EP0547566B1 - Procédé pour contrÔler l'admission d'air dans la chambre de combustion d'un moteur à combustion interne de type des pistons en deux phases - Google Patents

Procédé pour contrÔler l'admission d'air dans la chambre de combustion d'un moteur à combustion interne de type des pistons en deux phases Download PDF

Info

Publication number
EP0547566B1
EP0547566B1 EP92121344A EP92121344A EP0547566B1 EP 0547566 B1 EP0547566 B1 EP 0547566B1 EP 92121344 A EP92121344 A EP 92121344A EP 92121344 A EP92121344 A EP 92121344A EP 0547566 B1 EP0547566 B1 EP 0547566B1
Authority
EP
European Patent Office
Prior art keywords
air
combustible gas
restriction
combustion chamber
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92121344A
Other languages
German (de)
English (en)
Other versions
EP0547566A1 (fr
Inventor
Oskar Dr.-Ing. Schatz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0547566A1 publication Critical patent/EP0547566A1/fr
Application granted granted Critical
Publication of EP0547566B1 publication Critical patent/EP0547566B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/08Modifying distribution valve timing for charging purposes
    • F02B29/083Cyclically operated valves disposed upstream of the cylinder intake valve, controlled by external means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/44Passages conducting the charge from the pump to the engine inlet, e.g. reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/04Varying compression ratio by alteration of volume of compression space without changing piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a method for supplying fuel gas to the combustion chamber of an internal combustion engine of the piston type in two phases according to the preamble of patent claim 1.
  • the mixture preparation is also improved by the increased temperature and the associated faster evaporation of the fuel.
  • combustion air heating in which the combustion air is heated in a heat exchanger before it flows into the engine cylinder. On the way from the heated air to the cylinder much heat is lost. When heating up, the air expands, ie the amount of air in the engine is smaller, the greater the heating up, so that, for example, the required torque cannot be delivered in the diesel engine and problems arise during cold start and warm-up. Because of the long distances, this heater responds relatively late. Since in the CVS test the main emission already occurs after 20 seconds due to a load peak provided at this point in time, the type of combustion air heating described takes effect too late and would have to be switched off for many engines during this load peak in order to be able to deliver a sufficient amount of air. In addition, the combustion air heating system has a relatively high energy requirement.
  • This known procedure is not suitable for operating the engine with high air temperatures in all operating states with a heat deficit, in particular also when the air requirement is low, for example when petrol engines are idling.
  • a method of the type specified at the outset is known from DE-A-3 737 824.
  • This is a method for charging the internal combustion engine, in which the air supply to the cylinder is interrupted by an additional valve during a certain period of time during the suction stroke of the piston. As a result, there is an increased negative pressure in the cylinder. If the additional valve is opened again after this period, the air flows into the cylinder at increased speed due to the high negative pressure in the cylinder. There, the air is braked, which leads to a corresponding pressure increase. The engine is "charged". - In the previously known charging method, the closing time of the additional valve is matched to the closing time of the intake valve so that the maximum pressure increase occurs immediately before the intake closes.
  • the object of the invention is to provide a method by which, if necessary, a short-term effective, efficient heating of the contents and the boundary surfaces of the combustion chamber to the highest possible temperatures is possible in an economical manner in all operating states and with both low and high fuel gas requirements.
  • Another object of the invention is to improve the preparation of the fuel-air mixture.
  • the adjustment is made in the case of heat demand so that the piston work, which in the second phase converts into kinetic energy of the inflowing air, substantially exceeds the amount required for a possible pre-seal, so that the difference is converted into heat. It is possible to increase the temperature by at least 200 ° C. while at the same time increasing the air throughput, which cannot be achieved economically by any known method.
  • the density or the total inflowing air quantity does not automatically set itself, as in the known charging method mentioned at the outset, due to the kinetic energy, rather the air quantity is arbitrarily limited by the choice of the inflow duration to the desired level, adapted to the instantaneous load on the engine, so that the excess energy has to be converted into heat.
  • the regulation of the temperature increase is independent of the amount of air, and the amount of air can also be lower than would result from unimpeded inflow.
  • Three operating modes of internal combustion engines are known today, which include both carburetor engines and engines with fuel injection, namely operation without an exhaust gas catalytic converter, operation with an uncontrolled exhaust gas catalytic converter and operation with a regulated exhaust gas catalytic converter.
