrestre.The method can be applied to the transport of a multiphase fluid from a well to a place of destination such as a treatment terminal or an underwater or land treatment platform.

Le transport d'un fluide polyphasique est dépendant de différents paramètres tels que la variation du débit de la source d'effluents, ou/et la variation de débit de la pompe polyphasique liée aux pertes de charge en aval de la pompe et à la variation du rapport volumétrique à l'aspiration de la pompe et à la pression d'aspiration (ci-après désignés respectivement par GLRa et Pa). On désignera par la suite les fluctuations de ces paramètres par fluctuations d'amont et d'aval.The transport of a multiphase fluid is dependent on different parameters such as the variation of the source flow of effluents, or / and the variation in flow rate of the multiphase pump linked to the pressure losses downstream of the pump and to the variation in the volumetric ratio at the pump suction and at the suction pressure (hereinafter designated respectively by GLRa and Pa). The fluctuations of these parameters will subsequently be designated by upstream and downstream fluctuations.

Avec une pompe polyphasique, il faut donc tenir compte des fluctuations des paramètres précédemment cités qui peuvent avoir une influence sur son débit, sachant que l'on recherche à pomper à chaque instant la quantité d'effluents qui sort du puits.With a multiphase pump, it is therefore necessary to take into account the fluctuations of the parameters mentioned above which can have an influence on its flow rate, knowing that we are trying to pump at every moment the quantity of effluent that leaves the well.

Les dispositifs et méthodes actuellement employés pour transporter par canalisation des fluides de type polyphasique combinent, en général, une pompe adaptée à refouler un fluide polyphasique constitué d'au moins une phase liquide et une phase gazeuse dont le rapport volumétrique varie dans des limites relativement étroites. On est donc obligé d'utiliser en combinaison un dispositif qui permet d'homogénéiser le fluide et d'obtenir ainsi un fluide dont le rapport volumétrique à l'aspiration GLRa a une valeur compatible avec les caractéristiques de celle-ci, ce qui nécessite des équipements encombrants et des investissements coûteux.The devices and methods currently employed for transporting multiphase type fluids by pipeline combine, in general, a pump adapted to discharge a multiphase fluid consisting of at least one liquid phase and one gaseous phase whose volumetric ratio varies within relatively narrow limits. . It is therefore necessary to use in combination a device which makes it possible to homogenize the fluid and thus to obtain a fluid whose volumetric ratio to suction GLRa has a value compatible with the characteristics of the latter, which requires bulky equipment and expensive investments.

Par le brevet français FR-2.642.539, on connaît un dispositif comportant un ballon tampon qui permet de réguler et d'amortir les fluctuations de composition d'un écoulement polyphasique, et donc d'élargir dans certaines limites les variations tolérables du rapport volumétrique des effluents pompés. Ce dispositif ou ballon tampon remplit bien sa fonction dans la plupart des cas. Il arrive, cependant, qu'il devienne inopérant parfois pour amortir les poches de gaz et les bouchons d'huile qui se succèdent de façon imprévisible.By French patent FR-2,642,539, a device is known comprising a buffer tank which makes it possible to regulate and dampen the composition fluctuations of a multiphase flow, and therefore to widen within certain limits the tolerable variations in the volumetric ratio. pumped effluents. This device or buffer tank fulfills its function in most cases. It sometimes happens, however, that it sometimes becomes ineffective in absorbing gas pockets and oil plugs which follow one another in an unpredictable manner.

De plus, les dispositifs de pompage connus de l'art antérieur ne sont pas conçus pour prendre en compte les fluctuations de débit des puits ainsi que les pertes de charges subies durant les transferts. Aussi, le débit du puits est étroitement dépendant du débit des pompes employées. Les capacités de production des puits peuvent s'en trouver sensiblement réduites.In addition, the pumping devices known from the prior art are not designed to take into account the flow fluctuations of the wells as well as the pressure losses suffered during transfers. Also, the well flow is closely dependent on the flow rate of pumps used. The production capacities of wells can be significantly reduced.

Le brevet US-3,568,771 décrit une méthode permettant de réguler la vitesse d'une pompe en fonction d'un paramètre mesuré. Ce paramètre est, par exemple, la densité de l'huile, la pression prise entre deux points, ou encore la quantité d'huile après séparation. Néanmoins, la méthode décrite dans ce document ne permet pas de calculer la vitesse en tenant compte de la variation de plusieurs paramètres.US Pat. No. 3,568,771 describes a method for regulating the speed of a pump as a function of a measured parameter. This parameter is, for example, the density of the oil, the pressure taken between two points, or the quantity of oil after separation. However, the method described in this document does not allow the speed to be calculated by taking into account the variation of several parameters.

Le brevet FR-A-2685737 décrit une méthode et un dispositif qui permettent d'obtenir en sortie de la pompe un débit qui varie comme le débit du puits dans une plage de variations importante, en régulant la vitesse de rotation. La détermination de la vitesse de rotation se fait à l'aide de paramètres fluctuant en amont et en aval. Ces paramètres peuvent cependant être incompatibles avec le domaine de fonctionnement de la pompe; l'acheminement des effluents jusqu'au terminal exige parfois une pression de sortie de pompe qu'il est impossible d'atteindre si on la fait tourner seulement à la vitesse que l'on peut calculer d'après la valeur effective du GLR.The patent FR-A-2685737 describes a method and a device which make it possible to obtain at the output of the pump a flow rate which varies like the flow rate of the well in a wide range of variations, by regulating the speed of rotation. The rotation speed is determined using parameters that fluctuate upstream and downstream. These parameters may however be incompatible with the operating range of the pump; the transport of effluents to the terminal sometimes requires a pump outlet pressure which is impossible to achieve if it is run only at the speed which can be calculated from the actual value of the GLR.

Le domaine de fonctionnement de la pompe est défini par le domaine des variations des paramètres pour lequel la pompe a un fonctionnement correct.The operating range of the pump is defined by the range of parameter variations for which the pump operates correctly.

La méthode et le dispositif selon l'invention permettent d'obtenir en sortie de la pompe un débit qui suit la variation du débit du puits en contrôlant les valeurs des paramètres pour qu'ils correspondent au domaine de fonctionnement de la pompe, de façon que la vitesse de rotation déterminée à partir de ces paramètres soit compatible avec les caractéristiques de la pompe et les conditions nécessaires au transfert.The method and the device according to the invention make it possible to obtain a flow rate at the outlet of the pump which follows the variation in the flow rate of the well by controlling the values of the parameters so that they correspond to the operating range of the pump, so that the rotation speed determined from these parameters is compatible with the characteristics of the pump and the conditions necessary for transfer.

La méthode selon l'invention permet d'optimiser le transfert d'effluents constitués d'au moins une phase liquide et d'une phase gazeuse dans une conduite de transfert reliant une source d'effluents dont le débit présente des variations, à un lieu de destination, pour des variations du rapport volumétrique de la phase gazeuse à la phase liquide, ainsi que des variations de pertes de charge lors du transfert du fluide, une pompe polyphasique dont on régule la vitesse de rotation étant interposée entre la source d'effluents et le lieu de destination, la pompe applicant aux effluents une compression ΔP.The method according to the invention makes it possible to optimize the transfer of effluents consisting of at least one liquid phase and one gaseous phase in a transfer pipe connecting a source of effluents whose flow has variations, to a place of destination, for variations in the volumetric ratio of the gaseous phase to the liquid phase, as well as variations in pressure drop during fluid transfer, a multiphase pump whose speed of rotation is regulated being interposed between the source of effluents and the place of destination, the pump applying ΔP compression to the effluents.

