EP0548761B1 - Drosselvorrichtung - Google Patents

Drosselvorrichtung Download PDF

Info

Publication number
EP0548761B1
EP0548761B1 EP92121351A EP92121351A EP0548761B1 EP 0548761 B1 EP0548761 B1 EP 0548761B1 EP 92121351 A EP92121351 A EP 92121351A EP 92121351 A EP92121351 A EP 92121351A EP 0548761 B1 EP0548761 B1 EP 0548761B1
Authority
EP
European Patent Office
Prior art keywords
bristles
throttle device
bars
throttle
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92121351A
Other languages
English (en)
French (fr)
Other versions
EP0548761A2 (de
EP0548761A3 (en
Inventor
Hans-Werner Dr.-Ing. Roth
Rolf Dipl.-Ing. Fichter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LTG Lufttechnische GmbH
Original Assignee
LTG Lufttechnische GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LTG Lufttechnische GmbH filed Critical LTG Lufttechnische GmbH
Publication of EP0548761A2 publication Critical patent/EP0548761A2/de
Publication of EP0548761A3 publication Critical patent/EP0548761A3/de
Application granted granted Critical
Publication of EP0548761B1 publication Critical patent/EP0548761B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/75Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity for maintaining constant air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise

Definitions

  • the invention relates to a ventilation throttle device which has a throttle body.
  • An air throttle device is known from the Swiss patent 501 879, which has a nail bed that forms a displacement body with a certain resistance coefficient. As a result, the air flow noise is reduced, in particular in the area of air deflections.
  • the invention has for its object to provide a throttle device of the type mentioned, which is flexible in its assembly on the Construction site can be adapted to the existing individual conditions.
  • the position adjustment enables the pressure loss coefficient to be set optionally.
  • the setting is made by adjusting the holding element. Once the setting has been made, the desired pressure loss coefficient is fixed. If - depending on the currently desired operating parameters - an adjustment is made during operation, i.e. the respective position or position of the web arrangement is changed - depending on the desired operating point - this can be used to solve control or regulation tasks, for example.
  • the bristles are arranged in rows next to one another.
  • the individual bristles are preferably arranged approximately parallel to one another.
  • the throttle body is provided with bristles in such a way that, viewed in the direction of flow, a plurality of bristles lie one behind the other. This leads to rows of bristles arranged in several stages, which, depending on the position of the air flow to be throttled, lead to a corresponding pressure loss coefficient, do not tend to clog due to dirt and have noise damping properties similar to the known nonwoven fabrics.
  • the bristles are held at one end in a holding element and that the other end of the bristles in each case forms a free end.
  • both ends of the bristles are each fastened to a holding element or to a common holding element.
  • the “self-cleaning effect” is improved if the volume flow to be throttled flows across the bristles transversely to their longitudinal extent.
  • the inflow forms an acute angle with the longitudinal extension of the bristles. With this configuration, the bristles are hardly prone to contamination.
  • the inflow preferably takes place in such a way that it first meets the held or clamped end of the bristles and only then — viewed in the direction of flow — the free end of the bristles.
  • the bristles can preferably be held by a clamping device, in particular a clamping strip, preferably at one end.
  • the throttling bristles depending on the desired pressure loss coefficient and / or the desired design — are arranged one after the other or in several stages in the flow direction.
  • the multistage can either result continuously, as viewed in the direction of flow, a plurality of bristles are arranged one behind the other, or bristle groups spaced apart from one another in the direction of flow are provided (e.g. in the form of tufts).
  • a relatively large pressure loss coefficient results if the free end regions of adjustable, in particular pivotable, bristles in the adjusting end region come into contact with an air flow limiting wall or the like in such a way that the bristles compress, in particular bend.
  • the bristles are preferably made of plastic or metal wires. Polyethylene, brass or stainless steel have proven themselves as the material for the bristles.
  • the cross section of the bristles is preferably circular.
  • the bristles form a choke brush, ie the choke body has a brush-like appearance. If the throttle body is a row of bristles or a row of bristle tufts has, the throttle brush assumes an approximately comb-like appearance.
  • the bristles can also form a conical throttle element, the cone tip of which is flowed against by the air flow.
  • the throttle brush has two rows of bristles, there is an approximately double-comb-like structure.
  • the two rows of bristles preferably enclose a downstream angle which is ⁇ 180 °.
  • the inflow takes place in such a way that the air flow first hits the tip of the said angle and only then hits the free ends of the bristles further downstream.
  • the bristles form a bristle screw, i. H. they meet a helical bristle structure.
  • the throttle device is arranged on the inner wall of a tube forming an air guiding device.
  • a brush assembly in the tube, which serves as a throttle element or to increase the pressure loss for pressure compensation in a duct system or the like is used.
  • the air guiding device can be designed as a rigid or flexible folded spiral-seam tube, the throttle device preferably being fastened in the fold within the spiral-folded spiral tube, preferably the bristles or the like fastened, in particular clamped, with their one ends in the fold.
  • the throttle device can extend at least over a partial length of the air guiding device and / or have a correspondingly selected web length of the web arrangement forming the throttle device.
  • the throttle device can preferably be arranged upstream of an air outlet, in particular a slot outlet. This means that they are upstream to the Air outlet is. Slot outlets in particular have only a very low pressure drop. In order to adjust the amount of air precisely, for example in the case of adjacent outlets, it may be necessary to increase the outlet loss. So far, a "fixed resistance" has been installed upstream of the air outlets for this purpose, which is designed as a piece of pipe with perforated plate. According to the invention, instead of this perforated plate, the throttle device can now be used, which, among other things, has optimal acoustic properties, in particular if it is - as described - arranged at a distance upstream of the outlet.
  • FIGS 1 -33 show different embodiments of throttle devices 1 and throttle body 2 of throttle devices 1 for setting a gas, in particular air volume flow.
  • the pressure loss coefficient D desired for the respective application can be achieved by a web arrangement 30.
  • webs or bristles can also be used instead of webs.
  • FIG. 1 shows a throttle body 2, which is guided by an air guide device, not shown, for. B. an air duct is surrounded, and is acted upon by supply air (arrow 3).
  • the throttle body 2 has a rod-shaped holding element 4, on which bristles 5 are arranged in rows next to one another, which form a web arrangement 30. Several adjacent bristles 5 are combined to form bristle tufts 6, so that a row of bristle tufts 7 is formed along the longitudinal extent of the holding element 4.
  • the rod-shaped holding element 4 extends transversely, in particular perpendicularly to the direction of flow (arrow 3) of the supply air. Alternatively, however, it is also possible for the longitudinal extent of the holding element 4 and the flow direction (arrow 3) of the supply air to form an angle which deviates from 90 °.
  • the bristles 5 are flowed against transversely to their longitudinal extent by the volume flow to be throttled (arrow 3).
  • the direction of the volume flow (arrow 3) with the longitudinal extension of the bristles 5 enclose an acute angle ⁇ , that is to say that the supply air - viewed in the direction of the flow - firstly faces the holding element 4 End regions of the bristles 5 and only then strokes the free ends 8 of the bristles 5 that are not clamped.
  • the bristles are preferably made of plastic or metal wire.
  • plastic or metal wire In particular, polyethylene, brass or stainless steel are considered as materials.
  • the throttle body of FIG. 1 forms a flat element which is comparable in shape to a comb-like throttle brush 9, spatial elements, for. B. rotationally symmetrical elements, conceivable.
  • the throttle body 2 is a rotationally symmetrical element which has a conical shape.
  • the bristles 5 of this throttle body 2 can either only form a conical area; however, it is also possible that - depending on the desired pressure loss coefficient D - the wall thickness is increased. This can go as far as a full cone.
  • the individual bristles 5 are fastened in the region of the cone tip 10 by means of a holding element, not shown, so that the bristles are clamped at one end and free at the other end.
  • the inflow with the air flow to be throttled takes place - according to arrow 3 - on the cone tip 10.
  • FIG. 3 shows a throttle body 2 in an air guiding device designed as a rectangular duct is arranged.
  • the throttle body 2 which is provided with a web arrangement (30), consists of a rod-shaped holding element 4, which is provided on both sides with bristles 5, which - according to FIG. There is therefore a type of double-chamber throttle brush 12.
  • the rod-shaped holding element 4 extends parallel to the upper or lower wall 13 of the rectangular channel 11; the bristles 5 run essentially parallel to the side walls 14 of the rectangular duct 11.
  • the throttle devices 1 are formed in one or more stages.
  • Multi-stage means that a plurality of bristles 5 or rows of bristles and / or tufts of bristles - as seen in the direction of flow - are arranged one behind the other.
  • several throttle bodies 2 can be passed one behind the other by the volume flow to be throttled.
  • the exemplary embodiment in FIG. 6 shows a throttle device 1 which, as an air guiding device, has a channel 15 with a circular cross section.
  • the throttle body 2 is designed in accordance with the throttle body 2 of the exemplary embodiment in FIG. 3. There is, however, the difference that the bristles 5 of the web arrangement 30 do not all have the same length, but rather - towards the sides - have a shorter length corresponding to the cross-sectional contour of the air guiding device.
  • FIG. 7 shows a side view of the arrangement according to FIG. 6.
  • the rows of bristles form an angle ⁇ on both sides of the holding element, which is ⁇ than 180 °.
  • FIG. 8 shows an exemplary embodiment with an air guiding device which is circular in cross section and a throttle body 2 designed as a cone.
