EP0542128B1 - Strahlungs-Heizleiter eines elektrischen Strahlungsheizkörpers - Google Patents

Strahlungs-Heizleiter eines elektrischen Strahlungsheizkörpers Download PDF

Info

Publication number
EP0542128B1
EP0542128B1 EP92118934A EP92118934A EP0542128B1 EP 0542128 B1 EP0542128 B1 EP 0542128B1 EP 92118934 A EP92118934 A EP 92118934A EP 92118934 A EP92118934 A EP 92118934A EP 0542128 B1 EP0542128 B1 EP 0542128B1
Authority
EP
European Patent Office
Prior art keywords
heating conductor
heating
conductor according
mass
radiant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92118934A
Other languages
English (en)
French (fr)
Other versions
EP0542128A3 (en
EP0542128A2 (de
Inventor
Martin Gross
Franz Bogdanski
Eugen Wilde
Lutz Ose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EGO Elektro Geratebau GmbH
Original Assignee
EGO Elektro Geratebau GmbH
EGO Elektro Gerate Blanc und Fischer GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25909054&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0542128(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE19914137250 external-priority patent/DE4137250A1/de
Priority claimed from DE19914137251 external-priority patent/DE4137251A1/de
Application filed by EGO Elektro Geratebau GmbH, EGO Elektro Gerate Blanc und Fischer GmbH filed Critical EGO Elektro Geratebau GmbH
Priority to DE9218244U priority Critical patent/DE9218244U1/de
Publication of EP0542128A2 publication Critical patent/EP0542128A2/de
Publication of EP0542128A3 publication Critical patent/EP0542128A3/de
Application granted granted Critical
Publication of EP0542128B1 publication Critical patent/EP0542128B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/74Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits
    • H05B3/748Resistive heating elements, i.e. heating elements exposed to the air, e.g. coil wire heater