La méthode est caractérisée en ce que l'on régule la vitesse de rotation de façon à adapter le débit de ladite pompe polyphasique à au moins une desdites variations et en ce que l'on détermine la vitesse de rotation de la pompe par une combinaison de valeurs de quatre paramètres qui sont la pression d'admission à l'entrée de la pompe polyphasique, le rapport volumétrique à l'entrée d'aspiration de la pompe (GLRa), la compression appliquée par la pompe et le débit total des effluents produits par ladite source.The method is characterized in that the speed of rotation is regulated so as to adapt the flow rate of said multiphase pump to at least one of said variations and in that the speed of rotation of the pump is determined by a combination of values of four parameters which are the inlet pressure at the input of the multiphase pump, the volumetric ratio at the inlet of the pump (GLRa), the compression applied by the pump and the total flow rate of the effluents produced by said source.

La pompe ayant un fonctionnement correct pour un domaine de variations des paramètres, on affecte tout paramètre dont la valeur est en dehors dudit domaine d'une valeur limite permettant de déterminer une vitesse de fonctionnement compatible avec la plage de variation possible de la vitesse de ladite pompe.Since the pump operates correctly for a range of parameter variations, any parameter whose value is outside said range is assigned a limit value making it possible to determine an operating speed compatible with the range of possible variation of the speed of said range. pump.

On peut, par exemple, obtenir la valeur de la vitesse de rotation par interpolation de familles regroupant des valeurs particulières desdits quatre paramètres pour lesquelles la vitesse de rotation (N) convenant par ladite pompe est connue.One can, for example, obtain the value of the speed of rotation by interpolation of families grouping particular values of said four parameters for which the speed of rotation (N) suitable by said pump is known.

Le rapport volumétrique à l'aspiration de la pompe (GLRa) peut être ramené, si nécessaire, à une valeur appartenant à un domaine de variation des paramètres pour lequel la pompe a un fonctionnement correct par ajout d'une certaine quantité de liquide, la quantité de liquide à ajouter aux effluents étant déterminée en fonction de la valeur maximale du rapport volumétrique gaz-liquide des effluents qui peut être traité par la pompe.The volumetric ratio at pump suction (GLRa) can be reduced, if necessary, to a value belonging to a range of variation of the parameters for which the pump has a correct functioning by adding a certain quantity of liquid, the quantity of liquid to be added to the effluents being determined as a function of the maximum value of the volumetric gas-liquid ratio of the effluents which can be treated by the pump.

On peut déterminer le rapport (GLRa) en interposant entre la source d'effluents et la pompe polyphasique, un réservoir traversé par un tube percé d'une pluralité d'orifices, en mesurant la hauteur du tube percé baignant dans le gaz et en tenant compte de la distribution des orifices le long de ce tube.The ratio (GLRa) can be determined by interposing between a source of effluents and the multiphase pump, a reservoir crossed by a tube pierced with a plurality of orifices, by measuring the height of the pierced tube immersed in the gas and taking account of the distribution of the orifices along this tube.

On peut déterminer la compression par un processus itératif en ajoutant à une valeur précédemment déterminée les variations successives de la pression de refoulement.Compression can be determined by an iterative process by adding to a previously determined value the successive variations of the discharge pressure.

On peut déterminer la valeur du débit des effluents par un processus itératif.The value of the effluent flow can be determined by an iterative process.

La méthode peut être appliquée au transfert d'un effluent polyphasique pétrolier entre une source d'effluents, telle qu'un puits, et un lieu de réception dudit effluent.The method can be applied to the transfer of a multiphase petroleum effluent between a source of effluents, such as a well, and a place of reception of said effluent.

L'invention concerne aussi un dispositif pour la mise en oeuvre de la méthode comportant en combinaison des moyens de détermination dudit rapport volumétrique (GLRa), des moyens de mesure de la pression d'admission, des moyens de mesure de la pression de refoulement, et un ensemble de traitement programmé permettant de mémoriser ces valeurs et des valeurs des paramètres déterminés au départ et un ensemble de traitement programmé permettant de calculer la nouvelle valeur de la vitesse de rotation de la pompe de façon à adapter le débit de la pompe aux variations d'au moins un des trois paramètres suivants : le débit des effluents, la valeur du rapport volumétrique, ou les pertes de charge en aval de la pompe, la vitesse de rotation étant déterminée par une combinaison de valeurs de quatre paramètres qui sont la pression d'admission à l'entrée de la pompe polyphasique, le rapport volumétrique à l'entrée d'aspiration de la pompe, la compression appliquée par la pompe et le débit total des effluents produits par la source.The invention also relates to a device for implementing the method comprising in combination means for determining said volumetric ratio (GLRa), means for measuring the intake pressure, means for measuring the discharge pressure, and a programmed processing set allowing to memorize these values and values of the parameters determined at the start and a programmed processing set making it possible to calculate the new value of the speed of rotation of the pump so as to adapt the flow rate of the pump to variations at least one of the following three parameters: the flow rate of the effluents, the value of the volumetric ratio, or the pressure losses downstream of the pump, the speed of rotation being determined by a combination of values of four parameters which are the pressure intake at the multiphase pump inlet, the volumetric ratio at the suction inlet of the pump, the compression applied by the p ompe and the total flow of effluents produced by the source.

Les moyens de détermination dudit rapport volumétrique pourront être constitués par un réservoir équipé d'un tube perforé, et des moyens de mesure de la température régnant dans ledit réservoir.The means for determining said volumetric ratio may be constituted by a tank equipped with a perforated tube, and means for measuring the temperature prevailing in said tank.

L'ensemble de traitement programmé pourra comporter des moyens de mémorisation de l'ensemble desdites valeurs limites.The programmed processing unit may include means for memorizing all of said limit values.

Il pourra comporter au moins une canalisation auxiliaire d'injection d'une phase liquide ainsi que des moyens auxiliaires nécessaires au contrôle de la quantité de liquide ajoutée.It may include at least one auxiliary pipe for injecting a liquid phase as well as auxiliary means necessary for controlling the amount of liquid added.

D'autres caractéristiques et avantages de la méthode selon l'invention apparaîtront mieux à la lecture de la description ci-après des modes de réalisation décrits à titre d'exemples non limitatifs, en se référant aux dessins annexés où :

  • la figure 1 montre de façon schématique un mode de réalisation du dispositif selon l'invention,
  • la figure 2 représente un autre mode de réalisation dans lequel les moyens de détermination du rapport volumétrique GLRa comportent un récipient tel qu'un ballon régulateur équipé d'un tube percé d'une pluralité d'orifices,
  • la figure 3 représente le dispositif de la figure 2 associé à des moyens de recyclage du liquide,
  • la figure 4 montre une courbe qui traduit la relation existant entre la valeur du débit de la pompe et la valeur de la pression à l'aspiration, et
  • la figure 5 montre un réseau de courbes tracées à pression d'aspiration et GLRa constants, reliant la valeur de la compression communiquée par une pompe au débit des effluents qui la traversent pour une vitesse de rotation donnée.
Other characteristics and advantages of the method according to the invention will appear better on reading the description below of the embodiments described by way of nonlimiting examples, with reference to the appended drawings where:
  • FIG. 1 schematically shows an embodiment of the device according to the invention,
  • FIG. 2 represents another embodiment in which the means for determining the volumetric ratio GLRa comprise a container such as a regulating flask equipped with a tube pierced with a plurality of orifices,
  • FIG. 3 represents the device of FIG. 2 associated with means for recycling the liquid,
  • FIG. 4 shows a curve which translates the relationship existing between the value of the pump flow rate and the value of the suction pressure, and
  • FIG. 5 shows a network of curves drawn at constant suction pressure and GLRa, connecting the value of the compression communicated by a pump to the flow rate of the effluents which pass through it for a given speed of rotation.

