EP0545984B1 - Automatic-control device for changing the relative rotational position of shafts in an internal-combustion engine - Google Patents

Automatic-control device for changing the relative rotational position of shafts in an internal-combustion engine Download PDF

Info

Publication number
EP0545984B1
EP0545984B1 EP91914901A EP91914901A EP0545984B1 EP 0545984 B1 EP0545984 B1 EP 0545984B1 EP 91914901 A EP91914901 A EP 91914901A EP 91914901 A EP91914901 A EP 91914901A EP 0545984 B1 EP0545984 B1 EP 0545984B1
Authority
EP
European Patent Office
Prior art keywords
camshaft
control device
gearwheel
teeth
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91914901A
Other languages
German (de)
French (fr)
Other versions
EP0545984A1 (en
Inventor
Donatus Wichelhaus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dr Ing HCF Porsche AG
Original Assignee
Dr Ing HCF Porsche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr Ing HCF Porsche AG filed Critical Dr Ing HCF Porsche AG
Publication of EP0545984A1 publication Critical patent/EP0545984A1/en
Application granted granted Critical
Publication of EP0545984B1 publication Critical patent/EP0545984B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/34403Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using helically teethed sleeve or gear moving axially between crankshaft and camshaft
    • F01L1/34406Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using helically teethed sleeve or gear moving axially between crankshaft and camshaft the helically teethed sleeve being located in the camshaft driving pulley

