EP0437698A1 - Process for operating a plant for the gassification of solid fuels - Google Patents

Process for operating a plant for the gassification of solid fuels Download PDF

Info

Publication number
EP0437698A1
EP0437698A1 EP90121843A EP90121843A EP0437698A1 EP 0437698 A1 EP0437698 A1 EP 0437698A1 EP 90121843 A EP90121843 A EP 90121843A EP 90121843 A EP90121843 A EP 90121843A EP 0437698 A1 EP0437698 A1 EP 0437698A1
Authority
EP
European Patent Office
Prior art keywords
oxygen
dust
gasification
primary
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90121843A
Other languages
German (de)
French (fr)
Other versions
EP0437698B1 (en
Inventor
Hans-Richard Baumann
Lothar Semrau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krupp Koppers GmbH
Original Assignee
Krupp Koppers GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE3941816A external-priority patent/DE3941816A1/en
Application filed by Krupp Koppers GmbH filed Critical Krupp Koppers GmbH
Publication of EP0437698A1 publication Critical patent/EP0437698A1/en
Application granted granted Critical
Publication of EP0437698B1 publication Critical patent/EP0437698B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/50Fuel charging devices
    • C10J3/506Fuel charging devices for entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1223Heating the gasifier by burners

Definitions

  • EP-A1-0 370 201 which does not belong to the prior art, relates to a method for operating a system for the gasification of fine-grained to dust-like solid fuels, with Gasification reactor equipped with gasification burners, Device for the separation of dust from the raw gas, Dust collection container and device for the return of dust in the gasification reactor, wherein the gasification burners burn into the gasification reactor with a fuel / reactant jet that is rotationally symmetrical at the gasification burner outlet and a primary reaction zone of high temperature is formed by the fuel / reactant jets in the gasification reactor.
  • the method of operation according to EP-A1-0 370 201 is based on the task of guiding the process in such a way that the fly dust separated dry from the raw gas is fully integrated in the slag without any special treatment and without interfering with the gasification process, the at the same time residual carbon contained in the dust is to be burned completely.
  • the dust with its raw gas content and its residual carbon are introduced into the axis of at least one fuel / reactant jet by a conveying gas stream, are introduced by the fuel / reactant jet into the primary reaction zone and are melted down therein.
  • gasification burners can be used which have a feed channel for primary oxygen which is coaxial with the burner axis, a surrounding ring channel for the fuel feed and a ring channel surrounding this for the feed of secondary oxygen.
  • the fly dust should be fed through a special feed channel (lance) which is arranged in the axis of the feed channel for the primary oxygen.
  • the invention is therefore based on the object of optimizing the method variant described above with regard to its operating conditions.
  • the invention proposes that a mass ratio of primary oxygen to secondary oxygen of 1: 1 to 1: 4, preferably 1: 1 to 1: 3, be used.
  • the primary oxygen primarily ensures that the fuel metered in the ring channel with high flow rate density but low speed is sufficiently accelerated and swirled. Due to this swirling of the fuel flow, the fuel particles receive the required amount of oxygen for reaction, which takes place directly at the burner mouth as combustion to CO2.
  • the fly dust which is also dosed in the center of the gasification burner with a high flow rate density and low speed, therefore reaches a high temperature zone at the burner mouth, which favors the reaction of the residual carbon contained in the fly dust.
  • the secondary oxygen is said to loosen up and accelerate the fuel flow from the outside.
  • the raw synthesis gas already generated is recirculated from the reaction space of the gasification reactor to the burner mouth by the secondary oxygen emerging from the gasification burner at high speed and by the other material flows.
  • the mass ratio of primary oxygen to secondary oxygen according to the invention, the supply of secondary oxygen to the raw synthesis gas is limited.
  • the raw synthesis gas which consists of 90% CO + H2
  • a further combustion reaction to CO2 + H2O can therefore only take place to a very limited extent.
  • the mass ratio of primary oxygen to secondary oxygen is observed, the CO2 content in the synthesis gas generated by the gasification can be kept in the range between 1 and 3% for most fuels.
  • water vapor which serves as a temperature moderator in the reaction zone
  • the mass ratio of oxygen (total) to water vapor in the range from 1: 0.1 to 1: 0.6 should lie.
  • the water vapor should preferably be added to the secondary oxygen.
  • CO2 can also be used as a temperature moderator instead of water vapor if this does not result in the desired composition of the partial oxidation crude gas generated is adversely affected.
  • impure oxygen with e.g. 15% ⁇ N2 +.
  • Ar or strongly preheated air can be used as an oxygen carrier, the numerical values given above of course always referring to pure oxygen.
  • the supply of the flying dust is not via a lance arranged in the axis of the supply duct for the primary oxygen, but via an appropriately arranged ring channel.
  • the flow of primary oxygen is distributed over two channels, namely a first channel in the center of the gasification burner and an annular channel which surrounds the feed channel for the flying dust from the outside.
  • the distribution of the primary oxygen over the first and second channels takes place due to the pressure losses in a ratio of approximately 1: 2. This ensures that the dust can react better with the primary oxygen.
  • the flow density of the fly dust must be reduced by adding a carrier gas.
  • a carrier gas For example, N2 and / or CO2 or part of the synthesis gas generated can be used for this.
  • the particle size of the flying dust particles must not exceed 1 mm. Oversized grain must therefore before the introduction of the Airborne dust in the gasification burner can be removed by suitable measures.
  • the head of a gasification burner suitable for carrying out this process variant is shown in the figure as an axial section.
  • the burner jacket 1 is provided with a circumferential cooling channel 2 and an annular channel 3 for the introduction of protective gas.
  • the ring channel 4 serves to supply the secondary oxygen and the ring channel 5 serves to supply the fuel.
  • the outlet openings of the ring channels 3 to 5 are inclined towards the burner axis.
  • the dust is supplied here through the ring channel 6, which is arranged in the area of the central supply of the primary oxygen, so that it is introduced through the central supply channel 7 and the ring channel 8.
  • the swirl bodies 9 can be arranged in the feed channel 7 and in the ring channel 8, by means of which the swirling of the primary oxygen with the flying dust and the fuel is improved. This effect is also supported by the fact that the outlet openings of the ring channels 3 to 5 are inclined towards the burner axis. The supply of protective gas via the ring channel 3 reduces the oxygen concentration on the cooled burner mouth 10.
  • the central supply of primary oxygen via the supply channel 7 also has the advantage that the light guide 11 of a flame detector installed outside the gasification burner can be arranged in the center of the gasification burner.
  • the gasification burner described above can also be used as a pilot burner if by the Ring channel 6, a gaseous ignition medium, such as natural gas or propane, is introduced instead of flying dust.
  • a gaseous ignition medium such as natural gas or propane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Air Supply (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The invention relates to a process for operating a plant for the gasification of solid fuels, gasification burners being used which have a primary oxygen feed channel coaxial with the burner axis, a surrounding annular fuel feed channel and, surrounding the latter, an annular secondary oxygen feed channel, the fly dust precipitated from the crude gas being introduced into the axis of at least one fuel/reactant jet, being introduced by the latter into the primary reaction zone of the gasification reactor and being fused in this zone. A primary oxygen/secondary oxygen mass ratio of 1:1 to 1:4, preferably 1:1 to 1:3, is intended to be used here.

