EP0471919A2 - Homokinetic actuator system - Google Patents

Homokinetic actuator system Download PDF

Info

Publication number
EP0471919A2
EP0471919A2 EP91105326A EP91105326A EP0471919A2 EP 0471919 A2 EP0471919 A2 EP 0471919A2 EP 91105326 A EP91105326 A EP 91105326A EP 91105326 A EP91105326 A EP 91105326A EP 0471919 A2 EP0471919 A2 EP 0471919A2
Authority
EP
European Patent Office
Prior art keywords
spherical shell
missile
homokinetic
control coils
balls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91105326A
Other languages
German (de)
French (fr)
Other versions
EP0471919A3 (en
EP0471919B1 (en
Inventor
Walter Dipl.-Ing. Hetzer
Richard Dipl.-Ing. Neumayer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Daimler Benz Aerospace AG
Messerschmitt Bolkow Blohm AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Benz Aerospace AG, Messerschmitt Bolkow Blohm AG filed Critical Daimler Benz Aerospace AG
Publication of EP0471919A2 publication Critical patent/EP0471919A2/en
Publication of EP0471919A3 publication Critical patent/EP0471919A3/en
Application granted granted Critical
Publication of EP0471919B1 publication Critical patent/EP0471919B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/222Homing guidance systems for spin-stabilized missiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2213Homing guidance systems maintaining the axis of an orientable seeking head pointed at the target, e.g. target seeking gyro
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2253Passive homing systems, i.e. comprising a receiver and do not requiring an active illumination of the target
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2273Homing guidance systems characterised by the type of waves
    • F41G7/2293Homing guidance systems characterised by the type of waves using electromagnetic waves other than radio waves

Definitions

  • the invention relates to a homokinetic control system.
  • the invention has for its object to provide a homokinetic control system that has the same properties in a small space as two cardan joints arranged one behind the other.
  • the homokinetic actuator system ideally permits the functional and spatial fusion between a homokinetic constant velocity ball joint and a biaxial electromechanical actuator.
  • the inner and outer spherical shells are connected to one another by at least six transmission balls and corresponding inner and outer ball tracks coupled homokinetically.
  • the balls are held in a ball cage which, when deflected, guides them in a plane that lies in the bisector of the angle of deflection.
  • the deflection is possible in any spatial direction.
  • the two actuators consist of four permanent magnetic excitation circuits and four dome-shaped electrical control coils. Two opposing coils are activated together by applying a control current and trigger a torque and thus a relative movement about the associated actuating axis.
  • the pairs of control coils are advantageously arranged in the inner spherical shell, the permanent magnets being in the outer spherical shell.
  • a homokinetic spatial control system 1 which consists essentially of an outer spherical shell 2, an inner spherical shell 3 and eight transmission balls 4 arranged between the spherical shells and two rows of four supporting balls 5 each.
  • the outer spherical shell 2 there are two rows of four permanent magnets 6 each, which interact with four control coils 7a to 7d arranged in the inner spherical shell 3.
  • a permanent flowing magnetic excitation flux 8 is maintained by the permanent magnets 6.
  • In the inner spherical shell 3 there are 4 inner spherical tracks 9 for the movement of the transmission balls and in the outer spherical shell 2 there are corresponding outer spherical tracks 11.
  • the transfer balls 4 are held by a ball cage 12.
  • the homokinetic control system has two control axes 13 and 14.
  • the control coil pairs 7b and 7d arranged around the control axis 13 receive their control current according to FIG. 2 via lines 15, the control coil pairs 7a and 7c according to FIG. 3 via lines 16.
  • the inner spherical shell 3 can depending on how the control coils are energized, deflect about any axis, the ball cage 12 with the transfer balls 4 is in a plane that is rotated by half the deflection angle of the inner spherical shell 3 perpendicular to the deflection angle.
  • the actuating movement is triggered by the force of the energized control coils in the permanent magnetic excitation flow.
  • FIG. 4 schematically shows the installation of the homokinetic control system 1 in the tip of a missile 20.
  • the outer spherical shell 2 with the permanent magnets 6 is inserted in a jacket 21 of the missile tip with the interposition of a damping ring 22.
  • a sensor 23 (not shown in more detail) is installed in the inner spherical shell 3 and is, for example, an optical sensor for autonomous target search.
  • the missile 20 can rotate about an axis 24 according to an arrow 25. If the sensor 23 is deflected in the fulfillment of its function, for example by an angle ⁇ , the ball cage 12 with the transmission balls 4 stands in a plane which is rotated by the angle ⁇ / 2 relative to the original position.
  • the actuating movement by the angle ⁇ does not trigger any undesired roll relative movements between the sensor 23 and the axis 24 of the missile 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

