EP0546909A1 - Installation de protection respiratoire pour passagers d'aéronef - Google Patents

Installation de protection respiratoire pour passagers d'aéronef Download PDF

Info

Publication number
EP0546909A1
EP0546909A1 EP19920403300 EP92403300A EP0546909A1 EP 0546909 A1 EP0546909 A1 EP 0546909A1 EP 19920403300 EP19920403300 EP 19920403300 EP 92403300 A EP92403300 A EP 92403300A EP 0546909 A1 EP0546909 A1 EP 0546909A1
Authority
EP
European Patent Office
Prior art keywords
pressure
altitude
oxygen
mask
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19920403300
Other languages
German (de)
English (en)
Other versions
EP0546909B1 (fr
Inventor
Fernand Bertheau
Gérard Silber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eros GIE
Original Assignee
Eros GIE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eros GIE filed Critical Eros GIE
Publication of EP0546909A1 publication Critical patent/EP0546909A1/fr
Application granted granted Critical
Publication of EP0546909B1 publication Critical patent/EP0546909B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B7/00Respiratory apparatus
    • A62B7/14Respiratory apparatus for high-altitude aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/1842Ambient condition change responsive
    • Y10T137/1939Atmospheric
    • Y10T137/2012Pressure

Definitions

  • the invention relates to installations for protecting aircraft passengers against the risks of cabin depressurization, during flights at high altitude.
  • Conventional passenger protection systems include an oxygen reserve connected to a distribution center which, in the event of depressurization of the cabin at high altitude, supplies, at a pressure which increases with altitude, a pipeline to which passenger masks are connected by a flexible tube fitted with a flow limitation throttle.
  • a distribution center which, in the event of depressurization of the cabin at high altitude, supplies, at a pressure which increases with altitude, a pipeline to which passenger masks are connected by a flexible tube fitted with a flow limitation throttle.
  • the protective installation is of infrequent use. It must consist of light, simple components, of economical construction, unlikely to break down.
  • the masks used in such installations generally consist of a simple shell of semi-flexible material, supplied continuously through an economizer bag into which the flexible tube opens.
  • the economizer bag is connected to the inside of the face cover by an intake non-return valve.
  • An exhalation valve calibrated to maintain a slight overpressure in the face cover relative to the ambient atmosphere, is fixed on the latter.
  • the economizer bag collects the flow of oxygen supplied by the source during the expiration periods, while the intake valve is closed, instead of letting it escape the atmosphere.
  • the supply pressure supplied by the central unit is chosen, depending on the section of the throttles, so as to provide the masks with an average oxygen flow rate sufficient for maintain, at each altitude, the minimum tracheal partial pressure required by regulations.
  • the present invention aims to provide an installation providing acceptable protection up to altitudes of approximately 13,700 meters, at the cost of modifications to existing installations which remain limited.
  • the invention starts from the observation that, in reality, current installations do not allow the wearer of the mask to breathe pure oxygen.
  • the oxygen flow and the volume of oxygen coming from the saving bag are insufficient to avoid the appearance, in the mask, of a slight depression which is sufficient to cause the entry of dilution air by the anti-suffocation valve with which the mask is provided and by the leaks between the face cover and the skin.
  • the average flow rate supplied through the throttle is not sufficient for the needs of some of the passengers and / or is insufficient to ensure the pulmonary ventilation during periods of agitation.
  • the invention proposes an installation characterized in that the power station is designed to, in the event of depressurization, temporarily or beyond a given cabin altitude (of around 12,200 meters), provide the channeling of oxygen under a determined pressure p1, of the order of twice the pressure p2 supplied immediately below the determined altitude, and in that each mask has a shaped face cover, comprising a seal flexible sealing lip and an unbalanced exhalation valve.
  • this generator can be simply provided to supply an oxygen flow rate at least twice the flow rate supplied subsequently, for a period of time sufficient to allow the crew to bring the aircraft back to an altitude below 12,200 meters, for example for approximately 3 minutes: this case is often that of an installation intended for a business aircraft.
  • the central unit can be provided to supply the mask boxes under a high pressure p1 which is higher than the pressure p2 to be supplied upstream of throttles each supplying a mask for the lower altitudes at 12,200 meters and each mask box is then fitted with an altimeter regulator located upstream of the throttles and means making it possible to short-circuit the regulator in response to the reception of oxygen at high pressure p1 coming from the central distribution.
  • the oxygen supply at pressure p1 does not significantly increase the overpressure in the mask, limited by the exhalation valve. But it causes a sharp increase in flow, avoiding dilution by the entry of outside air and guaranteeing the inhalation of practically pure oxygen.
  • Such a box fulfills some of the functions which are normally performed by the distribution center in current conventional installations.
  • the installation shown diagrammatically in FIG. 1 can in particular be used on a passenger airliner.
  • This installation comprises a reserve of pressurized oxygen 10 provided with a regulator 12 supplying oxygen under a pressure of 5 to 6 bars to a distribution center 14.
  • the station in turn feeds a general pipe 16 on which are connected mask boxes 18 of which only one is shown in detail.
  • the boxes are distributed above the rows of seats and each is designed to release the masks 21 which it contains in the event of depressurization.
  • the bottom of the box 18 can constitute a cover provided with a lock 20 which is disarmed in response to the appearance, in the distribution pipe 16, of a pressure greater than a determined value p0. Unlocking can be achieved in another way or the masks can be permanently available to passengers, for example on business aircraft.
  • Each box 18 has a pipe 22 to which the masks are each connected by means of a throttling restrictor 24.