La méthode selon l'invention est mise en oeuvre, par exemple, par un premier mode de réalisation décrit sur la figure 1.The method according to the invention is implemented, for example, by a first embodiment described in FIG. 1.

La méthode selon l'invention permet d'optimiser le transfert d'effluents comportant au moins une phase liquide et au moins une phase gazeuse issus d'une source telle qu'une tête de puits S, par exemple, jusqu'à une installation réceptrice I. Les effluents sont acheminés de la source S par une canalisation 1, jusqu'à l'entrée d'aspiration d'une pompe polyphasique 2. Sur cette canalisation, près de l'entrée de la pompe 2, est interposé un dispositif 3 adapté à déterminer la valeur du rapport volumétrique à l'admission GLRa qui est susceptible de varier.The method according to the invention makes it possible to optimize the transfer of effluents comprising at least one liquid phase and at least one gaseous phase originating from a source such as a well head S, for example, up to a receiving installation. I. The effluents are conveyed from the source S by a pipe 1, to the suction inlet of a multiphase pump 2. On this pipe, near the inlet of the pump 2, is interposed a device 3 suitable for determining the value of the volumetric ratio at intake GLRa which is likely to vary.

Deux capteurs de pression 4, 5 sont respectivement disposés à la sortie et à l'entrée de la pompe 2 pour mesurer la pression de sortie ou de refoulement Pref et la pression d'admission ou d'aspiration Pa. Les effluents issus de la pompe 2 sont acheminés par une canalisation CT jusqu'à l'installation I qui est, par exemple, une plate-forme à terre ou en mer, éventuellement immergée, et pourvue des équipements habituels de traitement des effluents polyphasiques.Two pressure sensors 4, 5 are respectively arranged at the outlet and at the inlet of the pump 2 to measure the outlet or discharge pressure Pref and the inlet or suction pressure Pa. The effluents from the pump 2 are conveyed by a CT pipeline to the installation I which is, for example, a platform on land or at sea, possibly submerged, and provided with the usual equipment for treating multiphase effluents.

La régulation du fonctionnement de la pompe 2 est conduite au moyen d'un calculateur C à partir des données reçues du dispositif 3 et des capteurs 4, 5. Ce calculateur est, par exemple, un micro-ordinateur équipé d'une carte d'acquisition d'un type connu et programmé pour conduire les étapes de la méthode qui vont être définies dans la suite de la description.The operation of the pump 2 is regulated by means of a computer C from the data received from the device 3 and from the sensors 4, 5. This computer is, for example, a microcomputer equipped with a card. acquisition of a known and programmed type to conduct the steps of the method which will be defined in the following description.

L'objectif recherché étant d'obtenir une valeur de débit de la pompe qui suit les fluctuations ou variations en amont ou aval de la pompe, on a découvert que l'on pouvait atteindre ceci en faisant varier la vitesse de la pompe en fonction du résultat de la combinaison d'un certain nombre de paramètres connus, et en procédant à des cycles successifs comportant les étapes suivantes :The objective being to obtain a pump flow value which follows the fluctuations or variations upstream or downstream of the pump, it was discovered that this could be achieved by varying the speed of the pump as a function of the result of the combination of a certain number of known parameters, and by carrying out successive cycles comprising the following steps:

Etape 1 : Step 1 :

On détermine d'abord la valeur du rapport GLRa à l'aide d'un dispositif de mesure 3 du rapport volumétrique d'un type connu placé au voisinage de l'admission de la pompe tel celui décrit dans le brevet FR-2.647.549. On peut aussi utiliser à cet usage le dispositif décrit à la figure 2 suivant des modalités particulières qui seront définies plus loin.The value of the GLRa ratio is first determined using a device 3 for measuring the volumetric ratio of a known type placed in the vicinity of the intake of the pump such as that described in patent FR-2,647,549 . The device described in FIG. 2 can also be used for this purpose according to specific methods which will be defined below.

Etape 2 : Step 2 :

On détermine ensuite la valeur de la compression ΔP communiquée par la pompe au fluide polyphasique en mesurant à l'aide du capteur de pression 4 la valeur de la pression de refoulement P'ref de la pompe et la valeur de la pression à l'aspiration ou pression d'admission Pa à l'aide du capteur 5 placé sur la conduite 1 à l'entrée de la pompe, puis en effectuant la différence entre les deux valeurs.The value of the compression ΔP communicated by the pump to the multiphase fluid is then determined by measuring using the pressure sensor 4 the value of the discharge pressure P'ref of the pump and the value of the pressure at suction. or inlet pressure Pa using the sensor 5 placed on line 1 at the inlet of the pump, then making the difference between the two values.

On peut aussi procéder par itérations en ajoutant à la valeur de la compression précédemment déterminée ΔPp, les variations successives de la pression de refoulement (P'ref - Pref) obtenue par comparaison des mesures successives de capteur de pression 4 en sortie de la pompe 2 : ΔP = ΔP p + (P'ref - Pref)

Figure imgb0001
One can also proceed by iterations by adding to the value of the compression previously determined ΔP p , the successive variations of the discharge pressure (P'ref - Pref) obtained by comparison of the successive measurements of pressure sensor 4 at the outlet of the pump. 2: ΔP = ΔP p + (P'ref - Pref)
Figure imgb0001

On pourrait aussi procéder en tenant compte de la valeur de compression initialement considérée (ΔPI).One could also proceed by taking into account the compression value initially considered (ΔPI).

Etape 3 : Step 3 :

On détermine la valeur du débit total Qt des effluents issus de la source S par un processus itératif en ajoutant à une valeur précédemment déterminée Q, une variation du débit total Qp obtenue en appliquant la loi de Mariotte à la variation de volume du gaz et de pression dans un espace considéré compris entre la source d'effluents S et la pompe 2, dans notre cas, la conduite 1.The value of the total flow Qt of the effluents from the source S is determined by an iterative process by adding to a previously determined value Q, a variation of the total flow Qp obtained by applying Mariotte's law to the volume variation gas and pressure in a space considered between the source of effluents S and the pump 2, in our case, line 1.

Pour celà, on doit connaître les paramètres caractéristiques initiaux mesurés ou connus, tels que la valeur du rapport volumétrique GLR du puits mesurée au début de son exploitation, et la valeur du volume Vo occupé par le gaz dans l'espace considéré.For this, one must know the initial characteristic parameters measured or known, such as the value of the volumetric ratio GLR of the well measured at the start of its operation, and the value of the volume Vo occupied by the gas in the space considered.