  • the cone tip 10 is located in the center of the channel 15.
  • a throttle body 2 in which the bristles 5 of the web arrangement 30 are arranged in a helical manner, i. that is, there is a bristle screw 16.
  • the desired pressure loss coefficient D is set.
  • the pressure loss coefficient D can be adjusted, in which the throttle body 2 is adjustable, so that - depending on the position - one corresponding pressure loss coefficient can be brought about.
  • ventilation technology z. B. controls or regulations of air volume flows possible.
  • FIG. 11 there is an air guiding device with a rectangular cross section (rectangular duct 11).
  • the arrangement corresponds to the exemplary embodiment in FIG. 5.
  • the holding element 4 is rotatably mounted (arrow 17), so that the bristles 5 of the throttle body 2 can be pivoted.
  • the associated pressure loss coefficient D is set.
  • An open position of the throttle body 2 is shown in FIG.
  • the closed position is shown in FIG.
  • the bristles 5 have a length that is greater than the distance between the upper and lower wall 13 of the Rectangular channel 11 is, so that in the closed position there is bending.
  • the bristles 5 bundle, as a result of which the pressure loss coefficient D increases.
  • the plastic bristle in particular, it is ensured that it springs back into its old shape / position again and again. This is also the case with spring wire.
  • FIG. 13 shows the top view of the exemplary embodiment in FIG. 12.
  • FIGS. 14 to 16 show an embodiment which corresponds to the embodiment of FIGS. 3 and 4. However, there is an angle ⁇ between the rows of bristles that is not ⁇ 180 ° but 180 °.
  • the individual positions of the throttle body 2 in FIGS. 14-16 correspond to the positions of the throttle body 2 in FIGS. 11-13.
  • FIG. 17 shows a conical throttle body 2 which can be displaced longitudinally in or against the direction of flow (arrow 3) by suitable means, not shown, within the air guiding device 18.
  • a throttle cross section 19 of the air guiding device 18 can be more or less closed due to the conical shape of the throttle body 2, whereby the desired pressure loss coefficient D can be set.
  • the curve 22 (dashed line) in FIG. 19 shows the dependence of the pressure loss coefficient D on the angle of rotation ⁇ of a throttle device 1 according to FIG 20 to 22.
  • the throttle body 2 is designed as a combination flap 23, ie a part provided with bristles 5 and a conventional, air-impermeable flap leaf 24 are provided.
  • the bristles 5 and the flap leaf 24 make an angle ⁇ between them.
  • the arrangement is such that when the throttle body 2 is closed, the bristles 5 initially - as shown in FIG. 21 - step against the air guiding device, as a result of which the pressure loss coefficient D increases in accordance with curve 22. This takes place approximately up to the end point of curve 21.
  • FIGS. 23-25 show air outlets 26 provided with outlet rails 25.
  • Each outlet rail 25 has an air guide roller 26.
  • a throttle device 1 with a web arrangement 30 is arranged in the feed to the outlet rail 25, and its design corresponds to the configuration according to the invention with bristles 5.
  • the throttle body 2 is arranged directly upstream of the respective outlet rail 25. This improves the flow against the air guide roller 26 and the distribution over the outlet length.
  • the throttle bodies enable 2 a reduction in the number of connection pieces for the supply of the supply air, which saves assembly costs and also material costs. Due to the design of the throttle body 2 according to the invention, the throttle noises are very strongly damped so that the noises do not "shine through", which is often the case with conventional air outlets, in particular air outlets with an outlet rail.
  • FIG. 26 shows a low-noise swirl generator 27. This can be installed in a very compact housing and can also be flowed at in a non-uniform manner. Due to the design of the throttle body 2 according to the invention, this is nevertheless without adverse effects on the flow noise.
  • the throttle valve 2 is helical.
  • FIG. 27 shows a swirl generator 27 which has air guide vanes 28 which are designed in the form of circular sections. According to the invention, they have bristles 5 which, for example, can be clamped at one end in corresponding holding elements 4.
  • the arrangement of the air guide vanes 28 is provided in the manner of a propeller. Due to the inventive design of the throttle valve 2 forming air guide vanes 28 pronounced separation areas are prevented by incorrect flow, so that extremely quiet operation is possible.
  • the brush-shaped throttle body 2 combine the advantages of a low-noise Throttling with low maintenance or freedom from maintenance and low manufacturing costs.
  • FIGS. 28 to 31 show exemplary embodiments of throttle bodies 2 which have webs 31 which form the web arrangement 30 instead of the bristles of the previous exemplary embodiments.
  • These exemplary embodiments of the throttle body 2 can be used in the case of throttle devices 1 in accordance with the exemplary embodiments shown in the course of this application instead of the bristles provided there.
  • webs 31 are provided which have the same lengths and the same widths and also the same gap widths between them.
  • the webs 31 are preferably designed as sheet metal webs.
  • brass or a stainless steel is preferably used as the material.
  • the throttle bodies 2 provided with webs 31 it is also possible for the throttle bodies 2 provided with webs 31 to be made of plastic, preferably of polyethylene.
  • the webs 31 have different shapes.
  • the lengths of the webs 31 are different and also their widths.
  • the gaps between adjacent webs 31 are of different sizes.
  • the individual webs 31 can also have an irregular shape, that is to say they are pointed, for example to or are provided with curvatures and the like.
  • the webs 31 are preferably formed in one piece with a holding element 4 (transverse web).
  • the throttle bodies 2 of the exemplary embodiments in FIGS. 28 and 29 form throttle brushes which have a comb-like shape.
  • two throttle bodies 2 provided with webs 31 are arranged one behind the other, so that a multi-stage throttle device is formed. Both throttle brushes 9 together form the web arrangement 30.
  • angular throttle bodies 2 can also be formed, that is to say two comb-like throttle bodies provided with webs 31 preferably hang together in one piece on their lower edge of the holding element 4 and are bent there at an angle to one another.
  • This configuration corresponds to the configuration according to FIG. 7, but webs 31 are provided instead of the bristles shown there.
  • a sheet metal strip can be provided with the webs 31 by punching and then bent accordingly by folding.
  • FIG. 32 shows a source air outlet 35 which is designed as a linear outlet element.
  • the supply air (arrow 3) enters air inlet connection 36 a, which open into an air distribution box 37.
  • the air distribution box 37 has a slot 38.
  • bristles 5 of a throttle body 2 are arranged, which at least partially cover the slot and throttle the air escaping there.
  • the free ends of the bristles 5 face an angled sheet metal wall 39 of the other slot boundary wall.
  • the rear wall 40 of the air distribution box 37 extends beyond the plane of the slot 38.
  • the arrows drawn there represent the air outlet.
  • the air outlet openings 41 are of such a size that they expose more than 40% of the cover area. Because of the bristles 5, an excellent air distribution along the outlet is achieved.
  • a further displacement air outlet 35 is shown in three different views. It has a cuboidal air distribution box 37, into which an air inlet connection 36 opens.
  • the air distribution box 37 is provided with a plurality of slots 38 running parallel to one another, a sheet metal wall 39 preferably being angled vertically from one slot side. Bristles 5 extend from the other slot side, which partially or completely cover the respective slot 38, so that the throttle body 2 is formed there.
  • a cover 42 can also be provided, as in the exemplary embodiment in FIG. 32, which covers the slots 38 and which is provided with air outlet openings 41 which expose an exit surface> 40% of the cover surface.
  • the row of brushes (bristles 5) are very easily accessible after removing the cover 42. Because of the bristles, a good, even speed distribution of the outflowing air is achieved. Furthermore, the construction of the exemplary embodiment in FIG. 33 enables the displacement air outlet 35 to have a very low overall height.
  • FIG. 34 shows an air guiding device 50, which is designed as a tube 51 and carries a throttle device 1 inside (FIG. 35).
  • the tube 51 is a rigid spiral-seam tube 51 'which is spirally wound from flat strip, the edges 52 being folded and thereby connected to one another.
  • Such folds 53 can be seen in FIGS. 36 and 37.
  • open or closed beads 54 can be formed between the folds 53.
  • FIG. 35 shows a cross section through the spiral seam tube 51 'according to FIG. 34.
  • the throttle device 1 is designed as bristles 5, which are fixed at one end to the inside of the spiral seam tube 51' and project approximately radially inwards.
  • the bristles 5 are preferably fastened in the fold 53, as can be seen from FIGS. 36 and 37. This results in a helical brush inside the tube 51 is formed.
  • the bristles 5 are preferably jammed in the fold 53.
  • the length of the bristles and the formation of the brush formed in this way over the length of the tube is selected as a function of the desired pressure loss coefficient.
  • an air guiding device 50 designed with a throttle device 1 can be connected to a connecting piece 55 of an air outlet 56.
  • the air outlet 56 is preferably a slot outlet.
  • the air guide device 55 is designed as a flexible tube, in particular as a flexible hose 57. Instead of this, for example, a rigid spiral duct can also be used. It is essential that a throttle device 1 is connected upstream of this connection to the air outlet 56 to increase the pressure loss in order to, for. B. to achieve a desired pressure balance.
  • Figures 39 and 40 illustrate that the air guide device 50 can be installed in the desired manner, even with strong curvatures, when it is designed as a flexible hose 57.
  • Figures 41 and 42 show longitudinal sections through the wall of flexible hoses which are spirally wound from band sections and folded at the edges 52 (folds 53). Bristles 5 of a throttle device 1 are clamped into the folds 53.
  • the exemplary embodiment in FIG. 41 is a fold 53 which is realized on an inner layer 58 of the flexible hose 57.
  • the inner layers 58 and outer layers 59 of the flexible hose 57 are alternately connected to one another by folds.
  • the corresponding ends of the bristles or webs or the like are clamped into the fold pocket formed in each case. It is of course also possible to glue the bristles additionally or exclusively in the folding pocket.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Air-Flow Control Members (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Shovels (AREA)

