EP0501224B1 - Waveguide slot antenna - Google Patents

Waveguide slot antenna Download PDF

Info

Publication number
EP0501224B1
EP0501224B1 EP92102301A EP92102301A EP0501224B1 EP 0501224 B1 EP0501224 B1 EP 0501224B1 EP 92102301 A EP92102301 A EP 92102301A EP 92102301 A EP92102301 A EP 92102301A EP 0501224 B1 EP0501224 B1 EP 0501224B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
radiators
slots
feed
slot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92102301A
Other languages
German (de)
French (fr)
Other versions
EP0501224A1 (en
Inventor
Uwe Dr.-Ing. Schulz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent Deutschland AG
Alcatel Lucent NV
Original Assignee
Alcatel SEL AG
Alcatel NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel SEL AG, Alcatel NV filed Critical Alcatel SEL AG
Publication of EP0501224A1 publication Critical patent/EP0501224A1/en
Application granted granted Critical
Publication of EP0501224B1 publication Critical patent/EP0501224B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0037Particular feeding systems linear waveguide fed arrays
    • H01Q21/0043Slotted waveguides
    • H01Q21/005Slotted waveguides arrays

Definitions

  • a waveguide slot antenna consists of a multiplicity of waveguide radiators which are arranged next to one another on a feed waveguide. Longitudinal slots for radiating the antenna lobe are provided on the walls of the waveguide radiators. The RF energy is coupled out to the waveguide radiator via coupling slots on one side of the feed waveguide.
  • the distances between adjacent coupling slots are selected so that the resonance condition is fulfilled.
  • the resonant dimensioning is narrow-band.
  • the object of the invention is therefore to provide a waveguide slot antenna which is broadband and nevertheless has no squint angle in the azimuthal direction. This object is achieved by the combination of features of claim 1.
  • the waveguide slot antenna according to the invention has the advantage that it can be used with standard waveguides e.g. WR-90 can be realized precisely and inexpensively.
  • FIG. 1 shows part of a waveguide slot antenna.
  • the individual non-resonant waveguide radiators of the antenna are designated by 15.
  • a rectangular feed waveguide is designated, the broad side of which contains coupling slots 11 which couple out the HF power into each waveguide radiator 15.
  • the centers of the coupling slots 11 of the feed waveguide 10 are at a distance 12 from one another. Their position on the broad side of the feed waveguide 10 determines a distance 13 between the Coupling slots and the center line 14 of the broad side of the feed waveguide, which is dependent on the coupling factor of the waveguide radiator 15 used.
  • the distance 12 is selected so that the feed waveguide is operated in a non-resonant manner.
  • a terminating resistor 18 is used (shown in Fig. 2).
  • the terminating resistor 18 absorbs the energy component that is not coupled out into the waveguide radiator.
  • This phase difference is compensated for by an offset arrangement of the rows of slots 16 on the broad side of the waveguide radiator 15.
  • the coordinate system in FIGS. 1 and 2 is chosen such that the x-axis runs parallel to the feed waveguide and the z-axis runs parallel to the waveguide radiators.
  • FIG. 2 shows a plan view of a section of the waveguide slot antenna.
  • Longitudinal slots 16 which are offset with respect to the center line are provided on a broad side of the waveguide radiators 15.
  • Four waveguide radiators are shown in the section.
  • the signals in the first and fourth waveguide radiators are in phase. Accordingly, the position of the slots 16 in the waveguide radiator is repeated after every three waveguide radiators 15.
  • the slots 16 are arranged in two rows on each waveguide radiator. They are at a constant distance 17 in the z direction separated from each other.
  • the waveguide radiators are provided with a terminating resistor 18 for absorbing the residual energy.
  • the position of the slots in the slot rows of adjacent waveguide radiators is different, as shown in FIG. 2.
  • a waveguide radiator 151 as a reference radiator with a slot 161 on its broad side as a reference slot.
  • the waveguide radiators 152 and 153 represent the first and second neighboring radiators of the reference radiator 151 with the respective slots 162 and 163.
  • a two-dimensional shift in the position of the adjacent slots 162 and 163 ensures that the signals emitted by these slots have the same phase at a predetermined wavelength as the signal emitted by the reference slot 161.
  • the phase of the emitted signal is rotated by 180 °.
  • the phase of the emitted signal is rotated by + 60 °, so that the signal has the same phase as the signal from the reference slot 161 is emitted.
  • the phase of the signal emitted by the second neighboring slot 163 is additionally rotated by -60 °, which likewise achieves a signal which is in phase with the reference slot signal 161.
  • the distance 20 by which the neighboring slots are shifted in the z direction is one third of the distance 17 between two successive slots of a radiator, regardless of the size of the distance 17.
  • the exact design of the complete dimensioning of the waveguide slot antenna is not discussed here. since it can be derived from the context explained above.
  • the exact dimensions of the distances described result from the fact that standard waveguides are used as feed waveguides and waveguide radiators for operation in the X-band.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Catalysts (AREA)