A homokinetic actuator system consists of an inner spherical shell 3 and an outer spherical shell 2 which are connected to one another by at least six transmission balls 4 and corresponding inner and outer ball tracks 9 and 11. At least two electrical control coils 7 are arranged in the inner or outer spherical shell 3 or 2. At least four permanent magnets 6 in the spherical shell 2 or 3 not provided with the control coils 7 interact with the control coils 7. At least twice three support balls serve for the relative mounting of the two spherical shells 2 and 3 about the centre of the sphere. <IMAGE>

Description

Die Erfindung betrifft ein homokinetisches Stellsystem.The invention relates to a homokinetic control system.

Bei Auslenkung eines Sensors, der in der Spitze eines rotierenden Flugkörpers eingebaut ist, besteht die Schwierigkeit, den Auslenkwinkel unbeeinflußt von der Drehgeschwindigkeit des Flugkörpers aufrechtzuerhalten. Bei Anwendung eines herkömmlichen Kardangelenks treten bei ausgelenktem Sensor Übertragungsfehler, sogenannte Kardanfehler, auf. Dieses bewirkt nichttolerierbare Rollrelativbewegungen zwischen dem Flugkörper und dem Sensor mit entsprechenden auslenkwinkelabhängigen Beschleunigungsmomenten. Diese Rollrelativbewegung führt bei einem optischen Sensor zu unerwünschten Bildverzerrungen. Die Probleme könnten in bekannter Weise durch die Anordnung von einem homokinetischen Stellsystem mit zwei hintereinander wirkenden Kardangelenken beseitigt werden, was aber aufgrund der konstruktiven Gegebenheiten (Platz, Gewicht) bei einem Flugkörper nicht anwendbar ist. Insbesondere müßten beide Kardangelenke in den zwei Hauptachsen durch rotative Stellglieder ansteuerbar sein, was aufgrund des hohen Aufwandes und Platzbedarfs nicht in Frage kommt.When a sensor, which is installed in the tip of a rotating missile, is deflected, there is a difficulty in maintaining the deflection angle unaffected by the rotational speed of the missile. When using a conventional cardan joint, transmission errors, so-called cardan errors, occur when the sensor is deflected. This causes intolerable roll relative movements between the missile and the sensor with corresponding acceleration torque dependent on the deflection angle. This roll relative movement leads to undesired image distortions in an optical sensor. The problems could be eliminated in a known manner by the arrangement of a homokinetic control system with two cardan joints acting one behind the other, but this is not applicable to a missile due to the structural conditions (space, weight). In particular, both cardan joints in the two main axes should be controllable by rotary actuators, which is out of the question due to the high outlay and space requirement.

Der Erfindung liegt die Aufgabe zugrunde, ein homokinetisches Stellsystem zu schaffen, das auf kleinem Raum dieselben Eigenschaften wie zwei hintereinander angeordnete Kardangelenke aufweist.The invention has for its object to provide a homokinetic control system that has the same properties in a small space as two cardan joints arranged one behind the other.

Diese Aufgabe wird durch die im Anspruch 1 gekennzeichneten Merkmale gelöst. Eine vorteilhafte Ausgestaltung der Erfindung ist durch den Anspruch 2 gekennzeichnet.This object is achieved by the features characterized in claim 1. An advantageous embodiment of the invention is characterized by claim 2.

Das homokinetische Stellsystem entsprechend derErfindung gestattet in idealer Weise die funktionelle und räumliche Verschmelzung zwischen einem homokinetischen Kugelgleichlaufgelenk und einem zweiachsigen elektromechanischen Stellglied. Dabei sind die innere und die äußere Kugelschale durch mindestens sechs Übertragungskugeln und korrespondierende innere und äußere Kugelbahnen miteinander homokinetisch gekoppelt. Die Kugeln sind in einem Kugelkäfig gehalten, der sie bei Auslenkung in einer Ebene führt, die in der Winkelhalbierenden des Auslenkwinkels liegt.The homokinetic actuator system according to the invention ideally permits the functional and spatial fusion between a homokinetic constant velocity ball joint and a biaxial electromechanical actuator. The inner and outer spherical shells are connected to one another by at least six transmission balls and corresponding inner and outer ball tracks coupled homokinetically. The balls are held in a ball cage which, when deflected, guides them in a plane that lies in the bisector of the angle of deflection.

