EP0501387A2 - Method and device for performance optimising and defrosting control of refrigerant evaporators - Google Patents

Method and device for performance optimising and defrosting control of refrigerant evaporators Download PDF

Info

Publication number
EP0501387A2
EP0501387A2 EP92103077A EP92103077A EP0501387A2 EP 0501387 A2 EP0501387 A2 EP 0501387A2 EP 92103077 A EP92103077 A EP 92103077A EP 92103077 A EP92103077 A EP 92103077A EP 0501387 A2 EP0501387 A2 EP 0501387A2
Authority
EP
European Patent Office
Prior art keywords
temperature
expansion valve
air cooler
klr
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92103077A
Other languages
German (de)
French (fr)
Other versions
EP0501387A3 (en
EP0501387B1 (en
Inventor
Paul Jyrek
Helmut Linker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kueba Kaltetechnik GmbH
Original Assignee
Kueba Kaltetechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kueba Kaltetechnik GmbH filed Critical Kueba Kaltetechnik GmbH
Publication of EP0501387A2 publication Critical patent/EP0501387A2/en
Publication of EP0501387A3 publication Critical patent/EP0501387A3/en
Application granted granted Critical
Publication of EP0501387B1 publication Critical patent/EP0501387B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/35Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by rotary motors, e.g. by stepping motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to a method and a device for optimizing the performance of coolers, in particular fan-air coolers, which are fed via an expansion valve and in which, in addition to the air inlet temperature or supply air temperature (tL 1), both the evaporation temperature (to) and the temperature at the air cooler outlet (t oh ) measured continuously or intermittently and the difference (A ti) between the supply air temperature (tL 1) and the evaporation temperature (t o ) is determined and this difference (A t 1 ) with a factor between 0.6 and 0.7, in particular the Factor 0.625, multiplied and the temperature calculation value obtained is compared with the difference (A t oh ), the temperature at the air cooler outlet (t oh ) and the evaporation temperature (to), the expansion valve (EV) on the air cooler inlet side then being continuous or depending on the comparison result is cyclically controlled in such a way that the temperature at the evaporator output (t oh ) is at least substantially equal to the
  • Such a method is intended to be improved while minimizing the required technical outlay in such a way that the optimum defrosting time can be recognized and thus the operation of coolers fed with refrigerants, in particular fan-air coolers, is further improved.
  • This object is achieved according to the invention essentially by monitoring the difference value (A ti) between the supply air temperature (tL 1) and the evaporation temperature (to) for the purpose of determining the optimal defrosting time of the cooler with regard to the exceeding of a predefinable limit value in that If this limit value is exceeded, the compressor and fan are switched off and a defrost heater is switched on until the air cooler has reached a predeterminable temperature corresponding to the ice-free state, and then the compressor and, with a time delay, the fan are switched on again.
  • a stop signal for the termination of the heating is preferably obtained via a temperature sensor which is arranged in the air cooler and by means of which the ice-free state of the air cooler can be determined. If the stop signal for the termination of the heating is present, the compressor is switched on again, but the fan is not switched on yet, otherwise warm air would be blown out into the room.
  • the fan is preferably switched on as a function of the evaporation temperature, which means that this temperature value can also be used several times in the context of the present invention.
  • the fan is switched on when the evaporation temperature has reached a predetermined low value.
  • the fan is switched on as a function of the evaporation temperature and that of the temperature sensor (t STB ).
  • the fan is switched on when the evaporation temperature and that of the temperature sensor (t STB ) have reached a value calculated depending on the selected room air temperature.
  • a particularly advantageous embodiment of the method according to the invention is characterized in that, parallel to the monitoring of the differential temperature (A ti), the refrigerant flow is monitored with a view to a flow reduction that extends over a predefinable period of time and that the defrost heating is switched on as a function of both criteria he follows.
  • This preferably used variant of the method according to the invention is characterized by particularly reliable operation even in difficult operating conditions, in particular when the cold store is frequently reloaded or when the cold store door is opened frequently, since interference effects caused by such processes are largely eliminated. It is essential that the time factor is taken into account in connection with the detection of the refrigerant flow and thus, by taking the temperature difference and the flow change of the refrigerant into account and linking the results of this parallel monitoring, interference can be virtually eliminated completely.
  • the supply air temperature is used as a room thermostat function for controlling the compressor or the compressors.
  • the signal supplied by the sensor that detects the supply air temperature is additionally evaluated in the computing unit in such a way that it is compared with a predefinable setpoint and when a threshold value range that corresponds to a setpoint and corresponds to a switching hysteresis of a room thermostat is exceeded or undershot Switching signal for switching the compressor on or off generated.
  • This room thermostat function is inoperative during defrosting. It is of particular advantage in connection with this realized room thermostat function that an otherwise necessary expensive room thermostat is saved and very small switching hysteresis values can be specified, which has a very favorable effect on the quality of the products stored in the respective cold room.
  • the only figure in the drawing shows a fan-air cooler which is equipped with the measuring, regulating and control units required for carrying out the method according to the invention.
  • a fan-air cooler KL the pipelines of which are fed through a fin package via an expansion valve EV, is flowed through by an air flow in the direction of the arrow indicated, this air flow being generated by a fan (not shown).
  • a temperature sensor is arranged in direct contact with the pipeline in the air cooler KL, approximately half the length of a distribution or a line of pipes, and the evaporation temperature to is measured by means of this temperature sensor.
  • the measurement signal is fed to a computing unit KLR.
  • the temperature t oh is also measured at the evaporator outlet by means of a temperature sensor, and the measured values are likewise fed to the computing unit KLR.
  • the temperature tL 1 of the supply air is measured by means of a temperature sensor arranged in the supply air flow, and the computing unit KLR also receives these measured values.
  • a further temperature sensor is arranged in the upper area of the air cooler KL and supplies a temperature limit signal t STB when a defrost heater is in operation and must be switched off when a specific air cooler temperature is reached. This temperature signal t STB is also fed to the computing unit KLR.
  • a needle or ball valve which can be actuated by means of a stepping motor is preferably used as the expansion valve EV, since the degree of opening or closing of the valve can be determined in a simple and very precise manner by means of a corresponding step count.
  • the refrigerant flow is also monitored and checked whether the expansion valve reduces the flow over a specifiable longer period of time, because this function of the expansion valve is a sign that icing has occurred in the evaporator.
  • the operation of the expansion valve EV that is to say the closing and opening processes of this expansion valve EV, is monitored in the computing unit KLR, taking into account the time factor.
  • An AND operation of the two parallel monitoring processes ensures that the optimum time for the necessary start of a defrosting process can always be determined regardless of disturbance variables.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Defrosting Systems (AREA)

