EP0519311A1 - Shape memory alloy iron-nickel-cobalt-titanium, and process for producing this alloy - Google Patents

Shape memory alloy iron-nickel-cobalt-titanium, and process for producing this alloy Download PDF

Info

Publication number
EP0519311A1
EP0519311A1 EP92109780A EP92109780A EP0519311A1 EP 0519311 A1 EP0519311 A1 EP 0519311A1 EP 92109780 A EP92109780 A EP 92109780A EP 92109780 A EP92109780 A EP 92109780A EP 0519311 A1 EP0519311 A1 EP 0519311A1
Authority
EP
European Patent Office
Prior art keywords
alloy
weight
shape memory
nickel
temperatures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP92109780A
Other languages
German (de)
French (fr)
Inventor
Erhard Prof. Dr.-Ing. Hornbogen
Norbert Dr.-Ing. Jost
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krupp Industietechnik GmbH
Original Assignee
Krupp Industietechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krupp Industietechnik GmbH filed Critical Krupp Industietechnik GmbH
Publication of EP0519311A1 publication Critical patent/EP0519311A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/006Resulting in heat recoverable alloys with a memory effect
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt

Definitions

  • the invention relates to an iron-nickel-cobalt-titanium shape memory alloy and a method for its production.
  • the invention is based on the object of specifying a different shape memory alloy and a manufacturing method which has favorable shape memory properties or which leads to such a result.
  • the invention is also intended to make it possible to achieve higher transition temperatures;
  • the aim should be an M s and A s temperature which is higher than -130 ° C and -100 ° C, respectively.
  • the production of a shape memory alloy should be made possible, in which the two-way shape memory effect can be set with just a few training cycles.
  • Ni 25 up to 30% by weight
  • Co 16 to 21% by weight
  • Ti 2 to 4% by weight
  • remainder iron dissolved This information is to be understood in such a way that the shape memory alloy may contain a small amount of impurities, which, however, should not make up more than 0.05% by weight. The proportion of iron would accordingly decrease by the total proportion of impurities.
  • the novel shape memory alloy differs from the prior art mentioned at the outset in that its cobalt content is higher and its nickel content is lower and its titanium content is limited to a maximum of 4% by weight.
  • the shape memory alloy can also be designed in such a way that the nickel content is 27 to 29% by weight (claim 2) and / or the cobalt content is at most 20% by weight (claim 3) and / or the titanium content is 3.5 +/- 0.5% by weight (claim 4).
  • Advantageous properties can be achieved if the titanium content is close to 4% by weight as the upper limit.
  • Another essential feature of the shape memory alloy results from the atomic ratio of nickel and iron, which is determined from the proportions of these two alloy components stated in at%. Under the conditions mentioned above (claims 1 to 4), the atomic ratio Ni / Fe should at most 0.60 (claim 5).
  • the iron-nickel-cobalt-titanium shape memory alloy can be produced as follows (claim 6): The cast alloy is deformed at temperatures between 1050 and 1250 ° C, then quenched and then over a period of between 10 and 30 hours at temperatures between 1150 and 1250 ° C below Subjected to a solution treatment in an inert gas atmosphere and finally quenched again.
  • the manufacturing process can also be designed in such a way that the cast alloy is deformed at a minimum temperature of 1100 ° C (claim 7) and / or the solution treatment takes place over a period of between 15 and 20 hours (claim 8).
  • the deformation can be brought about in particular by rolling and the quenching using water as the coolant; argon, for example, is used as the inert gas.
  • water as the coolant
  • argon for example, is used as the inert gas.
  • the alloy which has been quenched twice, is exposed to temperatures between 500 and 650 ° C for a period of between 10 minutes and 150 hours, then quenched a third time and then subjected to one to 50 training deformations subjected (claim 9).
  • the heat treatment provided before the third quenching process is carried out can also take place at temperatures between 550 to 600 ° C (claim 10).
  • Water can in turn be used as the coolant for the quenching process.
  • a training deformation of at least 25 times is usually sufficient to set the desired shape memory property. The required number of training cycles can be reduced further if necessary by reducing the nickel content.
  • the shape memory alloy can be used advantageously for the production of spring elements, in particular compression or tension springs.
  • a spring wire is produced by a drawing process, from which a spring is wound after at least one intermediate annealing in the temperature range of 1250 ° C. and then in tensioned state is fixed on a mandrel.
  • the spring is then - as described for example with claim 9 - subjected to heat treatment with subsequent quenching and training deformation at temperatures between -196 ° C and + 300 ° C.
  • the invention is explained below using specific exemplary embodiments. These relate to the fact that two differently composed shape memory alloys with the abbreviations "27/20” and “28/20” were used to form a tension spring with a spring diameter of 10 mm and a wire diameter of 1 mm.
  • FIG. 1, 2 and 3, 4 it can be seen how the two-way shape memory effect ZFE and the length of the tension spring LF depending on whether the tension spring is in the low temperature state TTZ or high temperature state HTZ with the number of training cycles TZ carried out or change with the attacking weight G. 1 and 3 apply to a tension spring made of the shape memory alloy "27/20", FIGS. 2 and 4 apply to a tension spring made of the shape memory alloy "28/20".
  • the two-way memory effect is just under 85 or about 73%.
  • the two-way memory effect of the tension spring made of the shape memory alloy "27/20” reaches a value of about 55% (FIG. 3)
  • that of the tension spring made of the shape memory alloy "28/20” reaches a value of about 52% (Fig. 4).
  • a temperature of -196 ° C is assigned to the low temperature state TTZ, a temperature of + 250 ° C to the high temperature state HTZ.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Springs (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

