EP0499678B1 - Testing device for optical I.R. scanner - Google Patents

Testing device for optical I.R. scanner Download PDF

Info

Publication number
EP0499678B1
EP0499678B1 EP19910102591 EP91102591A EP0499678B1 EP 0499678 B1 EP0499678 B1 EP 0499678B1 EP 19910102591 EP19910102591 EP 19910102591 EP 91102591 A EP91102591 A EP 91102591A EP 0499678 B1 EP0499678 B1 EP 0499678B1
Authority
EP
European Patent Office
Prior art keywords
optical device
scanning
detectors
surface mirror
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19910102591
Other languages
German (de)
French (fr)
Other versions
EP0499678A1 (en
Inventor
Thomas Dipl.-Ing. Hein
Andre Dipl.-Phys. Noack
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell GmbH
Original Assignee
Honeywell GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell GmbH filed Critical Honeywell GmbH
Priority to EP19910102591 priority Critical patent/EP0499678B1/en
Priority to DE59104964T priority patent/DE59104964D1/en
Publication of EP0499678A1 publication Critical patent/EP0499678A1/en
Application granted granted Critical
Publication of EP0499678B1 publication Critical patent/EP0499678B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/14Indirect aiming means
    • F41G3/145Indirect aiming means using a target illuminator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/32Devices for testing or checking
    • F41G3/326Devices for testing or checking for checking the angle between the axis of the gun sighting device and an auxiliary measuring device

Definitions

  • the present invention relates to an optical device according to the preamble of claim 1.
  • Such an optical device is used when testing a scanning / receiving unit, as is specified in particular in the form of an infrared (IR) multi-line scanning device (line scanner) in a reconnaissance aircraft.
  • IR infrared
  • line scanner line scanner
  • a rotating rotating mirror creates a line-shaped image of the terrain across the direction of flight on an IR detector line.
  • the scanning / receiving unit on a turntable.
  • Different scanning areas can be simulated by rotating the rotary table.
  • a so-called blackbody radiator and line targets on a target wheel periodic, rectangular temperature distributions in the flight direction (ALT) and transverse to the flight direction (ACT) are generated in the focal plane of a collimator. These temperature distributions are imaged to infinity by the collimator, with plane waves of different directions and amplitudes propagating through the collimator housing. These flat waves are transferred from a deflecting mirror to the Rotating mirror of the scanning unit reflected. In its focal plane, the scanning unit generates an image of the target, which is read out by the detector line and a downstream electronics.
  • the image of the line target usually does not completely hit the detector element. This has been remedied in this case by adjusting the scanning / receiving unit on the turntable or by adjusting the height of the target wheel.
  • operator intervention is time consuming and undesirable.
  • a parabolic mirror segment 12 is arranged in a housing 10 shielding against external rays, onto which a line target is projected via a folding mirror 14 arranged outside the optical beam path of the parabolic mirror segment 12.
  • the stroke targets are in different positions of a target wheel 16 and they are predetermined by stroke patterns of different sizes.
  • a servomotor 20 controls the target wheel 16 into the desired position.
  • An IR radiation source 18 is located together with a helium / neon laser 22 on a displacement table 24.
  • the laser 22 is used for focusing purposes and can be placed in the place of the radiation source 18 in order to focus the system.
  • the target wheel 16, the IR radiation source 18, the servo motor 20 and the laser 22 are arranged in a housing 26 which is located in front of the entrance aperture 28 of the collimator.
  • the parabolic mirror segment 12 makes plane waves from the diverging rays of the target image, ie it images the target image that has finally been removed to infinity.
  • the plane waves meet a 45 ° deflecting mirror 30, which allows them to exit upwards through the exit aperture 32 of the collimator.
  • the deflection mirror 30 can be pivoted about an axis 34, a stepping motor 36 making the adjustment.
  • the adjustment possibility is ⁇ 5 °, the step increment being 1/1000 °.
  • Various scanning areas can be simulated by rotating about an axis 42 shown in accordance with a rolling movement of the aircraft carrying the scanning / receiving unit.
  • the drive and the detection of the assumed positions of the turntable 40 takes place via a servo motor / coding device 44.
  • the shift table 24, the IR radiation source 18 and the servo motor 20 are connected to a controller 46.
  • a controller 48 is also provided for the stepper motor 36.
  • An amplifier 50 drives the servo motor / coding device 44.
  • a calibration kit 52 is used to control the temperature of the IR radiation source 18. All of these elements 48, 50, 52 are connected via a bus 56 to a computer 58, which is operated via a keyboard and which allows results to be checked via a monitor.
  • the collimator housing 10 sits on one against Vibration-protecting table 64.
  • the turntable 40 sits on a stand 66, which in turn is fixed on the table 64. 2, a scanning receiving unit 68 is arranged on the carrier arm 38 of the turntable 40.
  • the turntable 40 is adjustable on the table 64 together with the stand 66.
  • FIGS. 4a and 4b how a correction can be carried out via the controllable deflecting mirror 30 in the event of a misalignment of a target line 70 with respect to a detector element 72.
  • This correction is particularly necessary if a target line 70 of the smallest dimension (50 »m) is to be imaged on the smallest detector element (40» m) in the direction of flight.
  • the ideal alignment shown in FIG. 4b is automatically achieved by detecting the detector output signal and adjusting the deflection mirror 30 in the sense of maximizing the detector output signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