Abstract

A waveguide slot antenna having a plurality of waveguide emitters (15) which are operated in a non-resonant manner and each have two rows of slots (16) on the broad side, which are supplied by a supply waveguide (10) which is operated in a non-resonant manner. The phase shift which results because of the non-resonant dimensioning is compensated for by offsetting (20) the slots of adjacent waveguide emitters in a specific manner such that the antenna polar diagram has no squint angle in the azimuth direction. <IMAGE>

Description

Eine Hohlleiterschlitzantenne besteht aus einer Vielzahl von Hohlleiterstrahlern, die nebeneinander auf einem Speisehohlleiter angeordnet sind. An den Wänden der Hohlleiterstrahler sind Längsschlitze zur Abstrahlung der Antennenkeule angebracht. Die HF-Energie wird über Koppelschlitze an einer Seite des Speisehohlleiters an die Hohlleiterstrahler ausgekoppelt.A waveguide slot antenna consists of a multiplicity of waveguide radiators which are arranged next to one another on a feed waveguide. Longitudinal slots for radiating the antenna lobe are provided on the walls of the waveguide radiators. The RF energy is coupled out to the waveguide radiator via coupling slots on one side of the feed waveguide.

Damit kein azimutaler Schielwinkel auftritt, müssen alle Hohlleiterstrahler gleichphasig gespeist werden. Dies erreicht man durch nichtresonante Dimensionierung des Speisehohlleiters.So that no azimuthal squint angle occurs, all waveguide radiators must be fed in phase. This is achieved by non-resonant dimensioning of the feed waveguide.

Dazu wählt man die Abstände zwischen benachbarten Koppelschlitzen so, daß die Resonanzbedingung erfüllt ist.To do this, the distances between adjacent coupling slots are selected so that the resonance condition is fulfilled.

Aufgrund der gemeinsamen, seriellen Speisung entsteht eine Phasendifferenz von Δφ = -180° zwischen benachbarten Hohlleiterstrahlern. Sie wird durch einen alternierenden Versatz der Schlitze zweier benachbarter Hohlleiterstrahler kompensiert (Collin/Zucker, "Antenna theory", Part I, Mc-Graw Hill, New York, 1969, Seiten 587 ff.).Due to the common, serial supply, there is a phase difference of Δφ = -180 ° between adjacent waveguide radiators. It is compensated for by an alternating offset in the slots of two adjacent waveguide radiators (Collin / Zucker, "Antenna theory", Part I, Mc-Graw Hill, New York, 1969, pages 587 ff.).

Die resonante Dimensionierung ist schmalbandig.The resonant dimensioning is narrow-band.

Aufgabe der Erfindung ist es daher, eine Hohlleiterschlitzantenne anzugeben, die breitbandig ist und trotzdem keinen Schielwinkel in azimutaler Richtung aufweist. Diese Aufgabe wird gelöst durch die Merkmalskombination des Anspruchs 1.The object of the invention is therefore to provide a waveguide slot antenna which is broadband and nevertheless has no squint angle in the azimuthal direction. This object is achieved by the combination of features of claim 1.

Die erfindungsgemäße Hohlleiterschlitzantenne hat den Vorteil, daß sie mit Standard-Hohlleitern z.B. WR-90 genau und kostengünstig realisiert werden kann.The waveguide slot antenna according to the invention has the advantage that it can be used with standard waveguides e.g. WR-90 can be realized precisely and inexpensively.

In den Unteransprüchen sind vorteilhafte Weiterbildungen und Ausgestaltungen der Erfindung enthalten.Advantageous developments and refinements of the invention are contained in the subclaims.