Description

Die EP-A1-0 370 201, die nicht zum Stande der Technik gehört, betrifft ein Verfahren zum Betrieb einer Anlage für die Vergasung feinkörniger bis staubförmiger fester Brennstoffe, - mit
Vergasungsreaktor, der mit Vergasungsbrennern ausgerüstet ist,
Einrichtung für die Flugstaubabscheidung aus dem Rohgas,
Flugstaubsammelbehälter und Einrichtung für die Flugstaubrückführung in den Vergasungsreaktor,
wobei die Vergasungsbrenner mit einem am Vergasungsbrenneraustritt rotationssymmetrischen Brennstoff/Reaktionsmittel-Strahl in den Vergasungsreaktor hineinbrennen und von den Brennstoff/Reaktionsmittel-Strahlen in dem Vergasungsreaktor eine Primärreaktionszone hoher Temperatur gebildet wird.
EP-A1-0 370 201, which does not belong to the prior art, relates to a method for operating a system for the gasification of fine-grained to dust-like solid fuels, with
Gasification reactor equipped with gasification burners,
Device for the separation of dust from the raw gas,
Dust collection container and device for the return of dust in the gasification reactor,
wherein the gasification burners burn into the gasification reactor with a fuel / reactant jet that is rotationally symmetrical at the gasification burner outlet and a primary reaction zone of high temperature is formed by the fuel / reactant jets in the gasification reactor.

Der Arbeitsweise nach der EP-A1-0 370 201 liegt dabei die Aufgabe zugrunde, den Prozeß so zu führen, daß der aus dem Rohgas trocken abgeschiedene Flugstaub ohne besondere Aufbereitung und ohne störende Beeinflussung des Vergasungsprozesses vollständig in der Schlacke eingebunden wird, wobei gleichzeitig der im Flugstaub enthaltene Restkohlenstoff vollständig verbrannt werden soll. Zur Lösung dieser Aufgabe wird hierbei vorgeschlagen, daß der Flugstaub mit seinem Gehalt an Rohgas und seinem Restkohlenstoff durch einen Fördergasstrom in die Achse von zumindest einem Brennstoff/Reaktionsmittel-Strahl eingeführt, von dem Brennstoff/Reaktionsmittel-Strahl in die Primärreaktionszone eingebracht und in dieser eingeschmolzen wird.The method of operation according to EP-A1-0 370 201 is based on the task of guiding the process in such a way that the fly dust separated dry from the raw gas is fully integrated in the slag without any special treatment and without interfering with the gasification process, the at the same time residual carbon contained in the dust is to be burned completely. To solve this problem it is proposed that the dust with its raw gas content and its residual carbon are introduced into the axis of at least one fuel / reactant jet by a conveying gas stream, are introduced by the fuel / reactant jet into the primary reaction zone and are melted down therein.

Hierbei kann gemäß einer Variante dieses Verfahrens mit Vergasungsbrennern gearbeitet werden, die einen zur Brennerachse koaxialen Zuführungskanal für Primärsauerstoff, einen umgebenden Ringkanal für die Brennstoffzuführung und einen diesen umgebenden Ringkanal für die Zuführung von Sekundärsauerstoff aufweisen. Die Zuführung des Flugstaubes soll in diesem Falle durch einen besonderen Zuführungskanal (Lanze) erfolgen, der in der Achse des Zuführungskanals für den Primärsauerstoff angeordnet ist. Bezüglich der Aufteilung der beiden Sauerstoffteilströme werden dabei jedoch keine näheren Angaben gemacht.Here, according to a variant of this method, gasification burners can be used which have a feed channel for primary oxygen which is coaxial with the burner axis, a surrounding ring channel for the fuel feed and a ring channel surrounding this for the feed of secondary oxygen. In this case, the fly dust should be fed through a special feed channel (lance) which is arranged in the axis of the feed channel for the primary oxygen. However, no further details are given with regard to the division of the two partial oxygen flows.

Der Erfindung liegt deshalb die Aufgabe zugrunde, die vorstehend beschriebene Verfahrensvariante im Bezug auf ihre Betriebsbedingungen zu optimieren.The invention is therefore based on the object of optimizing the method variant described above with regard to its operating conditions.

Zur Lösung dieser Aufgabe wird erfindungsgemäß vorgeschlagen, daß mit einem Massenverhältnis von Primärsauerstoff zu Sekundärsauerstoff von 1 : 1 bis 1 : 4, vorzugsweise 1 : 1 bis 1 : 3, gearbeitet wird.To achieve this object, the invention proposes that a mass ratio of primary oxygen to secondary oxygen of 1: 1 to 1: 4, preferably 1: 1 to 1: 3, be used.

Der Primärsauerstoff sorgt dabei in erster Linie dafür, daß der im Ringkanal mit hoher Förderstromdichte aber geringer Geschwindigkeit dosierte Brennstoff ausreichend beschleunigt und verwirbelt wird. Durch diese Verwirbelung des Brennstoffstromes erhalten die Brennstoffteilchen im erforderlichen Umfange Sauerstoff zur Reaktion angeboten, die unmittelbar am Brennermund als Verbrennung zu CO₂ abläuft. Der im Zentrum des Vergasungsbrenners ebenfalls mit hoher Förderstromdichte und geringer Geschwindigkeit dosierte Flugstaub gelangt daher am Brennermund in eine Zone hoher Temperatur, die die Reaktion des im Flugstaub enthaltenen Restkohlenstoffes begünstigt.The primary oxygen primarily ensures that the fuel metered in the ring channel with high flow rate density but low speed is sufficiently accelerated and swirled. Due to this swirling of the fuel flow, the fuel particles receive the required amount of oxygen for reaction, which takes place directly at the burner mouth as combustion to CO₂. The fly dust, which is also dosed in the center of the gasification burner with a high flow rate density and low speed, therefore reaches a high temperature zone at the burner mouth, which favors the reaction of the residual carbon contained in the fly dust.