  • a tap 26 is interposed between the pipe and each mask 21, in series with the throttle 24. This tap is designed to be opened by pulling the passenger on a strap 28 which doubles the flexible pipe 30 for connection with the mask 21.
  • the mask itself comprises a face cover 32 provided with an elastic harness 34 for fixing on the head and with a flexible economiser bag 36.
  • each mask box 18 and each mask 21 have a particular constitution.
  • the distribution center 14 is designed to supply the general pipe 16 with oxygen at a pressure which varies as a function of the pressure in the cabin or "cabin altitude" according to two different laws, depending on whether this altitude is less than or greater than 12,200 meters , or 40,000 feet.
  • the power station 14 supplies, when the altitude exceeds, even slightly, 12,200 meters, the oxygen at a pressure p1 which is practically twice the pressure p2 supplied at a barely lower altitude. at 12,200 meters.
  • the power station 14 shown in FIG. 1 is produced so as not only to achieve this result, but also to provide, immediately after the detection of a depressurization beyond 3,800 meters "cabin altitude" (12,500 feet), a brief pressure peak intended to open the locks 20 of the boxes 18.
  • Many other constructions of the control unit 14 would be possible, pneumatically or electronically controlled from signals supplied by pressure sensors.
  • the central unit 14 shown comprises a housing having an inlet connected to the supply of pressurized oxygen 10 and an outlet for connection with the general distribution pipe 16. It can be viewed as having two stages 38 and 40 of similar constitution.
  • the first stage 38 comprises a valve 42 fixed to two membranes 44 and 46 and cooperating with a seat which surrounds the oxygen intake coming from the reserve 10.
  • the valve 42 thus controls the communication between the reserve and a regulator 48 of conventional constitution , connected by a passage 50 to the outlet 52.
  • This regulator 48 maintains a constant relative pressure at the outlet 52 with respect to the ambient pressure, admitted by an orifice 54, as long as the second stage 40 does not intervene.
  • the two membranes 44 and 46 have a different surface. They define a chamber 58 connected to the atmosphere and they are subjected to the action of a spring 56 which tends to apply the valve 42 to its seat.
  • the membrane 46 of larger section is subjected to the difference in pressures between the chamber 58 and a chamber connected to the inlet by a throttled passage 60.
  • the valve 42 and the membranes are dimensioned so that the valve opens as soon as the chamber 56 is emptied, that is to say when the cabin altitude reaches 3800 meters.
  • the second stage 40 has a constitution similar to the first.
  • the chamber delimited by the housing and the large area membrane 46a is connected to the valve of the valve 42a by a constriction 60a.
  • the surfaces of the membranes 44a and 46a are provided so that the valve of the second stage opens as soon as the chamber 56a is emptied, that is to say when the cabin altitude reaches 12,200 meters.
  • the central unit 14 shown is designed to supply, at its outlet 52, oxygen at the inlet pressure for a short period of time (sufficient to open the locks of the boxes 18) when the pressure in the cabin corresponds to an altitude greater than 12,500 feet.
  • FIG. 5 shows a sequence corresponding to a slow decompression during which the cabin altitude exceeds 12,200 meters followed by a return to the ground.
  • the outlet pressure p1 of the pressure reducer is applied to the boxes 12 to open the latches 20, designed to be triggered from a pressure p0 less than p1.
  • the pressure then drops to a value p2, then rises to p1 when the altitude of 40,000 feet is reached.
  • the pressure drops to the p2 value which remains up to an altitude which is generally less than 12,500 feet and which is for example 10,000 feet (approximately 3,100 meters).
  • the line 22 is supplied by a pressure reducer 70 when the pressure applied is equal to p2, by a bypass valve 72 when the pressure applied is equal to p1.
  • the by-pass or short-circuit valve 72 can be constituted by a simple membrane pushed back to a closed position of a seat by the pressure which prevails in the cabin and by the force of a spring and, in the opposite direction , by the pressure force prevailing in the pipe 22, at its center, and the inlet pressure in the box 18, at its periphery.
  • the diaphragm and the spring are dimensioned so that the short-circuit valve 72 opens when the pressure exceeds a determined value between p2 and p1.
  • the regulator 70 has for example the constitution shown in FIG. 2, having a membrane 74 provided with a pusher for opening a ball valve 76 and a capsule 78 provided for bearing, directly or by means of a spring, on the membrane when the altitude in the cabin exceeds 10,000 feet.
  • the pressure in the pipe 22 then has a law of variation as a function of the cabin altitude of the kind shown in FIG. 4.
  • the face cover 32 of the mask 21 has an internal lip 80 of flexible elastomer, delimiting an opening of triangular shape and shaped so as to be applied against the bridge of the nose and the face by internal pressure.
  • the mask shown in FIG. 3 comprises a valve block 82 which incorporates a flexible valve 84 for admission from the economizer bag 36 according to the arrows f0. If the bag is empty, the assembly constituted by the flexible valve 84 and the box which supports it can be lifted to allow passage to additional air, the path of which is then the one indicated by the arrows f1.
  • the oxygen supply to the economizer bag 36 can be carried out by a flexible hose 30 shown in front of the face cover in FIG. 3 but which in practice will rather be placed on the side, as shown diagrammatically in FIG. 1.
  • the exhalation can be carried out for example through an additional valve 86 calibrated by a spring, shown diagrammatically in FIG. 1, or through an annular exhalation valve (not shown) at the periphery of the block 82 having a flexible obturator of which the stiffness fixes the maximum overpressure in the mask.
  • each mask is individually supplied by a chemical generator, this is provided to supply, from the moment it is started, a flow of oxygen which varies according to a law of the kind shown in FIG. 6, making it possible to supply the oxygen required during the descent under the most critical conditions, from an altitude which generally cannot exceed 45,000 feet, that is to say 13,700 meters.
  • the law of variation given by the adoption of a variable composition or a variable section of the "candle" of oxygen supply can be of the kind given in figure 6.