Abstract

A method for performance optimising and for determining the optimum moment for defrosting a ventilator air cooler is described, the moment for defrosting being determined by comparative monitoring of a temperature difference on the one hand and a time-related monitoring of the refrigerant flow on the other hand. Additionally, the refrigerating space temperature is regulated by the incoming-air sensor by switching on and off the compressors.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Leistungsoptimierung von mit Kältemittel betriebenen, über ein Expansionsventil gespeisten Kühlern, insbesondere Ventilator-Luftkühlern, bei dem neben der Lufteintrittstemperatur bzw. Zulufttemperatur (tL 1) sowohl die Verdampfungstemperatur (to) als auch die Temperatur am Luftkühlerausgang (toh) kontinuierlich oder taktweise gemessen und der Differenzwert (A ti) zwischen Zulufttemperatur (tL 1) und Verdampfungstempertur (to) bestimmt und dieser Differenzwert (A t1) mit einem Faktor zwischen 0,6 und 0,7, insbesondere dem Faktor 0,625, multipliziert und der erhaltene Temperatur-Rechenwert mit dem Differenzwert (A toh) der Temperatur am Luftkühlerausgang (toh) und der Verdampfungstemperatur (to) verglichen wird, wobei dann in Abhängigkeit von dem Vergleichsergebnis das luftkühlereingangsseitige Expansionsventil (EV) kontinuierlich oder taktweise in der Weise angesteuert wird, daß die Temperatur am Verdampferausgang (toh) zumindest im wesentlichen gleich dem Temperatur-Rechenwert ist.The invention relates to a method and a device for optimizing the performance of coolers, in particular fan-air coolers, which are fed via an expansion valve and in which, in addition to the air inlet temperature or supply air temperature (tL 1), both the evaporation temperature (to) and the temperature at the air cooler outlet (t oh ) measured continuously or intermittently and the difference (A ti) between the supply air temperature (tL 1) and the evaporation temperature (t o ) is determined and this difference (A t 1 ) with a factor between 0.6 and 0.7, in particular the Factor 0.625, multiplied and the temperature calculation value obtained is compared with the difference (A t oh ), the temperature at the air cooler outlet (t oh ) and the evaporation temperature (to), the expansion valve (EV) on the air cooler inlet side then being continuous or depending on the comparison result is cyclically controlled in such a way that the temperature at the evaporator output (t oh ) is at least substantially equal to the temperature calculated value.

Ein derartiges Verfahren soll unter gleichzeitiger Minimierung des erforderlichen technischen Aufwands dahingehend verbessert werden, daß eine Erkennung des optimalen Abtauzeitpunktes ermöglicht und damit der Betrieb von mit Kältemitteln gespeisten Kühlern, insbesondere Ventilator-Luftkühlern, weiter verbessert wird.Such a method is intended to be improved while minimizing the required technical outlay in such a way that the optimum defrosting time can be recognized and thus the operation of coolers fed with refrigerants, in particular fan-air coolers, is further improved.

Gelöst wird diese Aufgabe nach der Erfindung im wesentlichen dadurch, daß der Differenzwert (A ti) zwischen der Zulufttemperatur (tL 1) und der Verdampfungstemperatur (to) zum Zwecke der Ermittlung des optimalen Abtauzeitpunktes des Kühlers bezüglich des Überschreitens eines vorgebbaren Grenzwertes überwacht wird, daß im Falle des Überschreitens dieses Grenzwertes Verdichter und Ventilator abgeschaltet werden und eine Abtauheizung so lange zugeschaltet wird, bis der Luftkühler eine vorgebbare, dem eisfreien Zustand entsprechende Temperatur erreicht hat, und daß dann der Verdichter und zeitlich verzögert dazu der Ventilator wieder eingeschaltet werden.This object is achieved according to the invention essentially by monitoring the difference value (A ti) between the supply air temperature (tL 1) and the evaporation temperature (to) for the purpose of determining the optimal defrosting time of the cooler with regard to the exceeding of a predefinable limit value in that If this limit value is exceeded, the compressor and fan are switched off and a defrost heater is switched on until the air cooler has reached a predeterminable temperature corresponding to the ice-free state, and then the compressor and, with a time delay, the fan are switched on again.