Die vorliegende Erfindung bezieht sich auf eine optische Vorrichtung nach dem Gattungsbegriff des Patentanspruches 1.The present invention relates to an optical device according to the preamble of claim 1.

Eine derartige optische Vorrichtung findet Anwendung bei der Prüfung einer Abtast-Empfangseinheit, wie sie insbesondere in Form einer Infrarot (IR)-Mehrzeilen-Abtasteinrichtung (Linescanner) in einem Aufklärungsflugzeug vorgegeben ist. Hierbei entwirft ein rotierender Drehspiegel ein zeilenförmiges Bild des Geländes quer zur Flugrichtung auf einer IR-Detektorzeile.Such an optical device is used when testing a scanning / receiving unit, as is specified in particular in the form of an infrared (IR) multi-line scanning device (line scanner) in a reconnaissance aircraft. Here, a rotating rotating mirror creates a line-shaped image of the terrain across the direction of flight on an IR detector line.

Zur Austestung eines solchen Gerätes im Labor ist es bekannt, die Abtast-Empfangseinheit auf einem Drehtisch anzuordnen. Durch Drehen des Drehtisches lassen sich verschiedene Abtastbereiche simulieren. Mit einem sogenannten Schwarzkörperstrahler und Strichzielen auf einem Zielrad werden in der Brennebene eines Kollimators periodische, rechteckförmige Temperaturverteilungen in Flugrichtung (ALT) und quer zur Flugrichtung (ACT) erzeugt. Diese Temperaturverteilungen werden vom Kollimator nach Unendlich abgebildet, wobei ebene Wellen unterschiedlicher Richtung und Amplitude durch das Kollimatorgehäuse propagieren. Diese ebenen Wellen werden von einem Umlenkspiegel auf den Drehspiegel der Abtasteinheit reflektiert. Die Abtasteinheit erzeugt in ihrer Brennebene ein Bild des Zieles, welches von der Detektorzeile und einer nachgeschalteten Elektronik ausgelesen wird. Auf Grund von Toleranzen des Prüflings und des Prüfsystems trifft die Abbildung des Strichzieles in der Regel das Detektorelement nicht vollständig. Abhilfe hat man in diesem Fall durch Justierung der Abtast-Empfangseinheit auf dem Drehtisch bzw. eine Höhenverstellung des Zielrades geschaffen. Der Eingriff einer Bedienungsperson ist jedoch zeitraubend und unerwünscht.To test such a device in the laboratory, it is known to arrange the scanning / receiving unit on a turntable. Different scanning areas can be simulated by rotating the rotary table. With a so-called blackbody radiator and line targets on a target wheel, periodic, rectangular temperature distributions in the flight direction (ALT) and transverse to the flight direction (ACT) are generated in the focal plane of a collimator. These temperature distributions are imaged to infinity by the collimator, with plane waves of different directions and amplitudes propagating through the collimator housing. These flat waves are transferred from a deflecting mirror to the Rotating mirror of the scanning unit reflected. In its focal plane, the scanning unit generates an image of the target, which is read out by the detector line and a downstream electronics. Due to tolerances of the test object and the test system, the image of the line target usually does not completely hit the detector element. This has been remedied in this case by adjusting the scanning / receiving unit on the turntable or by adjusting the height of the target wheel. However, operator intervention is time consuming and undesirable.