Definitions

  • the invention relates to a device according to the preamble of claim 1.
  • One possibility of changing the valve timing during the operation of the internal combustion engine is to preferably rotate the position of the intake camshaft in relation to the crankshaft driving it with the aid of a so-called phase converter.
  • phase converter such. B. from EP-0 335 083, oil pressure dependent axially displaced a coupling member which is coaxially surrounded by the wheel driving the camshaft.
  • the coupling member has two toothings, at least one of which is helically toothed, which each cooperate with a corresponding toothing on the camshaft or in the wheel.
  • a disadvantage of the design is the high component expenditure for the activation and deactivation of the pressure oil as well as the large construction volume.
  • a camshaft which is coaxially surrounded by a hollow shaft piece which carries a cam for actuating a gas exchange valve.
  • An annular gap formed and sealed between the camshaft and the shaft piece is filled with an electroviscous fluid (EVF).
  • EVF electroviscous fluid
  • the viscosity of the EVF is increased to such an extent that a rigid coupling is created so that the shaft section rotates synchronously with the camshaft.
  • the electroviscous liquid liquefies, causing this Shaft section is decoupled from the camshaft.
  • a gas exchange valve can be switched on or off or the valve overlap between intake and exhaust valves can be varied. With the latter, this arrangement achieves the same effect that can be achieved with a change in the relative rotational position between an intake and an exhaust camshaft.
  • the object of the present invention is to provide a generic device which reduces the component expenditure and the construction volume and is of simple, inexpensive construction.
  • the main advantages achieved with the invention are that the device can change the relative rotational position quickly and has a small number of components, in particular moving components and takes up little space.
  • the coupling member designed as an intermediate wheel is at least partially coaxially surrounded by a fixed intermediate wheel bearing ring, an annular space being delimited between the two parts and being filled with an electroviscous liquid.
  • An output voltage supplied to this liquid by an electronic control device changes the viscosity in such a way that a braking torque acts on the idler gear which, due to the helical toothing, produces an axial force which displaces the idler gear towards a first end position.
  • first and second toothing as oblique toothing on the one hand increases the angle of rotation of the camshaft relative to the shaft driving it, and on the other hand, an unwanted pushing back of the idler gear due to an alternating, non-uniform camshaft drive torque is blocked.
  • An axially oscillating relative movement of the idler gear on the camshaft caused by this drive torque is effectively dampened by a plate spring which is arranged between the camshaft and idler gear and at the same time applies the spring force required for resetting.
  • an electroviscous locking bearing is formed between the camshaft and the idler gear, which is also supplied with an output voltage from the electronic control device and causes a radial compressive force that results in an axial locking force, which counteracts the spring force and compensates it.
  • the annular space and the locking bearing are delimited on both sides by commercially available sealing rings, which are fixed in a simple manner in the idler gear bearing ring or on the camshaft. Electrodes which are in direct contact with the electroviscous fluid are applied in the annular space and on a segment of the camshaft assigned to the locking bearing.
  • the electrodes are arranged insulated, either using an electrically non-conductive intermediate layer or the intermediate wheel bearing ring or the segment being made from non-conductive material.
  • the electrodes are connected by means of electrically conductive connections to a high-voltage module of the control device.
  • B. the screw connection of the plate spring and a connection extending radially from there to the electrode is supplied.
  • a current differential angle of rotation between the camshaft and the crankshaft is detected by sensors and fed to the electronic control device.
  • optimal differential rotation angles are stored in characteristic maps as a function of parameters of the internal combustion engine.
  • the output voltages are stored in lists logically linked with the optimal angles.
  • the device is of simple construction, since it uses components that are also required in known, oil-hydraulic or electrically operated phase converters.
  • the intermediate wheel bearing ring can be designed as a separate component or as part of the cylinder head. The amount of liquid required is small because it does not have to be constantly drained and renewed.
  • a camshaft 2 controlling the gas exchange of intake valves is rotatably mounted in an only indicated cylinder head 1, on the drive-side end 3 of which a device for changing the rotational position is arranged, which drives the camshaft 2 relative to a crankshaft, not shown, which drives it twisted.
  • the device comprises a drive wheel 4 driven by the crankshaft, which carries a first toothing 5 designed as oblique internal toothing, which cooperates with a corresponding external toothing 6 of a coupling member designed as an intermediate wheel 7.
  • the intermediate wheel 7 consists of an annular disk 8 and a hollow cylindrical sleeve 9.
  • the disk 8 carries the external toothing 6 and a second toothing 10 designed as oblique internal toothing, which engages in a corresponding external toothing 11 on the camshaft 2.
  • the meshing teeth 5, 6 and 10, 11 are mutually helical so that self-locking between the camshaft 2 and the drive wheel 4 results.
  • the intermediate wheel 7 is axially displaceable in any position between two end positions E1, E2, the outer circumferential surface 15 of the sleeve 9 sliding in an intermediate wheel bearing ring 16 arranged in a fixed manner in the cylinder head 1.
  • This bearing ring 16 coaxially surrounds the sleeve 9 and includes an annular space 17 formed between the sleeve 9 and the bearing ring 16.
  • a circular gap 19 is formed between an inner surface 18 of the sleeve 9 and the camshaft 2, with two sealing rings 20 arranged at a distance from one another on the camshaft 2 delimiting a locking bearing 21 within the circular gap 9.
  • a plate spring 22 is screwed in the middle in the end face of the camshaft 2 and is located with its outer edge area in resilient contact with the idler gear 7.
  • An electrode 24 which is insulated onto this segment 23 is arranged on a segment 23 of the camshaft 2 lying between the sealing rings 20.
  • a further, also insulated electrode 25 is arranged on the outer surface 26 delimiting the annular space 17 on the intermediate wheel bearing side.
  • the annular space 17 formed in the idler gear bearing ring 16 is sealed on both sides by sealing rings 27 inserted in the bearing ring 16.
  • the annular space 17 and the locking bearing 21 are filled with a liquid F, the viscosity of which can be regulated in a wide range between 'liquid' and 'rigid' by applying an electrical voltage.
  • An electronic control device 30 assigned to the device comprises a high-voltage module 31, which can supply output voltages UA1 or UA2 to the electrodes 24 or 25 via electrically conductive connections 32.
  • a current differential angle of rotation DW between the camshaft 2 and the crankshaft is fed to the high-voltage module 31 by a cam angle sensor 33 and a crank angle sensor 34, respectively, which acts as a sensor.
  • maps K are integrated, in which, depending on the module 31, parameters supplied to the internal combustion engine such. B. speed n, load L and oil temperature TO, the respective operating state, optimal differential rotation angle DW are stored.
  • the output voltages UA1, UA2 are stored in the module 31 in lists B logically linked with the rotation angle DW.
  • the intermediate wheel 7 is, for example, in the end position E1 corresponding to an idling speed.
  • This end position E1 is assigned a certain differential rotation angle DW, which ensures an optimal valve overlap between the inlet valves actuated by the camshaft 2 and the outlet valves actuated by a further camshaft, not shown, for this operating state.
  • the liquid F in the locking bearing 21 or in the annular space 17 is liquid.
  • the locking bearing 21 rotates at the speed of the camshaft 2, while a shear rate gradient occurs in the liquid in the annular space 17, since the idler gear bearing ring 16 is stationary with respect to the idler gear 7.
  • the plate spring 22 is in the position shown in the figure and therefore does not exert any force on the intermediate wheel 7.
  • the z. B. is optimal for a medium engine speed, an output voltage UA2 determined from a list, then changes the viscosity of the liquid F in the due to the electric field acting between the electrode 25 and the intermediate wheel 7 Annulus 17 in the 'rigid' direction.
  • the increased viscosity causes a braking torque MB acting on the intermediate wheel 7, which is determined by the frictional force between the liquid F and the sleeve 9 and the outer radius of this sleeve 9.
  • the braking torque MB causes an axial force FAX which overcomes the self-locking and shifts the intermediate wheel 7 in the direction of the second end position E2 against the spring force FFE applied by the plate spring 22.
  • the cam drive torque transmitted from the crankshaft to the camshaft 2 is non-uniform due to the gas exchange valves to be actuated at different times and the spring forces to be overcome in the process. With a camshaft revolution, this drive torque passes z. B. multiple values between + 20 Nm and - 20 Nm. This non-uniformity causes a slightly oscillating, axial relative movement of the intermediate wheel 7 with respect to the camshaft 2, which is damped by the plate spring 22.
  • the angle sensors 33, 34 report that the desired differential rotation angle DW has been reached, which corresponds to a specific position of the idler gear between the end positions E1 and E2, the change in the relative rotation position is terminated by the voltage UA2 falling and the viscosity of the liquid F in resulting therefrom the annular space 17 is changed in the 'liquid' direction.
  • the braking torque MB and the shifting force FAX decrease.
  • a further output voltage UA1 applied to the electrode 24 causes a change in the viscosity of the locking bearing 21 in the 'rigid' direction, so that an axial locking force FAF arises from a radial compressive force between segment 23 and sleeve 9 due to the surface friction, the direction of which depends on the force acting on the intermediate gear 7 FAX or FFE.
  • the intermediate wheel 7 is shifted into the second end position E2, this position can take place by constant application of the output voltage UA2 or in the manner previously described for any intermediate position.
  • the intermediate wheel 7 is reset in the direction of the end position E1 by switching off the output voltage UA2 and lowering the voltage UA1 to a value which causes the force FAF to drop below the value of the spring force FFE, so that this spring force FFE shifts the intermediate wheel 7. This affects force resulting from the locking bearing 21 damping the oscillating relative movement of the idler gear 7.
  • the geometric design of the device can be adapted to the structural conditions of the internal combustion engine in a wide range.
  • the dimensioning of the device can, for. B. on the tooth angle of the oblique teeth 5, 6 or 10, 11, the required adjustment angle of the camshaft 2, the composition of the liquid F used and the roughness of the surfaces wetted by the liquid F can be influenced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

The device proposed enables the rotational position of e.g. a cam shaft (2) to be continuously adjusted relative to the crankshaft driving it in order to modify the control reaction times in an internal-combustion engine. The device comprises an intermediate gear wheel (7) which moves axially between two extreme positions and which meshes by means of helical outer and inner toothing (6, 10) with a drive pinion (4) and the cam shaft (2). An annular space (17) in a stationary ring bearing (16) is filled with an electroviscous fluid which, on application of a voltage by an electronic control unit (30), produces a force acting to displace the intermediate gear wheel (7). An electroviscous locking bearing (21) between the cam shaft (2) and the intermediate gear wheel (7) holds the intermediate gear wheel (7) in any position between its two extreme positions (E1, E2).

Description

Die Erfindung betrifft eine Vorrichtung nach dem Oberbegriff des Anspruches 1.The invention relates to a device according to the preamble of claim 1.

Es ist bekannt, die Ventilsteuerzeiten einer Brennkraftmaschine ihrer Drehzahl anzupassen, um sie in einem möglichst breiten Drehzahlbereich optimal betreiben zu können. Hierdurch können Drehmoment, Leistung, Abgasemission, Leerlaufverhalten und Kraftstoffverbrauch verbessert werden.It is known to adapt the valve timing of an internal combustion engine to its speed in order to be able to operate it optimally in the widest possible speed range. This can improve torque, power, exhaust emissions, idling behavior and fuel consumption.