Auf diese Weise ist es möglich, die bereits zum Zwecke der Leistungsoptimierung gewonnenen Daten, nämlich die Werte der Zulufttemperatur und der Verdampfungstemperatur zusätzlich zu nutzen, um in Verbindung mit einem in der Recheneinheit einfach durchführbaren Grenzwertvergleich ein Abtausignal zu erhalten, das einerseits die Zuschaltung einer Heizung und andererseits die Abschaltung des Verdichters und des Ventilators bewirkt.In this way, it is possible to additionally use the data already obtained for the purpose of performance optimization, namely the values of the supply air temperature and the evaporation temperature, in order to obtain a defrost signal in connection with a limit value comparison that can be easily carried out in the computing unit, which on the one hand indicates the activation of a heater and on the other hand, the compressor and the fan are switched off.

Ein Stopsignal für die Beendigung der Heizung wird vorzugsweise über einen Temperaturfühler erhalten, der im Luftkühler angeordnet ist und mittels dessen der eisfreie Zustand des Luftkühlers ermittelt werden kann. Liegt das Stopsignal für die Beendigung der Heizung vor, dann erfolgt ein erneutes Zuschalten des Verdichters, aber noch kein Zuschalten des Ventilators, da sonst warme Luft in den Raum ausgeblasen werden würde.A stop signal for the termination of the heating is preferably obtained via a temperature sensor which is arranged in the air cooler and by means of which the ice-free state of the air cooler can be determined. If the stop signal for the termination of the heating is present, the compressor is switched on again, but the fan is not switched on yet, otherwise warm air would be blown out into the room.

Die Zuschaltung des Ventilators wird vorzugsweise in Abhängigkeit von der Verdampfungstemperatur vorgenommen, das heißt auch dieser Temperaturwert kann im Rahmen der vorliegenden Erfindung mehrfach genutzt werden. Die Zuschaltung des Ventilators erfolgt dann, wenn die Verdampfungstemperatur einen vorgegebenen niedrigen Wert erreicht hat.The fan is preferably switched on as a function of the evaporation temperature, which means that this temperature value can also be used several times in the context of the present invention. The fan is switched on when the evaporation temperature has reached a predetermined low value.

Gemäß einer weiteren Ausgestaltung der Erfindung wird die Zuschaltung des Ventilators in Abhängigkeit von der Verdampfungstemperatur und der des Temperaturfühlers (tSTB) vorgenommen. Die Zuschaltung des Ventilators erfolgt in diesem Falle dann, wenn die Verdampfungstemperatur und die des Temperaturfühlers (tSTB) einen je nach gewählter Raumlufttemperatur berechneten Wert erreicht hat.According to a further embodiment of the invention, the fan is switched on as a function of the evaporation temperature and that of the temperature sensor (t STB ). In this case, the fan is switched on when the evaporation temperature and that of the temperature sensor (t STB ) have reached a value calculated depending on the selected room air temperature.

Eine besonders vorteilhafte Ausführungsform des erfindungsgemäßen Verfahrens zeichnet sich dadurch aus, daß parallel zur Überwachung der Differenztemperatur (A ti) eine Überwachung des Kältemitteldurchflusses im Hinblick auf eine sich über eine vorgebbare Zeitspanne erstreckende Durchflußverringerung vorgenommen wird und daß die Zuschaltung der Abtauheizung in Abhängigkeit von beiden Kriterien erfolgt.A particularly advantageous embodiment of the method according to the invention is characterized in that, parallel to the monitoring of the differential temperature (A ti), the refrigerant flow is monitored with a view to a flow reduction that extends over a predefinable period of time and that the defrost heating is switched on as a function of both criteria he follows.

Diese vorzugsweise verwendete Variante des Verfahrens nach der Erfindung zeichnet sich durch besonders zuverlässige Arbeitsweise auch bei schwierigen Betriebsbedingungen, insbesondere bei häufiger Neubeschickung des Kühlraumes oder bei häufigem Öffnen der Kühlraumtüre aus, da durch derartige Vorgänge bedingte Störeffekte weitestgehend ausgeschaltet werden. Wesentlich ist dabei, daß im Zusammenhang mit der Erfassung des Kältemitteldurchflusses der Zeitfaktor berücksichtigt wird und somit durch die parallele Berücksichtigung der Temperaturdifferenz und der Durchflußveränderung des Kältemittels und durch eine Verknüpfung der Ergebnisse dieser Parallelüberwachung Störeinflüsse praktisch vollständig ausgeschaltet werden können.This preferably used variant of the method according to the invention is characterized by particularly reliable operation even in difficult operating conditions, in particular when the cold store is frequently reloaded or when the cold store door is opened frequently, since interference effects caused by such processes are largely eliminated. It is essential that the time factor is taken into account in connection with the detection of the refrigerant flow and thus, by taking the temperature difference and the flow change of the refrigerant into account and linking the results of this parallel monitoring, interference can be virtually eliminated completely.

Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung wird die Zulufttemperatur als Raumthermostat-Funktion zur Steuerung des Verdichters oder der Verdichter verwendet. Das von dem die Zulufttemperatur erfassenden Fühler gelieferte Signal wird dazu in der Recheneinheit zusätzlich in der Weise ausgewertet, daß es mit einem vorgebbaren Sollwert verglichen wird und bei Über- bzw. Unterschreiten eines auf den Sollwert bezogenen Schwellwertbereichs, der einer Schalthysterese eines Raumthermostaten entspricht, ein Schaltsignal zur Ab- bzw. Zuschaltung des Verdichters erzeugt. Diese Raumthermostat-Funktion ist während des Abtaubetriebs außer Funktion. Von besonderem Vorteil ist im Zusammenhang mit dieser realisierten Raumthermostat-Funktion, daß ein sonst erforderlicher teurer Raumthermostat eingespart wird und auch sehr kleine Schalthysteresewerte vorgegeben werden können, was sich auf die Qualität der im jeweiligen Kühlraum gespeicherten Produkte sehr günstig auswirkt.According to a further advantageous embodiment of the invention, the supply air temperature is used as a room thermostat function for controlling the compressor or the compressors. The signal supplied by the sensor that detects the supply air temperature is additionally evaluated in the computing unit in such a way that it is compared with a predefinable setpoint and when a threshold value range that corresponds to a setpoint and corresponds to a switching hysteresis of a room thermostat is exceeded or undershot Switching signal for switching the compressor on or off generated. This room thermostat function is inoperative during defrosting. It is of particular advantage in connection with this realized room thermostat function that an otherwise necessary expensive room thermostat is saved and very small switching hysteresis values can be specified, which has a very favorable effect on the quality of the products stored in the respective cold room.

Vorteilhafte Merkmale einer Vorrichtung zur Durchführung des Verfahrens nach der Erfindung sind in Unteransprüchen angegeben.Advantageous features of an apparatus for performing the method according to the invention are specified in the subclaims.

Ein Ausführungsbeispiel der Erfindung wird unter Bezugnahme auf die Zeichnung erläutert.An embodiment of the invention will be explained with reference to the drawing.

Die einzige Figur der Zeichnung zeigt einen Ventilator-Luftkühler, der mit den zur Durchführung des erfindungsgemäßen Verfahrens erforderlichen Meß-, Regel- und Steuereinheiten ausgestattet ist.The only figure in the drawing shows a fan-air cooler which is equipped with the measuring, regulating and control units required for carrying out the method according to the invention.

Ein Ventilator-Luftkühler KL, dessen durch ein Lamellenpaket geführte Rohrleitungen über ein Expansionsventil EV mit Kältemittel beaufschlagt sind, wird von einem Luftstrom in Richtung des angegebenen Pfeiles durchströmt, wobei dieser Luftstrom mittels eines nicht gezeigten Ventilators erzeugt wird.A fan-air cooler KL, the pipelines of which are fed through a fin package via an expansion valve EV, is flowed through by an air flow in the direction of the arrow indicated, this air flow being generated by a fan (not shown).

Etwa auf halber Rohrlänge einer Verteilung bzw. eines Leitungsstranges ist im Luftkühler KL ein Temperaturfühler in unmittelbarem Kontakt mit der Rohrleitung angeordnet, und mittels dieses Temperaturfühlers wird die Verdampfungstemperatur to gemessen. Das Meßsignal wird einer Recheneinheit KLR zugeführt.A temperature sensor is arranged in direct contact with the pipeline in the air cooler KL, approximately half the length of a distribution or a line of pipes, and the evaporation temperature to is measured by means of this temperature sensor. The measurement signal is fed to a computing unit KLR.

Am Verdampferausgang wird ebenfalls mittels eines Temperaturfühlers die Temperatur toh gemessen, und die Meßwerte werden ebenfalls der Recheneinheit KLR zugeführt.The temperature t oh is also measured at the evaporator outlet by means of a temperature sensor, and the measured values are likewise fed to the computing unit KLR.

Die Temperatur tL 1 der Zuluft wird mittels eines im Zuluftstrom angeordneten Temperaturfühlers gemessen, und auch diese Meßwerte erhält die Recheneinheit KLR. Im oberen Bereich des Luftkühlers KL ist ein weiterer Temperaturfühler angeordnet, der ein Temperaturbegrenzungssignal tSTB liefert, wenn eine Abtauheizung in Betrieb ist und bei Erreichen einer bestimmten Luftkühlertemperatur abgeschaltet werden muß. Dieses Temperatursignal tSTB wird ebenfalls der Recheneinheit KLR zugeführt.The temperature tL 1 of the supply air is measured by means of a temperature sensor arranged in the supply air flow, and the computing unit KLR also receives these measured values. A further temperature sensor is arranged in the upper area of the air cooler KL and supplies a temperature limit signal t STB when a defrost heater is in operation and must be switched off when a specific air cooler temperature is reached. This temperature signal t STB is also fed to the computing unit KLR.

Als Expansionsventil EV wird vorzugsweise ein mittels eines Schrittschaltmotors betätigbares Nadel- oder Kugelventil verwendet, da über eine entsprechende Schrittzählung der Öffnungs- bzw. Schließgrad des Ventils auf einfache Weise und sehr exakt bestimmt werden kann.A needle or ball valve which can be actuated by means of a stepping motor is preferably used as the expansion valve EV, since the degree of opening or closing of the valve can be determined in a simple and very precise manner by means of a corresponding step count.

Mittels dieser Anordnung ist es zusätzlich zu der eingangs bereits angegebenen Leistungsoptimierung möglich, den optimalen Abtauzeitpunkt bestmöglich zu ermitteln, und zwar auch dann, wenn im Betrieb der Kälteanlage Störungen in Form von Neubeschickungsvorgängen oder wiederholtem Öffnen von Kühlraumtüren gegeben sind.With this arrangement, in addition to the performance optimization already mentioned at the beginning, it is possible to determine the optimum defrosting time in the best possible way, even if there are malfunctions in the form of new charging processes or repeated opening of cold room doors during operation of the refrigeration system.