Dabei ist die Auslenkung in beliebiger räumlicher Richtung möglich. Die zwei Stellglieder bestehen aus vier permanentmagnetischen Erregerkreisen und vier kalottenförmigen elektrischen Steuerspulen. Jeweils zwei gegenüberliegende Spulen werden gemeinsam durch Anlegen eines Steuerstroms aktiviert und lösen ein Drehmoment und damit eine Relativbewegung um die zugehörige Stellachse aus. In vorteilhafter Weise sind die Steuerspulenpaare in der inneren Kugelschale angeordnet, wobei die Permanentmagnete in der äußeren Kugelschale sind.The deflection is possible in any spatial direction. The two actuators consist of four permanent magnetic excitation circuits and four dome-shaped electrical control coils. Two opposing coils are activated together by applying a control current and trigger a torque and thus a relative movement about the associated actuating axis. The pairs of control coils are advantageously arranged in the inner spherical shell, the permanent magnets being in the outer spherical shell.

Bei einem Einbau des homokinetischen Stellsystems in die Spitze eines rotierenden Flugkörpers entsprechend den Unteransprüchen 3 und 4 ist innerhalb der inneren Kugelschale ein, z.B. optischer Sensor eingebaut, der bei einem Ausschlag von der Rollbewegung des Flugkörpers dynamisch nicht beeinflußt wird. Dieser Einbau des erfindungsgemäßen homokinetischen Stellsystems in einem rotierenden Flugkörper ermöglicht durch seine gedrungene Bauweise und seine einfachen Bauteile die Schaffung eines von der Rollbewegung des Flugkörpers unbeeinflußten Zielsuchsystems auch bei kleinen Abmessungen.When the homokinetic control system is installed in the tip of a rotating missile according to subclaims 3 and 4, a, e.g. Optical sensor installed, which is not dynamically influenced by the roll movement of the missile in the event of a deflection. This installation of the homokinetic control system according to the invention in a rotating missile enables through its compact construction and its simple components to create a homing system unaffected by the rolling movement of the missile even with small dimensions.

Die Erfindung wird nachstehend anhand der Zeichnungen näher erläutert. Es zeigen:

Fig. 1
einen Schnitt durch die Kugelschalen eines homokinetischen Stellsystems entsprechend der Linie II-II der Fig.2,
Fig. 2
einen Schnitt durch die Fig. 1 entsprechend den Linien I-I,
Fig. 3
einen Schnitt durch die Fig. 2 entsprechend den Linien III-III unter Fortlassung der äußeren Kugelschale und
Fig. 4
einen Schnitt durch die Spitze eines Flugkörpers.
The invention is explained below with reference to the drawings. Show it:
Fig. 1
2 shows a section through the spherical shells of a homokinetic control system according to line II-II of FIG. 2,
Fig. 2
2 shows a section through FIG. 1 along lines II,
Fig. 3
a section through FIG. 2 according to lines III-III, leaving out the outer spherical shell and
Fig. 4
a section through the tip of a missile.

