EP0456296B1 - Verfahren zur Herstellung von stranggegossenen Bändern und Drähten - Google Patents

Verfahren zur Herstellung von stranggegossenen Bändern und Drähten Download PDF

Info

Publication number
EP0456296B1
EP0456296B1 EP91200921A EP91200921A EP0456296B1 EP 0456296 B1 EP0456296 B1 EP 0456296B1 EP 91200921 A EP91200921 A EP 91200921A EP 91200921 A EP91200921 A EP 91200921A EP 0456296 B1 EP0456296 B1 EP 0456296B1
Authority
EP
European Patent Office
Prior art keywords
aluminum
lead
heat treatment
silicon
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91200921A
Other languages
English (en)
French (fr)
Other versions
EP0456296A1 (de
Inventor
Bruno Dr. Prinz
Alberto Romero
Ingrid MÜLLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Publication of EP0456296A1 publication Critical patent/EP0456296A1/de
Application granted granted Critical
Publication of EP0456296B1 publication Critical patent/EP0456296B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/003Alloys based on aluminium containing at least 2.6% of one or more of the elements: tin, lead, antimony, bismuth, cadmium, and titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent

Definitions

  • the invention relates to a method for producing at a high casting and cooling rate of a melt heated to a temperature above the segregation temperature, plastically deformed and heat-treated strips and wires made of monotectic aluminum-silicon alloy, in which in the aluminum and aluminum-silicon -Eutectic matrix 1 to 50 wt .-% lead or bismuth are stored.
  • a uniform dispersion of spherical droplets of small diameter in the matrix of monotectic alloys can, however, be achieved if the melt is continuously cast vertically to form a strip or wire of 5 to 20 mm thickness or diameter with a relatively high casting and cooling rate, so that before the phase boundary solid / liquid a very steep temperature gradient is maintained.
  • the distance between the segregation and solidus isotherms within the system and thus the sedimentation distance is as short as possible.
  • the temperature or path interval is given by the isotherms of the separation temperature and the temperature of the monotectic Reaction in which the matrix phase solidifies and thereby includes the second still liquid phase in the distribution that is then present.
  • This method is particularly suitable for the production of cast strips or wires made of monotectic aluminum-silicon alloys, in the matrix of which aluminum and aluminum-silicon eutectic exist, 1 to 50% by weight of lead or bismuth as a minority phase in the form of fine Droplet is stored.
  • the cast strip or wire is subjected to a rolling and / or heat treatment in order to optimize the material properties.
  • a rolling and / or heat treatment in order to optimize the material properties.
  • the originally spherical lead or bismuth phase is deformed into elongated platelets.
  • elongated inclusions adversely affect the mechanical resilience and the technological properties of the material, so that in order to set the desired material properties, it is necessary to transform the elongated platelets into compact structural shapes, which can be done by subsequent heat treatment.
  • a common method for the transformation and subsequent molding of a dispersed low-melting minority phase is the long-term heating of the monotectic alloy to a temperature above the melting temperature of the low-melting minority phase.
  • the minority phase is transformed and shaped by dissolving and transporting the matrix metal, preferably within the molten phase, since the solubilities and diffusion coefficients in melts are much greater than in solids.
  • US-A-4 471 031 an aluminum alloy which contains 0.5 to 5% silicon and 0.5 to 8% lead and bismuth among other metals.