Landscapes

  • Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • General Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)

Abstract

L'installation est utilisable jusqu'à 13 700 mètres environ pour protéger les passagers d'avion contre les risques de dépressurisation. Elle comporte une réserve d'oxygène (10) reliée à une centrale de distribution (14) qui, en cas de dépressurisation à haute altitude, alimente, à une pression qui augmente avec l'altitude, une canalisation à laquelle les masques (32) des passagers sont reliés par un tube souple (30) muni d'un étranglement (24) de limitation de débit. La centrale est prévue pour, temporairement ou au dela d'une altitude de cabine déterminée, fournir à la canalisation de l'oxygène sous une pression déterminée, de l'ordre de 2 fois la pression fournie immédiatement en decà de la dite altitude déterminée, et en ce que chaque masque comporte un couvre-face (32) en forme, comportant un joint à lèvres internes d'étanchéité souple. <IMAGE>

Description

  • L'invention concerne les installations de protection des passagers d'aéronef contre les risques de dépressurisation de la cabine, lors de vols à haute altitude.
  • Les installations classiques destinées à la protection des passagers comportent une réserve d'oxygène reliée à une centrale de distribution qui, en cas de dépressurisation de la cabine à haute altitude, alimente, à une pression qui augmente avec l'altitude, une canalisation à laquelle des masques de passagers sont reliés par un tube souple muni d'un étranglement de limitation de débit. Une telle installation est décrite dans le document GB-A-828 362.
  • L'installation de protection est d'utilisation peu fréquente. Elle doit être constituée de composants légers, simples, de construction économique, peu susceptibles de pannes. A l'heure actuelle, les masques utilisés dans de telles installations sont généralement constitués par une simple coquille en matériau semi-souple, alimentée en continu à travers un sac économiseur dans lequel débouche le tube souple. Le sac économiseur est relié à l'intérieur du couvre-face par un clapet anti-retour d'admission. Un clapet d'expiration, taré pour maintenir une surpression légère dans le couvre-face par rapport à l'atmosphère ambiante, est fixé sur ce dernier. Le sac économiseur collecte le débit d'oxygène fourni par la source pendant les périodes d'expiration, alors que le clapet d'admission est fermé, au lieu de le laisser échapper à l'atmosphère.
  • La pression d'alimentation fournie par la centrale est choisie, en fonction de la section des étranglements, de façon à fournir aux masques un débit moyen d'oxygène suffisant pour maintenir, à chaque altitude, la pression partielle trachéale minimum exigée par les règlements.
  • Cette solution donne des résultats acceptables jusqu'à une altitude de 12 200 mètres environ. Au-delà, les solutions actuelles n'assurent pas une protection efficace contre l'hypoxie. Or, de plus en plus, les avions de ligne et les avions d'affaires, une fois allégés d'une partie de leur carburant, dépassent 12 200 mètres.
  • Il semble à première vue qu'une protection satisfaisante exige de remplacer les installations classiques du type ci-dessus défini par des installations comportant, pour chaque masque, un régulateur à la demande et un clapet d'expiration équilibré (c'est-à-dire insensible aux variations de la pression aval), permettant aux passagers de respirer de l'oxygène pur sous pression en évitant l'ouverture du clapet d'expiration dès qu'une surpression déterminée par raport à l'ambiance est atteinte. Dans la pratique, le coût et la complexité d'une telle solution seraient prohibitifs.
  • La présente invention vise à fournir une installation assurant une protection acceptable jusqu'à des altitudes d'environ 13 700 mètres, au prix de modifications aux installations existantes qui restent limitées.
  • L'invention part de la constatation que, dans la réalité, les installations actuelles ne permettent pas au porteur du masque de respirer de l'oxygène pur. Lors des pointes inspiratoires, le débit d'oxygène et le volume d'oxygène provenant du sac économiseur sont insuffisants pour éviter l'apparition, dans le masque, d'une légère dépression qui suffit à provoquer l'entrée d'air de dilution par le clapet anti-suffocation dont est pourvu le masque et par les fuites entre le couvre-face et la peau. Le débit moyen fourni à travers l'étranglement ne suffit pas aux besoins de certains des passagers et/ou est insuffisant pour assurer la ventilation pulmonaire dans les périodes d'agitation. Or, il n'est pas possible de surdimensionner le diaphragme ou d'augmenter la pression d'alimentation de façon systématique, car cela conduirait à un gaspillage d'oxygène et obligerait à augmenter notablement le volume et le poids de la réserve d'oxygène.
  • Pour résoudre le problème, l'invention propose une installation caractérisée en ce que la centrale est prévue pour, en cas de dépressurisation, fournir temporairement ou au-delà d'une altitude de cabine déterminée (d'environ 12 200 mètres), fournir à la canalisation de l'oxygène sous une pression déterminée p1, de l'ordre de deux fois la pression p2 fournie immédiatement en-deçà de l'altitude déterminée, et en ce que chaque masque comporte un couvre-face en forme, comportant un joint à lèvres d'étanchéité souple et un clapet d'expiration non équilibré.
  • Lorsque la réserve et la centrale constituent un générateur d'oxygène par réaction chimique, ce générateur peut être simplement prévu pour fournir un débit d'oxygène au moins double du débit fourni ultérieurement, pendant une période de temps suffisante pour permettre à l'équipage de ramener l'avion jusqu'à une altitude inférieure à 12 200 mètres, par exemple pendant environ 3 minutes : ce cas est souvent celui d'une installation destinée à un avion d'affaires.
  • Grâce à cette disposition, la capacité supplémentaire requise de la réserve est limitée à ce qui est nécessaire pour protéger les passagers contre l'hypoxie pendant le temps requis pour que l'équipage ramène l'avion à une altitude de sécurité.