Durch die Überwachung der Temperaturdifferenz zwischen der Zulufttemperatur tL 1 und der Verdampfungstemperatur to ist es möglich, ein eine Vereisung kennzeichnendes Signal zu erhalten, da ein Überschreiten einer bestimmten Temperaturdifferenz gleichbedeutend damit ist, daß sich auf der Fläche des Luftkühlers Eis bzw. Reif in erheblichem Ausmaß gebildet hat und damit der gewünschte Temperaturaustausch zwischen dem Kältemittel und der durchströmenden Luft nicht mehr erfolgen kann.By monitoring the temperature difference between the supply air temperature tL 1 and the evaporation temperature to, it is possible to obtain a signal characterizing icing, since exceeding a certain temperature difference means that there is a considerable amount of ice or frost on the surface of the air cooler has formed and thus the desired temperature exchange between the refrigerant and the air flowing through can no longer take place.

Dieses Kennsignal alleine ermöglicht es aber noch nicht, Auswirkungen der in der Praxis auftretenden Störgrößen zu verhindern.However, this identification signal alone does not yet make it possible to prevent the effects of the disturbance variables occurring in practice.

Aus diesem Grunde wird zusätzlich der Kältemitteldurchfluß überwacht und geprüft, ob das Expansionsventil über einen vorgebbaren längeren Zeitraum den Durchfluß verringert, denn diese Funktionsweise des Expansionsventils ist ein Anzeichen dafür, daß im Verdampfer Vereisung aufgetreten ist.For this reason, the refrigerant flow is also monitored and checked whether the expansion valve reduces the flow over a specifiable longer period of time, because this function of the expansion valve is a sign that icing has occurred in the evaporator.

In der Recheneinheit KLR wird die Arbeitsweise des Expansionsventils EV, das heißt die Schließ-und Öffnungsvorgänge dieses Expansionsventils EV, überwacht, und zwar unter Berücksichtigung des Zeitfaktors.The operation of the expansion valve EV, that is to say the closing and opening processes of this expansion valve EV, is monitored in the computing unit KLR, taking into account the time factor.

Durch eine Und-Verknüpfung der beiden Parallel-Überwachungsvorgänge wird erreicht, daß unabhängig von Störgrößen stets der optimale Zeitpunkt für den notwendigen Beginn eines Abtauvorgangs ermittelt werden kann.An AND operation of the two parallel monitoring processes ensures that the optimum time for the necessary start of a defrosting process can always be determined regardless of disturbance variables.

Der Gesamtwirkungsgrad der jeweiligen Kälteanlage wird dadurch, insbesondere in Verbindung mit der durch die im wesentlichen gleichen technischen Mittel erreichten Leistungsoptimierung wesentlich verbessert.The overall efficiency of the respective refrigeration system is thereby significantly improved, in particular in conjunction with the performance optimization achieved through the essentially identical technical means.

Claims (9)