Definitions

  • the invention relates to a radiant heating conductor of an electric radiant heater.
  • Radiant heaters of this type are used for heating plates, in particular glass ceramic plates. They are arranged on an insulating support at a distance from the plate.
  • a radiant heater has become known from US Pat. No. 3,345,498, which guides elongated heating conductor strips in the slots of insulating buttons which rise from the bottom of a carrier shell.
  • the heating conductors should consist of a nickel-chromium or iron-chromium-aluminum alloy.
  • a radiation heating device has become known in which the heating conductor is divided into several individual wires which are twisted together.
  • the aim is to increase the lifespan of the radiator because the heat radiation is spread over a larger area.
  • the specific surface load is reduced by increasing the surface while the overall cross-section of the heating conductor remains the same. If several individual wires are twisted or stranded, however, the radiation is also impeded in their radiation, at least on the surfaces facing one another.
  • This document also proposes a different cross-sectional design, for example a star shape of the wires. These are difficult to manufacture and process.
  • Such heating conductors are also known from DE-A-35 09 985.
  • heating conductors For radiant heaters in which the heating conductor is sealed off from the atmosphere by being enclosed in a quartz tube, relatively thin heating conductors can be used which assume very high temperatures and therefore radiate in the visible light range, especially if, for example, a halogenated gas atmosphere in the Tube the heating coil is also protected against evaporation.
  • halogen lamps are used for cooking purposes, but are expensive and also pose control problems.
  • GB-A-2 074 828 attempts to improve the radiation behavior by using a non-circular helix shape.
  • the object of the invention is to provide a radiant heater which, although it is exposed to the atmosphere, has a shortened glow-up time without sacrificing service life.
  • the low mass / performance ratio makes it possible to shorten the glow time considerably.
  • the result is a rapidly glowing heating conductor, which has a smaller overall cross-sectional area at a substantially the same surface end temperature as a conventional single-wire heating conductor with a circular cross-section. It has been found that the delay in the glowing is largely caused by the thermal inertia of the heating conductor itself, provided that heat dissipation by the insulating support is kept to an acceptable level.
  • the advantages of the invention are achieved to a particular extent if the radiator is practically only on an insulating support with good thermal insulation properties.
  • heating conductors designed according to the invention consist of several individual conductors connected in parallel. It was even found that the heating conductor lasts longer, if the conditions are comparable, when it is thin. Although this has already been recognized in DE-A-39 11 761, the specific surface load has been reduced there and the effect on the twisting of the individual wires has also been reduced. It was also found that heating conductors made of an iron-chromium-aluminum alloy show better values if their aluminum content is relatively high, for example above 4%, preferably approximately 5%. Your specific heat capacity value of approx. 0.53 [kJ / kg. K] in the range of 300 - 1100 K forms the basis for the value of the mass-power ratio.
  • the heating conductors can also be designed as flat conductors.
  • waveguides eg thin tubes made of resistance material
  • Round wires, flat wires, rolls from the roll and powder are possible as the starting material, whereby the shaping ranges from straight wire to single or double coils, meanders etc. and can be carried out in the film production by punching, laser cutting, eroding, etching or electroforming .
  • sintered or foil casting could also be used in addition to plasma spraying.
  • the attachment to the insulating body could be carried out by partial pouring, clamping, nailing, clamping, snapping or other form-fitting holding methods, possibly also by means of a holding structure, such as a rod, a lattice structure or preferably a helix become, while when applying as a layer anchoring is appropriate by appropriate surface design of the insulating support.
  • a holding structure such as a rod, a lattice structure or preferably a helix become, while when applying as a layer anchoring is appropriate by appropriate surface design of the insulating support.
  • the geometry of the application of the heating conductors to the insulating support can comprise several, for example ten parallel individual conductors which are arranged in linear, meandering or spiral paths in conventional round wires.
  • the arrangement could also comprise a stranded, stranded or coaxial helix geometry.
  • Flat wires are corrugated in a standing arrangement and can be arranged in a meandering, spiral or other configuration.
  • the heating conductor is exposed to as little thermal movement or expansion as possible and the curvature of the heating conductor wall is relatively large in order to keep the aluminum oxide layer that forms on the heating conductor. For this reason, any contact with the heating conductor by elements that scratch it during thermal expansion etc. should be avoided in order not to damage the oxide layer. This protects the heating conductor and enables a long service life.
  • the heating conductor can consist of a plurality of individual conductors which are connected in parallel to one another and interact in a network-like manner.
  • This arrangement allows for. a specific surface load of the heating conductor and thus essentially the same surface temperature, the total heating conductor cross-sectional area compared to a single wire significantly lower.
  • the net-like arrangement creates the advantage that on the one hand the individual heating conductors form a coherent structure, but on the other hand hardly shield each other, since they only touch one another at a time and hardly any mutual shadowing occurs.
  • a formation of an oxide skin for example made of aluminum oxide, which occurs in most heating conductor materials and is also important for the service life, ensures that the wires are practically electrically insulated from one another at their crossing points.
  • the heating conductor can consist of a woven, braided or knitted fabric of any binding structure.
  • a hose braid is particularly preferred, the individual conductors of which are interwoven in the form of spirals which are rotated in opposite directions.
  • Such a hose mesh is quite stable in itself, although it is flexible enough to be spiral, meandering or the like on an insulating support. to be arranged without fear of the hose kinking or being compressed.
  • the tubular braid can also be formed from groups of individual conductors running parallel to one another. Another advantage is that the relatively small wire diameter Individual conductor which holds the oxide skin protecting the heating conductor very well and is not caused to rub off or flake off by mechanical or thermal movements.
  • the radiant heater 11 is intended for an electric cooking appliance and is pressed onto the underside of a glass ceramic plate 12 on which cooking vessels can stand.
  • the radiant heater 11 contains, in a sheet metal shell 13, an insulating body 14 made of thermally well-insulating and high-temperature-resistant insulating material, for example a microporous silica airgel that can be reinforced with ceramic fibers.
  • Heating conductors 18a, 18b are arranged on the bottom 17 of the radiation space 15 which forms in the insulating support 14 and is surrounded by its edge 16.
  • One or more heating conductors can be arranged, which are formed in FIG. 1a in the form of a tubular braid, the net-like surface of which consists of individual wires interwoven with one another or of strands of individual wires.
  • FIG. 2 it can be seen that several strands of two individual wires each run helically in parallel to one another and are interwoven with corresponding strands running in the opposite direction of the helix.