Die Fig. 1 bis 3 zeigen ein homokinetisches räumliches Stellsystem 1, das im wesentlichen aus einer äußeren Kugelschale 2, einer inneren Kugelschale 3 und zwischen den Kugelschalen angeordneten acht Übertragungskugeln 4 und zwei Reihen von je vier Stützkugeln 5 besteht. In der äußeren Kugelschale 2 sind zwei Reihen von je vier Permanentmagnete 6 vorhanden, die mit vier in der inneren Kugelschale 3 angeordneten Steuerspulen 7a bis 7d zusammenwirken. Durch die Permanentmagnete 6 wird ein ständig fließender magnetischer Erregerfluß 8 aufrechterhalten. In der inneren Kugelschale 3 sind für die Bewegung der Übertragungskugeln 4 innere Kugelbahnen 9 und in der äußeren Kugelschale 2 entsprechende äußere Kugelbahnen 11 vorhanden. Die Übertragungskugeln 4 sind durch einen Kugelkäfig 12 gehalten. Das homokinetische Stellsystem hat zwei Stellachsen 13 und 14. Die um die Stellachse 13 angeordneten Steuerspulenpaare 7b und 7d erhalten ihren Steuerstrom entsprechend Fig. 2 durch Leitungen 15, die Steuerspulenpaare 7a und 7c entsprechend Fig. 3 durch Leitungen 16. Die innere Kugelschale 3 kann, je nachdem wie die Steuerspulen mit Strom beaufschlagt werden, um eine beliebige Achse ausschlagen, dabei stellt sich der Kugelkäfig 12 mit den Übertragungskugeln 4 in eine Ebene, die um den halben Ausschlagwinkel der inneren Kugelschale 3 senkrecht zum Ausschlagwinkel verdreht ist. Die Stellbewegung wird durch die Kraftwirkung der bestromten Steuerspulen im permanentmagnetischen Erregerfluß ausgelöst.1 to 3 show a homokinetic spatial control system 1, which consists essentially of an outer spherical shell 2, an inner spherical shell 3 and eight transmission balls 4 arranged between the spherical shells and two rows of four supporting balls 5 each. In the outer spherical shell 2 there are two rows of four permanent magnets 6 each, which interact with four control coils 7a to 7d arranged in the inner spherical shell 3. A permanent flowing magnetic excitation flux 8 is maintained by the permanent magnets 6. In the inner spherical shell 3 there are 4 inner spherical tracks 9 for the movement of the transmission balls and in the outer spherical shell 2 there are corresponding outer spherical tracks 11. The transfer balls 4 are held by a ball cage 12. The homokinetic control system has two control axes 13 and 14. The control coil pairs 7b and 7d arranged around the control axis 13 receive their control current according to FIG. 2 via lines 15, the control coil pairs 7a and 7c according to FIG. 3 via lines 16. The inner spherical shell 3 can depending on how the control coils are energized, deflect about any axis, the ball cage 12 with the transfer balls 4 is in a plane that is rotated by half the deflection angle of the inner spherical shell 3 perpendicular to the deflection angle. The actuating movement is triggered by the force of the energized control coils in the permanent magnetic excitation flow.

Die Fig. 4 stellt schematisch den Einbau des homokinetischen Stellsystems 1 in die Spitze eines Flugkörpers 20 dar. In einem Mantel 21 der Flugkörperspitze ist unter Zwischenschaltung eines Dämpfungsringes 22 die äußere Kugelschale 2 mit den Permanentmagenten 6 eingesetzt. In die innere Kugelschale 3 ist ein nicht näher dargestellter Sensor 23 eingebaut, der z.B. ein optischer Sensor zur autonomen Zielsuche ist. Der Flugkörper 20 kann um eine Achse 24 entsprechend eines Pfeiles 25 rotieren. Wenn der Sensor 23 in Erfüllung seiner Funktion z.B. um einen Winkel α ausgelenkt wird, stellt sich der Kugelkäfig 12 mit den Übertragungskugeln 4 in eine Ebene, die um den Winkel α/2 gegenüber der ursprünglichen Stellung verdreht ist. Dabei löst die Stellbewegung um den Winkel α keine unerwünschten Roll-Relativbewegungen zwischen dem Sensor 23 und der Achse 24 des Flugkörpers 20 aus.4 schematically shows the installation of the homokinetic control system 1 in the tip of a missile 20. The outer spherical shell 2 with the permanent magnets 6 is inserted in a jacket 21 of the missile tip with the interposition of a damping ring 22. A sensor 23 (not shown in more detail) is installed in the inner spherical shell 3 and is, for example, an optical sensor for autonomous target search. The missile 20 can rotate about an axis 24 according to an arrow 25. If the sensor 23 is deflected in the fulfillment of its function, for example by an angle α, the ball cage 12 with the transmission balls 4 stands in a plane which is rotated by the angle α / 2 relative to the original position. Here the actuating movement by the angle α does not trigger any undesired roll relative movements between the sensor 23 and the axis 24 of the missile 20.