Es ist daher die Aufgabe der vorliegenden Erfindung, eine optische Vorrichtung der eingangs genannten Art so auszugestalten, daß der Ausgleich von mechanischen Toleranzen ohne Eingriff einer Bedienungsperson automatisch erfolgen kann. Die Lösung dieser Aufgabe gelingt gemäß den kennzeichnenden Merkmalen des Patentanspruches 1. Weitere vorteilhafte Ausgestaltungen der optischen Vorrichtung gemäß der Erfindung sind den abhängigen Ansprüchen entnehmbar.It is therefore the object of the present invention to design an optical device of the type mentioned at the outset in such a way that the compensation of mechanical tolerances can take place automatically without the intervention of an operator. This object is achieved in accordance with the characterizing features of patent claim 1. Further advantageous refinements of the optical device according to the invention can be found in the dependent claims.

Anhand eines in den Figuren der beiliegenden Zeichnungen dargestellten Ausführungsbeispieles sei im folgenden die Erfindung näher beschrieben. Es zeigen:

Fig. 1
eine schematische Darstellung einer Testanordnung mit der optischen Vorrichtung gemäß der vorliegenden Neuerung sowie mit entsprechender Peripherie und Schnittstellen;
Fig. 2
die Testanordnung in einer Seitenansicht;
Fig. 3
die Testanordnung in einer Draufsicht; und
Fig. 4a, 4b
verschiedene Lagen eines Zielstriches in Bezug auf ein Detektorelement sowie die daraus resultierenden Signale.
Based on an embodiment shown in the figures of the accompanying drawings, the invention is described in more detail below. Show it:
Fig. 1
a schematic representation of a test arrangement with the optical device according to the present innovation and with appropriate peripherals and interfaces;
Fig. 2
the test arrangement in a side view;
Fig. 3
the test arrangement in a plan view; and
4a, 4b
different positions of a target stroke in relation to a detector element and the resulting signals.

Gemäß Fig. 1 ist in einem gegen externe Strahlen abschirmenden Gehäuse 10 ein Parabolspiegelsegment 12 angeordnet, auf das über einen außerhalb des optischen Strahlenganges des Parabolspiegelsegments 12 angeordneten Faltspiegel 14 ein Strichziel projiziert wird. Die Strichziele befinden sich in unterschiedlichen Positionen eine Zielrades 16 und sie sind durch Strichmuster unterschiedlicher Größen vorgegeben. Ein Servomotor 20 steuert das Zielrad 16 in die gewünschte Position. Eine IR-Strahlungsquelle 18 befindet sich zusammen mit einem Helium/Neon-Laser 22 auf einem Verschiebetisch 24. Der Laser 22 dient Fokussierungszwecken und kann an die Stelle der Strahlungsquelle 18 gebracht werden, um das System zu fokussieren. Das Zielrad 16, die IR-Strahlungsquelle 18, der Servomotor 20 und der Laser 22 sind in einem Gehäuse 26 angeordnet, das sich vor der Eintrittsapertur 28 des Kollimators befindet.1, a parabolic mirror segment 12 is arranged in a housing 10 shielding against external rays, onto which a line target is projected via a folding mirror 14 arranged outside the optical beam path of the parabolic mirror segment 12. The stroke targets are in different positions of a target wheel 16 and they are predetermined by stroke patterns of different sizes. A servomotor 20 controls the target wheel 16 into the desired position. An IR radiation source 18 is located together with a helium / neon laser 22 on a displacement table 24. The laser 22 is used for focusing purposes and can be placed in the place of the radiation source 18 in order to focus the system. The target wheel 16, the IR radiation source 18, the servo motor 20 and the laser 22 are arranged in a housing 26 which is located in front of the entrance aperture 28 of the collimator.