Ein Ausführungsbeispiel der Erfindung wird anhand der Figuren 1 und 2 beschrieben und erläutert. Es zeigen:

Fig. 1
einen Ausschnitt der Hohlleiterschlitzantenne, bei der jeweils eine Wand der Hohlleiterstrahler teilweise aufgeschnitten dargestellt ist,
Fig. 2
eine Draufsicht eines Ausschnittes der Hohlleiterschlitzantenne.
An embodiment of the invention is described and explained with reference to Figures 1 and 2. Show it:
Fig. 1
a section of the waveguide slot antenna, in each of which one wall of the waveguide radiator is shown partially cut away,
Fig. 2
a plan view of a section of the waveguide slot antenna.

In Fig. 1 ist ein Teil einer Hohlleiterschlitzantenne dargestellt. Mit 15 sind die einzelnen nichtresonant ausgeführten Hohlleiterstrahler der Antenne bezeichnet. Mit 10 ist ein rechteckiger Speisehohlleiter bezeichnet, dessen Breitseite Koppelschlitze 11 enthält, die die HF-Leistung in jeden Hohlleiterstrahler 15 auskoppeln.1 shows part of a waveguide slot antenna. The individual non-resonant waveguide radiators of the antenna are designated by 15. With 10 a rectangular feed waveguide is designated, the broad side of which contains coupling slots 11 which couple out the HF power into each waveguide radiator 15.

Die Mitten der Koppelschlitze 11 des Speisehohlleiters 10 liegen in einem Abstand 12 voneinander entfernt. Ihre Lage auf der Breitseite des Speisehohlleiters 10 bestimmt einen Abstand 13 zwischen den Koppelschlitzen und der Mittellinie 14 der Breitseite des Speisehohlleiters, welcher vom Einkopplungsfaktor des verwendeten Hohlleiterstrahlers 15 abhängig ist.The centers of the coupling slots 11 of the feed waveguide 10 are at a distance 12 from one another. Their position on the broad side of the feed waveguide 10 determines a distance 13 between the Coupling slots and the center line 14 of the broad side of the feed waveguide, which is dependent on the coupling factor of the waveguide radiator 15 used.

Der Abstand 12 ist so gewählt, daß der Speisehohlleiter nichtresonant betrieben wird. Damit der Einfluß reflektierter Energie verhindert wird, setzt man einen Abschlußwiderstand 18 ein (in Fig. 2 gezeigt). Der Abschlußwiderstand 18 absorbiert den Energieanteil, der nicht in die Hohlleiterstrahler ausgekoppelt wird. Wegen des Abstandes 12 entsteht eine konstante Phasendifferenz zwischen den Signalen in benachbarten Hohlleiterstrahlern 15. Im Ausführungsbeispiel beträgt die Phasendifferenz zwischen den Signalen Δφ = -240°. Durch die Wahl dieses Wertes für die Phasendifferenz ist die Phase der Signale in jedem dritten Hohlleiterschlitzstrahler gleich.The distance 12 is selected so that the feed waveguide is operated in a non-resonant manner. In order to prevent the influence of reflected energy, a terminating resistor 18 is used (shown in Fig. 2). The terminating resistor 18 absorbs the energy component that is not coupled out into the waveguide radiator. Because of the distance 12, there is a constant phase difference between the signals in adjacent waveguide radiators 15. In the exemplary embodiment, the phase difference between the signals is Δφ = -240 °. By choosing this value for the phase difference, the phase of the signals is the same in every third waveguide slot radiator.

Eine Kompensation dieser Phasendifferenz wird durch eine versetzte Anordnung der Schlitzreihen 16 auf der Breitseite der Hohlleiterstrahler 15 erreicht.This phase difference is compensated for by an offset arrangement of the rows of slots 16 on the broad side of the waveguide radiator 15.

Das Koordinatensystem in Fig. 1 und Fig. 2 ist so gewählt, daß die x-Achse parallel zum Speisehohlleiter und die z-Achse parallel zu den Hohlleiterstrahlern verlaufen.The coordinate system in FIGS. 1 and 2 is chosen such that the x-axis runs parallel to the feed waveguide and the z-axis runs parallel to the waveguide radiators.