  • Dans le cas des avions de ligne, des boîtes à masques sont interposées entre la centrale de distribution et la canalisation. Chaque boîte contient des masques respiratoires et est munie d'une serrure permettant de libérer les masques qui tombent devant les passagers en cas de dépressurisation. Conformément à un mode avantageux de réalisation de l'invention, la centrale peut être prévue pour alimenter les boîtes à masques sous une pression haute p1 qui est supérieure à la pression p2 à fournir en amont d'étranglements alimentant chacun un masque pour les altitudes inférieures à 12 200 mètres et chaque boîte à masques est alors munie d'un détendeur altimétrique situé en amont des étranglements et de moyens permettant de court-circuiter le détendeur en réponse à la réception d'oxygène à la pression haute p1 provenant de la centrale de distribution.
  • L'alimentation en oxygène à la pression p₁ n'augmente pas sensiblement la surpression dans le masque, limitée par la soupape d'expiration. Mais elle provoque une forte augmentation du débit, évitant la dilution par entrée d'air extérieur et garantissant l'inhalation d'oxygène pratiquement pur.
  • Une telle boîte remplit certaines des fonctions qui sont normalement assurées par la centrale de distribution dans les installations classiques actuelles.
  • L'invention sera mieux comprise à la lecture de la description qui suit de modes particuliers de réalisation, donnés à titre d'exemples non limitatifs. La description se réfère aux dessins qui l'accompagnent, dans lesquels :
    • la figure 1 est un schéma de principe d'une installation suivant l'invention, une seule des boîtes à masques et un seul des masques étant représentés complètement ;
    • la figure 2 est un schéma d'un détendeur altimétrique utilisable dans une boîte du genre montré en figure 1 ;
    • la figure 3 est un schéma de principe, en coupe passant par l'axe des clapets, d'un organe de liaison entre le couvre-face et le sac économiseur d'un masque utilisable dans l'installation de la figure 1 ;
    • la figure 4 montre une courbe représentative d'une loi de variation de la pression en fonction de l'altitude utilisable pour mettre en oeuvre l'invention,
    • la figure 5 montre, à titre d'exemple, la loi de variation de la pression de sortie de la centrale de distribution en fonction du temps, pour un profil de descente hypothétique particulier ;
    • la figure 6 montre schématiquement une loi de variation du débit adoptable pour un générateur chimique.
  • L'installation montrée schématiquement en figure 1 est notamment utilisable sur un avion de ligne à passagers. Cette installation comporte une réserve d'oxygène sous pression 10 munie d'un détendeur 12 fournissant de l'oxygène sous une pression de 5 à 6 bars à une centrale de distribution 14. La centrale alimente à son tour une conduite générale 16 sur laquelle sont branchées des boîtes à masques 18 dont une seule est représentée en détail. Les boîtes sont réparties au-dessus des rangées de sièges et chacune est prévue pour libérer les masques 21 qu'elle contient en cas de dépressurisation. Pour cela, le fond de la boîte 18 peut constituer un couvercle muni d'un verrou 20 qui est désarmé en réponse à l'apparition, dans la conduite de distribution 16, d'une pression supérieure à une valeur déterminée p0. Le déverrouillage peut être réalisé d'autre façon ou les masques peuvent être en permanence à la disposition des passagers, par exemple sur les avions d'affaires.
  • Chaque boîte 18 comporte une canalisation 22 à laquelle les masques sont reliés chacun par l'intermédiaire d'un étranglement 24 de limitation de débit. Dans le cas illustré sur la figure 1, un robinet 26 est interposé entre la canalisation et chaque masque 21, en série avec l'étranglement 24. Ce robinet est prévu pour être ouvert par traction du passager sur une sangle 28 qui double le tuyau souple 30 de liaison avec le masque 21.
  • Le masque comporte lui-même un couvre-face 32 muni d'un harnais élastique 34 de fixation sur la tête et d'un sac économiseur souple 36.
  • La disposition générale décrite jusqu'ici est classique. Mais, conformément à l'invention, la centrale de distribution 14, chaque boîte à masques 18 et chaque masque 21 ont une constitution particulière.
  • La centrale de distribution 14 est prévue pour alimenter la canalisation générale 16 en oxygène sous une pression qui varie en fonction de la pression dans la cabine ou "altitude cabine" suivant deux lois différentes, suivant que cette altitude est inférieure ou supérieure à 12 200 mètres, soit 40 000 pieds. Comme on l'a indiqué plus haut, la centrale 14 fournit, lorsque l'altitude dépasse, même légèrement, 12 200 mètres, l'oxygène sous une pression p1 qui est pratiquement le double de la pression p2 fournie à une altitude à peine inférieure à 12 200 mètres.
  • La centrale 14 montrée en figure 1 est réalisée de façon non seulement à atteindre ce résultat, mais aussi à fournir, immédiatement après la détection d'une dépressurisation au-delà de 3 800 mètres "d'altitude cabine" (12 500 pieds), un bref pic de pression destiné à ouvrir les verrous 20 des boîtes 18. Bien d'autres constitutions de la centrale 14 seraient possibles, à commande pneumatique ou à commande électronique à partir de signaux fournis par des capteurs de pression.
  • La centrale 14 représentée comporte un boîtier ayant une entrée reliée à la réserve d'oxygène sous pression 10 et une sortie de liaison avec la conduite générale de distribution 16. Elle peut être regardée comme ayant deux étages 38 et 40 de constitution similaire.
  • Le premier étage 38 comporte un clapet 42 fixé à deux membranes 44 et 46 et coopérant avec un siège qui entoure l'admission en oxygène provenant de la réserve 10. Le clapet 42 commande ainsi la communication entre la réserve et un détendeur 48 de constitution classique, relié par un passage 50 à la sortie 52. Ce détendeur 48 maintient une pression relative constante à la sortie 52 par rapport à la pression ambiante, admise par un orifice 54, aussi longtemps que le second étage 40 n'intervient pas. Les deux membranes 44 et 46 ont une surface différente. Elles délimitent une chambre 58 reliée à l'ambiance et elles sont soumises à l'action d'un ressort 56 qui tend à appliquer le clapet 42 sur son siège.
  • La membrane 46 de plus grande section est soumise à la différence des pressions entre la chambre 58 et une chambre reliée à l'admission par un passage étranglé 60. Le clapet 42 et les membranes sont dimensionnés de façon que le clapet s'ouvre dès qu'on vidange la chambre 56, c'est-à-dire lorsque l'altitude cabine atteint 3800 mètres.