  • the tubular braid is relatively loose, so that stitches are formed with a free mesh area 21 which is at least half the size of the corresponding area occupied by the individual wires 20, but preferably larger than this. This ensures that radiation originating or reflected from the rear can exit through these mesh spaces 21.
  • the number of individual wires is determined by the number of wires in the strands and by the number of strands running parallel to each other in each spiral direction. It can be, for example, twelve, as is indicated schematically in FIG. 1a.
  • the heating conductor 18a made of hose mesh lies on the bottom 17 of the insulating body 14 and can be clamped or the like there. be attached, paying attention to the lowest possible thermal contact with the surface.
  • Its inner diameter is somewhat larger than the outer diameter of the heating conductor 18a and its lower part 23 is embedded in the insulating body 14 and thus holds the heating conductor largely in a contact-free manner, but well secured in position.
  • a holding or support spiral 24 can also be drawn into the interior of the hose braid, which in turn is then clamped o .
  • the arrangement of the heating conductors on the insulating support can or the like in spiral, meandering. respectively.
  • FIG. 1b shows a heating conductor 18b which is designed in the form of a network-like flat braid made of individual conductors 20. It can be a flat strip, of which only one side is shown in FIGS. 1b and 3, but which on the other side also has an outer edge 26 which is closed by individual conductor bends 25, so that the individual conductors 20 pass from terminal to terminal.
  • This tape can be fastened to the insulating support by clips 27.
  • connection is made together at one end, so that all individual conductors are connected in parallel to each other. Since they are all at the same potential, contact between the individual conductors does not lead to a short circuit, so that their attachment is not a major problem and they cannot have any significant differential voltage at each other even at the crossing points.
  • the individual conductors consist of an iron-chromium-aluminum alloy with an aluminum content of approx. 5% and have such a diameter and length that the total mass / nominal power ratio of the heating conductor consisting of individual wires is smaller than the connection from connection to connection 7. 10 ⁇ 3 g / W. If ten individual conductors connected in parallel are arranged in a radiant heater with a diameter of 180 mm and a nominal output of 1700 watts at 230 V and a surface load of 6 W / cm2, the heating conductor has a total mass of 9.1 g and accordingly a length of each ten single conductors of 5.12 m, ie a sum of the individual wire lengths of 51.2 m with a wire diameter of 0.176 mm.
  • the use of only one wire of 0.817 mm diameter would give the mass of the wire at 41.7 g in order to obtain the same surface load, while three wires have a total mass of 20.16 g with a diameter of approx. would result in 0.4 mm.
  • the mass of the heating conductor can be substantially reduced by the invention while maintaining the surface temperature, although the wire diameter is reduced and the total length of the individual conductors increases.
  • the length of the heating conductor itself does not increase if you consider the length of the overall conductor. While the ten individual conductors each have a length of 5.12 m, in the same example the individual wire would be 11.03 m long. It is therefore possible to use a hose network in which the individual coils are not as close together as is usually the case with a heating coil, so that it can be relatively loose and form enough space between them to be irradiated.
  • a major advantage of the network-like construction of the heating conductor from individual conductors is that the individual conductors can be relatively thin, but gain stability and manageability due to the braided weave. Furthermore, they are thereby determined in their position relative to one another without having to rely on fasteners for this function.
  • a very significant advantage is the fact that the individual conductors essentially only touch one another at the crossing points, i.e. can radiate freely over the vast majority of their total length and scope. In contrast to a stranded wire, in which the conductors are directed towards each other over a very large part of their circumference and therefore cannot radiate freely, this is a very important advantage.
  • the embodiments shown in FIGS. 2 and 3 are only mentioned as examples.
  • All braids, fabrics or knitted fabrics of different types of weave can be used.
  • a particular advantage is the fact that the aluminum content in the heating conductor alloy forms an oxide skin on the individual conductors, which not only protects the heating conductor from further oxidation, but also has an insulating effect, at least in the voltage range that can occur between the individual conductors that there is normally no electrical connection at the crossing points.
  • the support and holding coils 22, 24 can also be connected in parallel to the heating conductor in order to bring them to the same potential as the actual heating conductor and can absorb, for example, a tenth of the total power.
  • This performance share of the holding or support coils can be controlled via a corresponding extension factor of the coils, ie more or less tight winding or via lower conductivity values and the diameter of these coils.
  • fastening means could also be molded in the same way, for example by providing loops or tips which are bent downwards in the edge region and which are pressed or embedded in the insulating carrier material.
  • the mass / nominal power ratio in g / W the iron-chromium-aluminum alloy described for the heating conductor, which has a specific heat capacity of approx. 0.53 kJ / kg, was assumed.
  • K has a mean value over the range between 300 and 1100 K (approx. 20 - 800 ° C). Since the mass / power ratio is dependent on the specific heat capacity value c, it changes, in reverse proportion to the change in the heat capacity value (with 1 / c).
  • Such a heat conductor takes on an annealing temperature within approx. 3 seconds, which is the case at approx. 1100 K (approx. 800 ° C), while the maximum temperature exceeds 1300 K (approx. 1000 ° C), e.g. should be around 1350 K (1050 ° C).
  • the mass / performance ratio is always based on the nominal output of the heating element concerned, i.e. not an output that is reduced by control or regulation or that is temporarily increased by special measures. It is an essential advantage of the invention that the heat conductor configuration is electronic or other circuitry measures for temporary performance changes are not necessary.
  • the surface of the thin, parallel-connected individual conductors which is large in relation to their mass, and which can be wires, but also flat strips, ensures favorable radiation conditions, so that the maximum permissible temperatures are not exceeded and the service life is therefore sufficient.
  • a ratio of width to thickness of 10 should not be undercut if possible. He or the like in the manner already described by spraying, from a film. be made. In this embodiment, only about half of the surface is freely radiating, while this is a much larger proportion in the arrangement of individual wires, as shown in the left half of the drawing. In the case of training as a helix, possibly as a multiple helix or as a standing flat wire, this percentage can be increased even further, which has advantages for the radiation and thus also for the specific surface load on the heating conductor surface.
  • a heating conductor according to the invention could only be arranged in an annular area around another heating conductor, which can be of conventional design.
  • the nominal power specification relates only to the partial power of the radiant heater which is designed to be rapidly glowing according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Resistance Heating (AREA)
  • Surface Heating Bodies (AREA)