Das Parabolspiegelsegment 12 macht aus den divergierenden Strahlen des Zielbildes ebene Wellen, d. h. er bildet das endlich entfernte Zielbild nach Unendlich ab. Die ebenen Wellen treffen auf einen 45°-Umlenkspiegel 30, der diese durch die Austrittsapertur 32 des Kollimators nach oben austreten läßt.The parabolic mirror segment 12 makes plane waves from the diverging rays of the target image, ie it images the target image that has finally been removed to infinity. The plane waves meet a 45 ° deflecting mirror 30, which allows them to exit upwards through the exit aperture 32 of the collimator.

Der Umlenkspiegel 30 ist um eine Achse 34 schwenkbar, wobei ein Schrittmotor 36 die Verstellung vornimmt. Die Verstellmöglichkeit beträgt ±5°, wobei das Schrittinkrement 1/1000° beträgt. Über der Austrittsapertur 32 befindet sich ein Trägerarm 38 eines Drehtisches 40, auf dem die hier nichtdargestellte Abtast-Empfangseinheit montiert wird. Durch Drehen um eine dargestellte Achse 42 entsprechend einer Rollbewegung des die Abtast-Empfangseinheit tragenden Flugzeuges können verschiedene Abtastbereiche simuliert werden. Der Antrieb und die Erfassung der eingenommenen Stellungen des Drehtisches 40 erfolgt über eine Servomotor/Kodiervorrichtung 44.The deflection mirror 30 can be pivoted about an axis 34, a stepping motor 36 making the adjustment. The adjustment possibility is ± 5 °, the step increment being 1/1000 °. Above the exit aperture 32 there is a support arm 38 of a turntable 40 on which the scanning / receiving unit (not shown here) is mounted. Various scanning areas can be simulated by rotating about an axis 42 shown in accordance with a rolling movement of the aircraft carrying the scanning / receiving unit. The drive and the detection of the assumed positions of the turntable 40 takes place via a servo motor / coding device 44.

Der Verschiebetisch 24, die IR-Strahlungsquelle 18 und der Servomotor 20 sind an eine Steuerung 46 angeschlossen. Ebenso ist eine Steuerung 48 für den Schrittmotor 36 vorgesehen. Ein Verstärker 50 steuert die Servomotor/Kodiervorrichtung 44 an. Ein Kalibrierkit 52 dient der Temperaturkontrolle der IR-Strahlungsquelle 18. Alle diese Elemente 48, 50, 52 stehen über einen Bus 56 mit einem Rechner 58 in Verbindung, dessen Bedienung über eine Tastatur erfolgt und der eine Ergebniskontrolle über einen Monitor gestattet.The shift table 24, the IR radiation source 18 and the servo motor 20 are connected to a controller 46. A controller 48 is also provided for the stepper motor 36. An amplifier 50 drives the servo motor / coding device 44. A calibration kit 52 is used to control the temperature of the IR radiation source 18. All of these elements 48, 50, 52 are connected via a bus 56 to a computer 58, which is operated via a keyboard and which allows results to be checked via a monitor.