  • the melt is cast at a speed of 1.5 to 2.5 m / mm and the cast strip is annealed after forming at 350 to 550 ° C and with a max. Cooled to 200 ° C / h. About the behavior of the lead minority phases or bismuth, no information is given.
  • US-A-3 827 882 discloses an aluminum-silicon-lead alloy with 3 to 26% by weight of lead, 0.5 to 11.3% by weight of silicon, up to 1% by weight of bismuth and up to 1% by weight % Cerium or lithium.
  • the melt heated to a temp above the development temperature, is continuously cast at a high cooling rate.
  • the lead phase is prevented from oozing out, and there is a fine distribution in the matrix.
  • the alloy contains 1% cerium or lithium.
  • the solution to this problem is that the melt is poured at a speed of 10 to 30 mm / s and cooled at a speed of 300 to 1500 K / s and the strips or wires are subjected to a heat treatment at a temperature of 550 to 600 ° C be subjected.
  • the aluminum-silicon eutectic also melts at least partially.
  • the transformation or shaping of the liquid lead or bismuth phase within the eutectic melting range takes place very quickly.
  • the monotectic aluminum-silicon alloy with the lead phase enclosed in the matrix is subjected to a heat treatment at temperatures of 580 to 590 ° C. or 575-585 ° C.
  • the heat treatment expediently takes 0.5 to 15 minutes.
  • the method according to the invention is particularly suitable for the treatment of sliding materials based on aluminum-silicon with a lead or bismuth phase finely dispersed in their matrix.
  • Fig. 1 a photographic image of a cut through a continuously cast, 10 mm thick and then rolled cast strip of a ternary monotectic aluminum alloy with 5% silicon and 10% bismuth is shown in 500 times magnification.
  • elongated plates of the bismuth phase (3) are embedded in the matrix formed from aluminum (1) and aluminum-silicon eutectic (2).
  • the 500-fold enlargement of the photographic image of a cut through a continuously cast, then rolled and then heated to 587.5 ° C. for 5 minutes of the abovementioned ternary monotectic aluminum alloy shown in FIG. 2 shows that the bismuth phase (4) into the matrix (5) consisting essentially of aluminum is molded in and the silicon (6) is crystallized in a significantly coarse form.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Continuous Casting (AREA)
  • Conductive Materials (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Moulding By Coating Moulds (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Ropes Or Cables (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Silicon Compounds (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von mit großer Gieß- und Abkühlgeschwindigkeit einer auf eine Temperatur oberhalb der Entmischungstemperatur erhitzten Schmelze stranggegossenen, plastisch verformten und wärmebehandelten Bändern und Drähten aus monotektischer Aluminium-Silizium-Legierung, bei der in der aus Aluminium und Aluminium-Silizium-Eutektikum bestehenden Matrix 1 bis 50 Gew.-% Blei oder Wismut eingelagert sind.
  • Bei auf Temperaturen oberhalb der Entmischungstemperatur erhitzten Schmelzen monotektischer Legierungen mit großen Dichteunterschieden der entmischten flüssigen Phasen und großen Entmischungs-Temperaturintervallen kommt es bei Temperaturen im Bereich der Mischungslücke infolge der Schwerkraft zur Sedimentation und Koagulation der relativ schwereren Tröpfchenform besitzenden Minoritätsphase. Die Sedimentationsgeschwindigkeit ist entsprechend dem Stokes'schen Gesetz proportional dem Quadrat des Tröpfchendurchmessers. Unterschiedliche Tröpfchendurchmesser fördern daher die Häufigkeit von Tröpfchenkollisionen und Tröpfchenverschmelzungen und beschleunigen dadurch zusätzlich die Sedimentation. Eine gleichmäßige Dispersion kugelförmiger Tröpfchen kleinen Durchmessers in der Matrix monotektischer Legierungen kann jedoch erreicht werden, wenn die Schmelze vertikal zu einem Band oder Draht von 5 bis 20 mm Dicke bzw. Durchmesser mit