1. Verfahren zur Leistungsoptimierung von mit Kältemittel betriebenen, über ein Expansionsventil gespeisten Kühlern, insbesondere Ventilator-Luftkühlern, bei dem neben der Lufteintrittstemperatur bzw. Zulufttemperatur (tL 1) sowohl die Verdampfungstemperatur (to) als auch die Temperatur am Luftkühlerausgang (toh) kontinuierlich oder taktweise gemessen und der Differenzwert (A ti) zwischen Zulufttemperatur (tL 1) und Verdampfungstempertur (to) bestimmt und dieser Differenzwert (A ti) mit einem Faktor zwischen 0,6 und 0,7, insbesondere dem Faktor 0,625, multipliziert und der erhaltene Temperatur-Rechenwert mit dem Differenzwert (A toh) der Temperatur am Luftkühlerausgang (toh) und der Verdampfungstemperatur (to) verglichen wird, wobei dann in Abhängigkeit von dem Vergleichsergebnis das luftkühlereingangsseitige Expansionsventil (EV) kontinuierlich oder taktweise in der Weise angesteuert wird, daß die Temperatur am Verdampferausgang (toh) zumindest im wesentlichen gleich dem Temperatur-Rechenwert ist, dadurch gekennzeichnet,
daß der Differenzwert (A ti ) zwischen der Zulufttemperatur (tL 1) und der Verdampfungstemperatur (to) zum Zwecke der Ermittlung des optimalen Abtauzeitpunktes des Kühlers bezüglich des Überschreitens eines vorgebbaren Grenzwertes überwacht wird,
daß im Falle des Überschreitens dieses Grenzwertes Verdichter und Ventilator abgeschaltet werden und eine Abtauheizung so lange zugeschaltet wird, bis der Luftkühler eine vorgebbare, dem eisfreien Zustand entsprechende Temperatur erreicht hat, und
daß dann der Verdichter und zeitlich verzögert dazu der Ventilator wieder eingeschaltet werden.
1.Procedure for optimizing the performance of coolers operated via an expansion valve, in particular fan-type air coolers, in which, in addition to the air inlet temperature or supply air temperature (tL 1), both the evaporation temperature (to) and the temperature at the air cooler outlet (t oh ) are continuous or measured in cycles and the difference (A t i ) between the supply air temperature (tL 1) and the evaporation temperature (t o ) determined and this difference (A t i ) multiplied by a factor between 0.6 and 0.7, in particular the factor 0.625 and the temperature calculation value obtained with the difference value (A t oh ), the temperature at the air cooler outlet (t oh ) and the evaporation temperature temperature (to) is compared, the expansion valve (EV) on the air cooler inlet side being then controlled continuously or cyclically in such a way that the temperature at the evaporator outlet (t oh ) is at least substantially equal to the calculated temperature value, depending on the comparison result, characterized ,
that the differential value (A t i ) between the supply air temperature (tL 1) and the evaporation temperature (to) is monitored for the purpose of determining the optimal defrosting time of the cooler with regard to the exceeding of a predetermined limit value,
that if this limit value is exceeded, the compressor and fan are switched off and a defrost heater is switched on until the air cooler has reached a predeterminable temperature corresponding to the ice-free state, and
that then the compressor and, with a time delay, the fan are switched on again.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß die Zuschaltung des Ventilators dann erfolgt, wenn die Verdampfungstemperatur (to) einen vorgebbaren Wert erreicht hat.
2. The method according to claim 1,
characterized,
that the fan is switched on when the evaporation temperature (to) has reached a predeterminable value.
3. Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß parallel zur Überwachung der Differenztemperatur (A ti ) eine Überwachung des Kältemitteldurchflusses im Hinblick auf eine sich über eine vorgebbare Zeitspanne erstreckende Durchflußverringerung vorgenommen wird und daß die Zuschaltung der Abtauheizung in Abhängigkeit von beiden Kriterien erfolgt.
3. The method according to claim 1 or 2,
characterized,
that the refrigerant flow is monitored in parallel with the monitoring of the differential temperature (A ti) with a view to reducing the flow over a predeterminable period of time and that the defrost heater is activated depending on both criteria.
4. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß in Abhängigkeit von der Zulufttemperatur (tL 1) die Zu- und Abschaltung des Verdichters vorgenommen und dadurch eine Raumthermostat-Funktion realisiert wird.
4. The method according to any one of the preceding claims,
characterized,
that the compressor is switched on and off as a function of the supply air temperature (tL 1), thereby realizing a room thermostat function.
5. Vorrichtung zur Durchführung des Verfahrens nach einem oder mehreren der vorhergehenden Ansprüche,
bestehend aus
einem Luftkühler (KL), einem in der Kühlmittel-Zuführleitung angeordneten Expansionsventil (EV), Temperaturfühlern zur Ermittlung der Zulufttemperatur (tL 1), der Verdampfungstemperatur (to) des Kältemittels und der Überhitzungstemperatur (toh) am Ende des Luftkühlers
sowie einer Recheneinheit zur Bildung der Stellwerte für das Expansionsventil,
dadurch gekennzeichnet,
daß ein weiterer Temperaturfühler zur Ermittlung der einem eisfreien Zustand des Luftkühlers (KL) entsprechenden Heizungs-Abschalttemperatur (tSTB) vorgesehen und mit der Recheneinheit (KLR) verbunden ist,
daß dem Öffnungsgrad bzw. dem Öffnungswinkel des Expansionsventils (EV) entsprechende Signalwerte in der Recheneinheit (KLR) Auswertegrößen für den Kältemitteldurchfluß bilden, und daß über die Recheneinheit (KLR) die Zu- und Abschaltung des Luftkühlers (KL) sowie des Ventilators gesteuert sind.
5. Device for carrying out the method according to one or more of the preceding claims,
consisting of
an air cooler (KL), an expansion valve (EV) located in the coolant supply line, temperature sensors for determining the supply air temperature (tL 1), the evaporation temperature (t o ) of the refrigerant and the overheating temperature (t oh ) at the end of the air cooler
and an arithmetic unit for forming the control values for the expansion valve,
characterized,
that a further temperature sensor is provided for determining the heating cut-out temperature (t STB ) corresponding to an ice-free state of the air cooler (KL) and is connected to the computing unit (KLR),
that signal values in the computing unit (KLR) corresponding to the degree of opening or the opening angle of the expansion valve (EV) form evaluation variables for the refrigerant flow, and that the connection and disconnection of the air cooler (KL) and the fan are controlled via the computing unit (KLR).
6. Vorrichtung nach Anspruch 5,
dadurch gekennzeichnet,
daß als Expansionsventil (EV) ein über einen Schrittmotor gesteuertes Nadel- oder Kugelventil verwendet ist, und daß der jeweilige Öffnungsgrad des Expansionsventils (EV) in der Recheneinheit (KLR) durch Schrittzählvorgänge erfaßbar ist.
6. The device according to claim 5,
characterized,
that a needle or ball valve controlled via a stepper motor is used as the expansion valve (EV) and that the respective degree of opening of the expansion valve (EV) can be determined in the computing unit (KLR) by step counting processes.
7. Vorrichtung nach Anspruch 5 oder 6,
dadurch gekennzeichnet,
daß die Vergleichszeitspanne für die Kühlmittel-Durchflußänderung in der Recheneinheit (KLR) einstellbar ist.
7. The device according to claim 5 or 6,
characterized,
that the comparison period for the coolant flow change in the computing unit (KLR) is adjustable.
8. Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß zur Schaffung einer Raumthermostat-Funktion das vom Fühler für die Zulufttemperatur (tL 1) gelieferte Signal in der Recheneinheit (KLR) mit einem vorgebbaren Sollwert verglichen und in Abhängigkeit vom Über- bzw. Unterschreiten eines auf diesen Sollwert bezogenen Toleranzbereichs ein Schaltsignal zur Verdichtersteuerung erzeugt wird.
8. Device according to one of the preceding claims,
characterized,
that in order to create a room thermostat function, the signal supplied by the sensor for the supply air temperature (tL 1) is compared in the computing unit (KLR) with a predeterminable setpoint value and generates a switching signal for compressor control as a function of exceeding or falling below a tolerance range based on this setpoint value becomes.
9. Vorrichtung nach Anspruch 8,
dadurch gekennzeichnet,
daß der dem Sollwert zugeordnete Toleranzbereich einstellbar ist.
9. The device according to claim 8,
characterized,
that the tolerance range assigned to the setpoint is adjustable.
EP92103077A 1991-02-25 1992-02-24 Method and device for performance optimising and defrosting control of refrigerant evaporators Expired - Lifetime EP0501387B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4105880A DE4105880A1 (en) 1991-02-25 1991-02-25 METHOD AND DEVICE FOR OPTIMIZING THE PERFORMANCE AND DEFROSTING OF REFRIGERANT EVAPORATORS
DE4105880 1991-02-25