  • the carburettor or air flow meter When operating with a regulated catalytic converter, the carburettor or air flow meter is only necessary to enable the engine to be operated in a cold state, in which an excess of air in the exhaust gas is not yet available, because in this operating state an excess of fuel must be used. Because of the lean operation that is possible right from the start, carburettors and air flow meters can be dispensed with in all three of the above operating modes.
  • the high air speed and temperature result in particularly good fuel processing.
  • the method is also suitable for the use of alternative fuels, especially those with high heat of vaporization, such as alcohols.
  • the advantage is generally important that the first load peak in the CVS test can be driven with high air heating after 2 seconds of engine operation despite maintaining the full performance of the engine.
  • the vote is made so that the piston work not only promotes the desired amount of air, but that there is an excess of kinetic energy that is in Converts heat.
  • the tuning is changed so that the release of heat decreases beyond the level required for compression and is finally stopped.
  • the devices used to carry out the method can also be used, if necessary, to change the compression or for dynamic charging.
  • the vacuum work is initially applied by the electric battery driving the starter motor and via this the internal combustion engine. After the internal combustion engine has been ignited, it carries out the so-called gas exchange work itself. Taking into account the cold start capability of the internal combustion engine, which is improved by the method according to the invention, the work to be performed by the electric battery is less than in conventional starting methods, because the higher initial power is more than compensated for by shortening the operating time. In addition, the operation according to the invention can also be delayed when the electric battery is underpowered, namely after the start of ignition.
  • An important advantage of the invention is an improved mixture preparation.
  • the higher temperature in the combustion chamber accelerates the evaporation of the fuel and increases its ignitability with the air.
  • due to the high inflow speed of the air during the second phase there is a strong swirl in the combustion chamber and thus a good mixing of fuel and air.
  • fuel is supplied in such a way that it comes under the influence of air flowing at an increased speed to improve the mixture preparation.
  • the fuel can be supplied either via an injection system or with the help of a carburetor.
  • the increased flow velocity of the air during the second phase leads to a greater turbulence of the flow and a corresponding reduction in the boundary layer thickness. This improves the mixing of fuel and air and reduces the risk of wetting the intake manifold walls with fuel.
  • the strong turbulence of the flow also results in better atomization of the fuel.
  • due to the turbulence and the associated reduction in the boundary layer thickness there is better evaporation of the fuel, which is further promoted by the temperature increase resulting from the dynamic charging. The result is a significantly improved mixture preparation, which can be used both in gasoline and diesel engines.
  • the extent, start and end of the handicap are coordinated in such a way that, at least at the beginning of the second phase, there is a supercritical pressure ratio between the pressure upstream from the location of the handicap and the pressure in the combustion chamber.
  • An advantageous embodiment in gasoline engines is that the obstruction of the air supply takes place upstream of the inlet valve of the combustion chamber, as a result of which the intake manifold walls are heated directly in front of the combustion chamber and any fuel that strikes there evaporates immediately, thereby reducing HC emissions.
  • a further expedient embodiment consists in that the obstruction of the air supply is delayed by at least one ignition play during the cold start. This reduces the electrical power peak.
  • Another advantageous embodiment is that the fuel injection is delayed by at least one ignition cycle during a cold start, in order to prevent misfires that cause high emission peaks.
  • the extent and phase position of the obstruction and the end of the air supply are controlled as a function of the speed, operating temperature and load condition of the engine.
  • control can be carried out with the involvement of a computer.
  • air volume and air temperature are advantageously considered differently.
  • the amount of air is determined by the current load situation of the engine, while the air temperature control must be based primarily on the so-called operating temperature, which is a reference variable that has not yet been fully appreciated by the prior art.
  • the air temperature control must be matched in particular to the elimination of the cold start problems or to engine situations with a heat deficit.
  • the amount of air and the air temperature can be specified for each ignition cycle and the extent and phase position of the obstruction and the end of the air supply can be determined therefrom. This applies mutatis mutandis when the method according to the invention is applied to the operation of diesel engines, because the method according to the invention enables the amount of air to be corrected downwards and upwards, so that the engine can always be operated at an optimal air / fuel ratio.