Eine Möglichkeit, die Ventilsteuerzeiten während des Betriebes der Brennkraftmaschine zu ändern, besteht darin, vorzugsweise die Einlaßnockenwelle in ihrer Lage relativ zu der sie antreibenden Kurbelwelle mit Hilfe eines sogenannten Phasenwandlers zu verdrehen. Dabei wird, wie z. B. aus der EP- 0 335 083 bekannt, öldruckabhängig ein Koppelglied axial verschoben, welches koaxial von dem die Nockenwelle antreibenden Rad umgeben ist. Das Koppelglied trägt zwei Verzahnungen, von denen mindestens eine schräg verzahnt ist, die mit je einer korrespondierenden Verzahnung auf der Nockenwelle bzw. in dem Rad zusammenwirken. Nachteilig bei Ausführung ist der hohe Bauteilaufwand für das Ein- und Absteuern des Drucköles sowie das große Bauvolumen.One possibility of changing the valve timing during the operation of the internal combustion engine is to preferably rotate the position of the intake camshaft in relation to the crankshaft driving it with the aid of a so-called phase converter. Here, such. B. from EP-0 335 083, oil pressure dependent axially displaced a coupling member which is coaxially surrounded by the wheel driving the camshaft. The coupling member has two toothings, at least one of which is helically toothed, which each cooperate with a corresponding toothing on the camshaft or in the wheel. A disadvantage of the design is the high component expenditure for the activation and deactivation of the pressure oil as well as the large construction volume.

Aus der GB- 21 89 086 ist eine Nockenwelle bekannt, die koaxial von einem hohlen Wellenstück umgeben ist, welches einen Nocken zur Betätigung eines Gaswechselventils trägt. Ein zwischen der Nockenwelle und dem Wellenstück ausgebildeter und abgedichteter Ringspalt ist mit einer elektroviskosen Flüssigkeit (EVF) gefüllt. Durch Anlegen einer elektrischen Spannung zwischen der Nockenwelle und dem isoliert gehaltenen Wellenstück wird die Viskosität der EVF soweit erhöht, daß eine starre Koppelung entsteht, so daß das Wellenstück synchron mit der Nockenwelle rotiert. Beim Abschalten der Spannung verflüssigt sich die elektroviskose Flüssigkeit, wodurch das Wellenstück von der Nockenwelle entkoppelt wird. Mit dieser Anordnung kann z. B. ein Gaswechselventil zu- bzw. abgeschaltet werden oder die Ventilüberschneidung zwischen Einlaß- und Auslaßventilen kann variiert werden. Mit letzterer erzielt diese Anordnung den gleichen Effekt, der mit einer Änderung der relativen Drehlage zwischen einer Einlaß- und einer Auslaßnockenwelle zu erreichen ist.From GB 21 89 086 a camshaft is known which is coaxially surrounded by a hollow shaft piece which carries a cam for actuating a gas exchange valve. An annular gap formed and sealed between the camshaft and the shaft piece is filled with an electroviscous fluid (EVF). By applying an electrical voltage between the camshaft and the isolated shaft section, the viscosity of the EVF is increased to such an extent that a rigid coupling is created so that the shaft section rotates synchronously with the camshaft. When the voltage is switched off, the electroviscous liquid liquefies, causing this Shaft section is decoupled from the camshaft. With this arrangement z. B. a gas exchange valve can be switched on or off or the valve overlap between intake and exhaust valves can be varied. With the latter, this arrangement achieves the same effect that can be achieved with a change in the relative rotational position between an intake and an exhaust camshaft.

Aufgabe der vorliegenden Erfindung ist es, eine gattungsgemäße Vorrichtung zu schaffen, die den Bauteilaufwand und das Bauvolumen verringert und von einfachem, kostengünstigen Aufbau ist.The object of the present invention is to provide a generic device which reduces the component expenditure and the construction volume and is of simple, inexpensive construction.

Die Lösung dieser Aufgabe gelingt mit den Merkmalen des Anspruches 1. Die mit der Erfindung hauptsächlich erzielten Vorteile bestehen darin, daß die Vorrichtung die relative Drehlage schnell ändern kann und eine geringe Anzahl von Bauteilen, insbesondere von bewegten Bauteilen aufweist sowie einen geringen Bauraum beansprucht. Das als Zwischenrad ausgebildet Koppelglied ist zumindest abschnittsweise koaxial von einem feststehenden Zwischenradlagerring umgeben, wobei zwischen beiden Teilen ein Ringraum begrenzt ist, der mit einer elektroviskosen Flüssigkeit gefüllt ist. Eine von einer elektronischen Steuereinrichtung an diese Flüssigkeit gelieferte Ausgangsspannung verändert die Viskosität derart, daß auf das Zwischenrad ein Bremsmoment wirkt, welches aufgrund der Schrägverzahnung eine Axialkraft hervorruft, die das Zwischenrad in Richtung einer ersten Endlage verschiebt.This object is achieved with the features of claim 1. The main advantages achieved with the invention are that the device can change the relative rotational position quickly and has a small number of components, in particular moving components and takes up little space. The coupling member designed as an intermediate wheel is at least partially coaxially surrounded by a fixed intermediate wheel bearing ring, an annular space being delimited between the two parts and being filled with an electroviscous liquid. An output voltage supplied to this liquid by an electronic control device changes the viscosity in such a way that a braking torque acts on the idler gear which, due to the helical toothing, produces an axial force which displaces the idler gear towards a first end position.

Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen benannt.
Eine Ausbildung der ersten und zweiten Verzahnung als schräge Verzahnungen erhöht einerseits den Verdrehwinkel der Nockenwelle gegenüber der sie antreibenden Welle, andererseits ist so ein ungewolltes Zurückschieben des Zwischenrades aufgrund eines wechselnden, ungleichförmigen Nockenwellen-Antriebsmomentes blockiert.
Eine aufgrund dieses Antriebsmomentes verursachte, axial pendelnde Relativbewegung des Zwischenrades auf der Nockenwelle wird durch eine Tellerfeder wirksam bedämpft, die zwischen Nockenwelle und Zwischenrad angeordnet ist und gleichzeitig die für eine Rückstellung erforderliche Federkraft aufbringt.
Damit jede beliebige Drehlage zwischen den beiden Endlagen eingestellt werden kann, ist zwischen der Nockenwelle und dem Zwischenrad ein elektroviskoses Feststellager ausgebildet, welches ebenfalls aus der elektronischen Steuereinrichtung mit einer Ausgangsspannung versorgt wird und eine radiale Druckkraft verursacht, die eine axiale Feststellkraft zur Folge hat, welche der Federkraft entgegenwirkt und diese kompensiert. Der Ringraum sowie das Feststellager werden beidseitig durch handelsübliche Dichtringe begrenzt, die in einfacher Weise in dem Zwischenrad-Lagerring bzw. auf der Nockenwelle festgelegt sind.
In dem Ringraum und auf einem dem Feststellager zugeordneten Segment der Nockenwelle sind Elektroden aufgebracht, die in direktem Kontakt mit der elektroviskosen Flüssigkeit stehen. Die Elektroden sind isoliert angeordnet, wobei entweder eine elektrisch nicht leitende Zwischenschicht verwendet wird oder der Zwischenrad-Lagerring bzw. das Segment aus nicht leitendem Material gefertigt sind.
Die Elektroden sind mittels elektrisch leitender Verbindungen an ein Hochspannungsmodul der Steuereinrichtung angeschlossen, wobei die Elektrode auf dem Segment der Nockenwelle über eine zentral in die Nockenwelle geführte Verbindung, z. B. die Verschraubung der Tellerfeder und eine von dort radial zur Elektrode verlaufende Verbindung versorgt wird.
Ein aktueller Differenzdrehwinkel zwischen der Nockenwelle und der Kurbelwelle wird über Sensoren erfaßt und der elektronischen Steuereinrichtung zugeführt. In dieser Steuereinrichtung sind in Kennfeldern in Abhängigkeit von Parametern der Brennkraftmaschine optimale Differenzdrehwinkel gespeichert. In logisch mit den optimalen Winkeln verknüpften Listen sind die Ausgangsspannungen abgelegt.
Die Vorrichtung ist von einfachem Aufbau, da sie Bauteile verwendet, die auch in bekannten, ölhydraulisch oder elektrisch betätigten Phasenwandlern benötigt werden.
Der Zwischenrad-Lagerring kann als separates Bauteil oder aber als Teil des Zylinderkopfes ausgebildet sein.
Die benötigte Flüssigkeitsmenge ist gering, da sie nicht ständig abgeführt und erneuert werden muß.
Advantageous embodiments of the invention are specified in the subclaims.
Forming the first and second toothing as oblique toothing on the one hand increases the angle of rotation of the camshaft relative to the shaft driving it, and on the other hand, an unwanted pushing back of the idler gear due to an alternating, non-uniform camshaft drive torque is blocked.
An axially oscillating relative movement of the idler gear on the camshaft caused by this drive torque is effectively dampened by a plate spring which is arranged between the camshaft and idler gear and at the same time applies the spring force required for resetting.
So that any rotational position between the two end positions can be set, an electroviscous locking bearing is formed between the camshaft and the idler gear, which is also supplied with an output voltage from the electronic control device and causes a radial compressive force that results in an axial locking force, which counteracts the spring force and compensates it. The annular space and the locking bearing are delimited on both sides by commercially available sealing rings, which are fixed in a simple manner in the idler gear bearing ring or on the camshaft.
Electrodes which are in direct contact with the electroviscous fluid are applied in the annular space and on a segment of the camshaft assigned to the locking bearing. The electrodes are arranged insulated, either using an electrically non-conductive intermediate layer or the intermediate wheel bearing ring or the segment being made from non-conductive material.
The electrodes are connected by means of electrically conductive connections to a high-voltage module of the control device. B. the screw connection of the plate spring and a connection extending radially from there to the electrode is supplied.
A current differential angle of rotation between the camshaft and the crankshaft is detected by sensors and fed to the electronic control device. In this control device, optimal differential rotation angles are stored in characteristic maps as a function of parameters of the internal combustion engine. The output voltages are stored in lists logically linked with the optimal angles.
The device is of simple construction, since it uses components that are also required in known, oil-hydraulic or electrically operated phase converters.
The intermediate wheel bearing ring can be designed as a separate component or as part of the cylinder head.
The amount of liquid required is small because it does not have to be constantly drained and renewed.

Nachfolgend wird die Erfindung beispielhaft anhand einer Figur erläutert, die schematisch eine Vorrichtung mit einer elektronischen Steuereinrichtung zeigt.The invention is explained below by way of example with reference to a figure which schematically shows a device with an electronic control device.

In einer nicht gezeigten Brennkraftmaschine ist in einem nur angedeuteten Zylinderkopf 1 eine den Gaswechsel von Einlaßventilen steuernde Nockenwelle 2 drehbar gelagert, an deren antriebsseitigem Ende 3 eine Vorrichtung zur Änderung der Drehlage angeordnet ist, die die Nockenwelle 2 relativ zu einer sie antreibenden, nicht gezeigten Kurbelwelle verdreht.
Die Vorrichtung umfaßt ein von der Kurbelwelle angetriebenes Antriebsrad 4, welches eine als schräge Innenverzahnung ausgebildete erste Verzahnung 5 trägt, die mit einer korrespondierenden Außenverzahnung 6 eines als Zwischenrad 7 ausgebildeten Koppelgliedes zusammenwirkt. Das Zwischenrad 7 besteht aus einer ringförmigen Scheibe 8 und einer hohlzylindrischen Hülse 9. Die Scheibe 8 trägt die Außenverzahnung 6 sowie eine als schräge Innenverzahnung ausgebildete zweite Verzahnung 10, die in eine entsprechende Außenverzahnung 11 auf der Nockenwelle 2 eingreift. Die in Eingriff stehenden Verzahnungen 5, 6 und 10, 11 sind wechselseitig derart schräg verzahnt, daß sich Selbsthemmung zwischen der Nockenwelle 2 und dem Antriebsrad 4 ergibt.
In an internal combustion engine (not shown), a camshaft 2 controlling the gas exchange of intake valves is rotatably mounted in an only indicated cylinder head 1, on the drive-side end 3 of which a device for changing the rotational position is arranged, which drives the camshaft 2 relative to a crankshaft, not shown, which drives it twisted.
The device comprises a drive wheel 4 driven by the crankshaft, which carries a first toothing 5 designed as oblique internal toothing, which cooperates with a corresponding external toothing 6 of a coupling member designed as an intermediate wheel 7. The intermediate wheel 7 consists of an annular disk 8 and a hollow cylindrical sleeve 9. The disk 8 carries the external toothing 6 and a second toothing 10 designed as oblique internal toothing, which engages in a corresponding external toothing 11 on the camshaft 2. The meshing teeth 5, 6 and 10, 11 are mutually helical so that self-locking between the camshaft 2 and the drive wheel 4 results.

