EP0482970B1 - Device for imparting a deviated trajectory to an airborne missile - Google Patents

Device for imparting a deviated trajectory to an airborne missile Download PDF

Info

Publication number
EP0482970B1
EP0482970B1 EP19910402521 EP91402521A EP0482970B1 EP 0482970 B1 EP0482970 B1 EP 0482970B1 EP 19910402521 EP19910402521 EP 19910402521 EP 91402521 A EP91402521 A EP 91402521A EP 0482970 B1 EP0482970 B1 EP 0482970B1
Authority
EP
European Patent Office
Prior art keywords
projectile
roll
projectile according
angle
rocket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19910402521
Other languages
German (de)
French (fr)
Other versions
EP0482970A1 (en
Inventor
Jean Deffayet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thomson Brandt Armements SA
Original Assignee
Thomson Brandt Armements SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Brandt Armements SA filed Critical Thomson Brandt Armements SA
Publication of EP0482970A1 publication Critical patent/EP0482970A1/en
Application granted granted Critical
Publication of EP0482970B1 publication Critical patent/EP0482970B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B15/00Self-propelled projectiles or missiles, e.g. rockets; Guided missiles
    • F42B15/10Missiles having a trajectory only in the air
    • F42B15/105Air torpedoes, e.g. projectiles with or without propulsion, provided with supporting air foil surfaces

Definitions

  • the present invention relates to the launching of a projectile from an aerial vehicle, in the direction of its trajectory. It relates more particularly to a device for laterally bending the trajectory of the projectile relative to the direction of the shot.
  • the invention applies in particular to the launching of a self-propelled projectile, such as a decoy rocket, from an airplane.
  • a self-propelled projectile such as a decoy rocket
  • the mission of such a rocket is to protect, by means of an on-board decoy, an airplane flying at very low altitude during the final attack phase of an objective defended by solair systems.
  • the confrontation with means of detection and processing of information capable of distinguishing between different signatures requires that the rocket, in order to be credible, evolves within limits of which the airplane is capable. This implies, among other things, that the rocket is launched along the path of the aircraft, and that after launch, its relative speed relative to it remains low, in practice of the order of 20 m / s. Under these conditions, the gap between the rocket and the aircraft does not grow rapidly, and if the latter follows a straight path as is generally the case, this gap remains insufficient to avoid the risk of interception by incoming missiles. front.
  • the subject of the invention is a device for imparting a laterally deflected trajectory to a projectile in a controlled manner after firing, and comprising means which have the advantage of being simple, and therefore inexpensive, and of being easily applicable to launching a decoy rocket.
  • a device according to the invention is defined in claim 1.
  • the preamble corresponds to a known state of the art.
  • the airfoil is then calculated in such a way that for the cruising speed of the projectile, the vertical component of the load factor cancels gravity.
  • the projectile represented in the drawings is a decoy rocket intended to be launched from an airplane, substantially in the direction of its speed vector when it is in horizontal flight.
  • the rocket comprises a front section 1 containing the lure (which can be of any type, for example electromagnetic, pyrotechnic or thermal), an intermediate section 2 at the level of which is the wing structure made up of two wings 4, and a rear section or propulsive part 3.
  • a tail fin is installed formed by a plurality of fins 5.
  • the fins 5, as well as the wings 4 forming the lift wing are deployable, which makes it possible to have all the elements of the rocket included in its caliber and to reduce the aerodynamic constraints in flight before launching.
  • Figs. 2 and 3 schematically represent a simple system of deployable lift wing, which ensures an opening conjugation of the two wings 4. These are articulated so as to be able to be fully retracted inside the section 2, in the position shown in dashed lines in FIG. 3, and they comprise pinions 6 meshed with the two sides forming a rack of a flat rod 7. The longitudinal displacement of the rod 7 necessary for the combined opening of the wings 4 is ensured, for example, by spring means and lock released when launching the rocket.
  • the section propulsion system 3 comprises two distinct parts: either a take-off stage with the load 8 and the peripheral nozzles 9, which stage must provide the acceleration necessary for launching, and a second cruising stage with the load 10 and the central nozzle 11, which has the function of maintaining the rocket at a predetermined speed substantially constant, after launch.
  • the rocket takes place on a plane launching ramp, directed forward and oriented so as to be parallel to the speed vector when the plane is in horizontal flight.
  • the ramp can be a rail, or else a tube when the lift wing and the tail of the rocket are deployable, and included in its caliber in the folded position.
  • the tube may be a cannon, the take-off propellant 8.9 then no longer having any reason to be.
  • Means are provided for ensuring the positioning of the rocket on the ramp in a determined position of rotation about its longitudinal axis, and also for maintaining this position throughout the ramp at the time of launch.
  • these means comprise, for example, a finger secured to the rocket, which can be engaged in a guide groove formed in the inner wall of the tube.
  • the rotational position of the rocket on the launching ramp defines a determined angle a of transverse inclination of its lift wing (wings of the aircraft in horizontal position).
  • said lift wing is calculated so that under these conditions of transverse inclination, and for a speed V slightly higher than the recommended speed of the airplane at the time of the firing, the load factor resulting from the lift and of the thrust component of the cruise thruster is oriented perpendicular to the axis of the rocket and has a vertical component that cancels gravity.
  • the thrust generated by the cruising thruster 10, 11 is approximately equal to the drag of the rocket, so that this speed V is kept constant, or slightly increasing.
  • Fig. 5 represents the load factor f on a graph (Oy, Oz) for a transverse tilt angle a equal to 45 °.
  • the projections fy and f z are then equal to g, which implies for f the value g ⁇ 2.
  • This trajectory is represented on the graph (Ox, Oy) of FIG. 7, C being the center of the trajectory, the origin 0 representing the position of the airplane at the time of launch and Ox the direction of its trajectory.
  • the value of the transverse angle of inclination a can be chosen within a range limited inferiorly by the need to obtain a sufficient lateral deviation, and superiorly by the credibility of evolution of the rocket and by the excessive increase in the factor of charge f.
  • the value of 45 ° in addition to its geometric simplicity, represents an interesting compromise.
  • the criterion is the risk that the rocket hits the ground too early because, in practice, this type of projectile is launched at very low altitude, of the order of 30 m.
  • Fig. 4 illustrates such an arrangement, in which the propulsion section 3 comprises a part 3a joined to the intermediate section 2 and housing the cruising thruster 10, 11, and a part 3b in the form of a cylindrical block mounted free to rotate, by through bearings 12, around part 3a.
  • Part 3b comprises the take-off thruster 8.9, as well as means for implanting the tail unit, that is to say in the example shown of the legs 13 on which the fins 5 are articulated.
  • the tail unit is mounted on bearings around section 3.
  • FIGS. 8 to 11 An example of a simple and therefore inexpensive embodiment of such means is shown in FIGS. 8 to 11.
  • a flywheel 14 is mounted to rotate freely around the axis of the rocket, so as not to be driven by the roll deviations of the latter.
  • the friction may be considered negligible insofar as the stresses are alternative. In practice, this tendency is favored, to the detriment of stresses repeating in the same direction, by providing a free tail in rotation as described above.
  • Figs. 8 and 9 illustrate means by which signals are produced when these deviations reach a determined value of in either direction.
  • these means consist of a through channel 15, located in a radial plane r, at a distance d from the axis.
  • two sets each include a light source 16 on one side of the steering wheel 14, and a photoelectric cell 17 on the other side.
  • these two assemblies are also located at a distance d from the axis, and are angularly spaced from the value da with respect to the longitudinal plane of symmetry of the lift wing formed by the wings 4.
  • means are necessary for bring the radial plane r of the flywheel 14 to coincide with this plane of symmetry, between the two assemblies, FIG. 9.
  • the steering wheel 14 is retained in this position by a lock released at launch.
  • the angular spacing da of the assemblies with respect to said plane of symmetry corresponds to the maximum roll angle deviation that is tolerated.
  • the corresponding photoelectric cell receives light from its light source and produces a signal that can be used to control a roll correction device, two embodiments of which are shown by way of example in FIGS. 10 and 11.
  • a reserve of pressurized gas 18 is connected by conduits 19 to peripheral nozzles 20. They are preferably associated in pairs, each of which is capable of producing counter-roll pulses in one direction, following the selective and time-controlled opening of solenoid valves 21.
  • the device of FIG. 11 is made up of small guns 22, also associated in pairs, preferably. By launching projectiles, these guns produce recoil forces which can be used as counter-roll pulses.
  • the field of use of the invention is not limited to the launching of decoy rockets which has just been described.
  • the ranges of possible values for the speed V and the angle a of transverse inclination of the lift wing are obviously much greater than for the case of a decoy rocket. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Description