  • the required energy is determined, which corresponds to both the kinetic energy and the vacuum energy. Then the at least required second amount of air that has to flow in in the second phase is determined, the critical inflow velocity possibly determining the maximum amount of mass-specific kinetic energy, provided the inflow velocity remains in the subcritical range. The minimum duration for the inflow of this air quantity is then determined from the available flow cross sections, as a result of which the latest point in time for the inflow start is fixed in the second phase. In a subsequent iteration process, it must then be ascertained whether the required vacuum work can be realized with the previously made assumptions for the inflow start and any mass distribution, and the parameters are optimized.
  • an advantageous embodiment consists in that the engine control - which is understood here and in this description as a whole the control of the air-fuel ratio - as a lean control with the help of an Exhaust gas flow arranged Oxygen probe is carried out.
  • the oxygen probe determines the excess air and keeps it at 20%, for example. This eliminates the need for an expensive airflow meter or carburetor.
  • the air-fuel ratio is set for the starting phase on the basis of empirical values and general data on the air throughput.
  • Another advantageous embodiment is that the oxygen probe is preheated before starting.
  • Another advantageous embodiment is for engines with a temporarily very high air requirement that a charger is connected upstream of the area of the air intake system provided with a device for temporarily obstructing the air supply when the air requirement is high.
  • Yet another advantageous embodiment consists of the fact that the air flow before the device for temporarily obstructing the air supply is influenced as a function of the operating state of the engine. This allows the range to be expanded in which temperature and air flow are independent of each other can be regulated. For example, the temperature in the combustion chamber can be raised in idle mode without increasing the air throughput.
  • the amount of fuel in motor vehicle engines is influenced by the accelerator pedal and the air-fuel ratio is predetermined on the basis of the general operating data and is regulated by the measurement of the excess of oxygen in the exhaust gas by the oxygen probe.
  • the drawing shows schematically the inlet and outlet area of an internal combustion engine of the piston type with an additional valve arranged upstream of the inlet valve and a charger.
  • cylinder 10 of an internal combustion engine which contains an engine piston 12.
  • An inlet channel 14 opens into the combustion chamber 18 within the cylinder 10 via an inlet valve 16.
  • An exhaust gas line 20 is connected via an outlet valve 22.
  • the inlet duct is supplied with air via an air filter 23 and an air distributor 24, which is sucked in by the piston 12 after opening of the inlet valve 16.
  • the air filter 23 can be followed by a charging device 26 for compressing the charge.
  • in the air filter 23 inflowing air can also be introduced with fuel, so that a fuel-air mixture is introduced into the combustion chamber via the inlet valve 16 instead of air:
  • an additional valve 28 is arranged in the inlet channel 14, which is suitable for completely or partially blocking the inlet channel 14.
  • a control unit is assigned to this additional valve 28, which is shown only schematically and is designated by 30. It receives information about the operating state of the engine and, if necessary, e.g. derived from the accelerator pedal, information about the driver's desire to drive a motor vehicle equipped with the engine.
  • the air supply can be divided into two phases.
  • the additional valve 28 is open, for example, so that charge can enter the cylinder 10.
  • the additional valve 20 may be temporarily closed and thereby ends any air supply to the combustion chamber 18 in a first phase.
  • this air supply in the first phase can also be completely omitted or the air supply can be throttled by the additional valve 28 during the first phase.
  • the pressure in the combustion chamber 18 is reduced by the piston work. This lowering of pressure in the combustion chamber 18 causes one against the flow velocity of the charge before Closing phase of the additional valve 28 increased speed of the charge flowing into the combustion chamber 18 after opening of the additional valve 28, the kinetic energy of which converts into pressure and thus into compression when the charge flow is braked. This generates heat directly in the combustion chamber 18.
  • the excess kinetic energy is determined by appropriate dimensioning of the closing time and phase position of the additional valve 28, which raises the temperature in the combustion chamber to the desired level by conversion into heat.
  • the inflow duration is influenced during the second phase and, if necessary, ended by re-closing the additional valve 28 before the inlet valve 16 is closed. If necessary, an air quantity that has flowed in in the first phase is taken into account.
  • the usual air flow meter or carburetor for regulating the air-fuel ratio can be omitted and the regulation can be carried out as a function of the measurement result of the less expensive oxygen probe. This not only results in a cost reduction for the system, at least when operating with a regulated exhaust gas catalytic converter, but also in all of the above-mentioned operating modes, a reduction in exhaust gas emissions during cold starts and during warm-up, as well as a corresponding saving in fuel consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Claims (20)