La loi de Mariotte exprime le fait que, dans le volume Vo considéré, en l'occurrence la conduite 1, l'augmentation de débit pendant le temps dt multipliée par la pression P régnant dans l'espace Vo est égale au volume Vo multiplié par l'augmentation de pression dP pendant le temps dt. La pression est prise comme étant égale à la valeur de la pression à l'aspiration, de la même façon l'augmentation de pression concerne l'augmentation de pression que l'on a à l'entrée de la pompe.Mariotte's law expresses the fact that, in the volume Vo considered, in this case the pipe 1, the increase in flow during the time dt multiplied by the pressure P prevailing in the space Vo is equal to the volume Vo multiplied by the pressure increase dP during the time dt. The pressure is taken as being equal to the value of the suction pressure, in the same way the pressure increase relates to the pressure increase that there is at the inlet of the pump.

Ainsi, lorsque le débit du puits varie, et que le débit de la pompe n'est pas adapté à cette variation, il en résulte une augmentation de pression dans la conduite. La variation de débit des effluents dans la conduite 1 est égale à la différence des variations de débit total du puits Qp et de débit total Qa de la pompe.Thus, when the flow rate of the well varies, and the flow rate of the pump is not adapted to this variation, this results in an increase in pressure in the pipe. The variation in effluent flow in line 1 is equal to the difference in variations in total flow from well Qp and total flow Qa of the pump.

La variation Qp de débit total du puits provient de la variation de débit gazeux et de la variation de débit liquide de la source d'effluents. Les termes respectifs desdites variations des débits gazeux ou liquide sont obtenus, comme il est bien connu des spécialistes, en multipliant la variation de débit total Qp respectivement par les facteurs GLR/(1+GLR) et 1/(1+GLR).The variation Qp in total well flow comes from the variation of gas flow and the variation of liquid flow from the effluent source. The respective terms of said variations in gas or liquid flow rates are obtained, as is well known to specialists, by multiplying the variation in total flow rate Qp respectively by the factors GLR / (1 + GLR) and 1 / (1 + GLR).

La variation de débit total de la pompe Qa peut être obtenue à partir de la courbe représentée sur la figure 4.The variation in total flow of the pump Qa can be obtained from the curve shown in Figure 4.

La courbe décrite sur cette figure a été obtenue au cours d'essais préalablement effectués, en utilisant une pompe de type polyphasique telle que celle décrite dans le brevet FR-A-2665224.The curve described in this figure was obtained during tests previously carried out, using a multiphase type pump such as that described in patent FR-A-2665224.

On a tracé la valeur du débit total Qa de la pompe en fonction de la pression d'aspiration ou d'admission et en fonction du GLRa pour une vitesse de rotation et une valeur de surpression ΔP donnés.The value of the total flow rate Qa of the pump has been plotted as a function of the suction or intake pressure and as a function of the GLRa for a given speed of rotation and overpressure value ΔP.

La courbe a été déterminée par des modèles du deuxième degré avec une interpolation linéaire entre deux courbes d'un même sous-réseau, par exemple ΔP constant et GLRa variable.The curve was determined by second degree models with a linear interpolation between two curves of the same sub-network, for example constant ΔP and variable GLRa.

Pour une pompe polyphasique d'un autre type, on dresserait de même au préalable des réseaux de courbes analogues.For a multiphase pump of another type, the networks of similar curves would be drawn up beforehand.

Le terme dont il faut tenir compte est la variation de débit gazeux de la pompe que l'on obtient à partir de la variation du débit total (Qa2 - Qa1) multiplié par le facteur représentatif de la quantité gazeuse, c'est-à-dire, GLRa/(1+GLRa).The term which must be taken into account is the variation in gas flow rate of the pump which is obtained from the variation in total flow rate (Qa2 - Qa1) multiplied by the factor representative of the quantity of gas, i.e. say, GLRa / (1 + GLRa).

En appliquant la loi de Mariotte à la variation de volume gazeux dans la conduite 1, on en déduit la variation Qp du débit total du puits en fonction de la pression d'aspiration Pa mesurée à l'aide du capteur de pression 5, de la variation de la pression d'admission Pa pendant un temps Δt, du volume Vo occupé par le gaz dans la conduite V1, et de la variation du débit gazeux pendant le temps dt.By applying Mariotte's law to the variation of gas volume in line 1, we deduce the variation Qp of the total flow rate of the well as a function of the suction pressure Pa measured using the pressure sensor 5, the variation of the inlet pressure Pa during a time Δt, of the volume Vo occupied by the gas in the pipe V1, and of the variation of the gas flow during the time dt.

La valeur du débit total Qt des effluents produits par le puits est alors égal à Qt = Q + Qp avec Q qui est égal à la valeur précédemment trouvée du débit des effluents produits par le puits.The value of the total flow Qt of the effluents produced by the well is then equal to Qt = Q + Qp with Q which is equal to the value previously found of the flow of the effluents produced by the well.

A l'aide des trois valeurs GLRa, Qt et ΔP et de la mesure de la pression d'admission Pa, on déduit grâce à un calculateur programmé C, la nouvelle valeur de la vitesse de rotation que doit avoir la pompe de façon à adapter le débit de la pompe polyphasique à au moins une desdites variations.Using the three values GLRa, Qt and ΔP and the measurement of the inlet pressure Pa, the new value of the speed of rotation which the pump must have in order to adapt is deduced by means of a programmed computer C the flow rate of the multiphase pump to at least one of said variations.

On utilise à cet effet, un programme qui met en oeuvre une méthode quadratique permettant de calculer la vitesse de la pompe à partir de la combinaison des quatre paramètres.For this purpose, a program is used which implements a quadratic method making it possible to calculate the speed of the pump from the combination of the four parameters.

On réalise le programme de la façon suivante:

  • On effectue une série de mesures en faisant fonctionner une pompe polyphasique telle que celle décrite dans le brevet FR-A-2665224 par exemple,
  • A partir de ces mesures, on construit des réseaux de courbes caractéristiques des hydrauliques de pompes qui permettent de déterminer des familles de valeurs discrètes reliant les cinq paramètres Pa, ΔP, GLRa, Qt et N, la valeur de la vitesse de rotation de la pompe. Ces valeurs sont regroupées dans un tableau.
  • A partir de ces valeurs discrètes, on construit un programme d'interpolation mettant en jeu une méthode quadratique qui permet de calculer à partir de ces familles de valeurs connues des quatre paramètres, la valeur du cinquième paramètre, en l'occurrence, la vitesse de rotation de la pompe.
The program is carried out as follows:
  • A series of measurements is made by operating a multi-phase pump such as that described in patent FR-A-2665224 for example,
  • From these measurements, networks of characteristic curves of the pump hydraulics are constructed which make it possible to determine families of discrete values connecting the five parameters Pa, ΔP, GLRa, Qt and N, the value of the speed of rotation of the pump. . These values are grouped in a table.
  • From these discrete values, an interpolation program is constructed, involving a quadratic method which makes it possible to calculate from these families of known values of the four parameters, the value of the fifth parameter, in this case, the speed of pump rotation.

La méthode précédemment décrite est particulièrement bien adaptée lorsque les valeurs des paramètres, à partir desquels on détermine la vitesse de la pompe, varient à l'intérieur d'un domaine pour lequel la pompe a un fonctionnement correct.The method described above is particularly well suited when the values of the parameters, from which the speed of the pump is determined, vary within an area for which the pump has correct operation.

Le programme offre aussi la possibilité d'effectuer un contrôle des valeurs mesurées pour les quatre paramètres et d'affecter, si nécessaire, aux valeurs situées en dehors du domaine une valeur limite permettant de déterminer une vitesse de fonctionnement de la pompe compatible avec les données techniques de la pompe.The program also offers the possibility of carrying out a check of the measured values for the four parameters and of assigning, if necessary, to values located outside the range a limit value making it possible to determine an operating speed of the pump compatible with the data. pump techniques.