The invention proposes a shape-memory alloy containing 25 to 30% by weight of Ni, 16 to 21% by weight of Co, 2 to 4% by weight of Ti, the remainder being Fe. The shape-memory alloy can be prepared in the following way: The cast alloy is deformed at temperatures between 1050 and 1250 DEG C, then quenched, subsequently subjected to a solution treatment for a time of between 10 and 30 hours at temperatures between 1150 and 1250 DEG C under an inert gas atmosphere and finally quenched again. To produce the shape-memory effect, the shape-memory alloy is exposed to temperatures of between 500 and 650 DEG C for a time of between 10 minutes and 150 hours, then quenched for a third time and finally subjected from 1 to 50 times to a training deformation.

Description

Die Erfindung betrifft eine Eisen-Nickel-Kobalt-Titan-Formgedächtnislegierung und ein Verfahren zu ihrer Herstellung.The invention relates to an iron-nickel-cobalt-titanium shape memory alloy and a method for its production.

Aus der EP-B1-0167221 sind eine Formgedächtnislegierung und ein Herstellverfahren für eine derartige Legierung bekannt, die als Legierungsbestandteile 32 bis 34 Gew.-% Nickel, 3 bis 6 Gew.-% Titan, 10 bis 15 Gew.-% Kobalt, Rest Eisen enthält.
Das nach der Lehre der Vorveröffentlichung hergestellte Erzeugnis soll gute Formgedächtniseigenschaften und eine gute Bearbeitbarkeit aufweisen sowie verhältnismäßig preisgünstig sein.
From EP-B1-0167221 a shape memory alloy and a manufacturing process for such an alloy are known which contain 32 to 34% by weight of nickel, 3 to 6% by weight of titanium, 10 to 15% by weight of cobalt, the rest as alloying constituents Contains iron.
The product produced according to the teaching of the prior publication is said to have good shape memory properties and good machinability, and to be relatively inexpensive.