La présente invention concerne le lancement d'un projectile à partir d'un engin aérien, dans la direction de sa trajectoire. Elle concerne plus particulièrement un dispositif pour infléchir latéralement la trajectoire du projectile par rapport à la direction du tir.The present invention relates to the launching of a projectile from an aerial vehicle, in the direction of its trajectory. It relates more particularly to a device for laterally bending the trajectory of the projectile relative to the direction of the shot.

L'invention s'applique notamment au lancement d'un projectile auto-propulsé, telle qu'une roquette leurre, à partir d'un avion. La mission d'une telle roquette est de protéger, au moyen d'un leurre embarqué, un avion volant à très basse altitude lors de la phase finale d'attaque d'un objectif défendu par des systèmes solair. Bien entendu, la confrontation à des moyens de détection et de traitement d'informations aptes à faire la distinction entre des signatures différentes impose que la roquette, pour être crédible, évolue dans des limites dont l'avion est capable. Ceci implique, entre autres, que la roquette soit lancée selon la trajectoire de l'avion, et qu'après lancement, sa vitesse relative par rapport à celui-ci reste faible, en pratique de l'ordre de 20 m/s. Dans ces conditions, l'écart entre la roquette et l'avion ne croit pas rapidement, et si ce dernier suit une trajectoire rectiligne comme c'est généralement le cas, cet écart reste insuffisant pour éviter le risque d'interception par des missiles arrivant de face.The invention applies in particular to the launching of a self-propelled projectile, such as a decoy rocket, from an airplane. The mission of such a rocket is to protect, by means of an on-board decoy, an airplane flying at very low altitude during the final attack phase of an objective defended by solair systems. Of course, the confrontation with means of detection and processing of information capable of distinguishing between different signatures requires that the rocket, in order to be credible, evolves within limits of which the airplane is capable. This implies, among other things, that the rocket is launched along the path of the aircraft, and that after launch, its relative speed relative to it remains low, in practice of the order of 20 m / s. Under these conditions, the gap between the rocket and the aircraft does not grow rapidly, and if the latter follows a straight path as is generally the case, this gap remains insufficient to avoid the risk of interception by incoming missiles. front.