  1. Procédé pour l'admission en deux phases d'un gaz combustible dans la chambre de combustion d'un moteur à combustion interne de type à piston, selon lequel on peut entraver l'admission du gaz combustible dans la chambre de combustion au moins vers la fin de la première phase et, au moins au début de la seconde phase, laquelle se termine par le début de la compression de la charge par le piston associé à la chambre de combustion, l'admission du gaz combustible n'est plus gênée, le travail du piston fournissant l'énergie d'admission et l'énergie de compression nécessaires pour le remplissage de la chambre de combustion avec la quantité de gaz combustible souhaitée,
    caractérisé en ce que
    - l'importance de l'entrave
    - le début de l'entrave
    - la fin de l'entrave et
    - la fin de l'admission de gaz combustible
    sont déterminés l'un en fonction de l'autre de telle sorte que le travail du piston qui en résulte fournisse en plus de l'énergie d'admission et de l'énergie de compression, une énergie thermique pour une augmentation souhaitée de la température du gaz combustible supérieure à la température finale de la compression adiabatique.
  2. Procédé selon la revendication 1, caractérisé en ce que l'entrave à l'admission de gaz combustible en amont est commandée par une soupape d'admission de la chambre de combustion.
  3. Procédé selon la revendication 1, caractérisé en ce que la fin de l'admission de gaz combustible en amont est commandée par une soupape d'admission de la chambre de combustion.
  4. Procédé selon la revendication 1, caractérisé en ce que l'entrave à l'admission de gaz combustible est commandée par une commande variable de la soupape d'admission.
  5. Procédé selon la revendication 1, caractérisé en ce que la fin de l'admission de gaz combustible est commandée par une commande variable de la soupape d'admission.
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'entrave de l'admission de gaz combustible est retardée d'au moins un cycle d'allumage lors d'un démarrage à froid.
  7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'injection de carburant est retardée d'au moins un cycle d'allumage lors d'un démarrage à froid.
  8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le réglage de l'importance et de la position de phase de l'entrave et de la fin de l'admission de gaz combustible dépend de la température de fonctionnement, de la vitesse de rotation et de l'état de charge du moteur.
  9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la quantité d'air et l'augmentation de la température de l'air sont prédéfinies pour chaque cycle d'allumage et qu'à partir de cela sont déterminées l'importance et la position de phase de l'entrave, et la fin de l'admission de gaz combustible.
  10. Procédé selon la revendication 9, caractérisé en ce que l'énergie nécessaire pour l'admission et l'augmentation de la température de la quantité totale d'air est déterminée, à cette énergie devant correspondre l'énergie cinétique ou l'énergie de dépression,
    en ce qu'au moins la deuxième quantité partielle minimale nécessaire est alors déterminée,