Der Erfindung liegt die Aufgabe zugrunde, eine andersartige Formgedächtnislegierung und ein Herstellverfahren anzugeben, die günstige Formgedächtniseigenschaften besitzt bzw. das zu einem derartigen Ergebnis führt.
Die Erfindung soll es weiterhin ermöglichen, höhere Umwandlungstemperaturen erreichbar zu machen; angestrebt werden soll dabei eine Ms- und As-Temperatur, die höher als -130°C bzw. als -100°C liegt.
Daneben soll die Herstellung einer Formgedächtnislegierung ermöglicht werden, in welcher sich der Zweiweg-Formgedächtniseffekt bereits mit wenigen Trainingszyklen einstellen läßt.
The invention is based on the object of specifying a different shape memory alloy and a manufacturing method which has favorable shape memory properties or which leads to such a result.
The invention is also intended to make it possible to achieve higher transition temperatures; The aim should be an M s and A s temperature which is higher than -130 ° C and -100 ° C, respectively.
In addition, the production of a shape memory alloy should be made possible, in which the two-way shape memory effect can be set with just a few training cycles.

Die Aufgabe wird durch eine Eisen-Nickel-Kobalt-Titan-Formgedächtnislegierung mit der Zusammensetzung Ni = 25 bis 30 Gew.-%, Co = 16 bis 21 Gew.-%, Ti = 2 bis 4 Gew.-%, Rest Eisen gelöst.
Diese Angaben sind so zu verstehen, daß die Formgedächtnislegierung ggf. einen geringen Anteil an Verunreinigungen enthalten kann, die insgesamt jedoch nicht mehr als 0,05 Gew.-% ausmachen sollten. Der Anteil an Eisen würde sich dementsprechend um den Gesamtanteil an Verunreinigungen vermindern.
Die neuartige Formgedächtnislegierung unterscheidet sich dadurch von dem eingangs erwähnten Stand der Technik, daß ihr Gehalt an Kobalt höher und ihr Nickel-Gehalt niedriger liegt sowie ihr Titan-Gehalt auf höchstens 4 Gew.-% beschränkt ist.
The task is accomplished by an iron-nickel-cobalt-titanium shape memory alloy with the composition Ni = 25 up to 30% by weight, Co = 16 to 21% by weight, Ti = 2 to 4% by weight, remainder iron dissolved.
This information is to be understood in such a way that the shape memory alloy may contain a small amount of impurities, which, however, should not make up more than 0.05% by weight. The proportion of iron would accordingly decrease by the total proportion of impurities.
The novel shape memory alloy differs from the prior art mentioned at the outset in that its cobalt content is higher and its nickel content is lower and its titanium content is limited to a maximum of 4% by weight.

Im Rahmen der Erfindung kann die Formgedächtnislegierung auch in der Weise ausgebildet sein, daß der Nickel-Gehalt 27 bis 29 Gew.-% (Anspruch 2) und/oder der Kobalt-Gehalt allenfalls 20 Gew.-% (Anspruch 3) und/oder der Titan-Gehalt 3,5 +/- 0,5 Gew.-% (Anspruch 4) beträgt.
Vorteilhafte Eigenschaften lassen sich ggf. erzielen, falls der Titan-Gehalt in der Nähe von 4 Gew.-% als Obergrenze liegt.
In the context of the invention, the shape memory alloy can also be designed in such a way that the nickel content is 27 to 29% by weight (claim 2) and / or the cobalt content is at most 20% by weight (claim 3) and / or the titanium content is 3.5 +/- 0.5% by weight (claim 4).
Advantageous properties can be achieved if the titanium content is close to 4% by weight as the upper limit.

Ein weiteres wesentliches Merkmal der Formgedächtnislegierung ergibt sich aus dem Atomverhältnis an Nickel und Eisen, das aus den in At.-% angegebenen Anteilen dieser beiden Legierungsbestandteile ermittelt wird: Unter den zuvor angesprochenen Voraussetzungen (Ansprüche 1 bis 4) sollte das Atomverhältnis Ni/Fe allenfalls 0,60 betragen (Anspruch 5).Another essential feature of the shape memory alloy results from the atomic ratio of nickel and iron, which is determined from the proportions of these two alloy components stated in at%. Under the conditions mentioned above (claims 1 to 4), the atomic ratio Ni / Fe should at most 0.60 (claim 5).