relativ großer Gieß- und Abkühlgeschwindigkeit stranggegossen wird, so daß vor der Phasengrenze fest/flüssig ein sehr steiler Temperaturgradient aufrechterhalten wird. Dadurch ist der Abstand zwischen der Entmischungs- und der Solidus-Isothermen innerhalb des Systems und damit die Sedimentationsstrecke möglichst kurz. Das Temperatur- bzw. Wegintervall ist gegeben durch die Isothermen der Entmischungstemperatur und die Temperatur der monotektischen Reaktion, bei welcher die Matrixphase erstarrt und dabei die zweite noch flüssige Phase in der dann vorliegenden Verteilung einschließt. Dieses Verfahren eignet sich ganz besonders für die Herstellung von Gußbändern bzw. -drähten aus monotektischen Aluminium-Silizium-Legierungen, in deren aus Aluminium und Aluminium-Silizium-Eutektikum bestehender Matrix 1 bis 50 Gew.-% Blei oder Wismut als Minoritätsphase in Form feiner Tröpfchen eingelagert ist.
  • Da jedoch die Abmessungen und/oder die mechanisch-technologischen Eigenschaften eines solchen Gußgefüges häufig den gestellten Anforderungen nicht entsprechen, wird das Gußband bzw. -draht einer Walz- und/oder Wärmebehandlung unterzogen, um die Werkstoffeigenschaften zu optimieren. Beim Walzen eines solchen Gußgefüges wird die ursprünglich kugelförmige Blei- oder Wismutphase zu langgestreckten Plättchen verformt. Derartige langgestreckte Einschlüsse beeinträchtigen jedoch die mechanische Belastbarkeit und die technologischen Eigenschaften des Werkstoffs, so daß zur Einstellung der gewünschten Werkstoffeigenschaften die Umbildung der langgestreckten Plättchen zu kompakten Gefügeformen notwendig ist, was durch eine nachfolgende Wärmebehandlung erfolgen kann.
  • Eine für die Umbildung und anschließende Einformung einer dispergierten niedrigschmelzenden Minoritätsphase übliches Verfahren ist die längerzeitige Erwärmung der monotektischen Legierung auf eine Temperatur oberhalb der Schmelztemperatur der niedrigschmelzenden Minoritätsphase. Dabei erfolgt die Umbildung und Einformung der Minoritätsphase durch Lösungs- und Transportvorgänge des Matrixmetalls vorzugsweise innerhalb der geschmolzenen Phase, da die Löslichkeiten und Diffusionskoeffizienten in Schmelzen sehr viel größer als in Feststoffen sind.
  • Die Voraussetzungen sind jedoch bei monotektischen Aluminium-Silizium-Legierungen, bei denen die niedrigschmelzenden flüssigen Phasen Blei und Wismut in einer Matrix aus Aluminium und Aluminium-Silizium-Eutektikum eingeschlossen sind, nicht gegeben, da die Löslichkeiten der Blei- und Wismutschmelzen für Aluminium, aber auch die Diffusionskoeffizienten von Aluminium und Silizium in Blei und Wismut nur sehr gering sind, so daß eine Umbildung und Einformung der aus Blei oder Wismut bestehenden Minoritätsphase eine vergleichsweise sehr lange Wärmebehandlung erfordern. Die Blei- bzw. Wismutphase schmilzt bei einer Temperatur von 330 bzw. 270 °C. Danach erfolgt das Schmelzen des Aluminium-Silizium-Eutektikums mit einer monotektischen Vierphasenreaktion bei 570 bzw. 580 °C und schließlich schmilzt die Aluminiummatrix auf.
  • Um bei einer monotektischen Aluminium-Blei-Legierung eine feine und gleichmäßige Verteilung der nach dem Walzen des Gußbandes fadenförmig gestreckten, im festen Aluminium unlösliche Bleiphase zu erreichen, ist in Z. Metall 36, Heft 9, 9/1982, S. 970-976, vorgesehen, die Aluminium-Blei-Legierung mit Zinn zu legieren. Durch dieses Vorgehen wird die Löslichkeit vergrößert und die Diffusions von Blei in Aluminium beschleunigt. Da andererseits durch Zinn die Schmelztemperatur des Bleis sehr stark erniedrigt wird, ist diese legierungstechnische Maßnahme nur dann anwendbar, wenn der Aluminium-Blei-Zinn-Werkstoff bei seiner Verwendung keiner thermatischen Belastung ausgesetzt ist.