    en ce qu'à partir des sections de passage disponibles la durée minimale de l'admission de la deuxième quantité partielle est déterminée et, de ce fait, le moment le plus tardif du début de l'admission de cette deuxième quantité partielle, est défini,
    et en ce que, dans un processus d'itération consécutif, les valeurs d'abord choisies pour le début de l'admission et une éventuelle répartition des masses sont optimisées en fonction du travail de dépression nécessaire.
  11. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le réglage du rapport air - carburant est exécuté comme un réglage pauvre par l'intermédiaire d'une sonde à oxygène montée dans le conduit de gaz d'échappement.
  12. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que, dans les moteurs avec une consommation d'air momentanée très élevée, un chargeur est monté en amont de la zone du système d'admission d'air muni d'un dispositif pour entraver momentanément l'admission du gaz combustible.
  13. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'écoulement d'air avant le dispositif destiné à entraver momentanément l'admission du gaz combustible est réglé en fonction de l'état d'exploitation du moteur.
  14. Procédé selon la revendication 11, caractérisé en ce que, pour la phase de démarrage, le rapport air - carburant est régulé en fonction du débit de l'air, en se basant sur des valeurs empiriques et des données générales.
  15. Procédé selon la revendication 11, caractérisé en ce que la sonde à oxygène est préchauffée avant le démarrage.
  16. Procédé selon l'une quelconque des revendications 11 à 15, caractérisé en ce que, dans les moteurs d'automobiles, la quantité de carburant est influencée par la pédale d'accélérateur, et le rapport air - carburant est défini en se basant sur les données d'exploitation générales et il est régulé par l'intermédiaire de la sonde à oxygène en fonction de la mesure de l'excédent d'oxygène dans le gaz d'échappement.
  17. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le carburant est admis de telle sorte que, pour améliorer la préparation du mélange dans la deuxième phase, il soit influencé par l'air qui s'écoule avec une vitesse augmentée.
  18. Procédé selon la revendication 17, caractérisé en ce que le carburant est admis directement dans l'air qui s'écoule avec une vitesse augmentée.
  19. Procédé selon la revendication 17, caractérisé en ce que le carburant est admis en amont de l'emplacement de l'entrave et/ou avant la fin de l'entrave.
  20. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la détermination de l'importance, du début et de la fin de l'entrave est effectuée de telle sorte qu'au moins au début de la deuxième phase, il existe un rapport de pression surcritique entre la pression en amont de l'emplacement de l'entrave et la pression dans la chambre de combustion.
EP92121344A 1991-12-16 1992-12-15 Procédé pour contrÔler l'admission d'air dans la chambre de combustion d'un moteur à combustion interne de type des pistons en deux phases Expired - Lifetime EP0547566B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4141482A DE4141482A1 (de) 1991-12-16 1991-12-16 Verfahren zur luftzufuhr in die brennkammer eines verbrennungsmotors der kolbenbauart in zwei phasen
DE4141482 1991-12-16