Die Eisen-Nickel-Kobalt-Titan-Formgedächtnislegierung läßt sich folgendermaßen herstellen (Anspruch 6):
Die gegossene Legierung wird bei Temperaturen zwischen 1050 bis 1250°C verformt, danach abgeschreckt, anschließend über einen Zeitraum zwischen 10 bis 30 Stunden bei Temperaturen zwischen 1150 bis 1250°C unter Inertgasatmosphäre einer Lösungsbehandlung unterworfen und schließlich erneut abgeschreckt.
Das Herstellverfahren kann dabei auch in der Weise ausgestaltet sein, daß die gegossene Legierung bei einer Mindesttemperatur von 1100°C verformt wird (Anspruch 7) und/oder die Lösungsbehandlung über einen Zeitraum zwischen 15 und 20 Stunden stattfindet (Anspruch 8).
The iron-nickel-cobalt-titanium shape memory alloy can be produced as follows (claim 6):
The cast alloy is deformed at temperatures between 1050 and 1250 ° C, then quenched and then over a period of between 10 and 30 hours at temperatures between 1150 and 1250 ° C below Subjected to a solution treatment in an inert gas atmosphere and finally quenched again.
The manufacturing process can also be designed in such a way that the cast alloy is deformed at a minimum temperature of 1100 ° C (claim 7) and / or the solution treatment takes place over a period of between 15 and 20 hours (claim 8).

Die Verformung kann insbesondere durch Walzen und die Abschreckung unter Verwendung von Wasser als Kühlmittel herbeigeführt werden; als Inertgas kommt beispielsweise Argon zur Anwendung. Zur Erzeugung von Formgedächtniseffekten (durch Bildung geordneter und kohärenter Ausscheidungsteilchen) wird die zweimal abgeschreckte Legierung über einen Zeitraum zwischen 10 Minuten und 150 Stunden Temperaturen zwischen 500 und 650°C ausgesetzt, danach ein drittes Mal abgeschreckt und anschließend einer ein- bis 50-maligen Trainingsverformung unterzogen (Anspruch 9).
Die vor Durchführen des dritten Abschreckvorgangs vorgesehene Wärmebehandlung kann jedoch auch bei Temperaturen zwischen 550 bis 600°C vor sich gehen (Anspruch 10).
Als Kühlmittel für den Abschreckvorgang kann dabei wiederum Wasser eingesetzt werden.
Normalerweise ist zur Einstellung der gewünschten Formgedächtniseigenschaft bereits eine allenfalls 25-malige Trainingsverformung ausreichend. Die benötigte Anzahl an Trainingszyklen läßt sich dabei mit der Verminderung des Nickel-Gehalts ggf. weiter absenken.
The deformation can be brought about in particular by rolling and the quenching using water as the coolant; argon, for example, is used as the inert gas. To produce shape memory effects (through the formation of ordered and coherent excretion particles), the alloy, which has been quenched twice, is exposed to temperatures between 500 and 650 ° C for a period of between 10 minutes and 150 hours, then quenched a third time and then subjected to one to 50 training deformations subjected (claim 9).
However, the heat treatment provided before the third quenching process is carried out can also take place at temperatures between 550 to 600 ° C (claim 10).
Water can in turn be used as the coolant for the quenching process.
A training deformation of at least 25 times is usually sufficient to set the desired shape memory property. The required number of training cycles can be reduced further if necessary by reducing the nickel content.