Fig. 2 zeigt eine Draufsicht eines Ausschnittes der Hohlleiterschlitzantenne. Auf einer Breitseite der Hohlleiterstrahler 15 sind bezüglich der Mittellinie versetzte Längsschlitze 16 angebracht. In dem Ausschnitt sind vier Hohlleiterstrahler dargestellt. Die Signale im ersten und im vierten Hohlleiterstrahler sind gleichphasig. Demnach wiederholt sich die Lage der Schlitze 16 im Hohlleiterstrahler nach jeweils drei Hohlleiterstrahlern 15.2 shows a plan view of a section of the waveguide slot antenna. Longitudinal slots 16 which are offset with respect to the center line are provided on a broad side of the waveguide radiators 15. Four waveguide radiators are shown in the section. The signals in the first and fourth waveguide radiators are in phase. Accordingly, the position of the slots 16 in the waveguide radiator is repeated after every three waveguide radiators 15.

Die Schlitze 16 sind auf jedem Hohlleiterstrahler in zwei Reihen angeordnet. Sie liegen in einem konstanten Abstand 17 in z-Richtung voneinander entfernt. Die Hohlleiterstrahler sind mit einem Abschlußwiderstand 18 zur Absorption der Restenergie versehen.The slots 16 are arranged in two rows on each waveguide radiator. They are at a constant distance 17 in the z direction separated from each other. The waveguide radiators are provided with a terminating resistor 18 for absorbing the residual energy.

Die Lage der Schlitze in den Schlitzreihen benachbarter Hohlleiterstrahler ist, wie Fig. 2 zeigt, verschieden. Als Beispiel für die Bestimmung der Lage von drei Schlitzen in aufeinanderfolgenden Hohlleiterstrahlern nimmt man einen Hohlleiterstrahler 151 als Bezugsstrahler, mit einem auf seiner Breitseite angebrachten Schlitz 161 als Bezugsschlitz an. Die Hohlleiterstrahler 152 und 153 stellen den ersten und den zweiten Nachbarstrahler des Bezugsstrahlers 151 mit den jeweiligen Schlitzen 162 und 163 dar.The position of the slots in the slot rows of adjacent waveguide radiators is different, as shown in FIG. 2. As an example for the determination of the position of three slots in successive waveguide radiators, one assumes a waveguide radiator 151 as a reference radiator with a slot 161 on its broad side as a reference slot. The waveguide radiators 152 and 153 represent the first and second neighboring radiators of the reference radiator 151 with the respective slots 162 and 163.

Weiterhin stelle man sich vor, daß die Lage der Schlitze in x- und z-Richtung zunächst bei den drei Hohlleiterstrahlern gleich ist.Furthermore, imagine that the position of the slots in the x and z directions is initially the same for the three waveguide radiators.

Durch eine zweidimensionale Verschiebung der Lage der Nachbarschlitze 162 und 163 (in x- und in z-Richtung) erreicht man, daß die von diesen Schlitzen abgestrahlten Signale bei vorgegebener Wellenlänge die gleiche Phase wie das vom Bezugsschlitz 161 abgestrahlte Signal aufweisen.A two-dimensional shift in the position of the adjacent slots 162 and 163 (in the x and z directions) ensures that the signals emitted by these slots have the same phase at a predetermined wavelength as the signal emitted by the reference slot 161.

Die Phasendifferenz von Δφ = -240° zwischen erstem Nachbarschlitz 162 und Bezugsschlitz 161 bzw. von Δφ = +240° zwischen zweitem Nachbarschlitz 163 und Bezugschlitz 161 wird in zwei Schritten kompensiert.The phase difference of Δφ = -240 ° between the first neighboring slot 162 and reference slot 161 or of Δφ = + 240 ° between the second neighboring slot 163 and reference slot 161 is compensated for in two steps.

Durch Spiegelung der Anfangslage der Nachbarschlitze 162 bzw. 163 bezüglich der Mittellinie des jeweiligen Nachbarstrahlers 152 bzw. 153 (Verschiebung in x-Richtung), erreicht man eine Drehung der Phase des abgestrahlten Signals um 180°.By mirroring the initial position of the adjacent slots 162 or 163 with respect to the center line of the respective neighboring radiator 152 or 153 (shift in the x direction), the phase of the emitted signal is rotated by 180 °.