Le domaine pour lequel la pompe a un fonctionnement correct (ou domaine de fonctionnement) est défini par l'ensemble des valeurs que peuvent prendre en même temps les paramètres GLRa, Qt, ΔP, Pa et N.The domain for which the pump operates correctly (or operating domain) is defined by the set of values that can be taken at the same time by the parameters GLRa, Qt, ΔP, Pa and N.

Ces valeurs ont été déterminées préalablement au cours d'essais pour lesquels on a relevé, par exemple, les valeurs GLRa, Qt, Pa et N pour lesquels la pompe communique aux effluents suffisamment de pression pour assurer leur transfert sur une certaine distance.These values were determined beforehand during tests for which it was noted, for example, the values GLRa, Qt, Pa and N for which the pump communicates to the effluents sufficient pressure to ensure their transfer over a certain distance.

Le contrôle et la correction des valeurs des paramètres lorsqu'ils se trouvent en dehors des limites du domaine se fait, par exemple, de la manière suivante :

  • on compare l'ensemble des quatre paramètres mesurés aux valeurs définissant le domaine de fonctionnement de la pompe. On affecte à chaque paramètre situé en dehors du domaine de fonctionnement la valeur limite la plus proche située dans le domaine de fonctionnement.
  • on recommence le contrôle de l'ensemble des nouvelles valeurs obtenues jusqu'à ce que l'ensemble des valeurs des quatre paramètres correspondent à un ensemble compris dans le domaine de fonctionnement de la pompe.
The control and correction of the parameter values when they are outside the domain limits is done, for example, as follows:
  • the four measured parameters are compared with the values defining the operating range of the pump. Each parameter located outside the operating range is assigned the closest limit value located in the operating range.
  • the whole of the new values obtained is checked again until the set of values of the four parameters corresponds to a set included in the operating range of the pump.

A partir des valeurs des paramètres contrôlées de la manière précédente, on détermine le cinquième paramètre, en l'occurrence la vitesse de rotation, à l'aide du programme d'interpolation précédemment défini.From the values of the parameters checked in the previous manner, the fifth parameter, in this case the speed of rotation, is determined using the previously defined interpolation program.

Le micro-ordinateur C délivre un signal qui agit sur la vitesse de rotation du moteur d'entraînement de la pompe de façon à la corriger si nécessaire. Le moteur est par exemple un moteur électrique d'un type connu dont la vitesse dépend de la fréquence du signal électrique qui lui est appliqué. Dans ce cas, le calculateur C est adapté à modifier la fréquence du signal de commande du moteur en fonction de la correction de la vitesse à apporter.The microcomputer C delivers a signal which acts on the speed of rotation of the pump drive motor so as to correct it if necessary. The motor is for example an electric motor of a known type, the speed of which depends on the frequency of the electric signal applied to it. In this case, the computer C is adapted to modify the frequency of the motor control signal as a function of the speed correction to be made.

Le fluide est alors transféré de la pompe 2 à une installation I de traitement des effluents par l'intermédiaire du tronçon de canalisation CT. L'installation I peut être une plate-forme de traitement située à terre ou en mer sur l'eau ou immergée (positionnée entre deux eaux ou sur le fond marin) équipée des dispositifs habituels de traitement de fluides polyphasiques.The fluid is then transferred from pump 2 to an installation I for treating effluents via the pipe section CT. Installation I can be a treatment platform located on land or at sea on the water or submerged (positioned between two waters or on the seabed) equipped with the usual devices for treating multiphase fluids.

Des simulations ont été effectuées pour un effluent polyphasique pétrolier. Ils montrent que la précision de la régulation est meilleure que 1%.Simulations were carried out for a multiphase petroleum effluent. They show that the precision of the regulation is better than 1%.

L'ensemble de traitement permet ainsi de déterminer, en particulier, la quantité de liquide que l'on doit ajouter à l'effluent de façon à ramener la valeur du GLRa à un valeur faisant partie du domaine de fonctionnement.The treatment assembly thus makes it possible to determine, in particular, the quantity of liquid which must be added to the effluent so as to reduce the value of GLRa to a value forming part of the operating range.

On calcule la quantité de liquide à ajouter de la façon suivante : connaissant la valeur du GLRa mesurée et la valeur du GLR limite la plus proche appartenant au domaine de fonctionnement précédemment défini, on en déduit le débit du liquide que l'on doit avoir pour ramener la valeur du GLRa à une valeur pouvant être traitée par la pompe. Le micro-ordinateur délivre un signal qui agit sur une vanne de façon à permettre le passage d'une quantité de liquide ramenant la valeur du GLRa mesurée à une valeur de GLR compatible avec le fonctionnement de la pompe.The quantity of liquid to be added is calculated as follows: knowing the value of the measured GLRa and the closest limit GLR value belonging to the previously defined operating range, we deduce the flow rate of the liquid that we must have for reduce the GLRa value to a value that can be processed by the pump. The microcomputer delivers a signal which acts on a valve so as to allow the passage of a quantity of liquid reducing the value of GLRa measured to a value of GLR compatible with the operation of the pump.

Suivant un mode préféré de réalisation selon la figure 2, déjà décrit dans le brevet FR-2,642,539, le dispositif 3 comporte un ballon-tampon, ou réservoir ou récipient 6 recevant les effluents issus de la source S. Les effluents aspirés par la pompe 2 sont prélevés dans le réservoir 6 au moyen d'un tube de prélèvement TP traversant celui-ci et pourvu d'orifices O répartis sur au moins une partie de sa longueur. Un capteur de pression 8 mesure la pression régnant dans le réservoir 6 et un capteur de température 7 permet de connaître à tout instant la valeur de la température T régnant dans le réservoir 6. Toutes les données sont transmises à la carte d'acquisition du calculateur C.According to a preferred embodiment according to FIG. 2, already described in patent FR-2,642,539, the device 3 comprises a buffer tank, or reservoir or container 6 receiving the effluents from the source S. The effluents sucked in by the pump 2 are taken from the tank 6 by means of a sampling tube TP passing through it and provided with orifices O distributed over at least part of its length. A pressure sensor 8 measures the pressure prevailing in the reservoir 6 and a temperature sensor 7 makes it possible to know at all times the value of the temperature T prevailing in the reservoir 6. All the data are transmitted to the acquisition card of the computer. vs.

Etape 1 : Step 1 :

On détermine la valeur du rapport volumétrique GLRa à l'aide de paramètres fixés tels que la hauteur totale du tube H, les valeurs des masses spécifiques du liquide et du gaz, la valeur du coefficient de perçage du tube Co, la fonction caractéristique du perçage du tube équipant le ballon régulateur f(h,H) et de la mesure de la hauteur h de la portion du tube percé TP baignant dans le gaz, de la mesure de la température T et de la pression Pbt régnant dans le ballon régulateur et de la pression à l'aspiration Pa à l'entrée de la pompe. Il convient également de tenir compte des phénomènes physiques qui se produisent entre la sortie du ballon et l'aspiration de la pompe notamment des pertes de charge et des détentes adiabatiques éventuelles du gaz. Une autre façon de procéder consiste à mesurer le niveau du liquide présent dans le ballon.The value of the volumetric ratio GLRa is determined using fixed parameters such as the total height of the tube H, the values of the specific masses of the liquid and of the gas, the value of the drilling coefficient of the tube Co, the characteristic function of the drilling of the tube fitted to the regulating flask f (h, H) and of the measurement of the height h of the portion of the pierced tube TP immersed in the gas, of the measurement of the temperature T and of the pressure Pbt prevailing in the regulating flask and the suction pressure Pa at the pump inlet. It is also advisable to take account of the physical phenomena which occur between the exit of the balloon and the aspiration of the pump in particular of the losses of load and the possible adiabatic expansion of the gas. Another way to do this is to measure the level of liquid in the flask.