Publications (3)

Publication Number Publication Date
EP0501387A2 true EP0501387A2 (en) 1992-09-02
EP0501387A3 EP0501387A3 (en) 1993-02-24
EP0501387B1 EP0501387B1 (en) 1996-07-17

Family

ID=6425841

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92103077A Expired - Lifetime EP0501387B1 (en) 1991-02-25 1992-02-24 Method and device for performance optimising and defrosting control of refrigerant evaporators

Country Status (6)

Country Link
EP (1) EP0501387B1 (en)
AT (1) ATE140529T1 (en)
DE (2) DE4105880A1 (en)
DK (1) DK0501387T3 (en)
ES (1) ES2089259T3 (en)
GR (1) GR3020728T3 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0552906A3 (en) * 1992-01-21 1994-11-30 Nisshin Kogyo Kk Defrost starting method and device for refrigerant evaporators
EP1139042A3 (en) * 2000-03-27 2002-08-14 MEYER, Friedhelm Control device for a refrigeration installation as well as control method
EP1225406A3 (en) * 2001-01-18 2003-11-26 JTL Systems Limited Defrost control method and apparatus
WO2012003202A3 (en) * 2010-07-01 2012-08-16 Carrier Corporation Evaporator refrigerant saturation demand defrost
EP2717002A1 (en) * 2012-10-08 2014-04-09 Emerson Climate Technologies GmbH Method for determining thaw times
CN109946098A (en) * 2019-02-14 2019-06-28 江苏科技大学 A kind of frozen condition lower surface cooler performance testing stand of enclosed band centre refrigerant

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0182534B1 (en) * 1994-11-17 1999-05-01 윤종용 Defrosting device and its control method of a refrigerator
US5970726A (en) 1997-04-08 1999-10-26 Heatcraft Inc. Defrost control for space cooling system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2666298A (en) * 1950-11-01 1954-01-19 U S Thermo Control Co Method and means of defrosting a cold diffuser
US3681933A (en) * 1970-08-20 1972-08-08 Dynamics Corp America Defrost control
US3922874A (en) * 1974-11-27 1975-12-02 Gen Motors Corp Evaporator fan delay circuit
DE3333907A1 (en) * 1983-09-20 1985-04-04 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München METHOD AND DEVICE FOR DEFROSTING HEAT PUMPS
EP0154119A1 (en) * 1984-02-29 1985-09-11 Danner, Schutzgastechnik und Apparatebau GmbH & Co. Defrost control device for a refrigeration system
EP0285690A1 (en) * 1987-04-08 1988-10-12 Viessmann Werke GmbH & Co. Process and apparatus for the temperature dependent defrosting of cooling plants according to demand
US4901534A (en) * 1986-12-26 1990-02-20 Matsushita Electric Industrial Co., Ltd. Defrosting control of air-conditioning apparatus
EP0378152A2 (en) * 1989-01-11 1990-07-18 KÜBA KÄLTETECHNIK GmbH Performance-optimising method for refrigerant evaporators
CH676634A5 (en) * 1987-02-11 1991-02-15 Andres Hegglin Continuous output regulator for refrigerator and heat pump - positions regulating valve in liq. line to evaporator electronically by requirement-dependent setting signals

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2666298A (en) * 1950-11-01 1954-01-19 U S Thermo Control Co Method and means of defrosting a cold diffuser
US3681933A (en) * 1970-08-20 1972-08-08 Dynamics Corp America Defrost control
US3922874A (en) * 1974-11-27 1975-12-02 Gen Motors Corp Evaporator fan delay circuit
DE3333907A1 (en) * 1983-09-20 1985-04-04 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München METHOD AND DEVICE FOR DEFROSTING HEAT PUMPS
EP0154119A1 (en) * 1984-02-29 1985-09-11 Danner, Schutzgastechnik und Apparatebau GmbH & Co. Defrost control device for a refrigeration system
US4901534A (en) * 1986-12-26 1990-02-20 Matsushita Electric Industrial Co., Ltd. Defrosting control of air-conditioning apparatus
CH676634A5 (en) * 1987-02-11 1991-02-15 Andres Hegglin Continuous output regulator for refrigerator and heat pump - positions regulating valve in liq. line to evaporator electronically by requirement-dependent setting signals
EP0285690A1 (en) * 1987-04-08 1988-10-12 Viessmann Werke GmbH & Co. Process and apparatus for the temperature dependent defrosting of cooling plants according to demand
EP0378152A2 (en) * 1989-01-11 1990-07-18 KÜBA KÄLTETECHNIK GmbH Performance-optimising method for refrigerant evaporators