  • Aus der US-A-4 471 031 ist eine Aluminium-Legierung bekannt, die 0,5 bis 5% Silizium und 0,5 bis 8% Blei und Wismut neben anderen Metallen enthält. Die Schmelze wird mit einer Geschwindigkeit von 1,5 bis 2,5 m/mm gegossen und das Gußband nach dem Umformen bei 350 bis 550 °C geglüht und mit max. 200 °C/h abgekühlt. Über das Verhalten der Minoritätsphasen Blei bzw. Wismut sind keine Angaben gemacht. Die US-A-3 827 882 offenbart eine Aluminium-Silizium-Blei-Legierung mit 3 bis 26 Gew.% Blei, 0,5 bis 11,3 Gew.% Silizium, bis zu 1 Gew.% Wismut und bis zu 1 Gew.% Cer oder Lithium. Die auf eine Tempreatur oberhalb der Entwicklungstemperatur erhitzte Schmelze wird mit großer Abkühlgeschwindigkeit stranggegossen. Infolge des steilen Temperaturgradienten wird ein Ausseigern der Bleiphase verhindert, und es erfolt eine Feinverteilung in der Matrix. Um eine globulitische Ausbildung der Bleiphase zu erreichen, enthält die Legierung 1% Cer oder Lithium.
  • Es ist die Aufgabe vorliegender Erfindung, bei nach dem eingangs beschriebenen Verfahren hergestellten Band bzw. Draht, bestehend aus einer monotektischen Aluminium-Silizium-Legierung mit in deren Matrix fein dispergierter Blei- oder Wismutphase, eine Umwandlung der nach dem Walzen langestreckten Plättchen der im festen Aluminium unlöslichen Blei- bzw. Wismutphase in kompaktere Formen erzielen.
  • Die Lösung dieser Aufgabe besteht darin, daß die Schmelze mit einer Geschwindigkeit von 10 bis 30 mm/s gegossen und mit einer Geschwindigkeit von 300 bis 1500 K/s abgekühlt wird und die Bänder oder Drähte einer Wärmebehandlung bei einer Temperatur von 550 bis 600 °C unterzogen werden.
  • Bei diesen Temperaturen schmilzt neben der Blei- bzw. Wismutphase auch das Aluminium-Silizium-Eutektikum wenigstens teilweise auf. Die Umbildung bzw. Einformung der flüssigen Blei- bzw. Wismutphase innerhalb der eutektischen Schmelzbereiche geschieht sehr schnell.
  • Im Rahmen der vorzugsweisen Ausgestaltung wird die monotektischen Aluminium-Silizium-Legierung mit in der Matrix eingeschlossener Bleiphase einer Wärmebehandlung bei Temperaturen von 580 bis 590 °C bzw. 575-585°C unterworfen.
  • Zweckmäßig dauert die Wärmebehandlung 0,5 bis 15 min.
  • Bei der schnellen Abkühlung erstarrt die eutektische Aluminium-Silizium-Schmelze sehr schnell, wobei das Silizium ein deutlich gröberes Gefüge als im Gußzustand aufweist. Dieser Effekt ist durchaus wünschenswert, da dadurch der Verschleißwiderstand des Werkstoffs erheblich verbessert wird.
  • Das erfindungsgemäße Verfahren ist insbesondere für die Behandlung von Gleitwerkstoffen auf Aluminium-Silizium-Basis mit in deren Matrix fein dispergierter Blei- oder Wismutphase geeignet.
  • Die Erfindung ist nachfolgend durch ein Ausführungsbeispiel eingehender erläutert.
  • In Fig. 1 ist in 500-facher Vergrößerung eine photographische Aufnahme eines Schliffs durch ein stranggegossenes, 10 mm dickes und anschließend gewalztes Gußband einer ternären monotektischen Aluminiumlegierung mit 5 % Silizium und 10 % Wismut dargestellt. Wie das Schliffbild erkennen läßt, sind in der aus Aluminium (1) und Aluminium-Silizium-Eutektikum (2) gebildeten Matrix langgestreckte Plättchen der Wismutphase (3) eingebettet.
  • Die in Fig. 2 wiedergegebene 500-fache Vergrößerung der photographischen Aufnahme eines Schliffs durch ein stranggegossenes, anschließend gewalztes und danach 5 min lang auf 587,5°C erwärmtes Gußband der vorstehend genannten ternären monotektischen Aluminiumlegierung zeigt, daß die Wismutphase (4) in die im wesentlichen aus Aluminium bestehende Matrix (5) eingeformt ist und das Silizium (6) in deutlich grober Form kristallisiert ist.
  • Eine Untersuchung der Verschleißfestigkeit mit der Stift-/Scheibemethode hat ergeben, daß die ternäre monotektische Aluminiumlegierung im gewalzten Zustand nach einer Laufzeit von 72 min einen Verschleiß von 209 µm aufwies, was praktisch ein teilweises Fressen darstellt. Demgegenüber konnte der Verschleiß des erfindungsgemäß behandelten Gußbandes auf 16 µm nach mehr als 90 min Laufzeit begrenzt werden.