Description

  • Die Erfindung betrifft eine lufttechnische Drosselvorrichtung, die einen Drosselkörper aufweist.
  • Eine lufttechnische Drosselvorrichtung ist aus der schweizerischen Patentschrift 501 879 bekannt, die ein Nagelbett aufweist, das einen Verdrängungskörper mit einem bestimmten Widerstandsbeiwert bildet. Hierdurch werden insbesondere im Bereich von Luftumlenkungen die Luftströmungsgeräusche reduziert.
  • Aus der europäischen Patentanmeldung 0 032 447 geht eine Drosselvorrichtung hervor, bei der Fäden in Abhängigkeit von der Stärke der Luftströmung durchgebogen werden. Auf diese Art und Weise verändert sich selbständig der Druckverlustbeiwert in Abhängigkeit des Grades der Durchbiegung.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Drosselvorrichtung der eingangs genannten Art zu schaffen, die flexibel bei ihrer Montage auf der Baustelle den vorliegenden individuellen Verhältnissen angepaßt werden kann.
  • Hierzu ist erfindungsgemäß vorgesehen, daß sie eine einen festen und somit vom Luftvolumenstrom unabhängigen Druckverlustbeiwert aufweisende Steganordnung besitzt, welche zur Einstellung des Druckverlustbeiwertes von einem Halteelement in vorbestimmter, einstellbarer Stellung gehalten ist. Durch die Lageverstellung ist eine wahlweise Einstellung des Druckverlustbeiwertes möglich. Die Einstellung erfolgt durch Verstellen des Halteelements. Ist die Einstellung erfolgt, so ist dadurch der gewünschte Druckverlustbeiwert fest vorgegeben. Sofern -je nach den momentan gewünschten Betriebsparameternwährend des Betriebs eine Verstellung erfolgt, das heißt, die jeweilige Lage beziehungsweise Stellung der Steganordnung wird -je nach dem angestrebten Betriebspunkt- verändert, so lassen sich hierdurch zum Beispiel Steuerungs- oder Regelungsaufgaben lösen.
  • Bei einer Weiterbildung der Erfindung ist vorgesehen, daß die Borsten reihenförmig nebeneinander angeordnet sind. Vorzugsweise sind die einzelnen Borsten etwa in paralleler Ausrichtung zueinander angeordnet.
  • Möglich ist es jedoch auch, daß mehrere benachbarte Borsten jeweils ein Borstenbüschel bilden, wobei die einzelnen Borstenbüschel reihenförmig nebeneinander angeordnet sind. Dies führt zur Bildung einer Borstenbüschelreihe.
  • Nach einer bevorzugten Ausführungsform ist der Drosselkörper derart mit Borsten versehen, daß -in Strömungsrichtung gesehen- mehrere Borsten jeweils hintereinander liegen. Dies führt quasi zu mehrstufig angeordneten Borstenreihen, die je nach Stellung zum zu drosselnden Luftstrom zu einem entsprechenden Druckverlustbeiwert führen, nicht zum Zusetzen aufgrund von Verschmutzungen neigen und Geräuschdämpfungseigenschaften ähnlich der bekannten Faservliese besitzen.
  • Vorzugsweise ist vorgesehen, daß die Borsten an einem Ende in einem Halteelement gehalten sind und daß das andere Ende der Borsten jeweils ein freies Ende bildet. Alternativ ist es auch möglich, daß beide Enden der Borsten jeweils an einem Halteelement oder an einem gemeinsamen Halteelement befestigt sind.
  • Der "Selbstreinigungseffekt" wird verbessert, wenn die Borsten quer zu ihrer Längserstreckung vom zu drosselnden Volumenstrom angeströmt werden. Insbesondere bildet die Anströmung mit der Längserstreckung der Borsten einen spitzen Winkel. Bei dieser Ausgestaltung neigen die Borsten kaum zur Verschmutzung. Vorzugsweise erfolgt die Anströmung derart, daß sie zunächst auf das gehaltene bzw. eingespannte Ende der Borsten und erst dann -in Strömungsrichtung gesehen- auf das freie Ende der Borsten trifft.
  • Vorzugsweise können die Borsten von einer Klemmeinrichtung, insbesondere einer Klemmleiste, vorzugsweise an einem Ende gehalten werden.
  • Nach einem weiteren Ausführungsbeispiel ist vorgesehen, daß die drosselnden Borsten -je nach gewünschtem Druckverlustbeiwert und/oder gewünschter Bauform- einstufig oder in Strömungsrichtung mehrstufig hintereinander liegend angeordnet sind. Die Mehrstufigkeit kann sich entweder kontinuierlich ergeben, indem -in Strömungsrichtung gesehen- eine Vielzahl von Borsten hintereinander liegend angeordnet sind oder es sind voneinander in Strömungsrichtung beabstandet angeordnete Borstengruppen (z. B. in Büschelform) vorgesehen.
  • Ein relativ großer Druckverlustbeiwert ergibt sich, wenn die freien Endbereiche verstellbarer, insbesondere verschwenkbarer Borsten im Verstellendbereich derart gegen eine Luftstrombegrenzungswand oder dergl. treten, daß sich die Borsten verdichten, insbesondere durchbiegen.
  • Die Borsten bestehen vorzugsweise aus Kunststoff- oder Metalldrähten. Als Material für die Borsten haben sich Polyäthylen, Messing oder nichtrostender Stahl bewährt. Der Querschnitt der Borsten ist vorzugsweise kreisförmig ausgebildet.
  • Nach einem bevorzugten Ausführungsbeispiel bilden die Borsten eine Drosselbürste, d. h. der Drosselkörper besitzt ein bürstenförmiges Aussehen. Sofern der Drosselkörper eine Borstenreihe bzw.eine Borstenbüschelreihe aufweist, nimmt die Drosselbürste ein etwa kammartiges Aussehen an.
  • Alternativ können die Borsten auch ein kegelförmiges Drosselelement bilden, dessen Kegelspitze vom Luftstrom angeströmt wird.
  • Sofern die Drosselbürste zwei Borstenreihen aufweist, liegt ein etwa doppelkammartiges Gebilde vor. Vorzugsweise schließen die beiden Borstenreihen einen stromabseitigen Winkel ein, der < 180° ist. Die Anströmung erfolgt derart, daß der Luftstrom zunächst auf die Spitze des genannten Winkels trifft und erst dann auf die weiter stromabseitig liegenden freien Enden der Borsten trifft.
  • Nach einem weiteren Ausführungsbeispiel ist vorgesehen, daß -in Strömungsrichtung betrachtet- die Borsten eine Borstenschnecke bilden, d. h. sie treffen auf ein wendelförmiges Borstengebilde.
  • Vorzugsweise kann vorgesehen sein, daß die Drosselvorrichtung an der Innenwandung eines eine Luftführungseinrichtung bildenden Rohrs angeordnet ist. Auf diese Art und Weise ist es möglich, z. B. eine Bürstenanordnung im Rohr unterzubringen, welche als Drosselelement dient oder zur Erhöhung des Druckverlustes zum Druckabgleich in einem Kanalsystem oder dergleichen Verwendung findet.
  • In der Lufttechnik werden sehr häufig Wickelfalzrohre eingesetzt. Diese werden aus Flachband spiralig gewickelt und an den Rändern gefalzt, so daß eine luftdichte bzw. im wesentlichen luftdichte Verbindung erfolgt. Nach einem bevorzugten Ausführungsbeispiel der Erfindung kann die Luftführungseinrichtung als starres oder flexibles Wickelfalzrohr ausgebildet sein, wobei die Drosselvorrichtung vorzugsweise im Falz innerhalb des Wickelfalzrohres befestigt, vorzugsweise die Borsten oder dergleichen mit ihren einen Enden im Falz befestigt, insbesondere eingeklemmt, ist bzw. sind. In Abhängigkeit von dem gewünschten Druckverlustbeiwert kann sich die Drosselvorrichtung mindestens über eine Teillänge der Luftführungseinrichtung erstrecken und/oder über eine entsprechend gewählte Steglänge der die Drosselvorrichtung bildende Steganordnung verfügen. Je länger die Borsten sind, um so größer ist der Strömungswiderstand; je länger sich die Drosselvorrichtung entlang der Strömungsrichtung in der Luftführungseinrichtung erstreckt, um so größer ist der Druckverlust. Das Befestigen der vorzugsweise als Borsten ausgebildeten Steganordnung im Falz von Wickelfalzrohren führt zur Ausbildung einer Bürste auf einer Schraubenlinie im Innern der Luftführungseinrichtung. Zusätzliche Mittel zur Befestigung der Drosselvorrichtung müssen dann nicht vorgesehen werden. Es ist jedoch auch möglich, die Drosselvorrichtung (Borsten bzw. eine Bürste oder mehrere Bürsten) separat auf den Innenmantel des Rohres oder dergleichen zu befestigen, also nicht in den Falz mit einzuarbeiten.
  • Die Drosselvorrichtung kann vorzugsweise einem Luftauslaß, insbesondere einem Schlitzauslaß, vorgeordnet sein. Dies bedeutet, daß sie stromauf zum Luftauslaß liegt. Insbesondere Schlitzauslässe haben nur einen sehr geringen Druckverlust. Zur genauen Einstellung der Luftmenge, beispielsweise bei benachbarten Auslässen, kann es erforderlich sein, den Auslaßverlust zu erhöhen. Bisher hat man zu diesem Zweck den Luftauslässen einen "Festwiderstand" vorgeschaltet, der als Rohrstück mit Lochblech ausgebildet ist. Erfindungsgemäß kann anstelle dieses Lochblechs nunmehr die Drosselvorrichtung zur Anwendung kommen, die u.a. optimale akustische Eigenschaften besitzt, insbesondere wenn sie -wie beschrieben- mit Abstand stromauf zum Auslaß angeordnet ist.