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0552906A3 (en) * 1992-01-21 1994-11-30 Nisshin Kogyo Kk Defrost starting method and device for refrigerant evaporators
EP1139042A3 (en) * 2000-03-27 2002-08-14 MEYER, Friedhelm Control device for a refrigeration installation as well as control method
EP1225406A3 (en) * 2001-01-18 2003-11-26 JTL Systems Limited Defrost control method and apparatus
WO2012003202A3 (en) * 2010-07-01 2012-08-16 Carrier Corporation Evaporator refrigerant saturation demand defrost
EP2717002A1 (en) * 2012-10-08 2014-04-09 Emerson Climate Technologies GmbH Method for determining thaw times
CN109946098A (en) * 2019-02-14 2019-06-28 江苏科技大学 A kind of frozen condition lower surface cooler performance testing stand of enclosed band centre refrigerant

Also Published As

Publication number Publication date
ES2089259T3 (en) 1996-10-01
DK0501387T3 (en) 1996-08-12
ATE140529T1 (en) 1996-08-15
DE4105880A1 (en) 1992-08-27
EP0501387A3 (en) 1993-02-24
GR3020728T3 (en) 1996-11-30
DE59206762D1 (en) 1996-08-22
EP0501387B1 (en) 1996-07-17

Similar Documents

Publication Publication Date Title
DE3720889C2 (en)
DE69212356T2 (en) De-icing control
DE3637071C2 (en) Method and device for compressing gases
DE69117102T2 (en) Defrosting procedure for a heat pump
DE2951752C2 (en) Switching device for a refrigeration system
DE3925090A1 (en) METHOD FOR OPERATING A REFRIGERATION SYSTEM
DE3333907C2 (en)
DE3877752T2 (en) COOLER AND CONTROL METHOD.
EP0501387A2 (en) Method and device for performance optimising and defrosting control of refrigerant evaporators
DE69106096T2 (en) Refrigeration cycle and defrosting process.
DE3227604A1 (en) Automatic defrosting device for heat pump evaporators
EP0783658B1 (en) Method and device for cooling gases
EP1350068B1 (en) Method for regulating a cooling appliance
DE102005034826B4 (en) Heat pump and method for operating a heat pump
DE2652888C2 (en) Chiller
DE3340736A1 (en) CONTROL DEVICE FOR A COOLING CIRCUIT
DE10311343A1 (en) Defrosting method for e.g. evaporator, involves initiating defrosting when temperature at middle of evaporator is lower than critical temperature or temperature difference between middle and inlet of evaporator is lower than set value
EP0762064A1 (en) Refrigerant flow control for a heat pump and method
EP0378152B1 (en) Performance-optimising method for refrigerant evaporators
DE60029851T2 (en) Vehicle with several refrigerated holds
EP3480534B1 (en) Heating system and control method for a heating system
DE3910988C2 (en)
DE2006316A1 (en) Cooling system with defrosting device
DE2721521A1 (en) Defrosting equipment for refrigeration system - has air conveying channels and heat register heating cross=section of flow at even rate
DE10360349A1 (en) A method for preventing icing of the evaporator in a carbon dioxide refrigeration system has an icing sensor and control valve to bypass the evaporator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL PT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19930322

17Q First examination report despatched

Effective date: 19940705

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL PT SE

REF Corresponds to:

Ref document number: 140529

Country of ref document: AT

Date of ref document: 19960815

Kind code of ref document: T

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REF Corresponds to:

Ref document number: 59206762

Country of ref document: DE

Date of ref document: 19960822

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960820

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2089259

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3020728

SC4A Pt: translation is available

Free format text: 960717 AVAILABILITY OF NATIONAL TRANSLATION

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2089259

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20110210

Year of fee payment: 20

Ref country code: MC

Payment date: 20110214

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110302

Year of fee payment: 20

Ref country code: NL

Payment date: 20110216

Year of fee payment: 20

Ref country code: AT

Payment date: 20110214

Year of fee payment: 20

Ref country code: SE

Payment date: 20110214

Year of fee payment: 20

Ref country code: LU

Payment date: 20110225

Year of fee payment: 20

Ref country code: PT

Payment date: 20110217

Year of fee payment: 20

Ref country code: IT

Payment date: 20110221

Year of fee payment: 20

Ref country code: CH

Payment date: 20110222

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20110218

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20110211

Year of fee payment: 20

Ref country code: DE

Payment date: 20110429

Year of fee payment: 20

Ref country code: ES

Payment date: 20110222

Year of fee payment: 20

Ref country code: GB

Payment date: 20110217

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59206762

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59206762

Country of ref document: DE

BE20 Be: patent expired

Owner name: *KUBA KALTETECHNIK G.M.B.H.

Effective date: 20120224

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: MAXIMUM VALIDITY LIMIT REACHED

Effective date: 20120224

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20120224

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20120223

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: GR

Ref legal event code: MA

Ref document number: 960402093

Country of ref document: GR

Effective date: 20120225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120223

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 140529

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120224

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120225