Das Zwischenrad 7 ist axial in jede beliebige Position zwischen zwei Endlagen E1, E2 verschiebbar, wobei die äußere Mantelfläche 15 der Hülse 9 in einem ortsfest in dem Zylinderkopf 1 angeordneten Zwischenrad-Lagerring 16 gleitet. Dieser Lagerring 16 umgibt die Hülse 9 koaxial und schließt dabei einen zwischen Hülse 9 und Lagerring 16 ausgebildeten Ringraum 17 ein. Zwischen einer Innenfläche 18 der Hülse 9 und der Nockenwelle 2 ist ein Kreisspalt 19 ausgebildet, wobei zwei beabstandet zueinander auf der Nockenwelle 2 angeordnete Dichtringe 20 innerhalb des Kreisspaltes 9 ein Feststellager 21 abgrenzen.The intermediate wheel 7 is axially displaceable in any position between two end positions E1, E2, the outer circumferential surface 15 of the sleeve 9 sliding in an intermediate wheel bearing ring 16 arranged in a fixed manner in the cylinder head 1. This bearing ring 16 coaxially surrounds the sleeve 9 and includes an annular space 17 formed between the sleeve 9 and the bearing ring 16. A circular gap 19 is formed between an inner surface 18 of the sleeve 9 and the camshaft 2, with two sealing rings 20 arranged at a distance from one another on the camshaft 2 delimiting a locking bearing 21 within the circular gap 9.

Eine Tellerfeder 22 ist mittig in der endseitigen Stirnfläche der Nockenwelle 2 verschraubt und befindet sich mit ihrem äußeren Randbereich in federnder Anlage mit dem Zwischenrad 7.
Auf einem zwischen den Dichtringen 20 liegenden Segment 23 der Nockenwelle 2 ist eine isoliert auf dieses Segment 23 aufgebrachte Elektrode 24 angeordnet. Eine weitere, ebenfalls isoliert aufgebrachte Elektrode 25 ist auf der den Ringraum 17 zwischenradlagerseitig begrenzenden Außenfläche 26 angeordnet. Der in dem Zwischenrad-Lagerring 16 ausgebildete Ringraum 17 ist beidseitig durch in den Lagerring 16 eingelegte Dichtringe 27 abgedichtet.
A plate spring 22 is screwed in the middle in the end face of the camshaft 2 and is located with its outer edge area in resilient contact with the idler gear 7.
An electrode 24 which is insulated onto this segment 23 is arranged on a segment 23 of the camshaft 2 lying between the sealing rings 20. A further, also insulated electrode 25 is arranged on the outer surface 26 delimiting the annular space 17 on the intermediate wheel bearing side. The annular space 17 formed in the idler gear bearing ring 16 is sealed on both sides by sealing rings 27 inserted in the bearing ring 16.

Der Ringraum 17 und das Feststellager 21 sind mit einer Flüssigkeit F gefüllt, deren Viskosität durch Anlegen einer elektrischen Spannung in einem weiten Bereich zwischen 'flüssig' und 'starr' regelbar ist. Eine der Vorrichtung zugeordnete elektronische Steuereinrichtung 30 umfaßt ein Hochspannungsmodul 31, welches über elektrisch leitende Verbindungen 32 den Elektroden 24 bzw. 25 Ausgangsspannungen UA1 bzw. UA2 zuführen kann. Als Gegenpol für beide Elektroden 24, 25 wirkt das über die Nockenwelle 2 geerdete Zwischenrad 7. Dem Hochspannungsmodul 31 wird von einem als Sensor wirkenden Nockenwinkelgeber 33 bzw. einem Kurbelwinkelgeber 34 ein jeweils aktueller Differenzdrehwinkel DW zwischen der Nockenwelle 2 bzw. der Kurbelwelle zugeführt.The annular space 17 and the locking bearing 21 are filled with a liquid F, the viscosity of which can be regulated in a wide range between 'liquid' and 'rigid' by applying an electrical voltage. An electronic control device 30 assigned to the device comprises a high-voltage module 31, which can supply output voltages UA1 or UA2 to the electrodes 24 or 25 via electrically conductive connections 32. The intermediate wheel 7, which is grounded via the camshaft 2, acts as the opposite pole for both electrodes 24, 25. A current differential angle of rotation DW between the camshaft 2 and the crankshaft is fed to the high-voltage module 31 by a cam angle sensor 33 and a crank angle sensor 34, respectively, which acts as a sensor.

In dem Hochspannungsmodul 31 sind Kennfelder K integriert, in dem in Abhängigkeit von dem Modul 31 zugeführten Parametern der Brennkraftmaschine, wie z. B. Drehzahl n, Last L und Öltemperatur TO, dem jeweiligen Betriebszustand entsprechende, optimale Differenzdrehwinkel DW abgespeichert sind. In logisch mit den Drehwinkel DW verknüpften Listen B sind die Ausgangsspannungen UA1, UA2 in dem Modul 31 abgelegt.In the high-voltage module 31, maps K are integrated, in which, depending on the module 31, parameters supplied to the internal combustion engine such. B. speed n, load L and oil temperature TO, the respective operating state, optimal differential rotation angle DW are stored. The output voltages UA1, UA2 are stored in the module 31 in lists B logically linked with the rotation angle DW.