  • Weitere vorteilige Ausgestaltungen ergeben sich aus den Unteransprüchen.
  • Die Zeichnung veranschaulicht die Erfindung anhand mehrerer Ausführungsbeispiele, und zwar zeigt:
  • Figur 1
    eine Drosselvorrichtung gemäß einem ersten Ausführungsbeispiel,
    Figur 2
    eine Drosselvorrichtung nach einem weiteren Ausführungsbeispiel,
    Figur 3
    eine Drosselvorrichtung in einem eckigen Luftkanal,
    Figur 4
    die Drosselvorrichtung der Fig. 3 in Seitenansicht,
    Figur 5
    eine weitere Ausführungsform einer Drosselvorrichtung in einem eckigen Luftkanal,
    Figur 6
    eine Drosselvorrichtung in einem Luftkanal mit kreisförmigem Querschnitt,
    Figur 7
    die Drosselvorrichtung der Figur 6 in Seitenansicht,
    Figur 8
    ein weiteres Ausführungsbeispiel einer Drosselvorrichtung in einem Luftkanal mit kreisförmigem Querschnitt,
    Figur 9
    die Darstellung der Figur 8 in Seitenansicht,
    Figur 10
    ein Ausführungsbeispiel mit schneckenförmig gestalteter Drosselvorrichtung,
    Figur 11
    eine verstellbare Drosselvorrichtung in Offenstellung,
    Figur 12
    die Drosselvorrichtung der Figur 11 in geschlossener Stellung,
    Figur 13
    eine Draufsicht auf die Drosselvorrichtung der Figur 12,
    Figur 14
    ein weiteres Ausführungsbeispiel einer Drosselvorrichtung in Offenstellung,
    Figur 15
    die Drosselvorrichtung der Figur 14 in Schließstellung,
    Figur 16
    eine Draufsicht auf die geschlossene Drosselvorrichtung der Figur 15,
    Figur 17
    ein weiteres Ausführungsbeispiel einer kegelförmigen Drosselvorrichtung in offenstellung,
    Figur 18
    das Ausführungsbeispiel der Figur 17 in geschlossener Stellung,
    Figur 19
    ein Diagramm,
    Figur 20
    eine Drosselvorrichtung mit Kombi-Drosselkörper in Offenstellung,
    Figur 21
    das Ausführungsbeispiel der Figur 20 in Zwischenstellung,
    Figur 22
    die Drosselvorrichtung der Figur 20 in Schließstellung,
    Figur 23 bis 25
    mit Drosselvorrichtungen versehene Auslaßschienen,
    Figur 26
    einen Drallauslaß mit schneckenförmiger Drosselvorrichtung,
    Figur 27
    ein Ausführungsbeispiel eines weiteren Drallauslasses,
    Figur 28
    eine mit Stegen versehende Steganordnung, die den Drosselkörper einer Drosselvorrichtung bildet,
    Figur 29
    ein Drosselkörper nach einem anderen Ausführungsbeispiel,
    Figur 30
    ein weiterer Drosselkörper nach einem weiteren Ausführungsbeispiel,
    Figur 31
    ein winkelförmiger Drosselkörper, der Stege aufweist,
    Figur 32
    ein Luftauslaß, insbesondere Quelluftauslaß, mit erfindungsgemäßer Drosselvorrichtung,
    Figur 33
    drei Ansichten eines Luftauslasses, insbesondere Quelluftauslasses, mit erfindungsgemäßer Drosselvorrichtung,
    Figur 34
    eine Seitenansicht auf eine Luftführungseinrichtung mit im Innern liegender Drosselvorrichtung,
    Figur 35
    einen Querschnitt durch die Vorrichtung gemäß Figur,
    Figur 36
    eine schematische Detailansicht der Wandung der Luftführungseinrichtung gemäß Figur 34,
    Figur 37
    eine Darstellung gemäß Figur 36, jedoch nach einem anderen Ausführungsbeispiel,
    Figur 38
    einen an eine Luftführungseinrichtung angeschlossenen Schlitzauslaß,
    Figur 39,40
    als Flexschlauch ausgebildete Luftführungseinrichtungen,
    Figur 41
    eine Befestigung einer Drosselvorrichtung am Falz eines Flexschlauches und
    Figur 42
    eine Anordnung gemäß Figur 41, jedoch nach einem anderen Ausführungsbeispiel.
  • Die Figuren 1 -33 zeigen verschiedene Ausführungsbeispiele von Drosselvorrichtungen 1 bzw. Drosselkörper 2 von Drosselvorrichtungen 1 für die Einstellung eines Gas-, insbesondere Luftvolumenstroms. Je nach Ausbildung läßt sich der für den jeweiligen Anwendungsfall gewünschte Druckverlustbeiwert D durch eine Steganordnung 30 erzielen. Anstelle von Borsten können auch Stege oder anstelle von Stegen auch Borsten treten.
  • Die Figur 1 zeigt einen Drosselkörper 2, der von einer nicht dargestellten Luftführungseinrichtung, z. B. einen Luftkanal, umgeben ist, und von Zuluft (Pfeil 3) beaufschlagt wird. Der Drosselkörper 2 weist ein stabförmiges Halteelement 4 auf, an dem Borsten 5 reihenförmig nebeneinander angeordnet sind, die eine Steganordnung 30 bilden. Mehrere benachbarte Borsten 5 sind jeweils zu Borstenbüscheln 6 zusammengefaßt, so daß eine Borstenbüschelreihe 7 entlang der Längserstreckung des Halteelements 4 gebildet wird.
  • Das stabförmige Halteelement 4 erstreckt sich quer, insbesondere senkrecht zur Strömungsrichtung (Pfeil 3) der Zuluft. Alternativ ist es jedoch auch möglich, daß die Längserstreckung des Halteelements 4 und die Strömungsrichtung (Pfeil 3) der Zuluft einen Winkel einschließen, der von 90° abweicht.
  • Insbesondere ist es vorteilhaft, wenn die Borsten 5 quer zu ihrer Längserstreckung von dem zu drosselnden Volumenstrom (Pfeil 3) angeströmt werden. Gemäß Figur 1 ist vorgesehen, daß die Richtung des Volumenstroms (Pfeil 3) mit der Längserstreckung der Borsten 5 einen spitzen Winkel β einschließen, d. h., die Zuluft trifft - in Anströmungsrichtung gesehen - zunächst auf die dem Halteelement 4 zugewandten Endbereiche der Borsten 5 und streicht erst dann über die nicht eingespannten, freien Enden 8 der Borsten 5.
  • In dem beschriebenen Ausführungsbeispiel der Figur 1 und auch in den noch folgenden Ausführungsbeispielen ist vorgesehen, daß die Borsten vorzugsweise aus Kunststoff oder Metalldraht bestehen. Insbesondere kommen als Material Polyäthylen, Messing oder nichtrostender Stahl in Betracht.
  • Während der Drosselkörper der Figur 1 ein ebenes Element bildet, das in seiner Gestalt mit einer kammartigen Drosselbürste 9 vergleichbar ist, sind - gemäß Figur 2 - auch räumliche Elemente, z. B. rotationssymmetrische Elemente, denkbar. Bei dem Ausführungsbeispiel der Figur 2 handelt es sich bei dem Drosselkörper 2 um ein rotationssymmetrisches Element, das eine kegelförmige Gestalt aufweist. Die Borsten 5 dieses Drosselkörpers 2 können entweder lediglich einen Kegelmantelbereich bilden; es ist jedoch auch möglich, daß - je nach gewünschtem Druckverlustbeiwert D - die Wandstärke vergrößert ist. Dies kann bis hin zu einem Vollkegel gehen. Die einzelnen Borsten 5 sind im Bereich der Kegelspitze 10 mittels eines nicht näher dargestellten Halteelements befestigt, so daß die Borsten einendig eingespannt und anderendig frei sind. Die Anströmung mit dem zu drosselnden Luftstrom erfolgt - gemäß Pfeil 3 - auf die Kegelspitze 10.
  • Figur 3 zeigt einen Drosselkörper 2, der in einer als Rechteckkanal ausgebildeten Luftführungseinrichtung angeordnet ist. Der mit Steganordnung (30) versehene Drosselkörper 2 besteht aus einem stabförmigem Halteelement 4, das zu beiden Seiten mit Borsten 5 versehen ist, die - gemäß Figur 4 - einen Winkel θ einschließen, der < als 180° ist. Mithin liegt eine Art doppelkammerartige Drosselbürste 12 vor. Das stabförmige Halteelement 4 erstreckt sich parallel zur Ober- bzw. Unterwand 13 des Rechteckkanals 11; die Borsten 5 verlaufen im wesentlichen parallel zu den Seitenwänden 14 des Rechteckkanals 11. Die Anströmung beim Ausführungsbeispiel der Figuren 3 und 4 mit Zuluft oder dergleichen erfolgt derart, daß -gemäß Pfeil 3 - der Volumenstrom zunächst auf die eingespannten Endbereiche der Borsten 5 und dann auf die weiter stromab liegenden freien Enden 8 der Borsten 5 trifft. Die freien Enden 8 erstrecken sich vorzugsweise bis zur Ober- bzw. Unterwand 13 des Rechteckkanals. Es kann dort jedoch auch ein Abstand verbleiben, sofern dies für die Erzielung des gewünschten Druckverlustbeiwertes D erforderlich ist. Die Neigung der Borsten 5 zur Strömungsrichtung (Pfeil 3) wird ebenfalls in Abhängigkeit von dem gewünschten Druckverlustbeiwert D gewählt.
  • Gemäß dem Ausführungsbeispiel der Figur 5 ist es auch möglich, das Halteelement 4 im Bereich einer Wandung, z. B. Oberwand 13 des Rechteckkanals anzuordnen. Die Borsten 5 erstrecken sich dann über die gesamte Höhe des Rechteckkanals 11.