Die Phasendifferenz zwischen erstem Nachbarschlitz 162 und Bezugschlitz 161 beträgt somit Δφ = -60°. Zwischen zweitem Nachbarschlitz 163 und Bezugsschlitz 161 hat sie einen Wert von Δφ = +60°. Durch Verschiebung der Lage des ersten Nachbarschlitzes 162 um einen Abstand 20 in negativer z-Richtung (in Richtung zum Speisehohlleiter 10) wird die Phase des abgestrahlten Signals um +60° gedreht, womit das Signal die gleiche Phase aufweist wie das Signal, das vom Bezugsschlitz 161 abgestrahlt wird. Durch eine entsprechende Verschiebung der Lage des zweiten Nachbarschlitzes 163 um den betragsmäßig gleichen Abstand 20 in positiver z-Richtung, wird die Phase des vom zweiten Nachbarschlitz 163 abgestrahlten Signals zusätzlich um -60° gedreht, womit ebenso ein zum Bezugsschlitzsignal 161 gleichphasiges Signal erreicht wird.The phase difference between the first neighboring slot 162 and the reference slot 161 is thus Δφ = -60 °. Between second neighboring slot 163 and reference slot 161 it has a value of Δφ = + 60 °. By shifting the position of the first neighboring slot 162 by a distance 20 in the negative z direction (in the direction of the feed waveguide 10), the phase of the emitted signal is rotated by + 60 °, so that the signal has the same phase as the signal from the reference slot 161 is emitted. By correspondingly shifting the position of the second neighboring slot 163 by the same distance 20 in the positive z direction, the phase of the signal emitted by the second neighboring slot 163 is additionally rotated by -60 °, which likewise achieves a signal which is in phase with the reference slot signal 161.

Der Abstand 20, um den die Nachbarschlitze in z-Richtung verschoben werden, beträgt ein Drittel des Abstandes 17 zwischen zwei aufeinanderfolgenden Schlitzen eines Strahlers, unabhängig von der Größe des Abstandes 17. Auf die genaue Ausführung der vollständigen Dimensionierung der Hohlleiterschlitzantenne wird hier nicht eingegangen, da sie sich aus dem oben erläuterten Zusammenhang herleiten läßt. Die genauen Maße der beschriebenen Abstände ergeben sich aus der Tatsache, daß Standardhohlleiter als Speisehohlleiter und Hohlleiterstrahler für den Betrieb im X-Band verwendet werden.The distance 20 by which the neighboring slots are shifted in the z direction is one third of the distance 17 between two successive slots of a radiator, regardless of the size of the distance 17. The exact design of the complete dimensioning of the waveguide slot antenna is not discussed here. since it can be derived from the context explained above. The exact dimensions of the distances described result from the fact that standard waveguides are used as feed waveguides and waveguide radiators for operation in the X-band.

Claims (3)

  1. A slotted waveguide array comprising a nonresonant feed waveguide (10) of rectangular cross section, at the broadwall of which are arranged nonresonant waveguide radiators (15) coupled to the feed waveguide (10) via coupling slots (11) and each having two rows of slots (16) in its broadwall which are spaced the same distance from the centerline and are offset in the direction of the feed waveguide (10), wherein the phase difference existing in the feed waveguide (10) is compensated for in the waveguide radiators by arranging the slot rows such that, with respect to the 1st, 4th, 7th, ... waveguide radiators (151), the slot rows of the 2nd, 5th, 8th, ... waveguide radiators (152) are reflected through the respective centerlines and are offset by a distance (20) in the direction of the feed waveguide, and that the slot rows of the 3rd, 6th, 9th, ... waveguide radiators (153) are also reflected but are offset by the same distance (20) in the opposite direction.
  2. A slotted waveguide array as claimed in claim 1, characterized in that the spacing (12) of the coupling slots (11) in the feed waveguide is selected so that the phase difference between adjacent waveguide radiators is Δφ = -240°, and that the offset distance (20) in both directions is one-third of the spacing (17) of the slots of a waveguide radiator.
  3. A slotted waveguide array as claimed in claim 1 or 2, characterized in that the feed waveguide (10) and/or the waveguide radiators (15) are standard waveguides.
EP92102301A 1991-02-23 1992-02-12 Waveguide slot antenna Expired - Lifetime EP0501224B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4105764 1991-02-23
DE4105764A DE4105764A1 (en) 1991-02-23 1991-02-23 DEVICE FOR SHAPING AN ANTENNA DIAGRAM IN A SEMICONDUCTOR SLOT ARRAY ANTENNA WITH SERIAL POWER

Publications (2)

Publication Number Publication Date
EP0501224A1 EP0501224A1 (en) 1992-09-02
EP0501224B1 true EP0501224B1 (en) 1995-05-24

Family

ID=6425765

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92102301A Expired - Lifetime EP0501224B1 (en) 1991-02-23 1992-02-12 Waveguide slot antenna

Country Status (7)