Im Betrieb der Brennkraftmaschine befindet sich das Zwischenrad 7. beispielsweise in der einer Leerlaufdrehzahl entsprechenden Endlage E1. Diese Endlage E1 ist ein bestimmter Differenzdrehwinkel DW zugeordnet, der eine für diesen Betriebszustand optimale Ventilüberschneidung zwischen den von der Nockenwelle 2 betätigten Einlaßventilen und den von einer weiteren, nicht gezeigten Nockenwelle betätigten Auslaßventilen gewährleistet. Die Flüssigkeit F im Feststellager 21 bzw. im Ringraum 17 ist flüssig. Das Feststellager 21 läuft mit der Drehzahl der Nockenwelle 2 um, während in der in dem Ringraum 17 befindlichen Flüssigkeit ein Schergeschwindigkeitsgefälle auftritt, da der Zwischenrad-Lagerring 16 gegenüber dem Zwischenrad 7 stillsteht. Die Tellerfeder 22 befindet sich in der in der Figur gezeigten Lage und übt daher keine Kraft auf das Zwischenrad 7 aus.During operation of the internal combustion engine, the intermediate wheel 7 is, for example, in the end position E1 corresponding to an idling speed. This end position E1 is assigned a certain differential rotation angle DW, which ensures an optimal valve overlap between the inlet valves actuated by the camshaft 2 and the outlet valves actuated by a further camshaft, not shown, for this operating state. The liquid F in the locking bearing 21 or in the annular space 17 is liquid. The locking bearing 21 rotates at the speed of the camshaft 2, while a shear rate gradient occurs in the liquid in the annular space 17, since the idler gear bearing ring 16 is stationary with respect to the idler gear 7. The plate spring 22 is in the position shown in the figure and therefore does not exert any force on the intermediate wheel 7.

Wird jetzt aufgrund eines aus einem Kennfeld K ausgelesenen Wertes für einen Differenzdrehwinkel DW, der z. B. für eine mittlere Brennkraftmaschinendrehzahl optimal ist, eine Ausgangsspannung UA2 aus einer Liste bestimmt, so ändert sich aufgrund des zwischen der Elektrode 25 und dem Zwischenrad 7 wirkenden elektrischen Feldes die Viskosität der Flüssigkeit F in dem Ringraum 17 in Richtung 'starr'. Die erhöhte Viskosität verursacht ein auf das Zwischenrad 7 wirkendes Bremsmoment MB, welches durch die Reibkraft zwischen der Flüssigkeit F und der Hülse 9 sowie dem Außenradius dieser Hülse 9 bestimmt ist. Das Bremsmoment MB verursacht aufgrund der schrägen Verzahnungen 5, 6 bzw. 10, 11 eine axiale Kraft FAX, die die Selbsthemmung überwindet und das Zwischenrad 7 in Richtung auf die zweite Endlage E2 entgegen der von der Tellerfeder 22 aufgebrachten Federkraft FFE verschiebt.Is now based on a value read from a map K for a differential rotation angle DW, the z. B. is optimal for a medium engine speed, an output voltage UA2 determined from a list, then changes the viscosity of the liquid F in the due to the electric field acting between the electrode 25 and the intermediate wheel 7 Annulus 17 in the 'rigid' direction. The increased viscosity causes a braking torque MB acting on the intermediate wheel 7, which is determined by the frictional force between the liquid F and the sleeve 9 and the outer radius of this sleeve 9. Due to the oblique toothing 5, 6 or 10, 11, the braking torque MB causes an axial force FAX which overcomes the self-locking and shifts the intermediate wheel 7 in the direction of the second end position E2 against the spring force FFE applied by the plate spring 22.

Das von der Kurbelwelle auf die Nockenwelle 2 übertragene Nockenantriebsmoment verläuft aufgrund der zeitlich versetzt zu betätigenden Gaswechselventile und der dabei zu überwindenden Federkräfte ungleichförmig. Bei einer Nockenwellenumdrehung durchläuft dieses Antriebsmoment z. B. mehrfach Wert zwischen + 20 Nm und - 20 Nm. Diese Ungleichförmigkeit bewirkt eine geringfügig pendelnde, axiale Relativbewegung des Zwischenrades 7 gegenüber der Nockenwelle 2, welche durch die Tellerfeder 22 bedämpft wird. Melden die Winkelgeber 33, 34 das Erreichen des gewünschten Differenzdrehwinkels DW, dem eine bestimmte Stellung des Zwischenrades zwischen den Endlagen E1 und E2 entspricht, so wird die Änderung der relativen Drehlage beendet, indem die Spannung UA2 abfällt und daraus resultierend die Viskosität der Flüssigkeit F in dem Ringraum 17 in Richtung 'flüssig' geändert wird. Das Bremsmoment MB und die verschiebende Kraft FAX sinken ab. Zur Kompensation der Federkraft FFE bewirkt eine weitere, an die Elektrode 24 angelegte Ausgangsspannung UA1 eine Viskositätsänderung des Feststellagers 21 in Richtung 'starr', so daß aus einer radialen Druckkraft zwischen Segment 23 und Hülse 9 aufgrund der Oberflächenreibung eine axiale Feststellkraft FAF entsteht, deren Richtung von der auf das Zwischenrad 7 wirkenden Kraft FAX oder FFE abhängt. Für jede Stellung des Zwischenrades 7 zwischen den Endlagen E1, E2 wird dadurch ein Kräftegleichgewicht zwischen den entgegengesetzt wirkenden Kräften FAF und FFE erreicht.The cam drive torque transmitted from the crankshaft to the camshaft 2 is non-uniform due to the gas exchange valves to be actuated at different times and the spring forces to be overcome in the process. With a camshaft revolution, this drive torque passes z. B. multiple values between + 20 Nm and - 20 Nm. This non-uniformity causes a slightly oscillating, axial relative movement of the intermediate wheel 7 with respect to the camshaft 2, which is damped by the plate spring 22. If the angle sensors 33, 34 report that the desired differential rotation angle DW has been reached, which corresponds to a specific position of the idler gear between the end positions E1 and E2, the change in the relative rotation position is terminated by the voltage UA2 falling and the viscosity of the liquid F in resulting therefrom the annular space 17 is changed in the 'liquid' direction. The braking torque MB and the shifting force FAX decrease. To compensate for the spring force FFE, a further output voltage UA1 applied to the electrode 24 causes a change in the viscosity of the locking bearing 21 in the 'rigid' direction, so that an axial locking force FAF arises from a radial compressive force between segment 23 and sleeve 9 due to the surface friction, the direction of which depends on the force acting on the intermediate gear 7 FAX or FFE. For each position of the intermediate wheel 7 between the end positions E1, E2, a balance of forces between the opposing forces FAF and FFE is achieved.