Etape 2 : Step 2 :

Pour obtenir la valeur de la compression ΔP correspondante aux pertes de charge aval, on soustrait les valeurs respectives de la pression de refoulement P'ref et de la pression d'aspiration Pa mesurées respectivement par les capteurs 4, 5.To obtain the value of the compression ΔP corresponding to the downstream pressure losses, the respective values of the discharge pressure P'ref and the suction pressure Pa measured respectively by the sensors 4, 5 are subtracted.

On peut aussi procéder par des étapes successives d'incrémentation en tenant compte de la présence du ballon régulateur 6 et en mesurant la pression Pbt régnant dans le ballon régulateur au moyen du capteur de pression 8. On doit, de plus, connaître la valeur de la pression nominale que l'on se fixe Pbtc.It is also possible to proceed by successive steps of incrementation, taking account of the presence of the regulating balloon 6 and by measuring the pressure Pbt prevailing in the regulating balloon by means of the pressure sensor 8. In addition, the value of the nominal pressure that is set Pbtc.

Dans le cas où l'on tient compte de la valeur de compression initialement déterminée ΔPI et connaissant Pref, Pbtc, Po et en tenant compte des mesures de Pa, Pbt, et P'ref, on déduit la nouvelle valeur de ΔP qui tient compte des variations de pertes de charge aval de la pompe. ΔP = ΔP I + (P'ref - Pref) + (Pbt - Pa) - (Pbtc - Po)

Figure imgb0002
   on a tracé une courbe similaire à la courbe décrite sur la figure 4. La différence entre les deux courbes provient du facteur correctif dû à la détente adiabatique.In the case where account is taken of the compression value initially determined ΔPI and knowing Pref, Pbtc, Po and taking account of the measurements of Pa, Pbt, and P'ref, the new value of ΔP is deduced which takes account variations in pressure drop downstream of the pump. ΔP = ΔP I + (P'ref - Pref) + (Pbt - Pa) - (Pbtc - Po)
Figure imgb0002
a curve similar to the curve described in FIG. 4 has been drawn. The difference between the two curves comes from the corrective factor due to the adiabatic relaxation.

Etape 3 : Step 3 :

On détermine la valeur du débit total Qt des effluents issus de la source comme dans l'étape 3 définie en se référant à la figure 1, mais en tenant compte de la présence du ballon tampon 6. On introduit un coefficient correcteur lié à la détente adiabatique qui existe entre le ballon tampon 6 et l'entrée de la pompe. Ce coefficient s'applique uniquement aux termes représentatifs de la variation de volume gazeux dans la conduite et il est égal à (Pa/Pbt)1/γ où Pbt est la pression régnant dans le ballon régulateur mesurée à l'aide du capteur 8 et γ un coefficient égal à C-c (où C et c sont respectivement les valeurs des chaleurs spécifiques respectivement à pression et volume constant).The value of the total flow Qt of the effluents from the source is determined as in step 3 defined with reference to FIG. 1, but taking into account the presence of the buffer tank 6. A correction coefficient linked to the expansion is introduced. adiabatic which exists between the buffer tank 6 and the inlet of the pump. This coefficient only applies to the terms representative of the variation in gas volume in the pipe and it is equal to (Pa / Pbt) 1 / γ where Pbt is the pressure prevailing in the regulating tank measured using the sensor 8 and γ a coefficient equal to Cc (where C and c are respectively the values of specific heats respectively at constant pressure and volume).

On obtient comme il a été décrit précédemment en se référant à la figure 1, la nouvelle valeur de la vitesse de rotation que doit avoir la pompe de façon à adapter le débit de la pompe polyphasique à au moins une des variations.One obtains as it was described previously with reference to FIG. 1, the new value of the speed of rotation which the pump must have in order to adapt the flow rate of the multiphase pump to at least one of the variations.

La figure 3 montre un autre mode de réalisation dans lequel l'effluent pompé peut être traité dans un séparateur 9 recyclant une certaine quantité de liquide dans le ballon 6 par l'intermédiaire d'une ligne de recyclage 10. La ligne de recyclage 10 est équipée d'une vanne 11 télécommandée et asservie assurant le passage du liquide à ajouter, et de moyens de mesure de débit 12 qui permettent de contrôler la quantité de liquide que l'on ajoute de façon à ramener la valeur du rapport GLRa à une valeur pouvant être traitée par la pompe.FIG. 3 shows another embodiment in which the pumped effluent can be treated in a separator 9 recycling a certain quantity of liquid in the flask 6 via a recycling line 10. The recycling line 10 is equipped with a remote-controlled and controlled valve 11 ensuring the passage of the liquid to be added, and flow measurement means 12 which make it possible to control the quantity of liquid that is added so as to bring the value of the GLRa ratio to a value can be treated by the pump.

La mise en oeuvre de la méthode comporte les étapes 1 et 2 décrites en rapport à la figure 2. L'étape 3 précédente est modifiée par le fait que lors du contrôle des valeurs des paramètres, on ramène la valeur du rapport volumétrique GLRa à la valeur la plus proche pouvant être traitée par la pompe en ajoutant une certaine quantité de liquide au fluide. La quantité de liquide à ajouter ayant été déterminée de la façon précédemment décrite, le micro-ordinateur C envoie un signal permettant l'ouverture progressive de la vanne jusqu'à ce que le débit de liquide à ajouter ait atteint une valeur telle que la valeur mesurée du rapport volumétrique GLRa soit égale à la valeur permettant à la pompe de traiter les effluents. Le contrôle de la valeur du GLRa peut se faire de deux façons. On peut mesurer, par exemple, la valeur du débit de liquide passant dans la conduite de recyclage. Lorsque la valeur est atteinte on maintient alors la vanne dans sa position. On peut encore doser la quantité de liquide à ajouter en contrôlant la valeur du rapport volumétrique GLRa.The implementation of the method comprises steps 1 and 2 described with reference to FIG. 2. The preceding step 3 is modified by the fact that during the control of the values of the parameters, the value of the volumetric ratio GLRa is reduced to the closest value that can be processed by the pump by adding a certain amount of liquid to the fluid. The quantity of liquid to be added having been determined in the manner previously described, the microcomputer C sends a signal allowing the progressive opening of the valve until the flow of liquid to be added has reached a value such as the value measured by the volumetric ratio GLRa is equal to the value allowing the pump to treat the effluents. The GLRa value can be checked in two ways. We can measure, for example, the value of the flow of liquid passing through the recycling line. When the value is reached, the valve is then kept in its position. It is also possible to measure the quantity of liquid to be added by checking the value of the volumetric ratio GLRa.