Publications (2)

Publication Number Publication Date
EP0547566A1 EP0547566A1 (fr) 1993-06-23
EP0547566B1 true EP0547566B1 (fr) 1996-05-15

Family

ID=6447189

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92121344A Expired - Lifetime EP0547566B1 (fr) 1991-12-16 1992-12-15 Procédé pour contrÔler l'admission d'air dans la chambre de combustion d'un moteur à combustion interne de type des pistons en deux phases

Country Status (4)

Country Link
US (1) US5353763A (fr)
EP (1) EP0547566B1 (fr)
JP (1) JP2612527B2 (fr)
DE (2) DE4141482A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006015589A1 (de) * 2006-03-31 2007-10-04 Mahle International Gmbh Frischgasanlage und Betriebsverfahren für einen Kolbenmotor

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA928141B (en) * 1991-10-23 1993-04-29 Transcom Gas Tech Gas delivery system.
DE19500501A1 (de) * 1994-06-28 1996-01-04 Schatz Thermo Engineering Verfahren und Vorrichtung zur Steuerung des Ladungswechsels von Verbrennungsmotoren durch Ventile
DE10151687A1 (de) 2001-10-19 2003-04-30 Daimler Chrysler Ag Verfahren zum Betreiben einer mehrzylindrischen Brennkraftmaschine
DE10155339A1 (de) * 2001-11-10 2003-05-22 Daimler Chrysler Ag Verfahren zum Betreiben eines Verbrennungsmotors und Kraftfahrzeug
FR2832761B1 (fr) * 2001-11-23 2004-12-24 Peugeot Citroen Automobiles Sa Systeme de controle du fonctionnement d'un moteur diesel de vehicule automobile
US6736106B2 (en) * 2002-01-23 2004-05-18 Wisconsin Alumni Research Foundation Engine valve actuation for combustion enhancement
DE10217695A1 (de) 2002-04-20 2003-11-13 Daimler Chrysler Ag Verfahren zum erleichterten Starten einer Brennkraftmaschine
DE10220076B4 (de) * 2002-05-04 2012-04-26 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP1588040B9 (fr) * 2003-01-23 2008-06-11 Wisconsin Alumni Research Foundation Actionnement d'une soupape de moteur pour renforcer la combustion
AT6651U1 (de) 2003-06-24 2004-01-26 Avl List Gmbh Variable ventiltriebsvorrichtung für eine brennkraftmaschine
DE10344759B4 (de) * 2003-09-26 2005-10-06 Siemens Ag Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
DE602006014313D1 (de) * 2005-03-23 2010-07-01 Mazda Motor Steurerungsvorrichtung einer Mehrzylinderbrennkraftmaschine
CN100570132C (zh) * 2005-03-31 2009-12-16 丰田自动车株式会社 发动机的控制装置
DE102006020349A1 (de) 2006-04-28 2007-10-31 Mahle International Gmbh Kolbenmotor und zugehöriges Betriebsverfahren
JP2010242612A (ja) * 2009-04-06 2010-10-28 Yamaha Motor Co Ltd 水ジェット推進艇
DE102012011993B4 (de) 2012-06-16 2021-03-18 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zum Anlassen einer Verbrennungskraftmaschine
DE102012011990B4 (de) 2012-06-16 2023-07-20 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zum Anlassen einer Verbrennungskraftmaschine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3737824A1 (de) * 1987-11-06 1989-05-18 Schatz Oskar Verfahren zum betrieb eines verbrennungsmotors der kolbenbauart

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2423576A1 (de) * 1974-05-15 1975-11-27 Kiener & Borst Ohg Kolben-brennkraftmaschine mit selbstzuendung
JPS55148932A (en) * 1979-05-07 1980-11-19 Kanesaka Gijutsu Kenkyusho:Kk Engine
EP0105509A3 (fr) * 1982-10-05 1985-10-16 Dietrich Julius Wilhelm Kickbusch Moteur diesel à basse pression
US4796584A (en) * 1986-02-07 1989-01-10 Nippondenso Co., Ltd. Intake control system for internal combustion engine and intake control valve used therein
EP0419743A1 (fr) * 1989-09-29 1991-04-03 Her Majesty The Queen In Right Of New Zealand Alimentation en carburant et système de contrôle pour moteurs à allumage par compression
EP0422502B1 (fr) * 1989-10-05 1997-12-17 Denso Corporation Système de commande d'air d'admission pour moteur à combustion interne
US5131365A (en) * 1989-10-25 1992-07-21 Oskar Schatz Piston type IC engine with swing type inlet valve
DE3940752A1 (de) * 1989-12-09 1991-06-13 Bosch Gmbh Robert Verfahren zum steuern eines ottomotors ohne drosselklappe
US5111792A (en) * 1991-06-07 1992-05-12 Toyota Jidosha Kabushiki Kaisha Apparatus for controlling heater for oxygen sensor and fuel control apparatus using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3737824A1 (de) * 1987-11-06 1989-05-18 Schatz Oskar Verfahren zum betrieb eines verbrennungsmotors der kolbenbauart