Die Formgedächtnislegierung läßt sich vorteilhaft zur Herstellung von Federelementen, insbesondere Druck- oder Zugfedern, einsetzen.
Dazu wird - nach Beendigung beispielsweise des Herstellvorgangs gemäß Anspruch 6 - durch einen Ziehvorgang ein Federdraht hergestellt, aus dem nach zumindest einer Zwischenglühung im Temperaturbereich von 1250°C eine Feder gewickelt und diese anschließend in gespanntem Zustand auf einem Wickeldorn fixiert wird. Die Feder wird anschließend - wie beispielsweise mit dem Anspruch 9 beschrieben - einer Wärmebehandlung mit nachfolgender Abschreckung und Trainingsverformung bei Temperaturen zwischen -196°C und +300°C unterworfen.
The shape memory alloy can be used advantageously for the production of spring elements, in particular compression or tension springs.
For this purpose - after completion of the manufacturing process according to claim 6, for example - a spring wire is produced by a drawing process, from which a spring is wound after at least one intermediate annealing in the temperature range of 1250 ° C. and then in tensioned state is fixed on a mandrel. The spring is then - as described for example with claim 9 - subjected to heat treatment with subsequent quenching and training deformation at temperatures between -196 ° C and + 300 ° C.

Die Erfindung wird nachfolgend anhand konkreter Ausführungsbeispiele erläutert.
Diese beziehen sich darauf, daß zwei unterschiedlich zusammengesetzte Formgedächtnislegierungen mit den Kurzbezeichnungen "27/20" und "28/20" bei der Bildung einer Zugfeder mit einem Federdurchmesser von 10 mm und einem Drahtdurchmesser von 1 mm eingesetzt worden sind.
Die beiden Formgedächtnislegierungen weisen dabei - jeweils in Gew.-% angegeben - die folgende Zusammensetzung auf:
"27/20": Ni = 27; Co = 20; Ti = 4; Rest Fe
"28/20": Ni = 28; Co = 20; Ti = 4; Rest Fe.
The invention is explained below using specific exemplary embodiments.
These relate to the fact that two differently composed shape memory alloys with the abbreviations "27/20" and "28/20" were used to form a tension spring with a spring diameter of 10 mm and a wire diameter of 1 mm.
The two shape memory alloys each have the following composition, each stated in% by weight:
"27/20": Ni = 27; Co = 20; Ti = 4; Rest of Fe
"28/20": Ni = 28; Co = 20; Ti = 4; Rest of Fe.

Nachdem die aus den beiden Formgedächtnislegierungen "27/20" und "28/20" hergestellten Federn (gemäß Anspruch 9 oder 10) über einen Zeitraum von drei Stunden einer Temperatur von 600°C ausgesetzt worden sind, weisen die zugehörigen Umwandlungstemperaturen Ms, Mf, As und Af (jeweils in °C) die nachfolgend angegebenen Werte auf: "27/20": Ms = -9; Mf = -70; As = +120; Af = +242 "28/20": Ms = -71; Mf = -154; As = +19; Af = +144.After the springs made from the two shape memory alloys "27/20" and "28/20" (according to claim 9 or 10) have been exposed to a temperature of 600 ° C for a period of three hours, the associated transition temperatures M s , M f , A s and A f (each in ° C) have the following values: "27/20": M s = -9; M f = -70; A s = +120; A f = +242 "28/20": M s = -71; M f = -154; A s = +19; A f = +144.

Aus Fig. 1, 2 bzw. 3, 4 ist ersichtlich, wie sich der Zweiweg-Formgedächtniseffekt ZFE und die Länge der Zugfeder LF in Abhängigkeit davon, ob sich die Zugfeder im Tieftemperaturzustand TTZ oder Hochtemperaturzustand HTZ befindet, mit der Anzahl der ausgeführten Trainingszyklen TZ bzw. mit dem angreifenden Gewicht G ändern.
Die Fig. 1 und 3 gelten dabei für eine Zugfeder aus der Formgedächtnislegierung "27/20", die Fig. 2 und 4 für eine Zugfeder aus der Formgedächtnislegierung "28/20".
From Fig. 1, 2 and 3, 4 it can be seen how the two-way shape memory effect ZFE and the length of the tension spring LF depending on whether the tension spring is in the low temperature state TTZ or high temperature state HTZ with the number of training cycles TZ carried out or change with the attacking weight G.
1 and 3 apply to a tension spring made of the shape memory alloy "27/20", FIGS. 2 and 4 apply to a tension spring made of the shape memory alloy "28/20".