  • Bei den bereits beschriebenen Ausführungsbeispielen und auch noch bei den folgenden Ausführungsbeispielen ist es möglich, daß die Drosselvorrichtungen 1 ein- oder mehrstufig ausgebildet sind. Mehrstufig bedeutet, daß mehrere Borsten 5 bzw. Borstenreihen und/oder Borstenbüschel - in Strömungsrichtung gesehen - hintereinander liegend angeordnet sind. Beispielsweise können mehrere Drosselkörper 2 hintereinander liegend vom zu drosselnden Volumenstrom passiert werden.
  • Das Ausführungsbeispiel der Figur 6 zeigt eine Drosselvorrichtung 1, die als Luftführungseinrichtung einen Kanal 15 mit kreisförmigem Querschnitt aufweist. Der Drosselkörper 2 ist entsprechend dem Drosselkörper 2 des Ausführungsbeispiels der Figur 3 ausgebildet. Es besteht jedoch der Unterschied, daß die Borsten 5 der Steganordnung 30 nicht alle die gleiche Länge besitzen, sondern - zu den Seiten hin - eine kürzere Länge entsprechend der Querschnittskontur der Luftführungseinrichtung aufweisen.
  • Die Figur 7 zeigt eine Seitenansicht der Anordnung gemäß Figur 6. Auch hier schließen die Borstenreihen beiderseits des Halteelements einen Winkel Θ ein, der < als 180° ist.
  • Die Figur 8 zeigt ein Ausführungsbeispiel mit im Querschnitt kreisförmiger Luftführungseinrichtung und als Kegel ausgebildetem Drosselkörper 2. Die Kegelspitze 10 befindet sich im Mittelpunkt des Kanals 15.
  • Beim Ausführungsbeispiel der Figur 10 ist ein Drosselkörper 2 vorgesehen, bei dem die Borsten 5 der Steganordnung 30 wendelförmig angeordnet sind, d. h., es liegt eine Borstenschnecke 16 vor. Je nach Winkelstellung (Steigung) der Borsten 5 und Anzahl der Windungen der Borstenschnecke 16 stellt sich der gewünschte Druckverlustbeiwert D ein.
  • Bei den bisherigen Ausführungsbeispielen der Figuren 1 - 10 ergibt sich ein "fester" Druckverlustbeiwert D. Bei den folgenden Ausführungsbeispielen der Figuren 11 - 22 ist der Druckverlustbeiwert D einstellbar, in dem der Drosselkörper 2 verstellbar ausgebildet ist, so daß - je nach Stellung -ein entsprechender Druckverlustbeiwert herbeigeführt werden kann. In der Lufttechnik sind hierdurch z. B. Steuerungen oder Regelungen von Luftvolumenströmen möglich.
  • Beim Ausführungsbeispiel der Figur 11 liegt eine Luftführungseinrichtung mit rechteckigem Querschnitt (Rechteckkanal 11) vor. Die Anordnung entspricht dem Ausführungsbeispiel der Figur 5. Demgegenüber besteht jedoch der Unterschied, daß das Halteelement 4 verdrehbar (Pfeil 17) gelagert ist, so daß die Borsten 5 des Drosselkörpers 2 verschwenkt werden können. In Abhängigkeit der Winkelstellung der Borsten stellt sich der zugehörige Druckverlustbeiwert D ein. In der Figur 4 ist eine geöffnete Stellung des Drosselkörpers 2 wiedergegeben. In der Figur 12 liegt die Schließstellung vor. Die Borsten 5 weisen eine Länge auf, die größer als der Abstand zwischen Ober- und Unterwand 13 des Rechteckkanals 11 ist, so daß in der Schließstellung ein Durchbiegen erfolgt. Aufgrund dieser Durchbiegung bündeln sich die Borsten 5, wodurch der Druckverlustbeiwert D ansteigt. Insbesondere im Falle der Kunststoffborste ist sichergestellt, daß sie immer wieder in ihre alte Form/Position zurückfedert. Dies ist auch bei Federdraht der Fall.
  • In der Figur 13 ist die Draufsicht auf das Ausführungsbeispiel der Figur 12 dargestellt.
  • Die Figuren 14 bis 16 zeigen ein Ausführungsbeispiel, das dem Ausführungsbeispiel der Figuren 3 und 4 entspricht. Allerdings liegt zwischen den Borstenreihen ein Winkel Θ vor, der nicht < 180° ist, sondern 180° beträgt. Die einzelnen Stellungen des Drosselkörpers 2 der Figuren 14 - 16 entspricht den Stellungen des Drosselkörpers 2 der Figuren 11 - 13. Bei dem Ausführungsbeispiel der Figuren 14 - 16 liegt eine Luftführungseinrichtung mit im Querschnitt kreisförmigem Kanalquerschnitt vor; der Drosselkörper 2 ist doppelkammartig ausgebildet.
  • Das Ausführungsbeispiel der Figur 17 zeigt einen kegelförmigen Drosselkörper 2, der in - bzw. entgegen der Strömungsrichtung (Pfeil 3) längsverschieblich durch geeignete, nicht dargestellte Mittel innerhalb der Luftführungseinrichtung 18 verlagerbar ist. Je nach Stellung des Drosselkörpers 2 läßt sich ein Drosselquerschnitt 19 der Luftführungseinrichtung 18 aufgrund der Kegelform des Drosselkörpers 2 mehr oder weniger verschließen, wodurch der gewünschte Druckverlustbeiwert D einstellbar ist.
  • Wie erwähnt, kann beim Schließen der erfindungsgemäßen Drosselvorrichtungen 1 vorgesehen sein, daß sich die Borsten 5 des jeweiligen Drosselkörpers 2 bündeln, wodurch der Druckverlustbeiwert D ansteigt. Damit nimmt der Druckverlustbeiwert D jedoch nicht so stark zu, wie es z. B. bei Klappen mit luftundurchlässigem Klappenblatt erfolgt. Betrachtet man das Diagramm der Figur 19, so ist dort - mit der Kurve 20 - der Zusammenhang des Druckverlustbeiwertes D in Abhängigkeit von der Winkelstellung α des Drosselkörpers 2 dargestellt. Es sei davon ausgegangen, daß bei α = 90° die Schließstellung erreicht ist. Die Kurve 20, die eine relativ starke Krümmung aufweist, zeigt den Zusammenhang von D und α bei konventionellen Klappen mit luftundurchlässigem Klappenblatt. Mit 21 ist eine Kurve bezeichnet, die einem erfindungsgemäßen Drosselkörper 2 mit Borsten 5 entspricht. Es wird deutlich, daß die großen Werte des Druckverlustbeiwertes D nicht wie bei der luftundurchlässigen konventiellen Klappe erzielbar sind. Allerdings besteht ein etwa linearer Zusammenhang zwischen D und α. Dieser stärker lineare Zusammenhang zwischen dem Druckverlustbeiwert D und dem Verdrehwinkel α kommt Regelgeräten zugute, die dadurch stabiler und genauer arbeiten können.
  • Die Kurve 22 (Strichlinie) der Figur 19 zeigt die Abhängigkeit des Druckverlustbeiwertes D von dem Verdrehwinkel α einer Drosselvorrichtung 1 gemäß dem Ausführungsbeispiel der Figuren 20 - 22. Der Drosselkörper 2 ist als Kombi-Klappe 23 ausgebildet, d. h., es ist ein mit Borsten 5 versehenes Teil und ein konventionelles, luftundurchlässiges Klappenblatt 24 vorgesehen. Die Borsten 5 und das Klappenblatt 24 schließen einen Winkel δ zwischen sich auf. Die Anordnung ist derart getroffen, daß beim Schließen des Drosselkörpers 2 zunächst - gemäß Figur 21 - die Borsten 5 gegen die Luftführungseinrichtung treten, wodurch sich der Druckverlustbeiwert D entsprechend der Kurve 22 vergrößert. Dies erfolgt etwa bis zum Endpunkt der Kurve 21. Im Verlauf des weiteren Schließens tritt dann - im wesentlichen unter Aufhebung des Winkels δ - das Klappenblatt 24 gegen die Wandung der Luftführungseinrichtung, wodurch sich der Druckverlustbeiwert D noch weiter erhöht und schließlich einen Endwert erreicht (Kurve 22), der dem Endwert der Kurve 20 entspricht.
  • Die Figuren 23 - 25 zeigen mit Auslaßschiene 25 versehene Luftauslässe 26. Jede Auslaßschiene 25 weist eine Luftleitwalze 26 auf. In der Zuführung zur Auslaßschiene 25 ist jeweils eine Drosselvorrichtung 1 mit Steganordnung 30 angeordnet, die in ihrer Ausgestaltung der erfindungsgemäßen Ausbildung mit Borsten 5 entspricht. Der Drosselkörper 2 ist bei den Ausführungsbeispielen der Figuren 23 - 25 jeweils unmittelbar stromauf der jeweiligen Auslaßschiene 25 angeordnet. Hierdurch wird die Anströmung der Luftleitwalze 26 und die Verteilung über der Auslaßlänge verbessert. Neben dem gewünschten Druckverlust ermöglichen die Drosselkörper 2 eine Verminderung der Anzahl der Anschlußstutzen für die Zuführung der Zuluft, wodurch Montagekosten und auch Materialkosten eingespart werden. Aufgrund der erfindungsgemäßen Ausbildung der Drosselkörper 2 sind die Drosselgeräusche sehr stark gedämpft, so daß die Geräusche nicht "durchstrahlen", was bei herkömmlichen Luftauslässen, insbesondere Luftauslässen mit Auslaßschiene, oft der Fall ist.
  • Die Figur 26 zeigt einen geräuscharmen Drallerzeuger 27. Dieser kann in ein sehr kompaktes Gehäuse eingebaut und ferner ungleichförmig angeströmt werden. Aufgrund der erfindungsgemäßen Ausbildung des Drosselkörpers 2 ist dies dennoch ohne nachteilige Auswirkungen auf das Strömungsgeräusch. Der Drosselklappe 2 ist wendelförmig ausgebildet.