La figure 5 montre un réseau de courbes F(V1)... F(V6) obtenues au cours d'essais réalisés avec une pompe polyphasique. Le réseau de courbes a été tracé pour des valeurs de pression à l'aspiration Pa et de rapport volumétrique GLRa constants et montre les variations en fonction du débit total de la pompe et en fonction de la valeur de la compression ΔP, pour plusieurs vitesses déterminées V1, V2 ... V6.FIG. 5 shows a network of curves F (V1) ... F (V6) obtained during tests carried out with a multiphase pump. The network of curves has been drawn for constant suction pressure Pa and volumetric ratio GLRa values and shows the variations as a function of the total flow rate of the pump and as a function of the value of the compression ΔP, for several determined speeds. V1, V2 ... V6.

Ces courbes permettent, par exemple, de déterminer les valeurs discrètes regroupées dans le tableau servant de base à la détermination du programme d'interpolation qui permet, à partir de quatre paramètres de calculer le cinquième.These curves allow, for example, to determine the discrete values grouped in the table used as a basis for determining the interpolation program which allows, from four parameters to calculate the fifth.

A partir de plusieurs réseaux de courbes obtenus pour des valeurs de pression à l'aspiration Pa et des valeurs de GLRa différentes, on en déduit les valeurs discrètes regroupées dans le tableau et on établit à partir de ces valeurs, la relation liant les cinq paramètres.From several networks of curves obtained for different suction pressure values Pa and GLRa values, we deduce the discrete values grouped in the table and we establish from these values, the relation linking the five parameters .

On pourrait, tout aussi bien, partir des spécifications techniques données par le constructeur de pompes et bâtir un tableau de valeurs discrètes regroupant les cinq paramètres : Pa, GLRa, ΔP, Qt et la vitesse de rotation N.We could just as well start from the technical specifications given by the pump manufacturer and construct a table of discrete values grouping the five parameters: Pa, GLRa, ΔP, Qt and the rotation speed N.

Bien entendu, diverses modifications et/ou adjonctions peuvent être apportées par l'homme de métier au procédé et au dispositif dont la description vient d'être donnée à titre illustratif et nullement limitatif, sans sortir du cadre de l'invention, tel que défini par les revendications.Of course, various modifications and / or additions can be made by those skilled in the art to the method and to the device, the description of which has just been given by way of illustration and in no way limitative, without departing from the scope of the invention, as defined. by the claims.

Claims (12)

  1. Method for optimising the transfer of effluents consisting of at least one gaseous phase and at least one liquid phase pumped through a transfer pipe linking an effluent source, whose flow rate varies, to a point of destination under conditions where the volumetric ratio of gaseous phase to liquid phase varies and pressure losses vary during transfer of the fluid, a multiphase pump, whose rotation speed is varied, being installed between the effluent source and the point of destination, the pump applying a compression rate (ΔP) to the effluents, characterised in that the rotation speed of the multiphase pump is regulated so as to adjust the workrate of the multiphase pump to at least one of the said variations and in that the rotation speed of the pump is determined by combining values of four parameters, which are the admission pressure (Pa) at the inlet of the multiphase pump, the volumetric ratio at the suction inlet of the pump (GLRa), the compression (ΔP) applied by the pump and the overall flow rate (Qt) of the effluents produced by the source.
  2. Method as claimed in claim 1, characterised in that since the pump is rated to operate over a range of variations in these parameters, each parameter whose value is outside this said range is assigned a limit value allowing an operating speed to be determined that is compatible with the range of variation in the rotation speed that can be handled by the said pump.
  3. Method as claimed in one of claims 1 or 2, characterised in that the value of the rotation speed is obtained by an interpolation of the families grouping specific values of the said four parameters for which the appropriate rotation speed (N) of the pump is known.
  4. Method as claimed in claim 1, characterised in that the volumetric ratio at pump suction (GLRa) is brought down, if necessary, to a value within a range of variation of the parameters at which the pump can operate as rated by adding a certain quantity of liquid, the quantity of liquid to be added to the effluents being determined as a function of the maximum value of the volumetric ratio of gas to liquid of the effluents that can be handled by the pump.
  5. Method as claimed in claim 1, characterised in that the said ratio (GLRa) is determined by installing between the effluent source and the multiphase pump a tank through which a tube pierced with a plurality of orifices passes, measuring the height of the pierced tube lying in the gas and taking account of the distribution of orifices along this tube.
  6. Method as claimed in claim 1, characterised in that the compression rate (Δ P) is determined by an iterative process whereby the successive variations in the delivery pressure are added to a previously determined value.
  7. Method as claimed in claim 3, characterised in that the value of the flow rate of the effluents is determined by an iterative process.
  8. Method as claimed in one of the previous claims, applied to the transfer of a multiphase petroleum effluent between an effluent source, such as a well, and a point of reception for the said effluent.
  9. Device for implementing the method as claimed in one of claims 3 to 6, comprising in combination means (3) for determining the said volumetric ratio (GLRa), means for measuring (5) the admission pressure (Pa), means for measuring (4) the delivery pressure (Pref) and a programmed processing unit (C) enabling these values and the values of parameters determined beforehand (GLR ratio, Volume Vo ...) to be stored in memory, and a programmed processing unit (C) allowing the new value of the rotation speed (N) of the pump to be calculated so that the workrate of the pump can be adjusted to the variations of at least one of the following parameters: the flow rate of the effluents (Qt), the value of the volumetric ratio (GLRa) or the pressure losses downstream of the pump, the rotation speed being determined by combining the values of four parameters, which are the admission pressure (Pa) at the inlet of the multiphase pump, the volumetric ratio at the suction inlet of the pump (GLRa), the compression (ΔP) applied by the pump and the overall flow rate (Qt) of the effluents produced by the source.
  10. Device as claimed in claim 9, characterised in that the means for determining the said volumetric ratio (GLRa) comprise a tank fitted with a perforated tube and means for measuring the temperature prevailing in the said tank.
  11. Device as claimed in claim 9, characterised in that the programmed processing unit (C) has means for storing all the said limit values in memory.
  12. Device as claimed in claim 9, characterised in that it has at least one auxiliary pipe (10) for injecting a liquid phase as well as auxiliary means (11, 12) needed to control the quantity of liquid added.
EP92403475A 1991-12-27 1992-12-18 Method and apparatus for optimising the transport of multiphase flows by pumping Expired - Lifetime EP0549439B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR9116230 1991-12-27
FR9116230A FR2685737A1 (en) 1991-12-27 1991-12-27 Method and device making it possible to optimise the transfer of poly-phase effluents by pumping
FR9205617 1992-05-05
FR9205617A FR2685738B1 (en) 1991-12-27 1992-05-05 METHOD AND DEVICE FOR OPTIMIZING THE PUMPED TRANSFER OF POLYPHASIC EFFLUENTS.