Aus den Figuren 2 und 3 ist ersichtlich, daß das Gehäuse 26, welches das Zielrad 16, den Servomotor 20, die IR-Strahlungsquelle 18 und den Laser 22 sowie den Verschiebetisch 24 aufweist, nicht wie in Fig. 1 dargestellt, auf dem Kollimatorgehäuse 10 angeordnet ist, sondern seitlich an dieses angeflanscht ist. Das Kollimatorgehäuse 10 sitzt auf einem gegen Vibrationen schützenden Tisch 64. Der Drehtisch 40 sitzt auf einem Ständer 66, der seinerseits auf dem Tisch 64 befestigt ist. In Fig. 2 ist eine Abtast-Empfangseinheit 68 auf dem Trägerarm 38 des Drehtisches 40 angeordnet. Der Drehtisch 40 ist auf dem Tisch 64 zusammen mit dem Ständer 66 justierbar.It can be seen from FIGS. 2 and 3 that the housing 26, which has the target wheel 16, the servo motor 20, the IR radiation source 18 and the laser 22 and the displacement table 24, is not, as shown in FIG. 1, on the collimator housing 10 is arranged, but is flanged to the side of this. The collimator housing 10 sits on one against Vibration-protecting table 64. The turntable 40 sits on a stand 66, which in turn is fixed on the table 64. 2, a scanning receiving unit 68 is arranged on the carrier arm 38 of the turntable 40. The turntable 40 is adjustable on the table 64 together with the stand 66.

Aus den Figuren 4a und 4b ist ersichtlich, wie bei einer Fehlausrichtung eines Zielstriches 70 in Bezug auf ein Detektorelement 72 über den steuerbaren Umlenkspiegel 30 eine Korrektur vorgenommen werden kann. Diese Korrektur ist insbesondere dann erforderlich, wenn ein Zielstrich 70 kleinster Abmessung (50 »m) in Flugrichtung auf dem kleinsten Detektorelement (40 »m) abgebildet werden soll. Durch Erfassung des Detektor-Ausgangssignales und Nachstellung des Umlenkspiegels 30 im Sinne einer Maximierung des Detektor-Ausgangssignales wird automatisch die in Fig. 4b dargestellte Idealausrichtung erzielt.It can be seen from FIGS. 4a and 4b how a correction can be carried out via the controllable deflecting mirror 30 in the event of a misalignment of a target line 70 with respect to a detector element 72. This correction is particularly necessary if a target line 70 of the smallest dimension (50 »m) is to be imaged on the smallest detector element (40» m) in the direction of flight. The ideal alignment shown in FIG. 4b is automatically achieved by detecting the detector output signal and adjusting the deflection mirror 30 in the sense of maximizing the detector output signal.

Claims (5)

  1. Optical device for imaging a target located at infinity onto detectors of a scanning receiver unit by the use of a collimator, whereat the collimated image of the target is applied to the detectors of the scanning receiver unit via a surface mirror, characterized in that the tilting angle of the surface mirror (30) is adjustable.
  2. Optical device according to claim 1, characterized in that the tilting angle of the surface mirror (30) is controllable by the scanning reveiver unit (68) in order to achieve a maximum of the output signal of the scanning receiver unit.
  3. Optical device according to claim 2, characterized in that the surface mirror (30) is adjustable with respect to angle increments by means of a stepper motor (36).
  4. Optical device according to claim 3, characterized in that the stepper motor (36) is controlled by a computer (58) via a control unit (48) and that a bus connects the scanning receiver unit (68) as well as the control unit (48) to the computer.
  5. Optical device according to one of claims 1 to 4, characterized in that the targets (70) are hot targets and the detectors (72) are infrared detectors.
EP19910102591 1991-02-22 1991-02-22 Testing device for optical I.R. scanner Expired - Lifetime EP0499678B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19910102591 EP0499678B1 (en) 1991-02-22 1991-02-22 Testing device for optical I.R. scanner
DE59104964T DE59104964D1 (en) 1991-02-22 1991-02-22 Optical I.R. Scanner.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19910102591 EP0499678B1 (en) 1991-02-22 1991-02-22 Testing device for optical I.R. scanner

Publications (2)

Publication Number Publication Date
EP0499678A1 EP0499678A1 (en) 1992-08-26
EP0499678B1 true EP0499678B1 (en) 1995-03-15