Wird das Zwischenrad 7 bis in die zweite Endlage E2 verschoben, so kann diese Lage durch ständiges Anliegen der Ausgangsspannung UA2 oder aber in der zuvor für eine beliebige Zwischenstellung beschriebene Weise erfolgen. Das Rückstellen des Zwischenrades 7 in Richtung der Endlage E1 erfolgt durch Abschalten der Ausgangsspannung UA2 und Absenken der Spannung UA1 auf einen Wert, der die Kraft FAF unter den Wert der Federkraft FFE sinken läßt, so daß diese Federkraft FFE das Zwischenrad 7 verschiebt. Dabei wirkt die aus dem Feststellager 21 resultierende Kraft FAF dämpfend auf die pendelnde Relativbewegung des Zwischenrades 7.If the intermediate wheel 7 is shifted into the second end position E2, this position can take place by constant application of the output voltage UA2 or in the manner previously described for any intermediate position. The intermediate wheel 7 is reset in the direction of the end position E1 by switching off the output voltage UA2 and lowering the voltage UA1 to a value which causes the force FAF to drop below the value of the spring force FFE, so that this spring force FFE shifts the intermediate wheel 7. This affects force resulting from the locking bearing 21 damping the oscillating relative movement of the idler gear 7.

Für einen geforderten Verstellwinkel der Nockenwelle 2 von z. B. 15° und einen maximalen Verstellweg zwischen den Endlagen E1 und E2 von z. B. 6 mm läßt sich mit dieser Vorrichtung eine Verstellzeit von unter 0,1 sec. erzielen. Der elektrische Leistungsbedarf des Hochspannungsmodules 31 ist dabei kleiner als 5 Watt und der Außendurchmesser des Antriebsrades 4 kleiner als 100 mm.
Die geometrische Auslegung der Vorrichtung kann in weiten Bereichen den baulichen Gegebenheiten der Brennkraftmaschine angepaßt werden. Die Dimensionierung der Vorrichtung kann z. B. über die Verzahnungswinkel der schrägen Verzahnungen 5, 6 bzw. 10, 11, den erforderlichen Verstellwinkel der Nockenwelle 2, die Zusammensetzung der verwendeten Flüssigkeit F und die Rauheit der von der Flüssigkeit F benetzten Oberflächen beeinflußt werden.
For a required adjustment of the camshaft 2 of z. B. 15 ° and a maximum adjustment between the end positions E1 and E2 of z. B. 6 mm can be achieved with this device an adjustment time of less than 0.1 sec. The electrical power requirement of the high-voltage module 31 is less than 5 watts and the outer diameter of the drive wheel 4 is less than 100 mm.
The geometric design of the device can be adapted to the structural conditions of the internal combustion engine in a wide range. The dimensioning of the device can, for. B. on the tooth angle of the oblique teeth 5, 6 or 10, 11, the required adjustment angle of the camshaft 2, the composition of the liquid F used and the roughness of the surfaces wetted by the liquid F can be influenced.

Claims (11)

  1. An automatic-control device for changing the relative rotational position of two shafts in an internal-combustion engine, having at least one camshaft rotatable - relative to a shaft (crankshaft) driving the camshaft - as a function of parameters of the internal-combustion engine, and having a driving wheel driving the camshaft and provided with a first set of teeth and acting - by way of a coupling member displaceable axially at least into two end positions - upon a second set of teeth connected to the camshaft, wherein at least one of the two sets of teeth has helical gearing, characterized by a stationary intermediate-gearwheel ring bearing (16) coaxially surrounding the coupling member (intermediate gearwheel 7) at least in part and bounding an annular space (17) formed therebetween, wherein the annular space (17) is filled with a liquid (F), the viscosity of which can be varied in such a way by the application of an output voltage (UA2) supplied by an electronic control device (30) that an axial force (FAX) resulting from a braking moment (MB) acting upon the intermediate gearwheel (7) displaces the intermediate gearwheel (7) in the direction of one of the end positions (E1, E2), and the first set of teeth (5) and the second set of teeth (10) are in the form of helical teeth.
  2. A device according to Claim 1, characterized by restoring means (disc spring 22) arranged between the camshaft (2) and the intermediate gearwheel (7), wherein the intermediate gearwheel (7) is acted upon in the direction of one of the end positions (E1, E2) by the spring force (FFE) exerted by the disc spring (22).
  3. A device according to Claim 1 or 2, characterized by a locking bearing (21) formed coaxially between the camshaft (2) and the intermediate gearwheel (7) and filled with a liquid (F), the viscosity of which can be varied in such a way by the application of an output voltage (UA1) supplied by the control device (30) that an axial locking force (FAF) opposite to the direction of movement of the intermediate gearwheel (7) acts upon the intermediate gearwheel (7).
  4. A device according to one or more of the preceding Claims, characterized in that the intermediate-gearwheel ring bearing (16) is bounded on both sides by sealing rings (27) acting radially.
  5. A device according to Claim 3, characterized in that the locking bearing (21) is bounded on both sides by sealing rings (20) acting radially.
  6. A device according to one or more of the preceding Claims, characterized in that in the region of the locking bearing (21) an electrode (24) is arranged insulated on a segment (23) of the camshaft (2).
  7. A device according to one or more of the preceding Claims, characterized in that in the region of the annular space (17) an electrode (25) is arranged insulated in the intermediate-gearwheel ring bearing (16)
  8. A device according to Claim 6 or 7, characterized in that the electrodes (24, 25) are connected to a high-voltage module (31) of the control device (30) by way of electrically conducting connexions (32).
  9. A device according to one or more of the preceding Claims, characterized in that sensors (cam-angle pick-up 33 and crank-angle pick-up 34 respectively) are arranged adjacent to the camshaft (2) and the crankshaft respectively, the sensors detecting a current differential angle of rotation (DW) and being connected to the high-voltage module (31).
  10. A device according to one or more of the preceding Claims, characterized in that at least one characteristic field (K), in which optimum differential angles of rotation (DW) are stored as a function of parameters (rotational speed n, load L, oil temperature TO) of the internal-combustion engine, is integrated in the control device (30).
  11. A device according to one or more of the preceding Claims, characterized in that at least one list (B), in which output voltages (UA1, UA2) associated with the differential angles of rotation (DW) are stored, is integrated in the control device (30).
EP91914901A 1990-08-31 1991-08-16 Automatic-control device for changing the relative rotational position of shafts in an internal-combustion engine Expired - Lifetime EP0545984B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4027631 1990-08-31
DE4027631A DE4027631C1 (en) 1990-08-31 1990-08-31
PCT/EP1991/001553 WO1992004530A1 (en) 1990-08-31 1991-08-16 Automatic-control device for changing the relative rotational position of shafts in an internal-combustion engine

Publications (2)