Description

  • Die Erfindung bezieht sich auf einen Strahlungs-Heizleiter eines elektrischen Strahlungsheizkörpers. Derartige Strahlungsheizkörper werden zur Beheizung von Platten, insbesondere Glaskeramikplatten, eingesetzt. Sie sind auf einem Isolierträger im Abstand von der Platte angeordnet.
  • Aus der US-A- 3 991 298 ist ein Strahlheizkörper gemäß dem Oberbegriff des Anspruchs 1 bekanntgeworden, der einen spiralig angeordneten Heizleiter in Form eines in Nuten liegenden, aufrechtstehenden Bandes aus Streckmetall mit einer Gitterstruktur hat. Er soll aufgrund seiner vergrößerten Oberfläche in etwa 3 Sekunden seine Arbeitstemperatur erreichen. Weitere Anweisungen, wie dies erreicht werden soll, sind der Schrift nicht zu entnehmen.
  • Aus der US-A 3 345 498 ist ein Strahlheizkörper bekanntgeworden, der in Schlitzen von Isolierknöpfen, die vom Boden einer Trägerschale hochstehen, gestreckte Heizleiterbänder führt. Die Heizleiter sollen aus einer Nickel-Chrom- oder Eisen-Chrom-Aluminium-Legierung bestehen.
  • Aus der DE-A-39 11 761 ist eine Strahlungs-Heizeinrichtung bekanntgeworden, bei der der Heizleiter in mehrere einzelne Drähte aufgeteilt ist, die miteinander verdrillt sind. Man will damit die Lebensdauer des Heizkörpers erhöhen, weil die Wärmeabstrahlung auf eine größere Fläche verteilt sei. Die spezifische Oberflächenbelastung wird gesenkt, indem bei gleichbleibendem Gesamtquerschnitt des Heizleiters die Oberfläche vergrößert wird. Bei einer Verdrillung bzw. Verseilung mehrerer Einzeldrähte sind die Drähte jedoch zumindest an den zueinander weisenden Flächen ebenfalls in ihrer Abstrahlung behindert. Ferner schlägt diese Schrift eine andere Querschnittsgestaltung, beispielsweise eine Sternform der Drähte, vor. Diese sind schwer herzustellen und zu verarbeiten.
  • Auch aus der DE-A-35 09 985 sind derartige Heizleiter bekannt.
  • Aus der DE-B-1 094 383 sind mit unrunder Oberfläche hergestellte Rohrheizkörper bekannt.
  • Aus der DE-A-35 45 454 sind Flach-Heizleiter bekanntgeworden, die in Dickschichtpastentechnik ausgeführt sind. Ähnliche, aus Metallfolien hergestellte Heizleiter sind aus der EP-A-0 202 969 bekannt. Sie sind allerdings in Isolierung eingeschlossen und somit nicht frei strahlend.
  • Bei Strahlungsheizkörpern, bei denen der Heizleiter durch Einschluß in ein Quarzrohr von der Atmosphäre abgeschlossen ist, können relativ dünne Heizleiter verwendet werden, die sehr hohe Temperaturen annehmen und daher im Bereich des sichtbaren Lichtes strahlen, vor allem, wenn beispielsweise durch eine halogenisierte Gasatmosphäre in dem Rohr die Heizwendel auch gegen Abdampfen geschützt ist. Solche Halogenlampen werden zu Kochzwecken eingesetzt, sind jedoch teuer und werfen auch Steuerungsprobleme auf.
  • Bei der GB-A-2 074 828 wird versucht, durch eine nicht kreisförmige Wendelform eine Verbesserung des Abstrahlungsverhaltens zu erreichen.
  • Es ist ferner bekanntgeworden (DE-A-36 23 130), die Aufglühzeit eines Heizleiters durch temporäre Erhöhung des Stromes zu verkürzen, beispielsweise durch Parallelschalten eines Kaltleiter-Widerstandes zu einem Teil des Heizleiters.
  • Aufgabe der Erfindung ist es, einen Strahlungsheizkörper zu schaffen, der, obwohl er der Atmosphäre ausgesetzt ist, ohne Lebensdauereinbuße eine verkürzte Aufglühzeit aufweist.
  • Diese Aufgabe wird durch die Ansprüche 1, 7 und 15 gelöst.
  • Das geringe Massen/Leistungsverhältnis ermöglicht es, die Aufglühzeit wesentlich zu verkürzen. Es entsteht ein schnell aufglühender Heizleiter, der bei im wesentlichen gleicher Oberflächen-Endtemperatur wie ein herkömmlicher Einzeldraht-Heizleiter mit kreisrundem Querschnitt eine geringere Gesamt-Querschnittfläche aufweist. Es ist festgestellt worden, daß die Verzögerung beim Aufglühen weitgehend von der thermischen Trägheit des Heizleiters selbst bewirkt wird, sofern Wärmeableitung durch den Isolierträger in einem vertretbar niedrigen Maß gehalten wird. Die Vorteile der Erfindung werden in besonderem Maße erreicht, wenn der Heizkörper praktisch auf einem Isolierträger mit guten Wärmedämmeigenschaften nur aufliegt. Trotz des geringeren Gesamt-Querschnitts kann eine ausreichende Lebensdauer der Heizleiter erreicht werden, auch wenn die nach der Erfindung ausgebildeten Heizleiter aus mehreren parallel geschalteten Einzelleitern bestehen. Es wurde sogar festgestellt, daß der Heizleiter bei im übrigen vergleichbaren Verhältnissen länger hält, wenn er dünn ist. Dies ist zwar bereits in der DE-A-39 11 761 erkannt worden, jedoch hat man dort die spezifische Oberflächenbelastung gesenkt und ferner die Wirkung auf die Verdrillung der Einzeldrähte zurückgeführt. Es wurde ferner festgestellt, daß Heizleiter aus einer Eisen-Chrom-Aluminium-Legierung dann bessere Werte zeigen, wenn ihr Aluminium-Anteil relativ hoch ist, z.B. über 4, vorzugsweise ca. 5 %, beträgt. Ihr spezifischer Wärmekapazitätswert von ca. 0,53 [kJ/kg . K] im Bereich von 300 - 1100 K bildet die Basis für den Wert des Massen-Leistungsverhältnisses.
  • Die Heizleiter können auch als Flachleiter ausgebildet sein. Auch bei der Verwendung von Hohlleitern, z.B. dünnen Rohren aus Widerstandsmaterial, kann ggf. auf eine Aufteilung in mehrere Einzelleiter verzichtet werden, weil damit das Oberflächen/Querschnitts-Verhältnis erhöht wird. Ferner ist eine Herstellung aus einer Folie, die durch Ätzen, Laserschneiden etc. in ein vorgegebenes Muster gebracht ist, möglich. Als Ausgangsmaterial sind also Runddrähte, Flachdrähte, Folien von der Rolle und Pulver möglich, wobei die Formgebung vom geraden Draht bis zu einfachen oder doppelten Wendeln, Mäander etc. reichen und bei der Folienherstellung durch Stanzung, Laserschneiden, Erodieren, Ätzen oder Galvanoformung vorgenommen werden kann. Bei Pulver-Ausgangsmaterial könnten außer Plasma-Spritzen auch Sinter- oder Folienguß verwendet werden. Die Anbringung auf dem Isolierkörper könnte durch partielles Eingießen, Klammern, Aufnageln, Klemmen, Einschnappen oder andere formschlüssige Haltemethoden, ggf. auch durch eine Halte-Struktur, wie ein Stab, eine Gitterstruktur oder bevorzugt eine Wendel, vorgenommen werden, während bei der Aufbringung als Schicht eine Verankerung durch entsprechende Oberflächengestaltung des Isolierträgers sinnvoll ist.
  • Die Geometrie der Aufbringung der Heizleiter auf dem Isolierträger (Makro-Geometrie) kann bei üblichen Runddrähten mehrere, beispielsweise zehn parallel-geschaltete Einzelleiter umfassen, die in Linien-, Mäander- oder Spiral-Bahnen angeordnet sind.
  • Die Anordnung könnte ferner außer der Wendelung auch eine gelitzte, verseilte oder in Form koaxialer Wendeln vorgenommene Geometrie umfassen. Flachdrähte sind gewellt in stehender Anordnung und können mäanderartig, spiralig oder in anderer Konfiguration angeordnet sein.