Claims (4)

  1. Verfahren zur Herstellung von mit großer Gieß- und Abkühlgeschwindigkeit einer auf eine Temperatur oberhalb der Entmischungstemperatur erhitzten Schmelze stranggegossener, plastisch verformten und wärmebehandelten Bändern und Drähten aus monotektischer Aluminium-Silizium-Legierung, bei der in der aus Aluminium und Aluminium-Silizium-Eutektikum bestehenden Matrix als Minoritätsphase 1 bis 50 Gew.% Blei oder Wismut eingelagert sind, dadurch gekennzeichnet, daß die Schmelze mit einer Geschwindigkeit von 10 bis 30 mm/s gegossen und mit einer Geschwindigkeit von 300 bis 1500 K/s abgekühlt wird und die Bänder und Drähte einer Wärmebehandlung bei Temperaturen von 550 bis 600 °C unterzogen werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die monotektische Aluminium-Silizium-Legierung mit in der Matrix eingeschlossener Bleiphase einer Wärmebehandlung bei 580 bis 590 °C unterzogen wird.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die monotektische Aluminium-Silizium-Legierung mit in der Matrix eingeschlossener Wismutphase einer Wärmebehandlung bei 575 bis 585 °C unterzogen wird.
  4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß die Wärmebehandlung 0,5 bis 15 min. dauert.
EP91200921A 1990-05-05 1991-04-18 Verfahren zur Herstellung von stranggegossenen Bändern und Drähten Expired - Lifetime EP0456296B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4014430A DE4014430A1 (de) 1990-05-05 1990-05-05 Verfahren zur herstellung von stranggegossenen baendern und draehten
DE4014430 1990-05-05

Publications (2)

Publication Number Publication Date
EP0456296A1 EP0456296A1 (de) 1991-11-13
EP0456296B1 true EP0456296B1 (de) 1996-03-06

Family

ID=6405758

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91200921A Expired - Lifetime EP0456296B1 (de) 1990-05-05 1991-04-18 Verfahren zur Herstellung von stranggegossenen Bändern und Drähten

Country Status (9)

Country Link
US (1) US5192377A (de)
EP (1) EP0456296B1 (de)
JP (1) JPH062087A (de)
KR (1) KR910020191A (de)
AT (1) ATE135055T1 (de)
BR (1) BR9101762A (de)
CA (1) CA2041012A1 (de)
DE (2) DE4014430A1 (de)
ES (1) ES2085417T3 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3742454B2 (ja) * 1996-03-07 2006-02-01 サンデン株式会社 浄水供給装置
IL123503A (en) * 1998-03-01 2001-01-11 Elecmatec Electro Magnetic Tec Aluminum-bismuth bearing alloy and methods for its continuous casting
US20060188703A1 (en) * 2005-02-22 2006-08-24 The Regents Of The University Of California Automated process based on differential settling to obtain density gradients
US9856552B2 (en) * 2012-06-15 2018-01-02 Arconic Inc. Aluminum alloys and methods for producing the same
WO2015182589A1 (ja) 2014-05-30 2015-12-03 東洋アルミニウム株式会社 アルミニウム箔、これを用いた電子部品配線基板、およびアルミニウム箔の製造方法
DE102015112550B3 (de) * 2015-07-30 2016-12-08 Zollern Bhw Gleitlager Gmbh & Co. Kg Verfahren zur Herstellung einer monotektischen Legierung
DE102017113216A1 (de) 2017-06-15 2018-12-20 Zollern Bhw Gleitlager Gmbh & Co. Kg Monotektische Aluminium-Gleitlagerlegierung und Verfahren zu seiner Herstellung und damit hergestelltes Gleitlager

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE271470C (de) *
FR1089882A (fr) * 1952-12-27 1955-03-22 Gen Motors Corp Alliage d'aluminium et coussinet ou palier fabriqué à l'aide de cet alliage
FR1097812A (fr) * 1953-04-03 1955-07-11 Gen Motors Corp Alliage antifriction perfectionné à base d'aluminium
US3432293A (en) * 1966-01-06 1969-03-11 Glacier Metal Co Ltd Bearing materials and method of making same
US3827882A (en) * 1968-03-15 1974-08-06 Glacier Metal Co Ltd High lead aluminium alloy
JPS5914096B2 (ja) * 1979-09-05 1984-04-03 財団法人電気磁気材料研究所 Al−Si基吸振合金およびその製造方法
US4471031A (en) * 1981-10-15 1984-09-11 Taiho Kogyo Co., Ltd. Al-Si-Pb Bearing alloy and bearing composite
GB2121435B (en) * 1981-10-15 1986-08-28 Taiho Kogyo Co Ltd Aluminium alloy bearing
GB8513330D0 (en) * 1985-05-28 1985-07-03 Ae Plc Bearing materials