Publication Number Publication Date
EP0545984A1 EP0545984A1 (en) 1993-06-16
EP0545984B1 true EP0545984B1 (en) 1994-07-27

Family

ID=6413342

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91914901A Expired - Lifetime EP0545984B1 (en) 1990-08-31 1991-08-16 Automatic-control device for changing the relative rotational position of shafts in an internal-combustion engine

Country Status (5)

Country Link
US (1) US5305717A (en)
EP (1) EP0545984B1 (en)
JP (1) JPH06500379A (en)
DE (2) DE4027631C1 (en)
WO (1) WO1992004530A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9310327D0 (en) * 1992-06-01 1993-06-30 Atlas Fahrzeugtechnik Gmbh Process for the automatic continuous angular adjustment between two shafts in driving connection
GB2360701B (en) 2000-02-28 2004-02-04 Lear Corp Method and apparatus for adjusting automotive seat mechanisms
GB2382858A (en) * 2001-12-07 2003-06-11 Mechadyne Plc Camshaft phase shifting mechanism
GB2468344B (en) * 2009-03-05 2015-06-03 Ford Global Tech Llc A method and Engine using a Magneto-Rheological Fluid to Reduce the Fuel Consumption of an Engine
US10072537B2 (en) 2015-07-23 2018-09-11 Husco Automotive Holdings Llc Mechanical cam phasing system and methods
JP7066419B2 (en) 2017-01-20 2022-05-13 フスコ オートモーティブ ホールディングス エル・エル・シー Cam phase adjustment system and cam phase adjustment method
JP7055989B2 (en) * 2017-03-31 2022-04-19 出光興産株式会社 Lubricating oil composition, system, and lubrication method
US10900387B2 (en) 2018-12-07 2021-01-26 Husco Automotive Holdings Llc Mechanical cam phasing systems and methods

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3247916A1 (en) * 1982-12-24 1984-06-28 Robert Bosch Gmbh, 7000 Stuttgart DEVICE FOR CONTROLLING THE VALVES OF AN INTERNAL COMBUSTION ENGINE OVER A CAMSHAFT
GB2189086A (en) * 1986-04-09 1987-10-14 Ford Motor Co Camshaft drive
US4754727A (en) * 1986-12-09 1988-07-05 Eaton Corporation Device for varying engine valve timing
US4862843A (en) * 1987-06-23 1989-09-05 Honda Giken Kogyo Kabushiki Kaisha Valve timing control device for use in internal combustion engine
GB8726966D0 (en) * 1987-11-18 1987-12-23 Jaguar Cars Cooling systems
DE3810804A1 (en) * 1988-03-30 1989-10-19 Daimler Benz Ag DEVICE FOR RELATIVE ANGLE ADJUSTMENT BETWEEN TWO DRIVES CONNECTED
US4841924A (en) * 1988-08-18 1989-06-27 Eaton Corporation Sealed camshaft phase change device
US4896754A (en) * 1988-08-25 1990-01-30 Lord Corporation Electrorheological fluid force transmission and conversion device
US4930463A (en) * 1989-04-18 1990-06-05 Hare Sr Nicholas S Electro-rheological valve control mechanism
US5090531A (en) * 1990-01-10 1992-02-25 Lord Corporation Electrophoretic fluid differential
US5181486A (en) * 1991-06-26 1993-01-26 Gyurovits John S Timing-range gear
US5152263A (en) * 1991-10-11 1992-10-06 Eaton Corporation Bearing and retention apparatus for a camshaft phase change device

Also Published As

Publication number Publication date
DE4027631C1 (en) 1991-09-19
WO1992004530A1 (en) 1992-03-19
DE59102377D1 (en) 1994-09-01
EP0545984A1 (en) 1993-06-16
JPH06500379A (en) 1994-01-13
US5305717A (en) 1994-04-26

Similar Documents

Publication Publication Date Title
EP1043482B1 (en) Camshaft phaser for an internal combustion engine
EP0254058B1 (en) Camshaft for controlling the gas inlet and exhaust valves of an internal-combustion engine
EP1039100A2 (en) Camshaft phaser for an internal combustion engine
EP1608849B1 (en) Valve drive of an internal combustion engine comprising a cylinder head
EP1039101A2 (en) Camshaft phaser for an internal combustion engine
WO1993024736A1 (en) Continuous angular adjustment device for two shafts in driving relationship
EP0903471B1 (en) Device for variable camshaft timing in an internal combustion engine
EP2350442B1 (en) Adjusting system for camshafts of an internal combustion engine
EP0918961A1 (en) Step-down gear unit
DE4102753A1 (en) CONTROL SYSTEM FOR A VALVE TIMING ADJUSTMENT FOR AN INTERNAL COMBUSTION ENGINE
EP0545984B1 (en) Automatic-control device for changing the relative rotational position of shafts in an internal-combustion engine
DE4133408C2 (en) Device for adjusting a camshaft relative to a drive wheel driving it
AT407282B (en) DEVICE FOR ADJUSTING A CAMSHAFT
DE2913574C3 (en) Drive mechanism
EP0191376A1 (en) Valve drive with hydraulic transmission
EP2616644B1 (en) Apparatus for shifting the phase of the rotary angle of a drive gear with respect to a driven gear
WO1997017529A1 (en) Catch for a piston of a camshaft adjuster
DE102007043780A1 (en) Variator adjusting device for continuously variable transmission of internal combustion engine, has electrical actuator operating as electric motor in direction and operating as generator in opposite direction during variator adjustment
DE19502836C2 (en) Internal combustion engine
DE4240075A1 (en) Hydraulic adjuster for turning IC engine camshaft - has adjusting member as single-acting cylinder, whose pressure chamber is continuously coupled to pump
DE19549331C2 (en) Actuator for a coupling gear
AT409786B (en) Arrangement for displacing an internal combustion engine camshaft has electric motor housing mounting elements fed into drive wheel via apertures that limit camshaft adjustment range
DE102012203984A1 (en) Device i.e. camshaft adjuster, for displacing camshaft of internal combustion engine of motor car, has gearing tracks axially arranged at distance from each other by annular gap, and output ring gears rotatably inserted into annular gap
DE3641769A1 (en) Drive arrangement
DE4323671A1 (en) Continuously variable camshaft adjustment

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19931222

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59102377

Country of ref document: DE

Date of ref document: 19940901

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940805

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950828

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970807

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970812

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980816

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050816