  • Das Ausführungsbeispiel der Figur 27 zeigt einen Drallerzeuger 27, der Luftleitschaufeln 28 aufweist, die kreisausschnittsförmig ausgebildet sind. Sie weisen erfindungsgemäß Borsten 5 auf, die beispielsweise einendig in entsprechende Halteelemente 4 eingespannt sein können. Die Anordnung der Luftleitschaufeln 28 ist nach Art eines Propellers vorgesehen. Aufgrund der erfindungsgemäßen Ausbildung der Drosselklappe 2 bildenden Luftleitschaufeln 28 sind ausgeprägte Ablösegebiete durch Falschanströmung verhindert, so daß ein extrem geräuscharmer Betrieb möglich ist.
  • Die erfindungsgemäßen bürstenförmigen Drosselkörper 2 kombinieren die Vorteile einer geräuscharmen Drosselung mit geringer Wartung bzw. Wartungsfreiheit und geringen Herstellungskosten.
  • In den Figuren 28 bis 31 sind Ausführungsbeispiele von Drosselkörpern 2 dargestellt, die anstelle der Borsten der vorhergehenden Ausführungsbeispiele Stege 31 aufweisen, die die Steganordnung 30 bilden. Diese Ausführungsbeispiele der Drosselkörper 2 können bei Drosselvorrichtungen 1 gemäß der im Zuge dieser Anmeldung dargestellten Ausführungsbeispiele anstelle der dort vorgesehenen Borsten eingesetzt werden.
  • Gemäß dem Ausführungsbeispiel der Figur 28 sind Stege 31 vorgesehen, die die gleichen Längen und die gleichen Breiten und auch die gleichen Lückenbreiten zwischen sich aufweisen. Vorzugsweise sind die Stege 31 als Blechstege ausgebildet. Als Material kommt wiederum vorzugsweise Messing oder ein nichtrostender Stahl in Betracht. Es ist jedoch auch möglich, daß die mit Stegen 31 versehenen Drosselkörper 2 aus Kunststoff bestehen, vorzugsweise aus Polyäthylen.
  • Beim Ausführungsbeispiel der Figur 29 weisen die Stege 31 unterschiedliche Formen auf. Die Längen der Stege 31 sind unterschiedlich und auch ihre Breiten. Ferner sind auch die Lücken zwischen einander benachbarten Stegen 31 unterschiedlich groß ausgebildet. Vorzugsweise können -wie dargestelltdie einzelnen Stege 31 auch eine unregelmäßige Form aufweisen, das heißt, sie laufen zum Beispiel spitz zu oder sind mit Krümmungen versehen und dergleichen.
  • Vorzugsweise sind bei den Ausführungsbeispielen der Figuren 28 und 29 die Stege 31 einstückig mit einem Halteelement 4 (Quersteg) ausgebildet. Insbesondere bilden die Drosselkörper 2 der Ausführungsbeispiele der Figuren 28 und 29 Drosselbürsten, die kammartige Gestalt aufweisen.
  • Im Ausführungsbeispiel der Figur 30 sind zwei mit Stegen 31 versehene Drosselkörper 2 hintereinanderliegend angeordnet, so daß eine mehrstufige Drosselvorrichtung gebildet wird. Beide Drosselbürsten 9 bilden zusammen die Steganordnung 30.
  • Gemäß dem Ausführungsbeispiel der Figur 31 können auch winkelförmige Drosselkörper 2 gebildet werden, das heißt, zwei kammartige mit Stegen 31 versehene Drosselkörper hängen an ihrer Unterkante des Halteelements 4 vorzugsweise einstückig zusammen und sind dort im Winkel zueinander abgebogen. Diese Ausgestaltung entspricht der Ausgestaltung gemäß der Figur 7, jedoch sind anstelle der dort gezeigten Borsten Stege 31 vorgesehen. Beim Ausführungsbeispiel der Figur 31 kann beispielsweise ein Blechstreifen durch Stanzung mit den Stegen 31 versehen und dann durch Kantung entsprechend abgewinkelt werden.
  • Die Figur 32 zeigt einen Quelluftauslaß 35, der als linienförmiges Auslaßelement ausgebildet ist. Die Zuluft (Pfeil 3) tritt in Lufteintrittsstutzen 36 ein, die in einen Luftverteilkasten 37 münden. Der Luftverteilkasten 37 weist einen Schlitz 38 auf. An der einen Schlitzbegrenzungswandung sind Borsten 5 eines Drosselkörpers 2 angeordnet, die den Schlitz zumindest teilweise abdecken und eine Drosselung der dort austretenden Luft bewirken. Die freien Enden der Borsten 5 stehen einer abgewinkelten Blechwandung 39 der anderen Schlitzbegrenzungswandung gegenüber. Die Rückwand 40 des Luftverteilkastens 37 erstreckt sich über die Ebene des Schlitzes 38 hinaus. An ihrem oberen Ende ist eine mit Luftaustrittsöffnungen 41 versehene Abdeckung 42 angeordnet, die sich viertelkreisförmig über den Schlitz 38 wölbt und bis auf die obere Wandung des Luftverteilkastens 37 reicht. Die dort eingezeichneten Pfeile stellen den Luftaustritt da. Die Luftaustrittsöffnungen 41 haben eine derartige Größe, daß sie größer als 40% der Abdeckfläche freigeben. Aufgrund der Borsten 5 wird eine ausgezeichnete Luftverteilung längs des Auslasses erzielt.
  • Im Ausführungsbeispiel der Figur 33 ist ein weiterer Quelluftauslaß 35 in drei verschiedenen Ansichten dargestellt. Er weist einen quaderförmigen Luftverteilkasten 37 auf, in den ein Lufteintrittsstutzen 36 mündet. Der Luftverteilkasten 37 ist mit mehreren, parallel zueinander verlaufenden Schlitzen 38 versehen, wobei jeweils von einer Schlitzseite aus eine Blechwandung 39 vorzugsweise senkrecht abgewinkelt ist. Von der anderen Schlitzseite gehen Borsten 5 aus, die den jeweiligen Schlitz 38 teilweise oder ganz abdecken, so daß dort der Drosselkörper 2 gebildet wird. Gemäß der linken Abbildung der Figuren 33 kann ebenfalls -wie beim Ausführungsbeispiel der Figur 32- eine Abdeckung 42 vorgesehen sein, die die Schlitze 38 überdeckt und die mit Luftaustrittsöffnungen 41 versehen ist, die eine Austrittsfläche > 40% der Abdeckfläche freigeben. Die Bürstenreihe (Borsten 5) sind nach Abnehmen der Abdeckung 42 sehr gut zugänglich. Aufgrund der Borsten wird eine gute, gleichmäßige Geschwindigkeitsverteilung der ausströmenden Luft erzielt. Ferner ermöglicht die Konstruktion des Ausführungsbeispiels der Figur 33 eine sehr geringe Bauhöhe des Quelluftauslasses 35.
  • Die Figur 34 zeigt eine Luftführungseinrichtung 50, die als Rohr 51 ausgebildet ist und im Innern eine Drosselvorrichtung 1 (Figur 35) trägt. Bei dem Rohr 51 handelt es sich um ein starres Wickelfalzrohr 51', das aus Flachband spiralig gewickelt wird, wobei die Ränder 52 gefalzt und hierdurch miteinander verbunden werden. Aus den Figuren 36 und 37 gehen derartige Falze 53 hervor. Zwischen den Falzen 53 können -gemäß der Figuren 36 und 37- offene oder geschlossene Sicken 54 ausgebildet werden.
  • Die Figur 35 zeigt einen Querschnitt durch das Wickelfalzrohr 51' gemäß der Figur 34. Es ist erkennbar, daß die Drosselvorrichtung 1 als Borsten 5 ausgebildet ist, die einendig an der Innenseite des Wickelfalzrohrs 51' befestigt sind und etwa radial nach innen ragen. Vorzugsweise erfolgt die Befestigung der Borsten 5 im Falz 53, wie dies aus den Figuren 36 und 37 hervorgeht. Dies führt dazu, daß eine wendelförmige Bürste innerhalb des Rohres 51 gebildet wird. Vorzugsweise werden die Borsten 5 im Falz 53 verklemmt. Die Länge der Borsten sowie die Ausbildung der so gebildeten Bürste über die Länge des Rohres wird in Abhängigkeit vom gewünschten Druckverlustbeiwert gewählt.
  • Alternativ ist es nach einem nicht dargestellten Ausführungsbeispiel auch möglich, die Borsten nicht mit in den Falz einzuarbeiten, sondern separat auf der Innenrohrmantelfläche mit geeigneten Mitteln zu befestigen.
  • Gemäß Figur 38 kann eine mit Drosselvorrichtung 1 ausgebildete Luftführungseinrichtung 50 an einen Verbindungsstutzen 55 eines Luftauslasses 56 angeschlossen sein. Vorzugsweise handelt es sich bei dem Luftauslaß 56 um einen Schlitzauslaß. Die Luftführungseinrichtung 55 ist als flexibles Rohr, insbesondere als Flexschlauch 57 ausgebildet. An dessen Stelle kann jedoch auch zum Beispiel ein starres Wickelfalzrohr zum Einsatz kommen. Wesentlich ist, daß durch diesen Anschluß dem Luftauslaß 56 zur Erhöhung des Druckverlustes eine Drosselvorrichtung 1 vorgeschaltet wird, um z. B. einen gewünschten Druckabgleich zu erzielen.
  • Die Figuren 39 und 40 verdeutlichen, daß die Luftführungseinrichtung 50 bei Ausbildung als Flexschlauch 57 in gewünschter Weise, auch mit starken Krümmungen, verlegbar ist. Die Figuren 41 und 42 zeigen Längsschnitte durch die Wandung von Flexschläuchen, die aus Bandabschnitten spiralig gewickelt und an den Rändern 52 gefalzt sind (Falze 53). In die Falze 53 sind Borsten 5 einer Drosselvorrichtung 1 eingeklemmt.
  • Beim Ausführungsbeispiel der Figur 41 handelt es sich um einen Falz 53, der an einer Innenlage 58 des Flexschlauches 57 realisiert ist. Beim Ausführungsbeispiel der Figur 42 sind abwechselnd die Innenlagen 58 bzw. Außenlagen 59 des Flexschlauches 57 miteinander durch Falze verbunden. In die jeweils gebildete Falztasche sind die entsprechenden Enden der Borsten bzw. Stege oder dergleichen eingeklemmt. Es ist selbstverständlich auch möglich, die Borsten zusätzlich oder ausschließlich in der Falztasche zu verkleben.