La solution à ce problème consiste à imprimer à la roquette leurre une trajectoire infléchie latéralement pour attirer la menace à une distance suffisante de l'avion à protéger. Acet effet, on a actuellement recours à des techniques de programmation de trajectoire qui présentent l'inconvénient de nécessiter un matériel coûteux, à base de capteurs et de moyens de traitement d'informations complexes.The solution to this problem is to imprint a laterally inflected trajectory on the decoy rocket to attract the threat at a sufficient distance from the aircraft to be protected. As a result, we currently use trajectory programming techniques which have the disadvantage of requiring expensive equipment, based on sensors and means for processing complex information.

L'invention a pour objet un dispositif pour imprimer à un projectile une trajectoire infléchie latéralement de façon contrôlée après le tir, et comprenant des moyens qui ont l'avantage d'être simples, et donc peu coûteux, et d'être facilement applicables au lancement d'une roquette leurre.The subject of the invention is a device for imparting a laterally deflected trajectory to a projectile in a controlled manner after firing, and comprising means which have the advantage of being simple, and therefore inexpensive, and of being easily applicable to launching a decoy rocket.

Un dispositif selon l'invention est défini dans la revendication 1. Le préambule correspond à un état de la technique connu.A device according to the invention is defined in claim 1. The preamble corresponds to a known state of the art.

Dans le cas d'un projectile auto-propulsé tel qu'une roquette leurre devant effectuer un vol sensiblement horizontal, la voilure de portance est alors calculée de telle façon que pour la vitesse de croisière du projectile, la composante verticale du facteur de charge annule la pesanteur.In the case of a self-propelled projectile such as a decoy rocket intended to perform a substantially horizontal flight, the airfoil is then calculated in such a way that for the cruising speed of the projectile, the vertical component of the load factor cancels gravity.

L'invention sera mieux comprise à l'aide des explications qui vont suivre et des dessins annexés, dans lesquels :

  • la Fig. 1 est une vue schématique en plan d'une roquette leurre faisant partie d'un système conforme à l'invention,
  • les Figs. 2 et 3 sont respectivement une vue en coupe transversale et une vue partielle en coupe longitudinale de la roquette de la Fig. 1, illustrant schématiquement une forme de réalisation préférée de sa voilure de portance,
  • la Fig. 4 est une demi-vue en coupe longitudinale de l'arrière de la roquette, illustrant une forme de réalisation préférée de l'empennage de queue, la Fig. 5 est un diagramme représentant les composantes verticale et transversale du facteur de charge sur la voilure de portance lorsque celle-ci est inclinée transversalement à 45°, la Fig. 6 est un diagramme semblable à celui de la Fig. 5, pour le cas où la voilure de portance est inclinée transversalement à 60°,
  • la Fig. 7 est un graphique sur lequel apparaissent les trajectoires de l'avion et de la roquette, suite au lancement de cette dernière,
  • la Fig. 8 est une demi-vue en coupe axiale représentant schématiquement un dispositif de détection de roulis,
  • la Fig. 9 est une demi-vue en coupe latérale selon la ligne IX-IX de la Fig. 8, et
  • les Figs. 10 et 11 sont des vues schématiques illustrant sous deux formes de réalisation différentes des moyens de correction de roulis complémentaires d'un dispositif de détection de roulis tel que celui des Figs. 8 et 9.
The invention will be better understood using the explanations which follow and the appended drawings, in which:
  • Fig. 1 is a schematic plan view of a decoy rocket forming part of a system according to the invention,
  • Figs. 2 and 3 are respectively a cross-sectional view and a partial view in longitudinal section of the rocket of FIG. 1, schematically illustrating a preferred embodiment of its lift wing,
  • Fig. 4 is a half view in longitudinal section of the rear of the rocket, illustrating a preferred embodiment of the tail fin, FIG. 5 is a diagram representing the vertical and transverse components of the load factor on the lift wing when the latter is inclined transversely to 45 °, FIG. 6 is a diagram similar to that of FIG. 5, in the case where the lift wing is inclined transversely at 60 °,
  • Fig. 7 is a graph on which the trajectories of the aircraft and the rocket appear, following the launch of the latter,
  • Fig. 8 is a half-view in axial section schematically showing a roll detection device,
  • Fig. 9 is a half-view in lateral section along the line IX-IX in FIG. 8, and
  • Figs. 10 and 11 are schematic views illustrating in two different embodiments means for correcting roll complementary to a roll detection device such as that of FIGS. 8 and 9.

Le projectile représenté dans les dessins est une roquette leurre destinée à être lancée à partir d'un avion, sensiblement dans la direction de son vecteur vitesse lorsqu'il est en vol horizontal.The projectile represented in the drawings is a decoy rocket intended to be launched from an airplane, substantially in the direction of its speed vector when it is in horizontal flight.

La roquette comprend un tronçon avant 1 contenant le leurre (lequel peut être d'un type quelconque, par exemple électromagnétique, pyrotechnique ou thermique), un tronçon intermédiaire 2 au niveau duquel se trouve la voilure de portance composée de deux ailes 4, et un tronçon arrière ou partie propulsive 3. Sur le tronçon 3, est implanté un empennage de queue formé d'une pluralité d'ailettes 5.The rocket comprises a front section 1 containing the lure (which can be of any type, for example electromagnetic, pyrotechnic or thermal), an intermediate section 2 at the level of which is the wing structure made up of two wings 4, and a rear section or propulsive part 3. On the section 3, a tail fin is installed formed by a plurality of fins 5.