  • In jedem Fall ist es vorteilhaft, die Anordnung so zu treffen, daß der Heizleiter möglichst geringer thermischer Bewegung bzw. Dehnung ausgesetzt ist und die Krümmung der Heizleiterwandung relativ groß ist, um die sich bildende Aluminiumoxidschicht auf dem Heizleiter zu halten. Aus diesem Grunde sollte auch jede Berührung des Heizleiters durch Elemente, die bei thermischer Dehnung an ihm kratzen etc., vermieden werden, um die Oxidschicht nicht zu beschädigen. Diese schützt den Heizleiter und ermöglicht lange Lebensdauer.
  • Bei einer bevorzugten Ausführungsform kann der Heizleiter aus einer Mehrzahl von Einzelleitern, die parallel zueinander geschaltet sind und netzartig zusammenwirken, bestehen. Diese Anordnung erlaubt es, bei. einer spezifischen Oberflächenbelastung des Heizleiters und damit im wesentlichen gleicher Oberflächentemperatur die Gesamtheizleiter-Querschnittsfläche gegenüber einem Einzeldraht wesentlich zu senken. Es ist aber auch möglich, durch die relativ vergrößerte abstrahlende Oberfläche die Oberflächentemperatur bei gleichem Leistungsdurchsatz zu senken. Die netzartige Anordnung schafft den Vorteil, daß einerseits die Einzelheizleiter eine zusammenhängende Struktur bilden, aber andererseits sich gegenseitig kaum abschirmen, da sie sich nur jeweils punktweise berühren und kaum gegenseitige Abschattung auftritt. Bei einer weitgehend regelmäßigen Netzstruktur, die bevorzugt ist, ist auch sichergestellt, daß die Einzelleiter an den jeweiligen Kreuzungspunkten im wesentlichen das gleiche Potential haben, so daß zwischen ihnen keine wesentlichen Spannungsunterschiede vorliegen. Eine bei den meisten Heizleiter-Materialien auftretende und auch für die Lebensdauer wichtige Bildung einer Oxidhaut, beispielsweise aus Aluminiumoxid, sorgt im übrigen dafür, daß die Drähte an ihren Kreuzungspunkten praktisch elektrisch voneinander isoliert sind.
  • Der Heizleiter kann aus einem Gewebe, Geflecht- oder Gewirk beliebiger Bindungsstruktur bestehen. Besonders bevorzugt ist jedoch ein Schlauchgeflecht, dessen Einzelleiter in Form einander entgegengesetzt gedrehter Wendeln miteinander verflochten sind. Ein solches Schlauchgeflecht ist in sich recht stabil, obwohl es flexibel genug ist, um auf einem Isolierträger spiralförmig, mäanderförmig o.dgl. angeordnet zu werden, ohne daß zu befürchten ist, daß der Schlauch knickt oder zusammengedrückt wird. Das Schlauchgeflecht kann auch aus Gruppen parallel zueinander verlaufender Einzelleiter gebildet sein. Ein weiterer Vorteil ist, daß durch die relativ geringen Drahtdurchmesser der Einzelleiter die den Heizleiter schützende Oxidhaut sehr gut hält und durch mechanische oder thermische Bewegungen nicht zum Abscheuern oder Abblättern veranlaßt wird.
  • Diese und weitere Merkmale gehen außer aus den Ansprüchen auch aus der Beschreibung und der Zeichnung hervor, wobei die einzelnen Merkmale jeweils für sich allein oder zu mehreren in Form von Unterkombinationen bei einer Ausführungsform der Erfindung verwirklicht sein und vorteilhafte sowie für sich schutzfähige Ausführungen darstellen können, Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im folgenden näher erläutert.
  • Fig. 1
    zeigt einen schematischen, vertikalen Schnitt durch einen Strahlungsheizkörper mit zwei Heizleiter-Varianten in den TeilFiguren 1a und 1b,
    Fig. 2 und 3
    zeigen vergrößerte Detailansichten der in den Teil- Fig. 1a und 1b gezeigten Heizleiter.
  • Der Strahlungsheizkörper 11 ist für ein Elektrokochgerät gedacht und an die Unterseite einer Glaskeramikplatte 12 angedrückt, auf der Kochgefäße stehen können. Der Strahlungsheizkörper 11 enthält in einer Blechschale 13 einen Isolierkörper 14 aus thermisch gut isolierendem und hochtemperaturbeständigem Isoliermaterial, beispielsweise einem mikroporösen Kieselsäureaerogel, das mit keramischen Fasern:verstärkt sein kann. Am Boden 17 des sich im Isolierträger 14 ausbildenden, von dessen Rand 16 umgebenen Strahlungsraum 15 sind Heizleiter 18a, 18b angeordnet.
  • Es können eine oder mehrere Heizleiter angeordnet sein, die in Fig. 1a in Form eines Schlauchgeflechts ausgebildet sind, dessen netzartige Oberfläche aus miteinander verflochtenen Einzeldrähten bzw. aus Strängen von Einzeldrähten besteht. In der vergrößerten Detaildarstellung nach Fig. 2 kann man erkennen, daß mehrere Stränge von je zwei Einzeldrähten parallel zueinander wendelförmig verlaufen und mit entsprechenden, in entgegengesetzter Wendelrichtung verlaufenden Strängen verflochten sind. Das Schlauchgeflecht ist relativ locker, so daß Maschen mit einer freien Maschenfläche 21 entstehen, die zumindest halb so groß ist wie die entsprechende, von den Einzeldrähten 20 eingenommene Fläche, vorzugsweise aber größer als diese. Dadurch ist sichergestellt, daß von der Rückseite herrührende oder reflektierte Strahlung durch diese Maschenfreiräume 21 austreten kann.
  • Es ist jede beliebige Flecht-, Webe- oder Wirkart geeignet, die man für ein Schlauchgeflecht anwenden kann. Die Zahl der Einzeldrähte ist durch die Anzahl der Drähte in den Strängen und durch die Zahl der parallel zueinanderlaufenden Stränge in jeder Wendelrichtung bestimmt. Sie kann beispielsweise zwölf betragen, wie dies schematisch in Fig. 1a angedeutet ist. Der Heizleiter 18a aus Schlauchgeflecht liegt auf dem Boden 17 des Isolierkörpers 14 auf und kann dort durch Klammern o.dgl. befestigt sein, wobei auf einen möglichst geringen Wärmekontakt mit dem Untergrund geachtet wird. Es ist jedoch auch möglich, wie beispielsweise dargestellt, den Heizleiter 18a in eine Haltewendel 22, die ebenfalls aus einem elektrischen Widerstandsmaterial besteht, einzuschließen. Diese Wendel sollte ausreichend Zwischenräume haben, um eine freie Abstrahlung nicht zu behindern. Sie ist in ihrem Innendurchmesser um einiges größer als der Außendurchmesser des Heizleiters 18a und mit ihrem unteren Teil 23 in den Isolierkörper 14 eingebettet und hält so den Heizleiter weitgehend berührungsfrei, jedoch gut gesichert in Position.
  • Für den Fall, daß das Schlauchgeflecht aus relativ dünnen Drähten bestehen muß und dementsprechend, insbesondere bei Erwärmung, labil wird, kann auch, wie ebenfalls gezeigt ist, ins Innere des Schlauchgeflechts eine Halte- oder Stützwendel 24 eingezogen werden, die dann ihrerseits durch Klammern o.dgl. am Isolierträger 14 befestigt ist. Die Anordnung der Heizleiter auf dem Isolierträger kann in Spiral-, Mäanderform o.dgl. erfolgen.
  • In Fig. 1b ist ein Heizleiter 18b dargestellt, der in Form eines netzartigen Flachgeflechtes aus Einzelleitern 20 ausgebildet ist. Es kann sich um ein flaches Band handeln, von dem in Fig. 1b und 3 nur eine Seite dargestellt ist, die aber auf der anderen Seite ebenfalls eine durch Einzelleiterbogen 25 geschlossene Außenkante 26 aufweist, so daß die Einzelleiter 20 von Anschluß zu Anschluß durchgehen. Dieses Band kann durch Klammern 27 am Isolierträger befestigt sein.