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006015589A1 (de) * 2006-03-31 2007-10-04 Mahle International Gmbh Frischgasanlage und Betriebsverfahren für einen Kolbenmotor
US7418945B2 (en) 2006-03-31 2008-09-02 Mahle International Gmbh Fresh gas system and operating method for a piston engine

Also Published As

Publication number Publication date
JPH05248246A (ja) 1993-09-24
EP0547566A1 (fr) 1993-06-23
US5353763A (en) 1994-10-11
DE4141482A1 (de) 1993-06-17
DE59206305D1 (de) 1996-06-20
JP2612527B2 (ja) 1997-05-21

Similar Documents

Publication Publication Date Title
EP0547566B1 (fr) Procédé pour contrÔler l'admission d'air dans la chambre de combustion d'un moteur à combustion interne de type des pistons en deux phases
DE3710195C2 (fr)
DE19847851B4 (de) Verfahren zum Steuern eines Verbrennungsmotors
DE112013005866T5 (de) Saugrohreinspritzsystem zur Reduktion von Ruß von Turbo-Benzinmotoren mit Direkteinspritzung
DE19927950A1 (de) Steuervorrichtung für einen Motor mit elektrisch bzw. elektronisch angetriebenen Einlaß- und Auslaßventilen
DE3515043C2 (fr)
DE10109370A1 (de) Brennkraftmaschine mit Direkteinspritzung
WO1999040296A1 (fr) Procede permettant de faire fonctionner un moteur a combustion interne a quatre temps
EP1849977A2 (fr) Procédé et appareil de commande destinés au réglage variable d'une section transversale de flux de turbine d'une turbosoufflante
EP1129279B1 (fr) Procede pour la determination de grandeurs reglantes pour la commande de moteurs a injection directe d'essence
EP0816659A1 (fr) Procédé pour actionner un moteur à combustion interne véhiculaire
DE19951096A1 (de) Motorregelsystem für einen mittels Abgasturbolader aufgeladenen Dieselmotor
EP1315896B1 (fr) Procede pour piloter une injection directe de carburant
DE4400260A1 (de) Steuerungssystem für einen Verbrennungsmotor
DE3435170C2 (de) Verfahren zur Steuerung eines Luft-Kraftstoff-Ansaugsystems mit veränderlichem Drall und mit einem geraden sowie schraubenförmigen Ansaugkanal für eine Brennkraftmaschine
EP1144828B1 (fr) Procede permettant de faire fonctionner un moteur a combustion interne
EP1379770B1 (fr) Procede, programme informatique et dispositif de commande et/ou regulation destines a l'exploitation d'un moteur a combustion interne et moteur a combustion interne
EP1223326A2 (fr) Méthode de commande de la quantité de carburant injectée pendant le démarrage et de détermination de la qualité du carburant
EP1099051B1 (fr) Procede de fonctionnement d'un moteur a combustion interne
DE4141481C2 (de) Verfahren zur Regelung des Luft-Kraftstoff-Verhältnisses eines Verbrennungsmotors, insbesondere eines Verbrennungsmotors der Kolbenbauart
DE19947784B4 (de) Verfahren zum Starten einer Brennkraftmaschine
EP1247015B1 (fr) Procede pour mettre en action un moteur a combustion interne
DE10220076B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP1296053B1 (fr) Procédé d'injection directe de combustible sous forme de deux injections ayant des angles d'injection différents et dispositif de commande d'injection
DE4042552C3 (de) Leerlaufdrehzahl-Regelsystem für einen OTTO-Motor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17P Request for examination filed

Effective date: 19930716

17Q First examination report despatched

Effective date: 19940616

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19960515

Ref country code: GB

Effective date: 19960515

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19960515

REF Corresponds to:

Ref document number: 59206305

Country of ref document: DE

Date of ref document: 19960620

ET Fr: translation filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19960515

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19971028

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070130

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080701