De préférence, les ailettes 5, de même que les ailes 4 formant la voilure de portance, sont déployables, ce qui permet d'avoir tous les éléments de la roquette inclus dans son calibre et de réduire les contraintes aérodynamiques en vol avant le lancement.Preferably, the fins 5, as well as the wings 4 forming the lift wing, are deployable, which makes it possible to have all the elements of the rocket included in its caliber and to reduce the aerodynamic constraints in flight before launching.

Les Figs. 2 et 3 représentent schématiquement un système simple de voilure de portance déploya- ble, lequel assure une conjugaison d'ouverture des deux ailes 4. Celles-ci sont articulées de manière à pouvoir être rentrées complètement à l'intérieur du tronçon 2, dans la position représentée en traits tirets à la Fig. 3, et elles comportent des pignons 6 engrenés avec les deux côtés formant crémaillère d'une tige plate 7. Le déplacement longitudinal de la tige 7 nécessaire pour l'ouverture conjuguée des ailes 4 est assuré, par exemple, par des moyens à ressort et verrou libéré au moment du lancement de la roquette.Figs. 2 and 3 schematically represent a simple system of deployable lift wing, which ensures an opening conjugation of the two wings 4. These are articulated so as to be able to be fully retracted inside the section 2, in the position shown in dashed lines in FIG. 3, and they comprise pinions 6 meshed with the two sides forming a rack of a flat rod 7. The longitudinal displacement of the rod 7 necessary for the combined opening of the wings 4 is ensured, for example, by spring means and lock released when launching the rocket.

Dans la forme de réalisation montrée, le tronçon de propulsion 3 comprend deux parties distinctes : soit un étage de décollage avec la charge 8 et les tuyères périphériques 9, lequel étage doit procurer l'accélération nécessaire au lancement, et un second étage de croisière avec la charge 10 et la tuyère centrale 11, qui a pour fonction de maintenir la roquette à une vitesse prédéterminée sensiblement constante, postérieurement au lancement.In the embodiment shown, the section propulsion system 3 comprises two distinct parts: either a take-off stage with the load 8 and the peripheral nozzles 9, which stage must provide the acceleration necessary for launching, and a second cruising stage with the load 10 and the central nozzle 11, which has the function of maintaining the rocket at a predetermined speed substantially constant, after launch.

La roquette prend place sur une rampe de lancement de l'avion, dirigée vers l'avant et orientée de manière à être parallèle au vecteur vitesse lorsque l'avion est en vol horizontal. La rampe peut être un rail, ou bien un tube lorsque la voilure de portance et l'empennage de la roquette sont déployables, et inclus dans son calibre en position repliée. A noter que dans ce second cas, le tube peut être un canon, le propulseur de décollage 8,9 n'ayant plus alors raison d'être.The rocket takes place on a plane launching ramp, directed forward and oriented so as to be parallel to the speed vector when the plane is in horizontal flight. The ramp can be a rail, or else a tube when the lift wing and the tail of the rocket are deployable, and included in its caliber in the folded position. Note that in this second case, the tube may be a cannon, the take-off propellant 8.9 then no longer having any reason to be.

Des moyens sont prévus pour assurer la mise en place de la roquette sur la rampe dans une position de rotation déterminée autour de son axe longitudinal, et pour assurer également le maintien de cette position tout au long de la rampe au moment du lancement. Dans le cas d'un tube de lancement, ces moyens comprennent, parexemple, un doigt solidaire de la roquette, engageable dans une gorge de guidage ménagée dans la paroi intérieure du tube.Means are provided for ensuring the positioning of the rocket on the ramp in a determined position of rotation about its longitudinal axis, and also for maintaining this position throughout the ramp at the time of launch. In the case of a launching tube, these means comprise, for example, a finger secured to the rocket, which can be engaged in a guide groove formed in the inner wall of the tube.

Selon l'invention, la position en rotation de la roquette sur la rampe de lancement définit un angle déterminé a d'inclinaison transversale de sa voilure de portance (ailes de l'avion en position horizontale). D'autre part, ladite voilure de portance est calculée pour que dans ces conditions d'inclinaison transversale, et pour une vitesse V légèrement supérieure à la vitesse préconisée de l'avion au moment du tir, le facteur de charge résultant de la portance et de la composante de poussée du propulseur de croisière soit orienté perpendiculairement à l'axe de la roquette et ait une composante verticale qui annule la pesanteur. La poussée engendrée par le propulseur de croisière 10, 11 est approximativement égale à la traînée de la roquette, de manière à ce que cette vitesse V soit maintenue constante, ou légèrement croissante.According to the invention, the rotational position of the rocket on the launching ramp defines a determined angle a of transverse inclination of its lift wing (wings of the aircraft in horizontal position). On the other hand, said lift wing is calculated so that under these conditions of transverse inclination, and for a speed V slightly higher than the recommended speed of the airplane at the time of the firing, the load factor resulting from the lift and of the thrust component of the cruise thruster is oriented perpendicular to the axis of the rocket and has a vertical component that cancels gravity. The thrust generated by the cruising thruster 10, 11 is approximately equal to the drag of the rocket, so that this speed V is kept constant, or slightly increasing.

La Fig. 5 représente le facteur de charge f sur un graphique (Oy, Oz) pour un angle d'inclinaison transversale a égal à 45°. Les projections fy et fz sont alors égales à g, ce qui implique pour f la valeur g√2.Fig. 5 represents the load factor f on a graph (Oy, Oz) for a transverse tilt angle a equal to 45 °. The projections fy and f z are then equal to g, which implies for f the value g√2.