  • Der Anschluß erfolgt jeweils gemeinsam an einem Ende, so daß alle Einzelleiter parallel zueinander geschaltet sind. Da sie alle auf dem gleichen Potential liegen, führt eine Berührung zwischen den Einzelleitern nicht zu einem Kurzschluß, so daß ihre Befestigung kein großes Problem ist und sie auch an den Kreuzungsstellen keine wesentliche Differenzspannung zueinander haben können.
  • Die Einzelleiter bestehen aus einer Eisen-Chrom-Aluminium-Legierung mit einem Aluminium-Anteil von ca. 5 % und haben einen solchen Durchmesser und Länge, daß das gesamte Massen/Nennleistungs-Verhältnis des aus Einzeldrähten bestehenden Heizleiters von Anschluß zu Anschluß kleiner ist als 7 . 10⁻³ g/W. Bei Anordnung von zehn parallel geschalteten Einzelleitern in einem Strahlungsheizkörper mit einem Durchmesser von 180 mm und einer Nennleistung von 1700 Watt bei 230 V und einer Oberflächenbelastung von 6 W/cm² hat der Heizleiter eine gesamte Masse von 9,1 g und dementsprechend eine Länge jedes der zehn Einzelleiter von 5,12 m, d.h. eine Summe der Einzeldrahtlängen von 51,2 m bei einem Drahtdurchmesser von 0,176 mm.
  • Dagegen würde bei dem gleichen Beispiel die Verwendung nur eines Drahtes von 0,817 mm Durchmesser die Masse des Drahtes bei 41,7 g ergeben, um die gleiche Oberflächenbelastung zu erhalten, während drei Drähte eine gesamte Masse von 20,16 g bei einem Durchmesser von ca. 0,4 mm ergeben würden. Es ist also zu erkennen, daß durch die Erfindung bei Beibehaltung der Oberflächentemperatur die Masse des Heizleiters wesentlich gesenkt werden kann, wobei allerdings der Drahtdurchmesser sich verringert und die Gesamtlänge der Einzelleiter sich erhöht. Die Länge des Heizleiters selbst erhöht sich allerdings nicht, wenn man die Länge der Gesamtleiter betrachtet. Während die zehn Einzelleiter je eine Länge von 5,12 m haben, wäre beim gleichen Beispiel der Einzeldraht 11,03 m lang. Es ist also möglich, ein Schlauchgeflecht zu verwenden, bei dem die einzelnen Wendeln nicht so dicht liegen, wie dies üblicherweise bei einer Heizwendel der Fall ist, so daß sie relativ locker sein kann und ausreichend Raum zwischen sich bildet, um durchstrahlt zu werden.
  • Ein wesentlicher Vorteil des netzartigen Aufbaus des Heizleiters aus Einzelleitern besteht darin, daß die Einzelleiter zwar relativ dünn sein können, jedoch durch die Geflechtbindung an Stabilität und Handhabbarkeit gewinnen. Ferner werden sie dadurch in ihrer Position zueinander selbst festgelegt, ohne für diese Funktion auf Befestigungsmittel angewiesen zu sein. Ein ganz wesentlicher Vorteil ist die Tatsache, daß die Einzelleiter sich an den Kreuzungsstellen im wesentlichen nur punktförmig berühren, d.h. über den weitaus größten Teil ihrer Gesamtlänge und ihres Umfanges frei abstrahlen können. Im Gegensatz zu einer Litze, bei der die Leiter auf einem sehr großen Teil ihres Umfanges aufeinander zu gerichtet sind und dadurch nicht frei abstrahlen können, ist dies ein ganz wesentlicher Vorteil. Die in Fig. 2 und 3 dargestellten Ausführungsformen sind nur als Beispiele genannt. Es können alle Geflechte, Gewebe oder Gewirke der unterschiedlichsten Bindungsarten verwendet werden. Ein besonderer Vorteil ist die Tatsache, daß sich durch den Aluminiumanteil in der Heizleiterlegierung auf den Einzelleitern eine Oxidhaut bildet, die nicht nur dem Heizleiter vor weiterer Oxidation schützt, sondern zumindest in dem Spannungsbereich, der zwischen den Einzelleitern überhaupt auftreten kann, isolierend wirkt, so daß an den Kreuzungsstellen normalerweise keine elektrische Verbindung vorliegt.
  • Die Stütz- und Haltewendeln 22, 24 können, um sie ebenfalls jeweils auf das gleiche Potential zu bringen wie den eigentlichen Heizleiter, ebenfalls dem Heizleiter parallelgeschaltet sein und beispielsweise ein Zehntel der Gesamtleistung aufnehmen. Diesen Leistungsanteil der Halte- oder Stützwendeln kann man über einen entsprechenden Verlängerungsfaktor der Wendeln, d.h. mehr oder weniger enge Wicklung bzw. über geringere Leitfähigkeitswerte und den Durchmesser dieser Wendeln steuern.
  • Bei den Heizleiternetzen könnten auch Befestigungsmittel gleich angeformt sein, indem beispielsweise im Randbereich nach unten ausgebogene Schlaufen oder Spitzen vorgesehen sind, die in das Isolierträgermaterial hineingedrückt oder eingebettet werden.
  • Bei allen in den Beispielen angegebenen Werten, insbesondere dem Masse/Nennleistungsverhältnis in g/W ist die beschriebene Eisen-Chrom-Aluminium-Legierung für den Heizleiter vorausgesetzt worden, die eine spezifische Wärmekapazität von ca. 0,53 kJ/kg . K hat und zwar als Mittelwert über den Bereich zwischen 300 und 1100 K (ca. 20 - 800 °C). Da das Massen/Leistungsverhältnis vom spezifischen Wärmekapazitätswert c abhängig ist, verändert es sich und zwar umgekehrt proportional zur Änderung des Wärmekapazitätswertes (mit 1/c).
  • Ein so ausgebildeter Heizleiter nimmt innerhalb von ca. 3 Sekunden Glühtemperatur an, was bei etwa 1100 K (ca. 800 °C) der Fall ist, während die Höchsttemperatur über 1300 K (ca. 1000 °C), z.B. bei ca. 1350 K (1050 °C) liegen sollte.
  • Es ist zu beachten, daß das Massen/Leistungs-Verhältnis stets auf die Nennleistung des betroffenen Heizleiters bezogen ist, also nicht eine durch Steuerung oder Regelung herabgesetzte bzw. durch besondere Maßnahmen kurzfristig erhöhte Leistung. Es ist ein wesentlicher Vorteil der Erfindung, daß durch die Heizleiter-Konfiguration elektronische oder andere schaltungstechnische Maßnahmen zur temporären Leistungsänderung nicht notwendig sind. Die relativ zu ihrer Masse große Oberfläche der dünnen, parallelgeschalteten Einzelleiter, die Drähte, aber auch flache Bänder sein können, sorgt für günstige Abstrahlungsverhältnisse, so daß die höchstzulässigen Temperaturen nicht überschritten werden und daher die Lebensdauer ausreichend ist.
  • Bei Verwendung von Flachdrähten oder Bändern sollte nach Möglichkeit ein Verhältnis von Breite zu Dicke von 10 nicht unterschritten werden. Er kann in der bereits beschriebenen Weise durch Spritzen, aus einer Folie o.dgl. hergestellt sein. Bei dieser Ausführungsform ist etwa nur die Hälfte der Oberfläche frei abstrahlend angeordnet, während dies bei der Anordnung von Einzeldrähten, wie in der linken Hälfte der Zeichnung dargestellt, ein weitaus größerer Anteil ist. Bei Ausbildung als Wendel, ggf. als Mehrfachwendel oder als stehender Flachdraht, kann dieser Prozentsatz noch weiter erhöht werden, was Vorteile für die Abstrahlung und damit auch für die spezifische Oberflächenbelastung der Heizleiteroberfläche hat.
  • Es sei noch bemerkt, daß es bei vielen Anwendungsfällen ausreicht, nur einen Teil der Gesamtleistung eines Strahlungsheizkörpers schnell aufglühend herzustellen. Es könnte also beispielsweise ein Heizleiter nach der Erfindung nur in einem ringförmigen Bereich um einen anderen Heizleiter herum angeordnet sein, der konventionell ausgebildet sein kann. In diesem Falle bezieht sich die Nennleistungsangabe nur auf die gemäß der Erfindung schnellglühend ausgebildete Teilleistung des Strahlungsheizkörpers.