Claims (29)

  1. Lufttechnische Drosselvorrichtung für die Einstellung eines Gas-, insbesondere Luftvolumenstroms, mit einem Drosselkörper, der eine einen festen und somit vom Luftvolumenstrom unabhängigen Druckverlustbeiwert aufweisende Steganordnung besitzt, welche zur Einstellung des Druckverlustbeiwertes von einem Halteelement in vorbestimmter, einstellbarer Stellung gehalten ist.
  2. Drosselvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Stege (31) der Steganordnung (30) von Borsten (5) gebildet sind.
  3. Drosselvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Stege (31) der Steganordnung (30) von Kunststoff- oder Blechstegen gebildet sind.
  4. Drosselvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Stege (31) der Steganordnung (30) oder die Borsten (5) reihenförmig nebeneinander angeordnet sind.
  5. Drosselvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß mehrere benachbarte Stege (31) oder Borsten (5) jeweils ein Stegbüschel (32) oder Borstenbüschel (6) bilden.
  6. Drosselvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß mehrere Stegbüschel (32) oder Borstenbüschel (6) zur Bildung einer Stegbüschelreihe (33) oder Borstenbüschelreihe (7) nebeneinander angeordnet sind.
  7. Drosselvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß in Strömungsrichtung gesehen mehrere Stege (31) oder Borsten (5) hintereinander liegen.
  8. Drosselvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Stege (31) oder Borsten (5) an einem Ende in dem Halteelement (4) gehalten sind und daß das jeweilige andere Ende der Stege (31) oder Borsten (5) ein freies Ende (8) bildet.
  9. Drosselvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Stege (31) oder Borsten (5) quer zu ihrer Längserstrekkung vom zu drosselnden Volumenstrom angeströmt werden.
  10. Drosselvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Richtung des Volumenstroms mit der Längserstreckung der Stege (31) oder Borsten (5) einen Winkel bildet.
  11. Drosselvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Richtung des stromabseitigen Volumenstroms mit der von dem gehaltenen Ende der Stege (31) oder Borsten ausgehenden zum freien Ende verlaufenden Längserstreckung der Stege (31) oder Borsten (5) einen spitzen Winkel (β) einschließt.
  12. Drosselvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Stege (31) oder Borsten (5) in einer Klemmeinrichtung, insbesondere einer Klemmleiste, an einem Ende gehalten werden.
  13. Drosselvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die drosselnden Borsten -je nach gewünschtem Druckverlustbeiwert (D)- einstufig oder in Strömungsrichtung mehrstufig hintereinander liegend angeordnet sind.
  14. Drosselvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Borsten (55) schwenkbar angeordnet sind.
  15. Drosselvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die freien Endbereiche der Borsten (5) im Verstellendbereich derart gegen eine Luftstrombegrenzungswand (Wand einer Luftführungseinrichtung) treten, daß sie sich verdichten, insbesondere daß die Borsten (5) durchbiegen.
  16. Drosselvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Stege (31) oder Borsten (5) aus Kunststoff -insbesondere Kunststoffdrähten-, Messing oder nichtrostendem Stahl -insbesondere Metalldrähten- bestehen.
  17. Drosselvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Stege (31) oder Borsten (5) einen kreisförmigen Querschnitt aufweisen.
  18. Drosselvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Stege (31) oder Borsten (5) eine Drosselbürste (12) bilden.
  19. Drosselvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Drosselbürste (12) kammartig ausgebildet ist.
  20. Drosselvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Stege (31) oder Borsten (5) ein kegelförmiges Drosselelement (2) bilden, dessen Kegelspitze (10) angeströmt wird.
  21. Drosselvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Drosselbürste (12) aufgrund zweier Stegreihen oder Borstenreihen doppelkammartig ausgebildet ist, wobei vorzugsweise beide Stegreihen oder Borstenreihen einen stromabseitigen Winkel (Θ) einschließen, der < 180° ist.
  22. Drosselvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Stege (31) oder Borsten (5) eine Borstenschnecke (16) bilden.
  23. Drosselvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Stege (31) einstückig mit dem Halteelement (4) ausgebildet sind.
  24. Drosselvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Stege (31) oder Borsten (5) unterschiedliche Gestalt, insbesondere unterschiedliche Stegbreiten und/oder -längen bzw. Borstendicken und/oder -längen, aufweisen.
  25. Drosselvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Lükken zwischen benachbarten Stege (31) oder Borsten (5) unterschiedlich breit sind.
  26. Drosselvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie an der Innenwandung eines eine Luftführungseinrichtung bildenden Rohrs (51) angeordnet ist.
  27. Drosselvorrichtung nach Anspruch 26, dadurch gekennzeichnet, daß das Rohr (51) als starres oder flexibles Wickelfalzrohr (51') oder Flexschlauch (57) ausgebildet ist, wobei die Drosselvorrichtung (1) vorzugsweise im Falz befestigt, inbesondere die Borsten mit ihren einen Enden im Falz befestigt, vorzugsweise eingeklemmt, ist beziehungsweise sind.
  28. Drosselvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie sich -in Abhängigkeit von dem gewünschten Druckverlustbeiwert- mindestens über eine Teillänge der Luftführungseinrichtung (50) erstreckt und/oder über eine entsprechende Steglänge der Steganordnung (30) verfügt.
  29. Drosselvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie einem Luftauslaß (56), insbesondere einem Schlitzauslaß, vorgeordnet, d.h. stromauf, ist.
EP92121351A 1991-12-23 1992-12-16 Drosselvorrichtung Expired - Lifetime EP0548761B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4142757A DE4142757C2 (de) 1991-12-23 1991-12-23 Drosselvorrichtung
DE4142757 1991-12-23