Claims (4)

Homokinetisches Stellsystem, gekennzeichnet durch - eine innere Kugelschale (3) und eine äußere Kugelschale (2), die durch mindestens sechs Übertragungskugeln (4) und korrespondierende innere und äußere Kugelbahnen (9,11) miteinander verbunden sind; - mindestens zwei elektrische Steuerspulen (7), die in der inneren oder äußeren Kugelschale (3 oder 2) angeordnet sind; - mindestens vier Permanentmagnete (6) in der nicht mit den Steuerspulen (7) versehenen Kugelschale (2,3), die mit den Steuerspulen zusammenwirken; - mindestens zweimal drei Stützkugeln (5), welche die beiden Kugelschalen (2,3) um den Kugelmittelpunkt in allen Richtungen drehbar lagern. Homokinetic control system, characterized by - An inner spherical shell (3) and an outer spherical shell (2), which are connected to one another by at least six transmission balls (4) and corresponding inner and outer ball tracks (9, 11); - At least two electrical control coils (7) which are arranged in the inner or outer spherical shell (3 or 2); - At least four permanent magnets (6) in the ball shell (2, 3) not provided with the control coils (7), which interact with the control coils; - At least twice three support balls (5), which support the two spherical shells (2, 3) so that they can rotate in all directions around the center of the ball. Stellsystem nach Anspruch 1, dadurch gekennzeichnet, daß in der inneren Kugelschale (3) die Steuerspulen (7) und in der äußeren Kugelschale (2) die Permanentmagnete (6) angeordnet sind.Control system according to claim 1, characterized in that the control coils (7) are arranged in the inner spherical shell (3) and the permanent magnets (6) are arranged in the outer spherical shell (2). Stellsystem nach den Ansprüchen 1 und 2, eingebaut in die Spitze eines um seine Achse (24) rotierenden Flugkörpers (20), dadurch gekennzeichnet, daß innerhalb der inneren Kugelschale (3) ein Sensor (23) eingebaut ist, und daß bei Stellbewegung des Sensors um einen Winkel (α) gegenüber der Längsachse (24) des Flugkörpers (20) die Übertragungskugeln (4) sich unabhängig von der Rollbewegung des Flugkörpers der Ebene des Winkels (α/2) bewegen.Control system according to Claims 1 and 2, installed in the tip of a missile (20) rotating about its axis (24), characterized in that a sensor (23) is installed within the inner spherical shell (3), and that when the sensor is moved the transfer balls (4) move by an angle (α) with respect to the longitudinal axis (24) of the missile (20) independently of the rolling movement of the missile at the plane of the angle (α / 2). Stellsystem nach Anspruch 3, dadurch gekennzeichnet, daß die äußere Kugelschale (2) mit der Spitze des Flugkörpers (20) über einen Dämpfungsring (22) verbunden ist.Adjusting system according to claim 3, characterized in that the outer spherical shell (2) is connected to the tip of the missile (20) via a damping ring (22).
EP91105326A 1990-07-14 1991-04-04 Homokinetic actuator system Expired - Lifetime EP0471919B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4022509 1990-07-14
DE4022509A DE4022509A1 (en) 1990-07-14 1990-07-14 HOMOKINETIC SETTING SYSTEM

Publications (3)

Publication Number Publication Date
EP0471919A2 true EP0471919A2 (en) 1992-02-26
EP0471919A3 EP0471919A3 (en) 1992-04-22
EP0471919B1 EP0471919B1 (en) 1995-09-20

Family

ID=6410331

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91105326A Expired - Lifetime EP0471919B1 (en) 1990-07-14 1991-04-04 Homokinetic actuator system

Country Status (2)

Country Link
EP (1) EP0471919B1 (en)
DE (2) DE4022509A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1351279A (en) * 1958-07-01 1974-04-24 Bodensee Fluggeraete Target seeking gyro
DE2921228B2 (en) * 1979-05-25 1981-03-12 Bodenseewerk Gerätetechnik GmbH, 7770 Überlingen Seeker head for a missile
EP0166152A2 (en) * 1984-06-11 1986-01-02 Allied Corporation Reduced mass guidance system for missile
JPS61203860A (en) * 1985-03-06 1986-09-09 Agency Of Ind Science & Technol 3-degrees-of-freedom dc motor
EP0202719A2 (en) * 1985-05-22 1986-11-26 Philips Norden AB Bi-axial supporting arrangements
WO1987007707A1 (en) * 1986-06-03 1987-12-17 Philips Norden Ab A gyrostabilized deflection device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4500051A (en) * 1972-10-06 1985-02-19 Texas Instruments Incorporated Gyro stabilized optics with fixed detector
US4210804A (en) * 1978-08-22 1980-07-01 Raytheon Company Free-gyro optical seeker
DE3205437A1 (en) * 1981-02-16 1982-09-23 British Aerospace Public Ltd. Co., London Optical radiation receiver
US4615496A (en) * 1985-01-03 1986-10-07 The Boeing Company Hybrid semi-strapdown infrared seeker