Claims (16)

  1. Strahlungs-Heizleiter eines elektrischen, der Atmosphäre ausgesetzten Strahlungsheizkörpers (11), der zur Beheizung einer Platte (12), insbesondere einer Glaskeramikplatte, auf einem Isolierträger (14) im Abstand von der Platte (12) anzuordnen ist, wobei der im wesentlichen freistrahlende Heizleiter ein gegenüber einer Einfach-Runddraht-Konfiguration erhöhtes Verhältnis von Oberfläche zur Masse hat, dadurch gekennzeichnet, daß das Verhältnis der Masse des Heizleiters (18a, 18b) zu seiner Nennleistung geringer ist als 7 . 10⁻³ Gramm je Watt [g/W] und der Heizleiter (18a, 18b) aus einer Mehrzahl von netzartig angeordneten Einzelleitern (20) besteht.
  2. Heizleiter nach Anspruch 1, dadurch gekennzeichnet, daß er aus einem Geflecht aus Einzelleitern (20) oder mehreren parallel zueinander verlaufenden Einzelleitern (20), vorzugsweise aus einem Schlauchgeflecht, besteht.
  3. Heizleiter nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Einzelleiter (20) durch Oberflächen-Oxidation gegeneinander isoliert Drähte sind.
  4. Heizleiter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Heizleiter (18a, 18b) durch eine innere oder äußere Haltestruktur, wie eine Wendel (22, 24), gehalten wird, die ggf. in einem Isolierträger (14) verankert ist.
  5. Heizleiter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Netz Netzmaschen (21) mit einer freien Fläche aufweist, die zumindest halb so groß, vorzugsweise größer, ist als die von den Einzelleitern (20) eingenommene Teilfläche des Netzes.
  6. Heizleiter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß er als Hohlleiter ausgebildet ist.
  7. Strahlungs-Heizleiter nach dem Oberbegriff des Anspruches 1, dadurch gekennzeichnet, daß das Verhältnis der Masse des Heizleiters zu seiner Nennleistung geringer ist als 7 . 10⁻³ Gramm je Watt [g/W] und der Heizleiter als gewellter Flachdraht stehend auf dem Isolierträger (14) angeordnet ist.
  8. Strahlungs-Heizleiter nach Anspruch 7, dadurch gekennzeichnet, daß der gewellte Heizleiter mäanderartig oder spiralig auf dem Isolierträger (14) angeordnet ist.
  9. Heizleiter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß nur ein Teil der gesamten Beheizung des Strahlungsheizkörpers (11) als Heizleiter (18a, 18b) mit geringem Massen/Nennleistungs-Verhältnis ausgebildet ist.
  10. Heizleiter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die spezifische Oberflächenbelastung gemessen in Watt je Quadratzentimeter [W/cm²] des Heizleiters (18a, 18b) im wesentlichen der eines für gleiche Endtemperatur ausgelegten Einzel-Massiv-Heizleiters mit kreisrundem Querschnitt entspricht.
  11. Heizleiter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der überwiegende Teil der Oberfläche des Heizleiters (18a, 18b) frei abstrahlend angeordnet ist.
  12. Heizleiter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein Heizleiter (18a, 18b), der gegenüber der bloßen Auflage auf dem Isolierträger (14) einer erhöhten Wärmeableitung zum Isolierkörper hin ausgesetzt ist, z.B. durch Teil-Einbettung jeder Wendel bzw. durch andere Wärmeleitbrücken, die in kurzem Abstand voneinander vorgesehen sind, ein Massen/Nennleistungs-Verhältnis von weniger als 5 . 10⁻³ Gramm je Watt [g/W] aufweist.
  13. Heizleiter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß seine Glühtemperatur im stationären Zustand über 1300 K, und vorzugsweise unter 1600 K, liegt.
  14. Strahlungs-Heizleiter nach einem der Ansprüche 7 bis 13, dadurch gekennzeichnet, daß das Verhältnis von Breite zu Dicke des Flachdrahtes nicht kleiner als 10 ist.
  15. Strahlungs-Heizleiter nach dem Oberbegriff des Anspruches 1, dadurch gekennzeichnet, daß das Verhältnis der Masse des Heizleiters (18a, 18b) zu seiner Nennleistung geringer ist als 7 . 10⁻³ Gramm je Watt [g/W] und der Heizleiter (18a, 18b) aus einer Eisen-Chrom-Aluminiumlegierung mit einem Aluminiumanteil über 4 %, vorzugsweise ca. 5 %, besteht.
  16. Strahlungsheizkörper mit einem Heizleiter (18a, 18b) nach einem der vorhergehenden Ansprüche.
EP92118934A 1991-11-13 1992-11-05 Strahlungs-Heizleiter eines elektrischen Strahlungsheizkörpers Expired - Lifetime EP0542128B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE9218244U DE9218244U1 (de) 1991-11-13 1992-11-05 Strahlungs-heizleiter, insbesondere eines elektrischen strahlungsheizkoerpers