  • Le second étage 40 a une constitution similaire au premier. La chambre délimitée par le boîtier et la membrane de grande surface 46a est reliée à la valve du clapet 42a par un étranglement 60a. Les surfaces des membranes 44a et 46a sont prévues pour que le clapet du second étage s'ouvre dès qu'on vidange la chambre 56a, c'est-à-dire lorsque l'altitude cabine atteint 12 200 mètres..
  • La centrale 14 représentée est prévue pour fournir, sur sa sortie 52, de l'oxygène à la pression d'entrée pendant un bref laps de temps (suffisant pour ouvrir les verrous des boîtes 18) lorsque la pression dans la cabine correspond à une altitude supérieure à 12 500 pieds.
  • Le fonctionnement est alors le suivant :
    • Aussi longtemps que l'altitude cabine est inférieure à 12 500 pieds (3 800 mètres environ) le clapet 42 reste fermé par la pression dans la chambre 56. Cette chambre est en effet alimentée à la pression de sortie du détendeur 12 car le clapet 62 reste fermé.
    • En cas de dépressurisation au-dessus de 12 500 pieds, la capsule 64 ouvre le clapet 62. La chambre 56 se vide. Le clapet 42 s'ouvre. L'oxygène provenant de la source 12 alimente le second étage par un passage 66. Sous l'effet de la pression exercée sur le clapet 42a percé du passage étranglé 60a, ce clapet 42a s'ouvre et la pression fournie par le détenteur 12 est transmise directement à la sortie 52.
    • Tant que l'altitude cabine est inférieure à 40 000 pieds (12 200 mètres environ) la capsule 64a n'ouvre pas le clapet 62a du second étage : la chambre 56a se remplit en quelques secondes d'oxygène provenant du premier étage par l'étranglement 60a. Le sens des forces de pression s'inverse et le clapet 42a se referme.
    • Lorsque l'altitude cabine dépasse 40 000 pieds, la capsule 64a ouvre le clapet 62a. La chambre 56a se vidange et le clapet 42a s'ouvre. La pression fournie par le détendeur 12 est transmise directement à la sortie 52.
  • La figure 5 montre une séquence correspondant à une décompression lente au cours de laquelle l'altitude cabine dépasse 12 200 mètres suivie d'un retour au sol. A l'instant tO, la pression p1 de sortie du détendeur est appliquée aux boîtes 12 pour ouvrir les verrous 20, prévus pour être déclenchés dès une pression p0 inférieure à p1. La pression redescend ensuite à une valeur p2, puis monte à p1 lorsque l'altitude de 40 000 pieds est atteinte. Lorsque l'appareil redescend au dessous de 40 000 pieds, la pression redescend à la valeur p2 qui subsiste jusqu'à une altitude qui est généralement inférieure à 12 500 pieds et qui est par exemple de 10 000 pieds (3 100 mètres environ).
  • Dans chacune des boîtes 18, la canalisation 22 est alimentée, par un détendeur 70 lorsque la pression appliquée est égale à p2, par un clapet de by-pass 72 lorsque la pression appliquée est égale à p1. Le clapet de by-pass ou de court-circuit 72 peut être constitué par une simple membrane repoussée vers une position de fermeture d'un siège par la pression qui règne dans la cabine et par la force d'un ressort et, en sens contraire, par la force de pression rêgnant dans la canalisation 22, en son centre, et la pression d'entrée dans la boîte 18, à sa périphérie. La membrane et le ressort sont dimensionnés de façon que le clapet de court-circuit 72 s'ouvre lorsque la pression dépasse une valeur déterminée comprise entre p2 et p1.
  • Le détendeur 70 a par exemple la constitution montrée en figure 2, ayant une membrane 74 munie d'un poussoir d'ouverture d'un clapet à bille 76 et une capsule 78 prévue pour prendre appui, directement ou par l'intermédiaire d'un ressort, sur la membrane lorsque l'altitude dans la cabine dépasse 10 000 pieds. La pression dans la canalisation 22 a alors une loi de variation en fonction de l'altitude cabine du genre montré en figure 4.
  • Comme on l'a indiqué plus haut, l'obtention d'une protection satisfaisante implique d'éviter les entrées d'air dans le masque depuis l'atmosphère.
  • Pour atteindre ce résultat, le couvre-face 32 du masque 21 (figure 3) comporte une lèvre interne 80 en élastomère souple, délimitant une ouverture de forme triangulaire et mise en forme de façon à être appliquée contre l'arête du nez et la face par la pression interne. Le masque montré en figure 3 comporte un bloc soupape 82 qui incorpore un clapet souple 84 d'admission à partir du sac économiseur 36 suivant les flèches f0. Si le sac est vide, l'ensemble constitué par le clapet souple 84 et le boitier qui le supporte peut se soulever pour livrer passage à de l'air additionnel dont le trajet est alors celui indiqué par les flèches f1.
  • L'alimentation en oxygène du sac économiseur 36 peut s'effectuer par un tuyau souple 30 représenté en avant du couvre-face sur la figure 3 mais qui dans la pratique sera plutôt placé sur le côté, comme indiqué schématiquement sur la figure 1.
  • L'expiration peut s'effectuer par exemple à travers une soupape additionnelle 86 tarée par un ressort, montrée schématiquement en figure 1, ou à travers un clapet annulaire d'expiration (non représenté) à la périphérie du bloc 82 ayant un obturateur souple dont la raideur fixe la surpression maximale dans le masque.
  • Si chaque masque est individuellement alimenté par un générateur chimique, celui-ci est prévu pour fournir, à partir du moment où il est amorcé, un débit d'oxygène qui varie suivant une loi du genre montré en figure 6, permettant de fournir l'oxygène nécessaire au cours de la descente dans les conditions les plus critiques, à partir d'une altitude qui ne pourra généralement pas dépasser 45 000 pieds, c'est-à-dire 13 700 mètres. Dans ce cas, la loi de variation donnée par l'adoption d'une composition variable ou d'une section variable de la "chandelle" de fourniture d'oxygène peut être du genre donné en figure 6. Elle est prévue pour donner un débit d'environ 6 litres par minute (aux conditions normales de température et de pression) pendant un temps suffisant pour ramener l'avion depuis l'altitude maximale de 13 700 mètres jusqu'à 12 200 mètres par exemple, puis réduire progressivement le débit tout en le maintenant pendant un temps suffisant pour stabiliser l'avion à une altitude intermédiaire, par exemple de 18 000 pieds (5 500 mètres) avant de le ramener à l'altitude de sécurité de 10 000 pieds (3 050 mètres). Dans la pratique, une durée de fourniture du débit maximum d'environ 3 minutes sera généralement satisfaisante.

Claims (5)

  1. Installation de protection de passagers d'avion contre les risques de dépressurisation, comportant une réserve d'oxygène (10) reliée à une centrale de distribution (14) qui, en cas de dépressurisation à haute altitude, alimente, à une pression qui augmente avec l'altitude, une canalisation à laquelle les masques (32) des passagers sont reliés par un tube souple (30) muni d'un étranglement (24) de limitation de débit, caractérisée en ce que la centrale est prévue pour, temporairement ou au dela d'une altitude de cabine déterminée, fournir à la canalisation de l'oxygène sous une pression déterminée, de l'ordre de 2 fois la pression fournie immédiatement en decà de la dite altitude déterminée, et en ce que chaque masque comporte un couvre-face (32) en forme, comportant un joint à lèvres internes d'étanchéité souple.
  2. Installation suivant la revendication 1, caractérisé en ce que la réserve (10) et la centrale (14) constituent un générateur d'oxygène par réaction chimique, le dit générateur étant prévu pour fournir un débit d'oxygène au moins double de celui fourni ultérieurement, pendant environ 3 minutes.
  3. Installation suivant la revendication 1, caractérisé en ce qu'elle comporte des boîtes à masques (18) interposées entre la centrale de distribution (14) et la canalisation, en ce que la centrale (14) est prévue pour alimenter les boîtes à masques (18) sous la pression déterminée supérieure à la pression à fournir en amont des étranglements pour les altitudes inférieures à la dite altitude déterminée, et en ce que chaque boîte à masques est munie d'un détendeur altimétrique (70) et de moyens (72) permettant de court-circuiter le détendeur altimétrique (70) en réponse à la réception de la pression déterminée fournie par la centrale de distribution.
  4. Installation suivant la revendication 1, 2 ou 3 caractérisé en ce que l'altitude déterminée est d'environ 12 200 mètres.
  5. Installation suivant l'une quelconque des revendications précédentes, caractérisée en ce que chaque masque est relié à la canalisation par l'intermédiaire d'un clapet d'inspiration, et munie d'un sac économiseur et comporte un clapet d'expiration non équilibré.
EP19920403300 1991-12-13 1992-12-07 Installation de protection respiratoire pour passagers d'aéronef Expired - Lifetime EP0546909B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9115526A FR2684954B1 (fr) 1991-12-13 1991-12-13 Installation de protection respiratoire pour passagers d'aeronef.
FR9115526 1991-12-13