Publications (2)

Publication Number Publication Date
EP0549439A1 EP0549439A1 (en) 1993-06-30
EP0549439B1 true EP0549439B1 (en) 1996-03-13

Family

ID=26229151

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92403475A Expired - Lifetime EP0549439B1 (en) 1991-12-27 1992-12-18 Method and apparatus for optimising the transport of multiphase flows by pumping

Country Status (8)

Country Link
US (1) US5393202A (en)
EP (1) EP0549439B1 (en)
BR (1) BR9205160A (en)
CA (1) CA2086298C (en)
DK (1) DK0549439T3 (en)
FR (1) FR2685738B1 (en)
MX (1) MX9207521A (en)
NO (1) NO178906C (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007306A (en) * 1994-09-14 1999-12-28 Institute Francais Du Petrole Multiphase pumping system with feedback loop
FR2730767B1 (en) * 1995-02-21 1997-04-18 Inst Francais Du Petrole METHOD AND DEVICE FOR REGULATING A POLYPHASIC PUMPING ASSEMBLY
FR2772915B1 (en) 1997-12-22 2000-01-28 Inst Francais Du Petrole POLYPHASTIC FLOW RATE METHOD AND DEVICE
DE19804330A1 (en) * 1998-02-04 1999-08-12 K Busch Gmbh Druck & Vakuum Dr Process for regulating a compressor
US6164308A (en) * 1998-08-28 2000-12-26 Butler; Bryan V. System and method for handling multiphase flow
US6234030B1 (en) 1998-08-28 2001-05-22 Rosewood Equipment Company Multiphase metering method for multiphase flow
FR2783884B1 (en) * 1998-09-24 2000-10-27 Inst Francais Du Petrole COMPRESSION-PUMPING SYSTEM COMPRISING AN ALTERNATING COMPRESSION SECTION AND A METHOD THEREOF
US6773235B2 (en) 1999-12-31 2004-08-10 Shell Oil Company Rotodynamic multi-phase flow booster pump
FR2920817B1 (en) 2007-09-11 2014-11-21 Total Sa INSTALLATION AND PROCESS FOR PRODUCING HYDROCARBONS
EP2093429A1 (en) * 2008-02-25 2009-08-26 Siemens Aktiengesellschaft Compressor unit
NO328277B1 (en) 2008-04-21 2010-01-18 Statoil Asa Gas Compression System
NO331264B1 (en) * 2009-12-29 2011-11-14 Aker Subsea As System and method for controlling a submarine located compressor, and using an optical sensor thereto
NO20150759A1 (en) * 2015-06-11 2016-10-24 Fmc Kongsberg Subsea As Load-sharing in parallel fluid pumps
CA2989292A1 (en) * 2015-07-10 2017-01-19 Aker Solutions As Subsea pump and system and methods for control
NO339736B1 (en) * 2015-07-10 2017-01-30 Aker Subsea As Subsea pump and system and methods for control
US10208745B2 (en) * 2015-12-18 2019-02-19 General Electric Company System and method for controlling a fluid transport system
IT201700109469A1 (en) * 2017-09-29 2019-03-29 Gas And Heat S P A PROCEDURE AND SUPPLY DEVICE FOR LIQUEFIED AND SIMILAR GASES
US20230021491A1 (en) * 2021-07-23 2023-01-26 Hamilton Sundstrand Corporation Displacement pump pressure feedback control and method of control

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3568771A (en) * 1969-04-17 1971-03-09 Borg Warner Method and apparatus for lifting foaming crude by a variable rpm submersible pump
FR2551804B1 (en) * 1983-09-12 1988-02-05 Inst Francais Du Petrole DEVICE FOR USE IN PARTICULAR FOR PUMPING A VERY VISCOUS FLUID AND / OR CONTAINING A SIGNIFICANT PROPORTION OF GAS, PARTICULARLY FOR THE PRODUCTION OF OIL
GB2215408B (en) * 1988-02-29 1991-12-11 Shell Int Research Method and system for controlling the gas-liquid ratio in a pump
FR2642539B1 (en) * 1989-02-02 1995-12-08 Inst Francais Du Petrole DEVICE FOR REGULATING AND DAMPING A POLYPHASIC FLOW AND ITS APPLICATION
US5108264A (en) * 1990-08-20 1992-04-28 Hewlett-Packard Company Method and apparatus for real time compensation of fluid compressibility in high pressure reciprocating pumps

Also Published As

Publication number Publication date
DK0549439T3 (en) 1996-07-22
NO178906C (en) 1996-06-26
NO178906B (en) 1996-03-18
BR9205160A (en) 1993-08-17
FR2685738B1 (en) 1995-12-08
MX9207521A (en) 1994-06-30
CA2086298A1 (en) 1993-06-28
US5393202A (en) 1995-02-28
FR2685738A1 (en) 1993-07-02
NO925006L (en) 1993-06-28
EP0549439A1 (en) 1993-06-30
NO925006D0 (en) 1992-12-23
CA2086298C (en) 2004-06-08

Similar Documents

Publication Publication Date Title
EP0549439B1 (en) Method and apparatus for optimising the transport of multiphase flows by pumping
CA2699203C (en) Hydrocarbon production plant and process
FR2730767A1 (en) METHOD AND DEVICE FOR REGULATING A POLYPHASE PUMPING ASSEMBLY
CA2282875C (en) Gas-injection piping method for hydrocarbon-producing well
CA1262483A (en) Method and device for pumping a highly viscous liquid
EP0243284B1 (en) Artificial kidney with a device for controlling the volumes of fluids flowing trough the dialysate circuit
EP0843644B1 (en) Process for the recovery of steam emitted in a liquid distribution plant
FR2508322A1 (en) DEVICE AND METHOD FOR THE ACCURATE DETERMINATION OF LIQUIDS INTENDED FOR DELIVERY TO A PATIENT
FR2740215A1 (en) METHOD AND DEVICE FOR MEASURING A PARAMETER OF A VARIABLE DENSITY FLUID
CA2086297C (en) Process for optimizing the control and the modulation of a multiphase flow and device thus obtained
FR2764063A1 (en) INSTALLATION AND METHOD FOR DETERMINING THE LEVEL AND DENSITY OF A LIQUID IN A TANK, BY MEANS OF A SINGLE SUBMERSIBLE BOILING ROD
CA2282872C (en) Piping method for hydrocarbon product device between production means and treatment facilities
EP1723336B1 (en) Cryogenic fluid pumping system
FR2685737A1 (en) Method and device making it possible to optimise the transfer of poly-phase effluents by pumping
FR2772915A1 (en) METHOD AND DEVICE FOR POLYPHASE FLOWMETRY
CH693338A5 (en) Recovery process devapeurs issued during a deliquide distribution.
EP2884110B1 (en) Control process to minimise electrical energy consumption of a pump equipment
WO2016007573A1 (en) System and method for control and optimization of pcp pumped well
FR2946704A1 (en) METHOD FOR REDUCING LOAD LOSS OF FLOW FLUID IN A CONDUIT WHILE TAKING INTO ACCOUNT THE DEGRADATION OF TRAINING REDUCERS.
WO1990008585A1 (en) Device for regulating and reducing a polyphasic flow, and its use
EP0989306A1 (en) Compression-pumping system with alternate operation of the compression section and its related process
FR2647546A1 (en) METHOD FOR CONTROLLING BLOOD ULTRAFILTRATION IN AN ARTIFICIAL KIDNEY AND DEVICE FOR IMPLEMENTING SAID METHOD
WO2012168614A2 (en) Method for determing the complex response of a permeable stratum
FR2976031A1 (en) Method for transporting liquid e.g. oil effluent from oil well, involves determining characteristics selected from geometry of pipe, and transporting liquid flow in pipe according to geometry of pipe and/or determined flow rate
BE1012720A3 (en) Method for retrieving vapours emitted during liquid dispensing

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DK FR GB NL

17Q First examination report despatched

Effective date: 19940729

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DK FR GB NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960314

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20091229

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20091224

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20091231

Year of fee payment: 18

Ref country code: FR

Payment date: 20091023

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20110701

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101218

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110701