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE4137251 1991-11-13
DE19914137250 DE4137250A1 (de) 1991-11-13 1991-11-13 Strahlungs-heizleiter, insbesondere eines elektrischen strahlungsheitzkoerpers
DE19914137251 DE4137251A1 (de) 1991-11-13 1991-11-13 Strahlungs-heizleiter, insbesondere eines elektrischen strahlungsheizkoerpers
DE4137250 1991-11-13

Publications (3)

Publication Number Publication Date
EP0542128A2 EP0542128A2 (de) 1993-05-19
EP0542128A3 EP0542128A3 (en) 1993-06-09
EP0542128B1 true EP0542128B1 (de) 1995-09-06

Family

ID=25909054

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92118934A Expired - Lifetime EP0542128B1 (de) 1991-11-13 1992-11-05 Strahlungs-Heizleiter eines elektrischen Strahlungsheizkörpers

Country Status (4)

Country Link
EP (1) EP0542128B1 (de)
AT (1) ATE127648T1 (de)
DE (1) DE59203572D1 (de)
ES (1) ES2077329T3 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004049184A1 (de) * 2004-10-08 2006-04-13 BSH Bosch und Siemens Hausgeräte GmbH Kochfeld sowie Verfahren zur Herstellung eines Kochfelds
DE102007040891A1 (de) 2007-08-24 2009-04-30 E.G.O. Elektro-Gerätebau GmbH Heizeinrichtung, Verfahren zum Betrieb einer Heizeinrichtung und Elektrowärmegerät mit einer solchen Heizeinrichtung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3345498A (en) * 1965-02-01 1967-10-03 Gen Motors Corp Infrared surface heating unit
US3991298A (en) * 1975-07-28 1976-11-09 Gould Inc. Heating unit for a ceramic top electric range
DE2551137C2 (de) * 1975-11-14 1986-04-24 E.G.O. Elektro-Geräte Blanc u. Fischer, 7519 Oberderdingen Elektrischer Strahlungsheizkörper für Glaskeramikkochplatten
US4034206A (en) * 1976-05-11 1977-07-05 Gould Inc. Range top element
US4292504A (en) * 1979-10-02 1981-09-29 Tutco, Inc. Expanded metal electric heating element with edge support
DE3820691A1 (de) * 1988-06-18 1989-12-21 Ako Werke Gmbh & Co Strahlungsheizkoerper

Also Published As

Publication number Publication date
EP0542128A3 (en) 1993-06-09
ES2077329T3 (es) 1995-11-16
DE59203572D1 (de) 1995-10-12
ATE127648T1 (de) 1995-09-15
EP0542128A2 (de) 1993-05-19

Similar Documents

Publication Publication Date Title
DE3406604C1 (de) Heizeinrichtung fuer Strahlungsheizstellen mit elektrischen Strahlungsheizelementen
EP0590315B1 (de) Heizer, insbesondere für Küchengeräte
DE2205132C3 (de) Elektrokochgerät
CH634451A5 (de) Strahlungs-heizeinheit.
DE3126989A1 (de) Kochplatte
DE3004187A1 (de) Strahlungsheizer fuer herde mit ebenen kochplatten
EP0490289A1 (de) Elektrischer Heizkörper, insbesondere Strahlheizkörper
DE8133341U1 (de) Elektrischer strahlungsheizer fuer herde mit glaskeramikdeckplatten
DE9113992U1 (de) Strahlungs-Heizeinheit
DE2729929B2 (de) Strahlungs-Heizeinheit für Glaskeramik-Elektrokochgeräte
EP0542128B1 (de) Strahlungs-Heizleiter eines elektrischen Strahlungsheizkörpers
EP0303854B1 (de) Elektrischer Heizkörper
DE2901446C2 (de) Heizleitung mit spezifischer Heizleistung
DE69606519T2 (de) Heizkabel mit variablem Leistungsbegrenzer
DE4137251A1 (de) Strahlungs-heizleiter, insbesondere eines elektrischen strahlungsheizkoerpers
DE9218244U1 (de) Strahlungs-heizleiter, insbesondere eines elektrischen strahlungsheizkoerpers
DE102006001151B3 (de) Heizerfeld eines Strahlungsheizers mit einer Heizspirale
EP0743804A2 (de) Heizer
DE2820138C2 (de)
DE4137250A1 (de) Strahlungs-heizleiter, insbesondere eines elektrischen strahlungsheitzkoerpers
DE69405834T2 (de) Elektrischer Wärmestrahler
DE2823059A1 (de) Temperaturfuehlvorrichtung, insbesondere fuer geraete zur erwaermung oder erhitzung von nahrungsmitteln
DE4030183A1 (de) Elektrisches heizkabel
DE29807833U1 (de) Elektrische Strahlungsheizungen
CH652197A5 (en) Arrangement of an electric heating element in a duct for heating in particular an airflow flowing through it

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE ES FR GB IT LI SE

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE ES FR GB IT LI SE

17P Request for examination filed

Effective date: 19930525

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: E.G.O. ELEKTRO-GERAETE BLANC UND FISCHER GMBH & CO

17Q First examination report despatched

Effective date: 19941017

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI SE

REF Corresponds to:

Ref document number: 127648

Country of ref document: AT

Date of ref document: 19950915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59203572

Country of ref document: DE

Date of ref document: 19951012

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2077329

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19951206

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951113

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: CERAMASPEED LIMITED

Effective date: 19960531

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: E.G.O. ELEKTRO-GERAETEBAU GMBH

PLBL Opposition procedure terminated

Free format text: ORIGINAL CODE: EPIDOS OPPC

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 19971102

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: E.G.O. ELEKTRO-GERAETE BLANC UND FISCHER GMBH & CO. KG TRANSFER- E.G.O. ELEKTRO-GER-TEBAU GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20101130

Year of fee payment: 19

Ref country code: AT

Payment date: 20101119

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101119

Year of fee payment: 19

Ref country code: CH

Payment date: 20101124

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101123

Year of fee payment: 19

Ref country code: IT

Payment date: 20101124

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20101123

Year of fee payment: 19

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111105

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59203572

Country of ref document: DE

Effective date: 20120601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111105

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 127648

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111105

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111106