Publications (2)

Publication Number Publication Date
EP0546909A1 true EP0546909A1 (fr) 1993-06-16
EP0546909B1 EP0546909B1 (fr) 1997-02-26

Family

ID=9420045

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19920403300 Expired - Lifetime EP0546909B1 (fr) 1991-12-13 1992-12-07 Installation de protection respiratoire pour passagers d'aéronef

Country Status (5)

Country Link
US (1) US5357949A (fr)
EP (1) EP0546909B1 (fr)
DE (1) DE69217628T2 (fr)
ES (1) ES2098476T3 (fr)
FR (1) FR2684954B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015197542A1 (fr) * 2014-06-24 2015-12-30 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Système d'alimentation en oxygène d'urgence

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5704073A (en) 1995-08-01 1998-01-06 Figgie International Inc. Quick donning goggles for use with breathing mask
US5809999A (en) * 1995-08-30 1998-09-22 Daimler-Benz Aerospace Airbus Gmbh Method and apparatus for supplying breathable gas in emergency oxygen systems, especially in an aircraft
DE19531916C2 (de) * 1995-08-30 1997-11-20 Daimler Benz Aerospace Airbus Verfahren und Vorrichtung zur Bereitstellung von Atemgas in Notsauerstoffsystemen
DE19739161C1 (de) * 1997-09-06 1999-01-07 Draeger Aerospace Gmbh Entlüftungsventil für schnellen Druckabfall in Flugzeugkabinen
FR2832639B1 (fr) * 2001-11-28 2004-07-02 Intertechnique Sa Procede et dispositif de protection des passagers d'un aeronef contre l'hypoxie
DE10217499C1 (de) * 2002-04-19 2003-07-24 Draeger Aerospace Gmbh Sicherheitsvorrichtung für ein Gas-Verteilungssystem in einem Flugzeug
US6988509B2 (en) * 2003-03-17 2006-01-24 Carleton Technologies, Inc. Riser line shutoff valve
DE10320454B4 (de) * 2003-05-08 2017-12-07 Weinmann Emergency Medical Technology Gmbh + Co. Kg Vorrichtung zur Steuerung einer Gasströmung
US6837243B1 (en) 2003-09-30 2005-01-04 Scott Technologies, Inc. Automatic transfer regulator for hose-line respirator
US7588032B2 (en) 2004-12-08 2009-09-15 Be Intellectual Proeprty, Inc. Oxygen conservation system for commercial aircraft
EP1933946B1 (fr) * 2005-10-11 2017-12-20 BE Intellectual Property, Inc. Masque respiratoire perfectionne et regulateur associe destine a un avion
US20110174307A1 (en) * 2006-01-04 2011-07-21 Lessi Stephane Device for Supplying Oxygen to the Occupants of an Aircraft and Pressure Regulator for Such a Device
US20090260631A1 (en) * 2006-04-13 2009-10-22 Intertechnique Respiratory gas supply circuit for an aircraft carrying passengers
WO2007121773A1 (fr) * 2006-04-26 2007-11-01 Intertechnique Système de distribution d'oxygène dans un aéronef
US9809313B2 (en) * 2007-01-22 2017-11-07 Honeywell International Inc. Cabin altitude alerting systems and methods
DE102007048924A1 (de) * 2007-10-12 2009-04-16 Airbus Deutschland Gmbh System zum Bereitstellen von Notfallsauerstoff sowie therapeutischem Sauerstoff
US20090188504A1 (en) * 2008-01-25 2009-07-30 Siska Jr William D Mechanically actuated emergency oxygen delivery system
US8640702B2 (en) 2008-06-23 2014-02-04 Be Intellectual Property, Inc. System for regulating the dispensing of commercial aircraft passenger oxygen supply
CA2810967C (fr) * 2010-09-23 2016-11-29 Intertechnique Regulateur d'oxygene de distribution de melange respiratoire dans avion
US9038628B2 (en) * 2011-11-30 2015-05-26 Avox Systems Inc. System and method for an oxygen system alarm
US9242725B1 (en) * 2013-05-13 2016-01-26 The Boeing Company Selection of emergency descent rates for an aircraft due to cabin depressurization
US11617847B2 (en) 2017-01-11 2023-04-04 Model Software Corporation Methods for minimizing delayed effects of exposure to reduced oxygen partial pressure via administration of supplemental oxygen
US10532175B1 (en) 2019-05-23 2020-01-14 Model Software Corporation Methods for minimizing delayed effects of exposure to reduced oxygen partial pressure via administration of supplemental oxygen
RU2695573C2 (ru) * 2017-01-19 2019-07-24 Акционерное общество "Научно-производственное предприятие "Звезда" имени академика Г.И. Северина" Комплект кислородного оборудования и снаряжения для прыжков с большой высоты
EP4056236A1 (fr) * 2021-03-11 2022-09-14 B/E Aerospace Systems GmbH Masque d'oxygène à utiliser dans un aéronef, système d'oxygène d'urgence et aéronef

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB828362A (en) * 1957-04-04 1960-02-17 Kidde Walter Co Ltd Improvements in or relating to oxygen breathing apparatus
US3981300A (en) * 1975-01-22 1976-09-21 Irving Williams Oxygen supply systems for aircraft
FR2614207A2 (fr) * 1983-12-28 1988-10-28 Intertechnique Sa Masque respiratoire de protection, notamment pour les passagers d'aeronefs.