Family

ID=8206439

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19910102591 Expired - Lifetime EP0499678B1 (en) 1991-02-22 1991-02-22 Testing device for optical I.R. scanner

Country Status (2)

Country Link
EP (1) EP0499678B1 (en)
DE (1) DE59104964D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109945743A (en) * 2019-03-25 2019-06-28 由春华 Active illumination formula Simultaneous Monitoring Shared aperture pointing emission system and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7159986B2 (en) 2002-05-20 2007-01-09 Swales & Associates, Inc. Wide field collimator
CN103970025B (en) * 2013-02-04 2018-12-11 上海机电工程研究所 A kind of HWIL simulation target simulation system
CN105319984B (en) * 2014-06-26 2019-05-03 上海机电工程研究所 A kind of infrared composite interference semi-matter simulating system of more frame radio frequencies of machinery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2566109B1 (en) * 1984-06-15 1991-08-30 Sfim OPTICAL SIGHT, DESIGNATION AND PURPOSE TRACKING ASSEMBLY
US4917490A (en) * 1988-02-04 1990-04-17 The Boeing Company Boresight alignment measuring apparatus and method for electro-optic systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109945743A (en) * 2019-03-25 2019-06-28 由春华 Active illumination formula Simultaneous Monitoring Shared aperture pointing emission system and method

Also Published As

Publication number Publication date
EP0499678A1 (en) 1992-08-26
DE59104964D1 (en) 1995-04-20

Similar Documents

Publication Publication Date Title
EP3350615B1 (en) Lidar sensor
DE2826468C2 (en)
EP1914564B1 (en) Optical detection device
EP1880698A1 (en) Ophthalmological device
EP0882941B1 (en) Infrared seeker head for homing missile
DE3873893T2 (en) ALIGNMENT DEVICE FOR A LASER BEAM DELIVERY SYSTEM AND METHOD FOR ALIGNMENT.
DE3786939T2 (en) Laser recording device.
DE10140208A1 (en) Optical arrangement
DE3940694C2 (en)
DE69116852T2 (en) Alignment of a tilted mirror
DE2833808B2 (en) Stereo line scanner
EP2023181A1 (en) Device for pivoting an optical ray
DE3878402T2 (en) SENSOR FOR INTERRUPTED SHAFT FRONT WITH COMPRISED STRUCTURE.
DE3781467T2 (en) ELECTROOPTIC IMAGING DEVICE.
DE2838362C2 (en) Optical-mechanical scanner with two mechanical deflection units for line and image deflection and an interposed reflection device
EP0499678B1 (en) Testing device for optical I.R. scanner
DE2533214A1 (en) DEVICE FOR DETECTING THE DIRECTION OF INCIDENCE OF ELECTROMAGNETIC RADIATION
DE3885017T2 (en) Device for the selective detection of objects.
DE3413420A1 (en) SENSOR FOR DETECTING IMAGE ERRORS
EP0179213A1 (en) Laser beam deflecting optical device
DE69823370T2 (en) OPTICAL SCANNER DEVICE
DE2042508C3 (en) Device for amplifying the dependence of the change in angle of an optical outgoing beam on changes in the angle of the associated incident beam
EP0533036B1 (en) Seeker
EP1472564A1 (en) Method for correction of oscillation-induced image defects in a lens
DE60215012T2 (en) SCANNING DEVICE FOR IMAGING IN THE MICROWAVE, MILLIMETER WAVE, OR INFRARED SPECTRAL AREA

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HONEYWELL AG

17Q First examination report despatched

Effective date: 19940801

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT SE

RBV Designated contracting states (corrected)

Designated state(s): DE GB IT SE

REF Corresponds to:

Ref document number: 59104964

Country of ref document: DE

Date of ref document: 19950420

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950428

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060109

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20060203

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060228

Year of fee payment: 16

Ref country code: IT

Payment date: 20060228

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070223

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070222

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525