Dans ces conditions, et dans la mesure où l'angle a reste constant, la roquette suit postérieurement au lancement une trajectoire horizontale circulaire de rayon R = V2/g. Cette trajectoire est représentée sur le graphique (Ox, Oy) de la Fig. 7, C étant le centre de la trajectoire, l'origine 0 représentant la position de l'avion à l'instant du lancement et Ox la direction de la trajectoire de celui-ci.Under these conditions, and insofar as the angle a remains constant, the rocket follows, after launch, a circular horizontal trajectory of radius R = V 2 / g. This trajectory is represented on the graph (Ox, Oy) of FIG. 7, C being the center of the trajectory, the origin 0 representing the position of the airplane at the time of launch and Ox the direction of its trajectory.

Au bout d'un temps T, la roquette parvient en L tandis que l'avion qui a suivi une trajectoire rectiligne arrive en A. On a alors :

Figure imgb0001
(0 étant la valeur en radian de l'angle (CO, CL)) d'où:
Figure imgb0002
et
Figure imgb0003
Figure imgb0004
(M étant la projection de L sur Oy)At the end of a time T, the rocket arrives at L while the plane which has followed a rectilinear trajectory arrives at A. We then have:
Figure imgb0001
(0 being the radian value of the angle (CO, CL)) where:
Figure imgb0002
and
Figure imgb0003
Figure imgb0004
(M being the projection of L on Oy)

En prenant les valeurs suivantes à titre d'exemple :

  • Va (vitesse avion) = 300 m/s
  • V (vitesse roquette) = 320 m/s
  • T=10s,
  • on déduit :
  • θ = 17,5°
  • OA = VaT = 3 000m
  • ML = 3 180 m
  • OM = 487 m
Taking the following values as an example:
  • Va (airplane speed) = 300 m / s
  • V (rocket speed) = 320 m / s
  • T = 10s,
  • we deduce :
  • θ = 17.5 °
  • OA = V a T = 3000m
  • ML = 3,180 m
  • OM = 487 m

La valeur de l'angle d'inclinaison transversale a peut être choisie dans une plage limitée inférieurement par la nécessité d'obtenir un écart latéral suffisant, et supérieurement par la crédibilité d'évolution de la roquette et par l'augmentation excessive du facteur de charge f. A titre indicatif, la Fig.6 illustre celui-ci pour un angle d'inclinaison transversale a de 60° : fz = g implique alors f = 2g et fy = 1,7g. En pratique, comme le calcul précédent le montre, la valeur de 45°, outre sa simplicité géométrique, représente un compromis intéressant.The value of the transverse angle of inclination a can be chosen within a range limited inferiorly by the need to obtain a sufficient lateral deviation, and superiorly by the credibility of evolution of the rocket and by the excessive increase in the factor of charge f. As an indication, Fig.6 illustrates this for a transverse tilt angle a of 60 °: f z = g then implies f = 2g and fy = 1.7g. In practice, as the previous calculation shows, the value of 45 °, in addition to its geometric simplicity, represents an interesting compromise.

En réalité, l'inclinaison transversale de la voilure de portance ne reste pas constante, du fait que la roquette est généralement sujette à un entraînement en roulis qu'il y a lieu de réduire le plus possible, ou de corriger selon les applications.In reality, the transverse inclination of the lift wing does not remain constant, since the rocket is generally subject to a roll drive which should be reduced as much as possible, or corrected according to the applications.

Dans les cas où le temps de propulsion et, par conséquent, la portée de la roquette sont faibles, la variation aléatoire de l'angle a d'inclinaison transversale peut entraîner un écart acceptable par rapport à la trajectoire estimée. Il n'est alors pas nécessaire d'introduire une correction.In cases where the propulsion time and, consequently, the range of the rocket are short, the random variation of the angle a of transverse inclination can lead to an acceptable deviation from the estimated trajectory. There is therefore no need to introduce a correction.

Le calcul simplifié suivant permet d'évaluer une limite supérieure de l'altération de trajectoire : si l'angle a s'écarte dès le départ de la valeur nominale 45° (1t/4) d'un accroissement algébrique da supposé constant, l'accélération verticale appliquée à la roquette devient :

Figure imgb0005
(da étant exprimé en radian) d'où
Figure imgb0006
Pour
Figure imgb0007
(0,017 radian) et t = 5 s, on trouve :
Figure imgb0008
The following simplified calculation makes it possible to evaluate an upper limit of the trajectory alteration: if the angle a deviates from the start of the nominal value 45 ° ( 1 t / 4) from an algebraic increase da assumed to be constant, the vertical acceleration applied to the rocket becomes:
Figure imgb0005
(da being expressed in radian) from where
Figure imgb0006
For
Figure imgb0007
(0.017 radian) and t = 5 s, we find:
Figure imgb0008

On voit que pour une variation de a ne dépassant pas quelques degrés, la variation résultante d'altitude reste acceptable. Le critère est le risque que la roquette touche le sol trop tôt car, en pratique, ce type de projectile est lancé à très basse altitude, de l'ordre de 30 m.We see that for a variation of a not exceeding not a few degrees, the resulting variation in altitude remains acceptable. The criterion is the risk that the rocket hits the ground too early because, in practice, this type of projectile is launched at very low altitude, of the order of 30 m.

L'altération latérale (suivant Oy à la Fig. 7) a moins d'importance puisqu'on ne cherche pas une trajectoire précise, mais seulement une évasive qui simule de façon crédible celle de l'avion tireur. Cette altération se traduirait par une variation maximale d'environ 2 m pour da = 1 °, t = 5 s et V = 320 m/s.The lateral alteration (according to Oy in Fig. 7) is less important since we are not looking for a precise trajectory, but only an evasive one which credibly simulates that of the firing plane. This alteration would result in a maximum variation of approximately 2 m for da = 1 °, t = 5 s and V = 320 m / s.