Also Published As

Publication number Publication date
BR9101762A (pt) 1991-12-17
ES2085417T3 (es) 1996-06-01
US5192377A (en) 1993-03-09
JPH062087A (ja) 1994-01-11
DE4014430A1 (de) 1991-11-07
DE59107496D1 (de) 1996-04-11
ATE135055T1 (de) 1996-03-15
CA2041012A1 (en) 1991-11-06
KR910020191A (ko) 1991-12-19
EP0456296A1 (de) 1991-11-13

Similar Documents

Publication Publication Date Title
DE69028009T2 (de) Hochfeste Legierungen auf Magnesium-Basis
DE3621671C2 (de)
DE2462118C2 (de) Barren aus einer Aluminium-Eisen-Legierung
DE69113294T2 (de) Hochfeste, warmfeste Legierungen auf Aluminiumbasis.
EP2646587B1 (de) VERFAHREN ZUM HERSTELLEN EINER AlScCa-LEGIERUNG SOWIE AIScCa-LEGIERUNG
DE2813986C2 (de)
DE2942345C2 (de)
DE2551294B2 (de) Verfahren zur Herstellung dispersionsverfestigter Aluminiumlegierungsprodukte
DE4436481A1 (de) Aluminiumlegierung zum Schmieden, Verfahren zum Gießen derselben und Verfahren zur Hitzebehandlung derselben
EP0456296B1 (de) Verfahren zur Herstellung von stranggegossenen Bändern und Drähten
DD284904A5 (de) Verfahren zur herstellung von teilen aus aluminiumlegierung, die eine gute festigkeit bei werkstoffermuedung durch lange erwaermung behaelt
WO1999015708A1 (de) Legierung auf aluminiumbasis und verfahren zu ihrer wärmebehandlung
US4002502A (en) Aluminum base alloys
CH646999A5 (de) Gegenstand aus einer hochfesten aluminiumlegierung und verfahren zu seiner herstellung.
WO1995005490A1 (de) Schmelzebehandlungsmittel, seine herstellung und verwendung
DE2242235C3 (de) Superplastische Aluminiumlegierung
DE2149546C3 (de) Verfahren zur Herstellung von superplastischen Bleilegierungen mit einer Dehnung von zumindest 100 % bei Raumtemperatur
EP0029087A1 (de) Metallpulver und Verfahren zu seiner Herstellung
DE2255824A1 (de) Verfahren zur herstellung einer knetlegierung auf zinkbasis
DE3879809T2 (de) Aluminiumlegierungen und verfahren zur herstellung.
DE19800433C2 (de) Stranggießverfahren zum Vergießen einer Aluminium-Gleitlagerlegierung
DE3835253A1 (de) Gegenstand aus einer aluminium-silizium-legierung und verfahren zu seiner herstellung
DE3008358B1 (de) Verwendung von aus Aluminiumgusslegierungen und Aluminiumknetlegierungen vermischten Altschrotten zur Herstellung von Walzhalbzeugen
DE1224049B (de) Verfahren und Vorrichtung zur Herstellung von duktilen und zugleich festen, insbesondere warmfesten Aluminiumlegierungen
DE2239071A1 (de) Aluminiumgrundlegierung und verfahren zu ihrer herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19920320

17Q First examination report despatched

Effective date: 19931122

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FR GB IT SE

REF Corresponds to:

Ref document number: 135055

Country of ref document: AT

Date of ref document: 19960315

Kind code of ref document: T

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960312

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19960313

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960325

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960404

Year of fee payment: 6

REF Corresponds to:

Ref document number: 59107496

Country of ref document: DE

Date of ref document: 19960411

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19960424

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960508

Year of fee payment: 6

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2085417

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960502

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970418

Ref country code: AT

Effective date: 19970418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970419

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970419

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980101

EUG Se: european patent has lapsed

Ref document number: 91200921.4

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050418