Publications (3)

Publication Number Publication Date
EP0548761A2 EP0548761A2 (de) 1993-06-30
EP0548761A3 EP0548761A3 (en) 1993-11-24
EP0548761B1 true EP0548761B1 (de) 1997-08-27

Family

ID=6448010

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92121351A Expired - Lifetime EP0548761B1 (de) 1991-12-23 1992-12-16 Drosselvorrichtung

Country Status (3)

Country Link
EP (1) EP0548761B1 (de)
AT (1) ATE157440T1 (de)
DE (2) DE4142757C2 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2290849B (en) * 1994-07-01 1998-05-27 Draftex Ind Ltd Gas or air flow regulators
GB2315325A (en) * 1996-07-12 1998-01-28 Prod Design & Innovation Ltd Acoustic baffle
DE10141158B4 (de) * 2001-08-17 2005-03-03 Ltg Aktiengesellschaft Vorrichtung zum Einstellen eines Gasvolumenstroms
US6682413B1 (en) * 2002-11-21 2004-01-27 The Boeing Company Fluid control valve

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB857285A (en) * 1956-09-03 1960-12-29 William Harry Barker An improved air flow controller or damper for air supply or exhausting systems
CH501879A (de) * 1968-12-19 1971-01-15 Luwa Ag Kanal für eine Klima- oder Lüftungsanlage
DE2130826A1 (de) * 1971-06-22 1973-01-11 Metallgesellschaft Ag Vorrichtung zur drosselung und gleichrichtung
DE2521142B1 (de) * 1975-05-13 1976-09-02 Rost & Soehne Georg Drosselvorrichtung
DE2815464A1 (de) * 1978-04-10 1979-10-18 Rost & Soehne Georg Drosselvorrichtung
US4377968A (en) * 1980-01-10 1983-03-29 Gerry Ulric K Fluid flow control means
EP0040657A1 (de) * 1980-05-27 1981-12-02 Carl Matthews Vorrichtung und Verfahren zur Schalldämpfung und Auspuffsysteme und Rohre für Klima- oder Heizungsanlagen, welche diese Vorrichtung enthalten
DE3721041A1 (de) * 1987-06-25 1989-01-05 Bayerische Motoren Werke Ag Luftfuehrungskanal
DE4107578A1 (de) * 1991-03-07 1992-09-10 Juergen Dr Ing Spillecke Kontinuierlich veraenderbarer durchflussquerschnitt, insbesondere duese

Also Published As

Publication number Publication date
EP0548761A2 (de) 1993-06-30
EP0548761A3 (en) 1993-11-24
DE4142757A1 (de) 1993-06-24
DE4142757C2 (de) 1996-03-14
ATE157440T1 (de) 1997-09-15
DE59208830D1 (de) 1997-10-02

Similar Documents

Publication Publication Date Title
DE2948818C1 (de) Faltschlauch
EP2334552B1 (de) Side-feeder-luftführungselement für eine flugzeugklimaanlage
DE102005061722A1 (de) Luftausströmer mit Drallströmung
DE2114297A1 (de) Belueftungsvorrichtung
DE202010001084U1 (de) Leitungsführungseinrichtung
EP2508815A1 (de) Einrichtung zur Beeinflussung einer Luftströmung in einer Komponente einer klimatechnischen Anlage
EP1542881A2 (de) Lufteinstr mer, insbesondere f r ein kraftfahrzeug
DE102004039058A1 (de) Fahrzeugsitz
EP0548761B1 (de) Drosselvorrichtung
DE19711679B4 (de) Vorrichtung und Verfahren zur Regelung einer Luftströmung
DE102019206739A1 (de) Luftausströmer mit einer Luftregelklappe und einer Torsionsfeder
DE3010495C2 (de) Kühler für Verbrennungsmotoren von Kraftfahrzeugen
DE202005014596U1 (de) Schutzabdeckung
DE102012204555A1 (de) Luftausströmer
DE10139583A1 (de) Flächengebilde
DE102017006020B3 (de) Verschwenkbar gelagerte Lamelle eines Luftausströmers eines Fahrzeugs mit einem Bedienelement sowie ein Luftausströmer
DE10320645A1 (de) Klappe für Luftkanäle und Strömungsleiteinrichtung
DE602006000061T2 (de) Lufteinlassgehäuse für Fahrzeugklimaanlage
DE102019206851A1 (de) Klimatisierungseinrichtung für ein Kraftfahrzeug, Kraftfahrzeug
DE19631024B4 (de) Heiz- oder Klimaanlage
DE19529311C1 (de) Auslaßdüsenleiste und Verfahren zum räumlichen Verteilen eines strömenden Mediums
DE2546090C3 (de) Abluftschlitzauslaß
DE102015206609A1 (de) Luftstromsteuereinheit
DE2131154C3 (de) Auspuffanlage für Brennkraftmaschinen
DE2707779B2 (de) Belüftungsrohr sowie Anordnung desselben in einem Wohnwagen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE FR GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19940518

17Q First examination report despatched

Effective date: 19950613

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 157440

Country of ref document: AT

Date of ref document: 19970915

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59208830

Country of ref document: DE

Date of ref document: 19971002

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971230

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991211

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19991213

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19991215

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19991217

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19991220

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19991223

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20000107

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001216

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001231

BERE Be: lapsed

Owner name: LUFTTECHNISCHE G.M.B.H. LTG

Effective date: 20001231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20001216

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010831

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051216