Cet exemple permet d'estimer l'ordre de grandeur des altérations attendues. En réalité, l'hypothèse selon laquelle da est constant est pénalisante car a varie suivant une loi plus ou moins alternative dans la mesure où les dissymétries de forme ont été réduites par la qualité de fabrication et où l'on prévoit un empennage libre en rotation autour de la roquette, car c'est lui qui est responsable pour la plus grande part de l'entraînement en roulis.This example makes it possible to estimate the order of magnitude of the expected alterations. In reality, the hypothesis according to which da is constant is penalizing because a varies according to a more or less alternative law insofar as the asymmetries of shape have been reduced by the quality of manufacture and where a free tail in rotation is provided around the rocket, because it is he who is responsible for most of the roll training.

La Fig. 4 illustre un tel arrangement, dans lequel le tronçon de propulsion 3 comprend une partie 3a jointe au tronçon intermédiaire 2 et logeant le propulseur de croisière 10, 11, et une partie 3b sous la forme d'un bloc cylindrique monté libre en rotation, par l'intermédiaire de roulements 12, autour de la partie 3a. La partie 3b comprend le propulseur de décollage 8,9, ainsi que des moyens d'implantation de l'empennage, soit dans l'exemple montré des pattes 13 sur lesquelles sont articulées les ailettes 5. En variante, seul l'empennage est monté sur roulement autour du tronçon 3.Fig. 4 illustrates such an arrangement, in which the propulsion section 3 comprises a part 3a joined to the intermediate section 2 and housing the cruising thruster 10, 11, and a part 3b in the form of a cylindrical block mounted free to rotate, by through bearings 12, around part 3a. Part 3b comprises the take-off thruster 8.9, as well as means for implanting the tail unit, that is to say in the example shown of the legs 13 on which the fins 5 are articulated. As a variant, only the tail unit is mounted on bearings around section 3.

Si les écarts de l'angle a et leur conséquence sur la trajectoire sont inacceptables, ce qui peut être le cas lorsque le temps de propulsion est relativement long, il devient nécessaire de prévoir des moyens de correction de roulis. Un exemple de réalisation simple et, par conséquent, peu coûteux de tels moyens est montré aux Figs. 8 à 11. Un volant 14 est monté libre en rotation autour de l'axe de la roquette, de manière à ne pas être entraîné par les écarts en roulis de cette dernière. Les frottements pourront être considérés négligeables dans la mesure où les sollicitations seront alternatives. En pratique, on favorise cette tendance, au détriment de sollicitations se répétant dans le même sens, en prévoyant un empennage libre en rotation tel que décrit précédemment.If the deviations of the angle a and their consequence on the trajectory are unacceptable, which may be the case when the propulsion time is relatively long, it becomes necessary to provide means for correcting roll. An example of a simple and therefore inexpensive embodiment of such means is shown in FIGS. 8 to 11. A flywheel 14 is mounted to rotate freely around the axis of the rocket, so as not to be driven by the roll deviations of the latter. The friction may be considered negligible insofar as the stresses are alternative. In practice, this tendency is favored, to the detriment of stresses repeating in the same direction, by providing a free tail in rotation as described above.

Le volant 14, en restant immobile en rotation, sert de référence pour apprécier les écarts en roulis de la roquette. Les Figs. 8 et 9 illustrent des moyens par lesquels des signaux sont produits lorsque ces écarts atteignent une valeur déterminée du dans l'un ou l'autre sens. Sur le volant 14, ces moyens consistent en un canal traversant 15, situé dans un plan radial r, à une distance d de l'axe.The steering wheel 14, while remaining stationary in rotation, serves as a reference for assessing the deviations in roll of the rocket. Figs. 8 and 9 illustrate means by which signals are produced when these deviations reach a determined value of in either direction. On the flywheel 14, these means consist of a through channel 15, located in a radial plane r, at a distance d from the axis.

Solidaires du corps de la roquette, deux ensembles comprennent chacun une source lumineuse 16 d'un côté du volant 14, et une cellule photoélectrique 17 de l'autre côté. Comme on le voit à la Fig. 9, ces deux ensembles sont situés également à une distance d de l'axe, et sont écartés angulairement de la valeur da par rapport au plan de symétrie longitudinal de la voilure de portance formée des ailes 4. En outre, un moyen est nécessaire pour amener le plan radial r du volant 14 en coïncidence avec ce plan de symétrie, entre les deux ensembles, Fig. 9. Le volant 14 est retenu dans cette position par un verrou libéré au lancement.Attached to the rocket body, two sets each include a light source 16 on one side of the steering wheel 14, and a photoelectric cell 17 on the other side. As seen in Fig. 9, these two assemblies are also located at a distance d from the axis, and are angularly spaced from the value da with respect to the longitudinal plane of symmetry of the lift wing formed by the wings 4. In addition, means are necessary for bring the radial plane r of the flywheel 14 to coincide with this plane of symmetry, between the two assemblies, FIG. 9. The steering wheel 14 is retained in this position by a lock released at launch.