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1351279A (en) * 1958-07-01 1974-04-24 Bodensee Fluggeraete Target seeking gyro
DE2921228B2 (en) * 1979-05-25 1981-03-12 Bodenseewerk Gerätetechnik GmbH, 7770 Überlingen Seeker head for a missile
EP0166152A2 (en) * 1984-06-11 1986-01-02 Allied Corporation Reduced mass guidance system for missile
JPS61203860A (en) * 1985-03-06 1986-09-09 Agency Of Ind Science & Technol 3-degrees-of-freedom dc motor
EP0202719A2 (en) * 1985-05-22 1986-11-26 Philips Norden AB Bi-axial supporting arrangements
WO1987007707A1 (en) * 1986-06-03 1987-12-17 Philips Norden Ab A gyrostabilized deflection device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN Band 11, Nr. 36 (E-477)(2483), 3. Februar 1987; & JP - A - 61203860 (AGENCY OF IND SCIENCE & TECHNOL) 09.09.1986 *
Prof. Dr.Ing. Siegfried Hildebrand,"Feinmechanische Bauelemente" VEB Verlag Technik Berlin, 2.Auflage, 1971, Seiten 724-725 *

Also Published As

Publication number Publication date
DE4022509A1 (en) 1992-01-16
EP0471919A3 (en) 1992-04-22
EP0471919B1 (en) 1995-09-20
DE4022509C2 (en) 1993-06-24
DE59106516D1 (en) 1995-10-26

Similar Documents

Publication Publication Date Title
DE2643588A1 (en) ELECTROMAGNETICALLY CONTROLLED BEAM DEFLECTOR
EP1407218B1 (en) Method for correcting the flight path of ballistically fired spin-stabilised artillery ammunition
DE102014002182A1 (en) Biaxial deflectable monolithic solid-body joint
DE102015201249A1 (en) Movably mounted component of a projection exposure apparatus and device and method for limiting movement therefor
DE102011102037B4 (en) Full rotation Simulator
DE4336207A1 (en) Interface arrangement for data transmission between the carrier aircraft and the missile
WO2018145704A1 (en) Reluctance actuator
WO2005019878A1 (en) Optical imaging device comprising at least one system diaphragm
DE4022509C2 (en)
DE2531069C3 (en) Electrically controlled optical deflection system
DE19535886B4 (en) Seeker head for missiles
DE2921228C3 (en) Seeker head for a missile
DE19947174A1 (en) Mask holder with clamps on disc-shaped frame for exposure of semiconductor wafers in ion lithography
DE60025767T2 (en) Light beam control for satellite applications
WO1998013714A1 (en) Mounting for an astronomic mirror
DE102021214217A1 (en) Device for holding an optical element, alignment device and method for alignment
EP1061338A1 (en) Device for directional stabilisation of sensors in vehicles
DE10232349B4 (en) Probe for coordinate measuring instruments
DE1473958C3 (en) Gyro with three degrees of freedom (V.St.A.)
DE2543158A1 (en) Conical scan generator for projectile homing system - has motor driven ring system with bearings rotating on inclined axes
DE112020000185T5 (en) SINGLE PLATE TARGET CONTROL MECHANISM WITH INDEPENDENT MOVEMENT AND LOCKABILITY
CH455582A (en) Signal generator for generating an electrical signal as a function of the angular position of a rotatable body
WO2018036959A1 (en) Mirror tower, arrangement having a mirror tower, and microscope
DE19743652A1 (en) Testing procedure
WO2022053688A2 (en) Adjustment device, adjustment system and computer program product

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB SE

17P Request for examination filed

Effective date: 19920318

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEUTSCHE AEROSPACE AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 19940818

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLER-BENZ AEROSPACE AKTIENGESELLSCHAFT

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB SE

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59106516

Country of ref document: DE

Date of ref document: 19951026

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951024

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010316

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010402

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010410

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010421

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021101

EUG Se: european patent has lapsed

Ref document number: 91105326.2

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST