EP0536157B1 - High voltage switch in double-coil ignition systems - Google Patents

High voltage switch in double-coil ignition systems Download PDF

Info

Publication number
EP0536157B1
EP0536157B1 EP91909630A EP91909630A EP0536157B1 EP 0536157 B1 EP0536157 B1 EP 0536157B1 EP 91909630 A EP91909630 A EP 91909630A EP 91909630 A EP91909630 A EP 91909630A EP 0536157 B1 EP0536157 B1 EP 0536157B1
Authority
EP
European Patent Office
Prior art keywords
breakover
voltage
ignition
semiconductor switching
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91909630A
Other languages
German (de)
French (fr)
Other versions
EP0536157A1 (en
Inventor
Manfred Vogel
Werner Herden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0536157A1 publication Critical patent/EP0536157A1/en
Application granted granted Critical
Publication of EP0536157B1 publication Critical patent/EP0536157B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/08Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having multiple-spark ignition, i.e. ignition occurring simultaneously at different places in one engine cylinder or in two or more separate engine cylinders

Definitions

  • the invention is based on an ignition system as is known for example from DE-OS 37 31 393.
  • high-voltage switches are used, which are preferably arranged on the secondary side in the spark plug connector.
  • Toggle diode cascades are used as high-voltage switching elements, 10 to 50 diodes being stacked one above the other depending on the dielectric strength of an individual tilt diode and depending on the desired breakover voltage.
  • Such a high-voltage switch which suddenly changes from the blocking to the conducting state, makes it possible to practically eliminate the effects of shunts on the spark plug.
  • the high-voltage switch is preferably arranged in the spark plug connector. If such semiconductor switching elements are used in double-spark coils, the breakdown voltage must be kept so low due to the secondary-side voltage distribution that the breakover voltage is reached in any case, but this has the disadvantage that the breakdown effect is hardly effective at a breakdown voltage well below 11 kV .
  • the aim of the present solution is to find a favorable dimensioning of the breakover voltage with regard to the greatest possible splitting effect for optimal use of the high-voltage switches in double-spark coils.
  • the solution according to the invention with the characterizing features according to the main claim has the advantage that when using breakover diode cascades in ignition systems with double spark coils, the high-voltage switch is dimensioned with respect to its breakdown voltage so that the effect of the capacitance of the ignition lines in front of the high-voltage switch is used in such a way that in the shorter ignition line a breakover diode can be arranged with a higher breakover voltage.
  • This increases the splitting effect on the corresponding spark plug compared to high-voltage switches with the same breakover voltage.
  • the breakover voltage of the two semiconductor switching elements is approximately between 11 kV and 20 kV.
  • FIG. 1 shows an ignition system with a double spark coil 1, the primary winding 2 of which is connected via an ignition transistor 4 to a voltage supply UB, for example to the battery of a motor vehicle, not shown here.
  • the ignition transistor 4 is controlled in a known manner by a control unit via a control terminal 5.
  • the secondary winding 3 is connected on one side via an ignition line 6 to an interference suppressor 9, a high-voltage breakover diode 13 and a spark plug 11, and on the other side, with opposite polarity, via an ignition line 7 to an interference suppressor 8 and a likewise oppositely polarized high-voltage breakover diode 12 with a spark plug 10 connected.
  • FIGS. 2a and 2b show an ignition system with the double spark coil 1, each via its ignition lines 6, 7, the interference suppressors 8, 9 and either as in FIG. 2a via high-voltage breakover diodes 12 and 13 or as in FIG. 2b via the symmetrical high-voltage breakover diodes 14 and 15 is connected to the spark plugs 10 and 11, respectively.
  • the ignition system shown in Figure 1 works as follows. By switching off the through the primary winding 2 of the double spark coil 1 flowing current by means of the ignition transistor 4, a voltage U is induced in the secondary winding 3, which is, for example, about 30 kV and, when the voltage across the high voltage breakover diodes 12 and 13 is reached, causes a switching through to the spark plugs 10 and 11, which either directly or after further voltage rise leads to triggering of the ignition spark.
  • the interconnection shown in FIG. 1 using double spark coils leads to the fact that the ignition voltage supplied by the ignition coil on the secondary side is divided between the two ignition lines 6 and 7, i.e.
  • the breakover voltage of the breakover diodes 12 and 13 must be chosen small so that the ignition voltage is switched through to the spark plugs 10 and 11 is ensured.
  • the actually desired division effect of the breakover diodes 12 and 13 is no longer effective at a breakdown voltage of less than 11 kV.
  • the effect of the inherent capacities of the ignition lines 6 and 7 of different lengths is now used. These capacitors are loaded as long as the breakover diodes 12 and 13 block. As a result, the voltage on the secondary side of the ignition coil is distributed unevenly between the ignition lines 6 and 7.
  • the breakover voltage at the breakover diode 12 can be selected higher, and thus ensure a better splitting effect.
  • the breakover voltages of the breakover diode can be selected such that the breakover diode 13 tilts in the longer ignition line 6 at about 11 to 13 kV and the breakover diode 12 in the shorter ignition line 7 at about 16 to 18 kV.
  • 1 and 2a show an interconnection of the secondary side 3 of an ignition system with double-spark coils with breakover diodes as four-layer diodes with an asymmetrical characteristic.
  • the polarity of the high-voltage breakover diodes must be observed during installation, ie the side of the ignition coil with the positive potential must be Anode of the breakover diode and the side of the ignition coil with the negative potential can be assigned to the cathode of the breakover diodes.
  • breakover diodes with a symmetrical characteristic curve
  • the polarity of the breakover diode cascades need not be taken into account when installing or possibly changing the plug or plug connector, because these breakdown in both voltage directions due to their symmetrical characteristic curve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

The proposal is for an ignition system for internal combustion engines with double coils and semiconductor components in the secondary circuit which cause a steep increase in the ignition voltage. The semiconductor components are preferably switching diodes in cascade which ensure that the ignition voltage is not abruptly applied to the sparking plugs until a predetermined value has been reached. An even steeper increase can be achieved if the breakover voltage of each semiconductor component is matched to the length of the ignition lead.

Description

Stand der TechnikState of the art

Die Erfindung geht aus von einer Zündanlage wie sie beispielsweise aus der DE-OS 37 31 393 bekannt ist. Bei der genannten Zündanlage kommen Hochspannungsschalter zum Einsatz, die sekundärseitig vorzugsweise im Zündkerzenstecker angeordnet sind. Als Hochspannungsschaltelemente werden Kippdiodenkaskaden verwendet, wobei je nach Spannungsfestigkeit einer einzelnen Kippdiode und je nach gewünschter Kippspannung 10 bis 50 Dioden übereinander gestapelt werden. Ein solcher Hochspannungsschalter, der schlagartig vom sperrenden in den leitenden Zustand übergeht, ermöglicht es, die Einflüsse von Nebenschlüssen an der Zündkerze praktisch zu eliminieren. Aufgrund ihrer Eigenkapazität wirken sich lange Zündleitungen nach der Kippdiode nachteilig auf den Aufsteilerungseffekt der Kippdiode aus, weshalb man den Hochspannungsschalter vorzugsweise im Kerzenstecker anordnet. Kommen solche Halbleiterschaltelemente bei Doppelfunkenspulen zum Einsatz, so muß man aufgrund der sekundärseitigen Spannungsaufteilung die Kippspannung so gering halten, daß die Kippspannung auf jeden Fall erreicht wird, allerdings hat das den Nachteil, daß bei einer Kippspannung deutlich unter 11 kV der Aufsteilerungseffekt kaum noch wirksam ist.The invention is based on an ignition system as is known for example from DE-OS 37 31 393. In the ignition system mentioned, high-voltage switches are used, which are preferably arranged on the secondary side in the spark plug connector. Toggle diode cascades are used as high-voltage switching elements, 10 to 50 diodes being stacked one above the other depending on the dielectric strength of an individual tilt diode and depending on the desired breakover voltage. Such a high-voltage switch, which suddenly changes from the blocking to the conducting state, makes it possible to practically eliminate the effects of shunts on the spark plug. Because of their own capacitance, long ignition leads after the breakover diode have a disadvantageous effect on the division effect of the breakover diode, which is why the high-voltage switch is preferably arranged in the spark plug connector. If such semiconductor switching elements are used in double-spark coils, the breakdown voltage must be kept so low due to the secondary-side voltage distribution that the breakover voltage is reached in any case, but this has the disadvantage that the breakdown effect is hardly effective at a breakdown voltage well below 11 kV .

Mit der vorliegenden Lösung wird angestrebt, für einen optimalen Einsatz der Hochspannungsschalter bei Doppelfunkenspulen eine günstige Dimensionierung der Kippspannung im Hinblick auf einen möglichst großen Aufsteilerungseffekt zu finden.The aim of the present solution is to find a favorable dimensioning of the breakover voltage with regard to the greatest possible splitting effect for optimal use of the high-voltage switches in double-spark coils.

Vorteile der ErfindungAdvantages of the invention

Die erfindungsgemäße Lösung mit den kennzeichnenden Merkmalen nach dem Hauptanspruch hat den Vorteil, daß bei einem Einsatz von Kippdiodenkaskaden in Zündanlagen mit Doppelfunkenspulen der Hochspannungsschalter bezüglich seiner Kippspannung so dimensioniert wird, daß die Wirkung der Kapazität der Zündleitungen vor den Hochspannungsschaltern dahingehend genutzt wird, daß in der kürzeren Zündleitung eine Kippdiode mit einer höheren Kippspannung angeordnet werden kann. Dadurch wird der Aufsteilerungseffekt an der entsprechenden Zündkerze gegenüber Hochspannungsschaltern mit gleicher Kippspannung gesteigert. Die Kippspannung der beiden Halbleiterschaltelemente liegt etwa zwischen 11 kV und 20 kV.The solution according to the invention with the characterizing features according to the main claim has the advantage that when using breakover diode cascades in ignition systems with double spark coils, the high-voltage switch is dimensioned with respect to its breakdown voltage so that the effect of the capacitance of the ignition lines in front of the high-voltage switch is used in such a way that in the shorter ignition line a breakover diode can be arranged with a higher breakover voltage. This increases the splitting effect on the corresponding spark plug compared to high-voltage switches with the same breakover voltage. The breakover voltage of the two semiconductor switching elements is approximately between 11 kV and 20 kV.

Verwendet man als einzelne Kippdioden in einer Kaskade Fünf-Schicht-Elemente mit symmetrischem Aufbau, die in beide Spannungsrichtungen kippen, so braucht man im Gegensatz zu üblichen Kippdioden (Vier-Schicht-Dioden) die Polarität des Hochspannungsschalters nicht zu beachten. Diese Tatsache bringt Vorteile bei der Nachrüstung von Kippdioden und erleichtert eine etwaige Reparatur z. B. bei Wechsel des Kerzensteckers, da man einen Wechsel ungeachtet der Polarität vornehmen kann.If five-layer elements with a symmetrical structure are used as individual breakover diodes in a cascade, which tilt in both voltage directions, in contrast to conventional breakover diodes (four-layer diodes), the polarity of the high-voltage switch need not be taken into account. This fact brings advantages when retrofitting breakover diodes and facilitates any repair such. B. when changing the plug connector, because you can make a change regardless of polarity.

Zeichnungdrawing

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert.An embodiment of the invention is shown in the drawing and explained in more detail in the following description.

Es zeigen:

  • Figur 1 Prinzipschaltbild einer Zündanlage mit einer Doppelfunkenspule.
  • Figur 2a Sekundärseite einer Zündanlage einer Doppelfunkenspule mit Kippdioden mit unsymmetrischer Kennlinie.
  • Figur 2b Sekundärseite einer Zündanlage einer Doppelfunkenspule mit Kippdioden mit symmetrischer Kennline.
Show it:
  • Figure 1 schematic diagram of an ignition system with a double spark coil.
  • Figure 2a secondary side of an ignition system of a double spark coil with breakover diodes with asymmetrical characteristic.
  • Figure 2b secondary side of an ignition system of a double spark coil with breakover diodes with a symmetrical characteristic.

Beschreibung des AusführungsbeispielsDescription of the embodiment

Im folgenden wird der Einsatz des Hochspannungsschalters in einer Zündanlage eines Kraftfahrzeuges beschrieben.The use of the high-voltage switch in an ignition system of a motor vehicle is described below.

Figur 1 zeigt eine Zündanlage mit einer Doppelfunkenspule 1, deren Primärwicklung 2 über einen Zündtransistor 4 an eine Spannungsversorgung UB, beispielsweise an die hier nicht dargestellte Batterie eines Kraftfahrzeuges angeschlossen ist. Der Zündtransistor 4 wird auf bekannter Weise über eine Steuerklemme 5 von einem Steuergerät angesteuert. Die Sekundärwicklung 3 ist auf der einen Seite über eine Zündleitung 6 mit einem Entstörwiderstand 9, einer Hochspannungskippdiode 13 und einer Zündkerze 11 verbunden und auf der anderen entgegengesetzt gepolten Seite über eine Zündleitung 7 mit einem Entstörwiderstand 8 und einer ebenfalls entgegengesetzt gepolten Hochspannungkippdiode 12 mit einer Zündkerze 10 verbunden.FIG. 1 shows an ignition system with a double spark coil 1, the primary winding 2 of which is connected via an ignition transistor 4 to a voltage supply UB, for example to the battery of a motor vehicle, not shown here. The ignition transistor 4 is controlled in a known manner by a control unit via a control terminal 5. The secondary winding 3 is connected on one side via an ignition line 6 to an interference suppressor 9, a high-voltage breakover diode 13 and a spark plug 11, and on the other side, with opposite polarity, via an ignition line 7 to an interference suppressor 8 and a likewise oppositely polarized high-voltage breakover diode 12 with a spark plug 10 connected.

Die Figuren 2a und 2b zeigen eine Zündanlage mit der Doppelfunkenspule 1, die jeweils über ihre Zündleitungen 6, 7, die Entstörwiderstände 8, 9 und entweder wie in Figur 2a über Hochspannungskippdioden 12 und 13 oder wie in Figur 2b über die symmetrischen Hochspannungskippdioden 14 und 15 mit den Zündkerzen 10 bzw. 11 verbunden ist.FIGS. 2a and 2b show an ignition system with the double spark coil 1, each via its ignition lines 6, 7, the interference suppressors 8, 9 and either as in FIG. 2a via high-voltage breakover diodes 12 and 13 or as in FIG. 2b via the symmetrical high-voltage breakover diodes 14 and 15 is connected to the spark plugs 10 and 11, respectively.

Die in Figur 1 dargestellte Zündanlage arbeitet folgendermaßen. Durch Abschalten des durch die Primärwicklung 2 der Doppelfunkenspule 1 fließenden Stromes mittels des Zündtransistors 4 wird in der Sekundärwicklung 3 eine Spannung U induziert, die beispielsweise bei etwa 30 kV liegt und bei Erreichen, der durch die Hochspannungskippdioden 12 und 13 vorgegebene Kippspannung ein Durchschalten an die Zündkerzen 10 und 11 bewirkt, was entweder unmittelbar oder nach weiterem Spannungsanstieg zum Auslösen des Zündfunkens führt. Die in der Figur 1 dargestellte Verschaltung unter Verwendung von Doppelfunkenspulen führt dazu, daß die von der Zündspule sekundärseitig gelieferte Zündspannung an beiden Zündleitungen 6 und 7 aufgeteilt wird, d. h. die Kippspannung der Kippdioden 12 und 13 muß klein gewählt werden, so daß ein Durchschalten der Zündspannung an die Zündkerzen 10 und 11 gewährleistet wird. Jedoch ist der eigentlich gewünschte Aufsteilerungseffekt der Kippdioden 12 und 13 bei einer Kippspannung von kleiner als 11 kV nicht mehr effektiv. Es wird nun die Wirkung der Eigenkapazitäten der unterschiedlich langen Zündleitungen 6 und 7 genutzt. Diese Kapazitäten werden geladen, solange die Kippdioden 12 bzw. 13 sperren. Dadurch teilt sich die Spannung auf der Sekundärseite der Zündspule ungleichmäßig auf die Zündleitungen 6 und 7 auf. Da die kürzere Zündleitung 7 eine geringere Kapazität hat und damit an ihr eine höhere Spannung ansteht als bei der längeren Zündleitung 6, an der die niedrigere Spannung ansteht, kann man die Kippspannung an der Kippdiode 12 höher wählen, und so einen besseren Aufsteilerungseffekt gewährleisten. Bei der beschriebenen Zündanlage können die Kippspannungen der Kippdiode so gewählt werden, daß die Kippdiode 13 in der längeren Zündleitung 6 bei etwa 11 bis 13 kV kippt und die Kippdiode 12 in der kürzeren Zündleitung 7 bei etwa 16 bis 18 kV.The ignition system shown in Figure 1 works as follows. By switching off the through the primary winding 2 of the double spark coil 1 flowing current by means of the ignition transistor 4, a voltage U is induced in the secondary winding 3, which is, for example, about 30 kV and, when the voltage across the high voltage breakover diodes 12 and 13 is reached, causes a switching through to the spark plugs 10 and 11, which either directly or after further voltage rise leads to triggering of the ignition spark. The interconnection shown in FIG. 1 using double spark coils leads to the fact that the ignition voltage supplied by the ignition coil on the secondary side is divided between the two ignition lines 6 and 7, i.e. the breakover voltage of the breakover diodes 12 and 13 must be chosen small so that the ignition voltage is switched through to the spark plugs 10 and 11 is ensured. However, the actually desired division effect of the breakover diodes 12 and 13 is no longer effective at a breakdown voltage of less than 11 kV. The effect of the inherent capacities of the ignition lines 6 and 7 of different lengths is now used. These capacitors are loaded as long as the breakover diodes 12 and 13 block. As a result, the voltage on the secondary side of the ignition coil is distributed unevenly between the ignition lines 6 and 7. Since the shorter ignition line 7 has a lower capacitance and therefore a higher voltage is applied to it than in the longer ignition line 6, at which the lower voltage is applied, the breakover voltage at the breakover diode 12 can be selected higher, and thus ensure a better splitting effect. In the ignition system described, the breakover voltages of the breakover diode can be selected such that the breakover diode 13 tilts in the longer ignition line 6 at about 11 to 13 kV and the breakover diode 12 in the shorter ignition line 7 at about 16 to 18 kV.

In Figur 1 und 2a ist eine Verschaltung der Sekundärseite 3 einer Zündanlage mit Doppelfunkenspulen mit Kippdioden als Vier-Schicht-Dioden mit unsymmetrischer Kennlinie dargestellt. Hier muß beim Einbau die Polarität der Hochspannungskippdioden beachtet werden, d. h. der Seite der Zündspule mit dem positiven Potential muß die Anode der Kippdiode und der Seite der Zündspule mit dem negativen Potential die Kathode der Kippdioden zugeordnet sein.1 and 2a show an interconnection of the secondary side 3 of an ignition system with double-spark coils with breakover diodes as four-layer diodes with an asymmetrical characteristic. Here, the polarity of the high-voltage breakover diodes must be observed during installation, ie the side of the ignition coil with the positive potential must be Anode of the breakover diode and the side of the ignition coil with the negative potential can be assigned to the cathode of the breakover diodes.