L'écartement angulaire da des ensembles par rapport audit plan de symétrie correspond à l'écart d'angle de roulis maximum que l'on tolère. Lorsque cet écart maximum est atteint d'un côté ou de l'autre, comme l'illustre la Fig. 8, la cellule photoélectrique correspondante reçoit la lumière de sa source lumineuse et produit un signal exploitable pour commander un dispositif de correction de roulis dont deux formes de réalisation sont montrées à titre d'exemple aux Figs 10 et 11.The angular spacing da of the assemblies with respect to said plane of symmetry corresponds to the maximum roll angle deviation that is tolerated. When this maximum deviation is reached on one side or the other, as illustrated in FIG. 8, the corresponding photoelectric cell receives light from its light source and produces a signal that can be used to control a roll correction device, two embodiments of which are shown by way of example in FIGS. 10 and 11.

A la Fig. 10, une réserve de gaz sous pression 18 est reliée par des conduits 19 à des gicleurs périphériques 20. Ils sont, de préférence, associés par paires dont chacune est apte à produire des impulsions de contre-roulis dans un sens, suite à l'ouverture sélective et contrôlée dans le temps d'électrovannes 21.In Fig. 10, a reserve of pressurized gas 18 is connected by conduits 19 to peripheral nozzles 20. They are preferably associated in pairs, each of which is capable of producing counter-roll pulses in one direction, following the selective and time-controlled opening of solenoid valves 21.

Le dispositif de la Fig. 11 est constitué quant à lui de petits canons 22, également associés par paires, de préférence. En lançant des projectiles, ces canons produisent des efforts de recul exploitables en tant qu'impulsions de contre-roulis.The device of FIG. 11 is made up of small guns 22, also associated in pairs, preferably. By launching projectiles, these guns produce recoil forces which can be used as counter-roll pulses.

Lorsque les procédés décrits ci-dessus deviennent insuffisants parce qu'on recherche une précision plus élevée, ou qu'on travaille sur un temps plus long, ou pour une cause autre, il faut faire appel à des composants plus sophistiqués tels qu'une centrale inertielle, mais qui sont évidemment beaucoup plus coûteux.When the processes described above become insufficient because we seek higher precision, or we work over a longer time, or for another reason, we must call on more sophisticated components such as a central inertial, but which are obviously much more expensive.

Le domaine d'utilisation de l'invention ne se limite pas au lancement de roquettes leurres qui vient d'être décrit. Entre autres applications intéressantes, on peut citer le tir en dépointage dans la mesure où une grande précision n'est pas requise : soit par exemple pour un traitement de zone par salves de roquettes, l'avantage étant que l'avion peut opérer à basse altitude sans devoir passer au-dessus de l'objectif. Dans cette application, en cas d'horizontalité de trajectoire requise, les plages de valeurs possibles pour la vitesse V et l'angle a d'inclinaison transversale de la voilure de portance sont évidemment beaucoup plus importantes que pour le cas d'une roquette leurre.The field of use of the invention is not limited to the launching of decoy rockets which has just been described. Among other interesting applications, it is possible to point the shot in aiming since a high precision is not required: either for example for a zone treatment by rocket bursts, the advantage being that the plane can operate at low altitude without having to pass above the objective. In this application, in the event of required trajectory horizontality, the ranges of possible values for the speed V and the angle a of transverse inclination of the lift wing are obviously much greater than for the case of a decoy rocket. .

Claims (12)

1. Projectile having a longitudinal axis, of the type including a lift aerofoil (4), a tail empennage (5), a cruise motor (10, 11), and intended to be released from a carrying airborne vehicle, the use of the projectile including a phase of flight carried on the carrying vehicle, a launch phase and a phase of independent flight as from the release, characterized in that it includes:
- means of keeping the projectile in a roll position inclined by an angle a with respect to the horizontal in the course of the carried flight phase and of the launch phase, these means being intended to cooperate for this purpose with corresponding means of the carrying vehicle;
- means of keeping the projectile in a roll position inclined with respect to the horizontal in the course of the independent flight phase.
2. Projectile according to Claim 1, characterized in that the means of keeping the projectile in an inclined roll position in the course of the independent flight phase include means of detecting a predetermined offset d a between the real value of the angle of inclination of the aerofoil and the anticipated value a and means of correcting this offset which are controlled by the detection means.
3. Projectile according to Claim 2, characterized in that the offset detection means consist of a wheel (14) including two faces and having, as its axis, the axis of the projectile, the wheel including a through hole (15) situated in a radial plane r at a distance d from the axis;
- two light sources (16) integral with the projectile illuminating a first face of the wheel, the two sources being at a distance d from the axis of the projectile and in radial planes forming an angle between them equal to twice the predetermined value d;
- two photoelectric cells (17) symmetric with the light sources with respect to the wheel;
- retractable means of keeping the wheel in a position in which the radial plane r of the through hole (15) forms an angle d with each of the radial planes passing through the photoelectric cells (17) and the light sources (16).
4. Projectile according to Claim 2, characterized in that the roll correction means consist of a store of pressurized gas (18) linked by ducts (19) to peripheral nozzles (20), the opening and the closing of the store being controlled by at least one solenoid valve (21).
5. Projectile according to Claim 2, characterized in that the roll correction means consist of small guns (22) able to produce, in the event of firing, recoil forces which can be made use of as an anti- roll impulse.
6. Projectile according to one of Claims 1 to 5, characterized in that it further includes a take-off motor (8, 9).
7. Projectile according to one of Claims 1 to 5, characterized in that the tail empennage (5) is mounted free in rotation about its longitudinal axis.
8. Projectile according to Claim 6, characterized in that the tail empennage (5) and the take-off motor (8, 9) form an assembly mounted free in rotation about the longitudinal axis of the projectile.
9. Projectile according to one of Claims 1 to 8, characterized in that the lift aerofoil (4) and the tail empennage (5) are deployable.
10. Projectile according to one of Claims 1 to 9, characterized in that the cruise motor is intended to keep the projectile at a predetermined speed V and in that at this speed V the component (fz) of the load factor f applied to the projectile inclined by the roll angle cancels the weight of the projectile.
11. Projectile according to one of Claims 1 to 10, characterized in that it carries electromagnetic or infrared decoys.
12. Projectile according to Claim 11, characterized in that it is organized into three segments, a front segment (1) containing the decoys, an intermediate segment (2) including the lift aerofoil (4), and a rear segment (3) including the propulsive part and the tail empennage.
EP19910402521 1990-09-28 1991-09-23 Device for imparting a deviated trajectory to an airborne missile Expired - Lifetime EP0482970B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9011990A FR2667390B1 (en) 1990-09-28 1990-09-28 METHOD AND DEVICE FOR PRINTING A LATERAL-BENDED PATH TO A PROJECTILE LAUNCHED FROM AN AIRCRAFT.
FR9011990 1990-09-28