Der in den Darstellungen als Meßwert angegebene Zweiweg-Formgedächtniseffekt ZFE (angegeben in %) ist folgendermaßen definiert, wobei TT die Tieftemperaturphase (Martensit) und HT die Hochtemperaturphase (Austenit) bedeuten:

ZFE = 100·(LF in TT - LF in HT) / (LF in HT).

Figure imgb0001

The two-way shape memory effect ZFE (given in%), which is given as a measured value in the illustrations, is defined as follows, where TT denotes the low-temperature phase (martensite) and HT the high-temperature phase (austenite):

ZFE = 100 · (LF in TT - LF in HT) / (LF in HT).
Figure imgb0001

Aus Fig. 1 und 2 ist ablesbar, daß beispielsweise nach 20 Trainingszyklen der Zweiweg-Gedächtniseffekt knapp 85 bzw. etwa 73 % beträgt.
Unter einer Belastung von 1000 g erreicht der Zweiweg-Gedächtniseffekt der Zugfeder aus der Formgedächtnislegierung "27/20" einen Wert von etwa 55 % (Fig. 3), derjenige der Zugfeder aus der Formgedächtnislegierung "28/20" einen Wert von etwa 52 % (Fig. 4).
Dem Tieftemperaturzustand TTZ ist dabei eine Temperatur von -196°C zugeordnet, dem Hochtemperaturzustand HTZ eine Temperatur von +250°C.
It can be seen from FIGS. 1 and 2 that, for example, after 20 training cycles, the two-way memory effect is just under 85 or about 73%.
Under a load of 1000 g, the two-way memory effect of the tension spring made of the shape memory alloy "27/20" reaches a value of about 55% (FIG. 3), that of the tension spring made of the shape memory alloy "28/20" reaches a value of about 52% (Fig. 4).
A temperature of -196 ° C is assigned to the low temperature state TTZ, a temperature of + 250 ° C to the high temperature state HTZ.

Claims (10)