Verwendet man, wie in Figur 2b dargestellt, Kippdioden mit symmetrischer Kennlinie, so braucht man beim Einbau oder einem eventuellen Kerzen- oder Kerzensteckerwechsel nicht die Polarität der Kippdiodenkaskaden zu beachten, da diese aufgrund ihrer symmetrischen Kennlinie in beide Spannungsrichtungen kippen.If, as shown in FIG. 2b, one uses breakover diodes with a symmetrical characteristic curve, then the polarity of the breakover diode cascades need not be taken into account when installing or possibly changing the plug or plug connector, because these breakdown in both voltage directions due to their symmetrical characteristic curve.

Claims (3)

  1. Ignition system for internal combustion engines having a double coil (1) with semiconductor switching elements (12, 13) which are arranged in the secondary circuit between the double coil (1) and spark plug (10, 11), each of these semiconductor switching elements preferably consisting of breakover diodes in a cascade circuit so that with a preselected voltage (breakover voltage) the semiconductor switching element suddenly changes from the inhibiting state to the conducting state (breakover process), the semiconductor switching element preferably being arranged near to the spark plug, to the spark plug socket or in the spark plug, characterized in that semiconductor switching elements (12, 13) with different breakover voltages are installed in a double coil (1) in lines (6, 7) of different lengths, from the ignition coil (1) to the spark plugs (10, 11), a semiconductor switching element with a higher breakover voltage being assigned to the shorter ignition line.
  2. Ignition system according to Claim 1, characterized in that the breakover voltage of the semiconductor switching element (12, 13) lies between 11 kV and 20 kV.
  3. Ignition system according to Claim 1 and 2, characterized in that five-layer semiconductor elements which have a symmetrical structure and flip in both voltage directions are used as breakover diode.
EP91909630A 1990-06-23 1991-05-27 High voltage switch in double-coil ignition systems Expired - Lifetime EP0536157B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4020103 1990-06-23
DE4020103A DE4020103A1 (en) 1990-06-23 1990-06-23 HIGH VOLTAGE SWITCH IN DOUBLE SPARK COIL IGNITION SYSTEMS
PCT/DE1991/000444 WO1992000454A1 (en) 1990-06-23 1991-05-27 High voltage switch in double-coil ignition systems

Publications (2)

Publication Number Publication Date
EP0536157A1 EP0536157A1 (en) 1993-04-14
EP0536157B1 true EP0536157B1 (en) 1995-08-30

Family

ID=6408977

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91909630A Expired - Lifetime EP0536157B1 (en) 1990-06-23 1991-05-27 High voltage switch in double-coil ignition systems

Country Status (6)