Publications (2)

Publication Number Publication Date
EP0482970A1 EP0482970A1 (en) 1992-04-29
EP0482970B1 true EP0482970B1 (en) 1995-05-03

Family

ID=9400755

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19910402521 Expired - Lifetime EP0482970B1 (en) 1990-09-28 1991-09-23 Device for imparting a deviated trajectory to an airborne missile

Country Status (3)

Country Link
EP (1) EP0482970B1 (en)
DE (1) DE69109443T2 (en)
FR (1) FR2667390B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0004215D0 (en) * 2000-02-24 2000-04-12 Demole Frederic J Heavy load traction system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3952970A (en) * 1974-08-28 1976-04-27 The United States Of America As Represented By The Secretary Of The Navy Means for improving rocket missile accuracy
US4389028A (en) * 1976-01-14 1983-06-21 The United States Of America As Represented By The Secretary Of The Navy Flat trajectory projectile
US4453426A (en) * 1980-08-29 1984-06-12 The United States Of America As Represented By The Secretary Of The Navy Pivotal mono wing cruise missile with wing deployment and fastener mechanism
GB2226624B (en) * 1987-12-12 1991-07-03 Thorn Emi Electronics Ltd Projectile

Also Published As

Publication number Publication date
FR2667390B1 (en) 1995-01-27
FR2667390A1 (en) 1992-04-03
EP0482970A1 (en) 1992-04-29
DE69109443T2 (en) 1995-09-14
DE69109443D1 (en) 1995-06-08

Similar Documents

Publication Publication Date Title
EP0081421B1 (en) Terminal guidance method and guided missile using it
EP3150957B1 (en) Artillery projectile having a piloted phase
EP0655599B1 (en) Anti-aircraft defence system and defence missile for such a system
EP0737297B1 (en) Missile launching and steering system
FR2526149A1 (en) ARM SYSTEM AND MUNITION OF OVERVOL
EP0439392B1 (en) Projectile and its process of utilization
EP2710326B1 (en) In-flight attitude control and direct thrust flight control system of a vehicle and craft comprising such a system
EP1600728B1 (en) Airborne vehicle for ground observation
FR2785381A1 (en) METHOD AND DEVICE FOR ALLOWING THE VEHICLE TO PERFORM A FAST TURN IN A FLUID MEDIUM
EP0277445A1 (en) Carrier projectile with submissiles for creating a predetermined ground-striking pattern
EP1093561B1 (en) Passive fail-safe device for mobile craft such as a helicopter
EP0482970B1 (en) Device for imparting a deviated trajectory to an airborne missile
FR2796454A1 (en) Weapon system mounted on stealth aircraft is concealed to minimize radar signature has concelaed tube fixed to the exterior and minmizes the reflection of electromagnetic waves
EP0316216B1 (en) Gyroscopic stabilising device for a projectile steering element
EP1369349B1 (en) Weapon provided with a missile and which is mounted on a stealth aircraft, and a weapon system comprising a stealth aircraft and such a weapon
FR2865537A1 (en) FUSE FOR AMMUNITION
EP0062563B1 (en) Lateral acceleration control method for a missile and corresponding weapon system
EP0420760B1 (en) Method and system for autonomous guidance of a propelled airborne ballistic projectile towards a target
FR2504703A1 (en) Guidance system for missile eliminating wind effects - uses array of impulse jets operating in brief regular bursts to correct wind forces on missile
CA2179929C (en) Missile launching and steering system
EP1266825A1 (en) Method for separating an airborne rocket from its carrier
FR3103265A1 (en) OFFSET ACTIVE LURE
WO2007115998A1 (en) Device for controlling the initiation of the warhead of a rocket and method for launching the rocket equipped with such a device
FR2698440A1 (en) Guidance procedure for projectile on atmospheric ballistic course - uses sensors to detect aerodynamic forces acting on projectile, and thrusters to compensate for them
BE901258A (en) METHOD OF ACQUIRING A TARGET BY A GUIDED PROJECTILE AND PROJECTILE OPERATING ACCORDING TO THIS METHOD.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB IT LI SE

17P Request for examination filed

Effective date: 19920818

17Q First examination report despatched

Effective date: 19931001

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI SE

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 69109443

Country of ref document: DE

Date of ref document: 19950608

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950622

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950809

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950811

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960816

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960819

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960930

Ref country code: CH

Effective date: 19960930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 91402521.8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970923

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050923