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2220905A (en) * 1937-10-30 1940-11-12 Daniel P Johnson Oxygen regulator
US2306382A (en) * 1941-01-28 1942-12-29 Fink Rudolph Oxygen distribution system and regulator therefor
US2608200A (en) * 1951-05-17 1952-08-26 Richard E Stockman Oxygen demand regulator, including altitude compensator
US2818861A (en) * 1952-08-07 1958-01-07 Allan M Russell Oxygen mask
GB865084A (en) * 1958-06-09 1961-04-12 Aro Equipment Corp Altitude compensated continuous flow oxygen regulator
DE1129831B (de) * 1958-06-09 1962-05-17 Aro Equipment Corp Sauerstoffzufuehrungseinrichtung fuer Hoehenatemgeraete
GB1207153A (en) * 1967-03-22 1970-09-30 Kidde Walter Co Ltd Improvements in or relating to oxygen breathing supply systems for use in aircraft
US4335735A (en) * 1980-09-22 1982-06-22 The Bendix Corporation Automatic diluter/demand oxygen regulator adapted for chemical or biological use
US4651728A (en) * 1984-09-28 1987-03-24 The Boeing Company Breathing system for high altitude aircraft
FR2614118B1 (fr) * 1987-04-15 1989-07-13 Intertechnique Sa Regulateur a la demande de fourniture de gaz respiratoire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB828362A (en) * 1957-04-04 1960-02-17 Kidde Walter Co Ltd Improvements in or relating to oxygen breathing apparatus
US3981300A (en) * 1975-01-22 1976-09-21 Irving Williams Oxygen supply systems for aircraft
FR2614207A2 (fr) * 1983-12-28 1988-10-28 Intertechnique Sa Masque respiratoire de protection, notamment pour les passagers d'aeronefs.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015197542A1 (fr) * 2014-06-24 2015-12-30 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Système d'alimentation en oxygène d'urgence
RU2675333C1 (ru) * 2014-06-24 2018-12-18 Л'Эр Ликид, Сосьете Аноним Пур Л'Этюд Э Л'Эксплуатасьон Де Проседе Жорж Клод Система аварийной подачи кислорода

Also Published As

Publication number Publication date
US5357949A (en) 1994-10-25
ES2098476T3 (es) 1997-05-01
DE69217628T2 (de) 1997-06-12
EP0546909B1 (fr) 1997-02-26
DE69217628D1 (de) 1997-04-03
FR2684954B1 (fr) 1996-05-24
FR2684954A1 (fr) 1993-06-18

Similar Documents

Publication Publication Date Title
EP0546909B1 (fr) Installation de protection respiratoire pour passagers d&#39;aéronef
EP1275415B1 (fr) Appareil respiratoire et installation de protection contre l&#39;hypoxie en comportant application
EP1441812B1 (fr) Procede et dispositif de regulation a dilution pour appareil respiratoire
EP0628325B1 (fr) Equipement de protection respiratoire
EP1077743B1 (fr) Equipement de protection respiratoire a mise en place rapide
EP0000312B1 (fr) Installation respiratoire et de protection contre l&#39;accélération pour avions de combat
EP0288391B1 (fr) Harnais de masque respiratoire et masque utilisable avec un tel harnais
EP0153247B1 (fr) Equipement de protection du personnel contre la contamination
EP3417913A1 (fr) Equipement respiratoire pour aeronef avec masque et harnais gonflable et son espace de rangement
EP0136223A2 (fr) Dispositif de protection contre les accélérations
CA2629947A1 (fr) Circuit d&#39;alimentation en d&#39;oxygene pour un membre de l&#39;equipage d&#39;un aeronef
WO2010089514A1 (fr) Combinaison de protection d&#39;une personne et ensemble correspondant
FR2614118A1 (fr) Regulateur a la demande de fourniture de gaz respiratoire
CA2468813C (fr) Procede et dispositif de protection des passagers d&#39;un aeronef contre l&#39;hypoxie
FR2918286A1 (fr) Dispositif d&#39;alimentation en oxygene, notamment pour pilotes d&#39;avion
AU4915399A (en) Standby regulator for breathing system
EP1275416B1 (fr) Appareil respiratoire à limiteur de débit
EP0475845B1 (fr) Dispositif de protection physiologique des pilotes d&#39;avions
FR2614207A2 (fr) Masque respiratoire de protection, notamment pour les passagers d&#39;aeronefs.
FR2843699A1 (fr) Dispositif individuel d&#39;alimentation en gaz respiratoire
FR2613234A1 (fr) Equipement respirateur de protection contre la noyade, notamment pour pilote d&#39;engin motonautique
EP0896923A1 (fr) Dispositif de protection contre les accélérations
FR3002459A1 (fr) Dispositif de respiration en altitude a recyclage d&#39;air.
FR2668373A1 (fr) Equipement respiratoire de protection d&#39;equipage d&#39;aeronef.
FR2650248A1 (fr) Dispositif de protection de membre d&#39;equipage d&#39;aeronef contre l&#39;acceleration

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT

17P Request for examination filed

Effective date: 19930709

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19960531

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970228

REF Corresponds to:

Ref document number: 69217628

Country of ref document: DE

Date of ref document: 19970403

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2098476

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: UFFICIO TECNICO ING. A. MANNUCCI

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19971201

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19971202

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980225

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19981209

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19981207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991001

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051207