Country Link
US (1) US5265580A (en)
EP (1) EP0536157B1 (en)
JP (1) JPH05507987A (en)
DE (2) DE4020103A1 (en)
ES (1) ES2077855T3 (en)
WO (1) WO1992000454A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4117808C2 (en) * 1991-05-31 1994-09-22 Bosch Gmbh Robert Ignition systems for internal combustion engines with high-voltage switches
DE19502304A1 (en) * 1995-01-26 1996-08-01 Bosch Gmbh Robert Ignition system for internal combustion engines
DE19610862A1 (en) * 1996-03-20 1997-09-25 Bosch Gmbh Robert Inductive ignition device
ES2130089B1 (en) * 1997-10-20 2000-02-16 Perez Adriano Becerril PROCESS FOR THE IMPROVEMENT OF EXPLOSION ENGINE MECHANICAL AND ELECTRONIC IGNITIONS.
DE10155972A1 (en) * 2001-11-14 2003-05-22 Bosch Gmbh Robert Electrical spark ignition system for internal combustion engine incorporates function control circuit and ignition transistor transmitting pulse signals to step-up transistor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040866Y2 (en) * 1979-11-06 1985-12-10 株式会社デンソー Ignition system for internal combustion engines
JPS5675962A (en) * 1979-11-22 1981-06-23 Hitachi Ltd Ignition coil of internal combustion engine
JPS56124671A (en) * 1980-03-07 1981-09-30 Hitachi Ltd Igniting apparatus
JPS6017949B2 (en) * 1980-04-24 1985-05-08 サンケン電気株式会社 Internal combustion engine ignition system
DE3411845A1 (en) * 1984-03-30 1985-10-10 Robert Bosch Gmbh, 7000 Stuttgart MULTI-PLUGED AND DISTRIBUTORLESS IGNITION SYSTEM FOR INTERNAL COMBUSTION ENGINES
US4770152A (en) * 1986-11-07 1988-09-13 Toyota Jidosha Kabushiki Kaisha Ignition device for an internal combustion engine
DE3731393A1 (en) * 1987-09-18 1989-04-06 Bosch Gmbh Robert HIGH VOLTAGE SWITCH
JPH0291477A (en) * 1988-09-27 1990-03-30 Mitsubishi Electric Corp Engine igniter

Also Published As

Publication number Publication date
WO1992000454A1 (en) 1992-01-09
JPH05507987A (en) 1993-11-11
EP0536157A1 (en) 1993-04-14
DE4020103A1 (en) 1992-01-02
ES2077855T3 (en) 1995-12-01
US5265580A (en) 1993-11-30
DE59106384D1 (en) 1995-10-05

Similar Documents

Publication Publication Date Title
DE2307443A1 (en) IGNITION CONTROL SYSTEM
EP0116275A2 (en) Reactive power compensator
DE102013215663A1 (en) ignition apparatus
DE2261156A1 (en) IGNITION DEVICE FOR COMBUSTION MACHINERY
DE2927058C2 (en) Control device for an ignition coil
EP0390780B1 (en) High-voltage switch
DE2628509C2 (en) Capacity discharge ignition system
DE2362472C3 (en) Ignition system with magnetic generator for internal combustion engines
EP0157006B1 (en) Ignition device for an internal-combustion engine comprising a plurality of plugs without a distributor
EP0536157B1 (en) High voltage switch in double-coil ignition systems
DE2433155B2 (en) Ignition circuit for a multi-cylinder internal combustion engine
DE1414588B2 (en) IGNITION DEVICE FOR COMBUSTION MACHINERY
DE3605199A1 (en) IGNITION SWITCHING, VERY SPECIAL FOR COMBUSTION ENGINES WITH MAGNETIC IGNITION
DE2652541A1 (en) ELECTRONIC IGNITION SYSTEM FOR COMBUSTION MACHINERY
DE4117808C2 (en) Ignition systems for internal combustion engines with high-voltage switches
DE2126428A1 (en) Transistor ignition system
DE2024474A1 (en) Ignition device for internal combustion engines
DE4133253A1 (en) IC engine ignition system with overvoltage protection - has blocking diode connected in series with resistor and in parallel with spark plug, to limit current flow
DE2243294A1 (en) IGNITION SYSTEM FOR COMBUSTION MACHINERY
DE2046913C (en) Capacitor ignition
DE1764642C3 (en) Thyristor capacitor ignition system for Otto internal combustion engines
DE4337810A1 (en) Test circuit for synthetic testing of high-voltage power circuit-breakers
DE10260321B4 (en) Circuit arrangement for radio interference suppression of a motor vehicle ignition system
DE3734080A1 (en) Transistor ignition device for an internal combustion engine
EP0425953B1 (en) Contactless ignition device for combustion engines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19921113

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 19941017

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59106384

Country of ref document: DE

Date of ref document: 19951005

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2077855

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951109

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980526

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980527

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19980529

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980724

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990528

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20020204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050527