Eisen-Nickel-Kobalt-Titan-Formgedächtnislegierung, gekennzeichnet durch folgende Zusammensetzung:
Ni = 25 bis 30 Gew.-%, Co = 16 bis 21 Gew.-%, Ti = 2 bis 4 Gew.-%, Rest Fe.
Iron-nickel-cobalt-titanium shape memory alloy, characterized by the following composition:
Ni = 25 to 30% by weight, Co = 16 to 21% by weight, Ti = 2 to 4% by weight, balance Fe.
Legierung nach Anspruch 1, dadurch gekennzeichnet, daß der Nickel-Gehalt 27 bis 29 Gew.-% beträgt.Alloy according to claim 1, characterized in that the nickel content is 27 to 29% by weight. Legierung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Kobalt-Gehalt allenfalls 20 Gew.-% beträgt.Alloy according to at least one of the preceding claims, characterized in that the cobalt content is at most 20% by weight. Legierung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Titan-Gehalt 3,5 +/- 0,5 Gew.-% beträgt.Alloy according to at least one of the preceding claims, characterized in that the titanium content is 3.5 +/- 0.5% by weight. Legierung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das aus den Atomprozentanteilen ermittelte Atomverhältnis an Nickel und Eisen (Ni/Fe) allenfalls 0,60 beträgt.Alloy according to at least one of the preceding claims, characterized in that the atomic ratio of nickel and iron (Ni / Fe) determined from the atomic percentages is at most 0.60. Verfahren zur Herstellung einer Eisen-Nickel-Kobalt-Titan-Formgedächtnislegierung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die gegossene Legierung bei Temperaturen zwischen 1050 bis 1250°C verformt, danach abgeschreckt, anschließend über einen Zeitraum zwischen 10 bis 30 Stunden bei Temperaturen zwischen 1150 bis 1250°C unter Inertgasatmosphäre einer Lösungsbehandlung unterworfen und schließlich erneut abgeschreckt wird.A process for producing an iron-nickel-cobalt-titanium shape memory alloy according to at least one of the preceding claims, characterized in that the cast alloy is deformed at temperatures between 1050 and 1250 ° C, then quenched, and then for a period of between 10 and 30 hours Temperatures between 1150 to 1250 ° C are subjected to a solution treatment under an inert gas atmosphere and finally quenched again. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die gegossene Legierung bei einer Mindesttemperatur von 1100°C verformt wird.A method according to claim 6, characterized in that the cast alloy is deformed at a minimum temperature of 1100 ° C. Verfahren nach zumindest einem der Ansprüche 6 bis 7, dadurch gekennzeichnet, daß die Lösungsbehandlung über einen Zeitraum zwischen 15 und 20 Stunden stattfindet.Method according to at least one of claims 6 to 7, characterized in that the solution treatment takes place over a period of between 15 and 20 hours. Verfahren nach zumindest einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß die Legierung über einen Zeitraum zwischen 10 Minuten und 150 Stunden Temperaturen zwischen 500 und 650°C ausgesetzt, danach ein drittes Mal abgeschreckt und anschließend einer ein- bis 50-maligen Trainingsverformung unterzogen wird.Method according to at least one of Claims 6 to 8, characterized in that the alloy is exposed to temperatures between 500 and 650 ° C for a period of between 10 minutes and 150 hours, then quenched for a third time and then subjected to one to 50 training deformations becomes. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß die Legierung vor Durchführen des dritten Abschreckvorgangs Temperaturen zwischen 550 bis 600°C ausgesetzt wird.A method according to claim 9, characterized in that the alloy is exposed to temperatures between 550 to 600 ° C before performing the third quenching process.
EP92109780A 1991-06-19 1992-06-10 Shape memory alloy iron-nickel-cobalt-titanium, and process for producing this alloy Withdrawn EP0519311A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19914120346 DE4120346A1 (en) 1991-06-19 1991-06-19 IRON-NICKEL-COBALT-TITANIUM SHAPED ALLOY ALLOY AND METHOD FOR THEIR PRODUCTION
DE4120346 1991-06-19

Publications (1)

Publication Number Publication Date
EP0519311A1 true EP0519311A1 (en) 1992-12-23

Family

ID=6434353

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92109780A Withdrawn EP0519311A1 (en) 1991-06-19 1992-06-10 Shape memory alloy iron-nickel-cobalt-titanium, and process for producing this alloy

Country Status (2)

Country Link
EP (1) EP0519311A1 (en)
DE (1) DE4120346A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014026299A1 (en) * 2012-08-14 2014-02-20 S&P Clever Reinforcement Company Ag Anchoring system for a support in construction, and method for using same
CN109913764A (en) * 2019-04-10 2019-06-21 四川大学 A method of improving ferrimanganic alumel memory performance stability
CN110714141A (en) * 2019-11-06 2020-01-21 四川大学 Method for improving shape memory effect of cobalt-nickel base alloy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4217031C2 (en) * 1992-05-22 1994-04-28 Dresden Ev Inst Festkoerper Process for adjusting the pseudo-elastic effect in Fe-Ni-Co-Ti alloys

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB861458A (en) * 1957-11-01 1961-02-22 Mond Nickel Co Ltd Improvements relating to iron-nickel alloys and to articles made therefrom
FR2190931A1 (en) * 1972-06-28 1974-02-01 Int Nickel Ltd
GB1401259A (en) * 1973-05-04 1975-07-16 Int Nickel Ltd Low expansion alloys
EP0167221A1 (en) * 1984-05-09 1986-01-08 Kyoto University Iron-nickel-titanium-cobalt alloy with shape memory effect and pseudo-elasticity, and method of producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2431874B2 (en) * 1974-07-03 1977-05-12 Vacuumschmelze Gmbh, 6450 Hanau METHOD OF MANUFACTURING A MAGNETIC MATERIAL AND THE USE OF IT
DE2437921C3 (en) * 1974-08-07 1981-06-11 Vacuumschmelze Gmbh, 6450 Hanau Use of an alloy based on cobalt-nickel-titanium-iron as a magnetically semi-hard material that can be melted into glass
SU1601146A1 (en) * 1988-11-28 1990-10-23 Институт металлофизики АН УССР Method of heat treatment of alloy of fe-ni-co system with shape memory