Country Link
EP (1) EP0501224B1 (en)
JP (1) JP2569244B2 (en)
AT (1) ATE123179T1 (en)
CA (1) CA2061627A1 (en)
DE (2) DE4105764A1 (en)
ES (1) ES2075491T3 (en)
FI (1) FI920757A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19936511C2 (en) * 1999-08-06 2001-12-06 Sew Eurodrive Gmbh & Co Shaft seal and sealing method
JP2001156542A (en) * 1999-11-30 2001-06-08 Kyocera Corp Waveguide slot array antenna
US10263331B2 (en) 2014-10-06 2019-04-16 Kymeta Corporation Device, system and method to mitigate side lobes with an antenna array
JP6444571B2 (en) * 2016-08-30 2018-12-26 三菱電機株式会社 Array antenna device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3243818A (en) * 1962-08-22 1966-03-29 Hughes Aircraft Co Dual band slot antenna having common waveguide with differing slots, each individualto its own band
CA1147851A (en) * 1979-11-26 1983-06-07 George D.M. Peeler Slot array antenna with amplitude taper across a small circular aperture
SE442074B (en) * 1984-04-17 1985-11-25 Ericsson Telefon Ab L M ELECTRICALLY CONTROLLED GROUP ANTENNA WITH REDUCED SIDOLOBS

Also Published As

Publication number Publication date
DE4105764A1 (en) 1992-08-27
ES2075491T3 (en) 1995-10-01
CA2061627A1 (en) 1992-08-24
JP2569244B2 (en) 1997-01-08
ATE123179T1 (en) 1995-06-15
FI920757A (en) 1992-08-24
FI920757A0 (en) 1992-02-21
EP0501224A1 (en) 1992-09-02
DE59202281D1 (en) 1995-06-29
JPH0563436A (en) 1993-03-12

Similar Documents

Publication Publication Date Title
DE2631026C2 (en)
DE3743123C2 (en) Antenna device
DE3885871T2 (en) Electronically controllable antenna.
DE69120735T2 (en) Fixed origin of a two-surface ultrasonic transducer
DE2808035A1 (en) POLARIZER FOR HIGH FREQUENCY WAVES
DE2815453A1 (en) NON-SPREADING ULTRA HIGH FREQUENCY ANTENNA WITH ELECTRONIC DEFLECTION
DE3217437A1 (en) MICROWAVE DIRECTIONAL ANTENNA FROM A DIELECTRIC LINE
EP0501224B1 (en) Waveguide slot antenna
DE69019328T2 (en) Magic microwave source and its application to an antenna with electronic scanning.
DE3839945C2 (en) Phased array antenna
DE3516190C2 (en) Electrically phase controlled antenna arrangement
DE19719764A1 (en) Motor vehicle radar sensor
DE1962436C1 (en) Doppler navigation radar antenna with automatic land-sea error correction due to differently inclined groups of lobes
EP0325759B1 (en) Antenna selector
DE4119518C2 (en) Microwave lens and antenna with electronic swivel
DE2525358C3 (en) RUle funnel emitter
DE3435583C2 (en)
DE2048710A1 (en) Antenna arrangement
DE2603055C3 (en) Excitation system for reflector antennas
EP0263314B1 (en) Transducer arrangement
DE1516872C3 (en) Antenna made up of several radiator planes fed with the same amplitude
DE2729395B2 (en) Antenna arrangement for radio coverage with three vertical radiators
DE1516894C3 (en) Transmitting antenna with individual radiators
DE2625062B2 (en) Phased antenna arrangement
DE1541512C (en) Frequency controlled scanning antenna

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL N.V.

Owner name: ALCATEL SEL AKTIENGESELLSCHAFT

17P Request for examination filed

Effective date: 19921017

17Q First examination report despatched

Effective date: 19940923

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 123179

Country of ref document: AT

Date of ref document: 19950615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59202281

Country of ref document: DE

Date of ref document: 19950629

ITF It: translation for a ep patent filed

Owner name: DOTT. ANTONIO SERGI

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950615

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2075491

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19981222

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990113

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990119

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19990120

Year of fee payment: 8

Ref country code: DE

Payment date: 19990120

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19990126

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19990208

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19990218

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990223

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000212

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000229

BERE Be: lapsed

Owner name: ALCATEL N.V.

Effective date: 20000228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000212

EUG Se: european patent has lapsed

Ref document number: 92102301.6

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20011010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050212