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB861458A (en) * 1957-11-01 1961-02-22 Mond Nickel Co Ltd Improvements relating to iron-nickel alloys and to articles made therefrom
FR2190931A1 (en) * 1972-06-28 1974-02-01 Int Nickel Ltd
GB1401259A (en) * 1973-05-04 1975-07-16 Int Nickel Ltd Low expansion alloys
EP0167221A1 (en) * 1984-05-09 1986-01-08 Kyoto University Iron-nickel-titanium-cobalt alloy with shape memory effect and pseudo-elasticity, and method of producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014026299A1 (en) * 2012-08-14 2014-02-20 S&P Clever Reinforcement Company Ag Anchoring system for a support in construction, and method for using same
CN109913764A (en) * 2019-04-10 2019-06-21 四川大学 A method of improving ferrimanganic alumel memory performance stability
CN110714141A (en) * 2019-11-06 2020-01-21 四川大学 Method for improving shape memory effect of cobalt-nickel base alloy
CN110714141B (en) * 2019-11-06 2021-03-23 四川大学 Method for improving shape memory effect of cobalt-nickel base alloy

Also Published As

Publication number Publication date
DE4120346A1 (en) 1992-12-24

Similar Documents

Publication Publication Date Title
DE2516749C3 (en) Process for the production of metal bodies with repeatedly reversible shape change capability
DE60316212T2 (en) Nickel-based alloy, hot-resistant spring made of this alloy and method of making this spring
DE2720461C2 (en) Manufacturing processes for copper-nickel-tin alloys
DE69903202T2 (en) Iron-cobalt alloy
DE3331654A1 (en) COPPER BERYLLIUM ALLOY AND THEIR PRODUCTION
DE1558668C3 (en) Use of creep-resistant, stainless austenitic steels for the production of sheet metal
DE3310693A1 (en) CORROSION-RESISTANT CHROME STEEL AND METHOD FOR THE PRODUCTION THEREOF
DE2752529A1 (en) NICKEL ALLOY
DE3612655A1 (en) SOFT MAGNETIC STAINLESS STEEL
DE60219693T2 (en) DESIGN-HARDENABLE AUSTENITIC STEEL
DE3628395C1 (en) Use of steel for plastic molds
DE2536590C2 (en) Use of a semi-hard magnetic alloy
DE2649529A1 (en) FORMABLE COBALT-NICKEL-CHROME BASED ALLOY AND METHOD FOR ITS MANUFACTURING
EP3631020A1 (en) Fe-mn-si shape memory alloy
DE2635947A1 (en) TURNABLE CU-ZN-NI-MN ALLOY SIMILAR TO NEW SILVER
DE3223875C2 (en) Method of heat treating a Ni alloy
EP0035069A1 (en) Memory alloy based on Cu-Al or on Cu-Al-Ni and process for the stabilisation of the two-way effect
EP0519311A1 (en) Shape memory alloy iron-nickel-cobalt-titanium, and process for producing this alloy
EP1255873B9 (en) Maraging type spring steel
DE2613954A1 (en) THERMOBIMETAL WITH HIGH APPLICATION LIMITS AS WELL AS MANUFACTURING PROCESS FOR IT
EP0136998A1 (en) Wrought nickel-base alloy and process for its thermal treatment
EP0119501A1 (en) Use of a curable copper-nickel-manganese alloy in the manufacture spectacle components
DE1558676C3 (en)
CH615226A5 (en)
DE2055756B2 (en) Process for the manufacture of objects which can change their shape when the temperature changes, and the application of the process to certain alloys

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB LI LU NL

17P Request for examination filed

Effective date: 19930604

17Q First examination report despatched

Effective date: 19950330

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19950719