Der Sekundärsauerstoff soll den Brennstoffstrom von außen auflockern und beschleunigen. Außerdem wird durch den mit hoher Geschwindigkeit aus dem Vergasungsbrenner austretenden Sekundärsauerstoff sowie durch die anderen Stoffströme das bereits erzeugte Rohsynthesegas aus dem Reaktionsraum des Vergasungsreaktors zum Brennermund rezirkuliert.The secondary oxygen is said to loosen up and accelerate the fuel flow from the outside. In addition, the raw synthesis gas already generated is recirculated from the reaction space of the gasification reactor to the burner mouth by the secondary oxygen emerging from the gasification burner at high speed and by the other material flows.

Dank des erfindungsgemäßen Massenverhältnisses von Primärsauerstoff zu Sekundärsauerstoff ist das Angebot an Sekundärsauerstoff an das Rohsynthesegas aber beschränkt. Im Rohsynthesegas, das zu 90 % aus CO + H₂ besteht, kann deshalb nur im sehr begrenzten Umfange eine weitere Verbrennungsreaktion zu CO₂ + H₂O stattfinden. Bei Einhaltung des beanspruchten Massenverhältnisses von Primärsauerstoff zu Sekundärsauerstoff kann daher der CO₂-Gehalt im durch die Vergasung erzeugten Synthesegas bei den meisten Brennstoffen im Bereich zwischen 1 und 3 % gehalten werden.Thanks to the mass ratio of primary oxygen to secondary oxygen according to the invention, the supply of secondary oxygen to the raw synthesis gas is limited. In the raw synthesis gas, which consists of 90% CO + H₂, a further combustion reaction to CO₂ + H₂O can therefore only take place to a very limited extent. If the mass ratio of primary oxygen to secondary oxygen is observed, the CO₂ content in the synthesis gas generated by the gasification can be kept in the range between 1 and 3% for most fuels.

Bei der Durchführung des erfindungsgemäßen Verfahrens ist es von Vorteil, wenn den Sauerstoffströmen Wasserdampf zugesetzt wird, der als Temperaturmoderator in der Reaktionszone dient, wobei das Massenverhältnis von Sauerstoff (gesamt) zu Wasserdampf im Bereich von 1 : 0,1 bis 1 : 0,6 liegen soll. Hierbei soll der Wasserdampf vorzugsweise dem Sekundärsauerstoff zugesetzt werden. Unter Umständen kann auch CO₂ als Temperaturmoderator anstelle von Wasserdampf verwendet werden, wenn dadurch nicht die gewünschte Zusammensetzung des erzeugten Partialoxidationsrohgases negativ beeinflußt wird.When carrying out the process according to the invention, it is advantageous if water vapor, which serves as a temperature moderator in the reaction zone, is added to the oxygen streams, the mass ratio of oxygen (total) to water vapor in the range from 1: 0.1 to 1: 0.6 should lie. Here, the water vapor should preferably be added to the secondary oxygen. Under certain circumstances, CO₂ can also be used as a temperature moderator instead of water vapor if this does not result in the desired composition of the partial oxidation crude gas generated is adversely affected.

Anstelle von technisch reinem Sauerstoff kann bei der Vergasung selbstverständlich auch unreiner Sauerstoff mit z.B. 15 %·N₂ +. Ar oder stark vorgewärmte Luft als Sauerstoffträger verwendet werden, wobei sich die weiter oben angegebenen Zahlenwerte selbstverständlich immer auf den reinen Sauerstoff beziehen.Instead of technically pure oxygen, of course, impure oxygen with e.g. 15% · N₂ +. Ar or strongly preheated air can be used as an oxygen carrier, the numerical values given above of course always referring to pure oxygen.

Bei der Durchführung des erfindungsgemäßen Verfahrens kann vorteilhafterweise auch mit einem Vergasungsbrenner gearbeitet werden, bei dem im Gegensatz zu der in der EP-A1-0 370 201 beschriebenen Brennerkonstruktion die Zuführung des Flugstaubes nicht über eine in der Achse des Zuführungskanals für den Primärsauerstoff angeordnete Lanze, sondern über einen entsprechend angeordneten Ringkanal erfolgt. Dadurch wird der Strom des Primärsauerstoffes auf zwei Kanäle verteilt, und zwar auf einen ersten Kanal im Zentrum des Vergasungsbrenners und auf einen Ringkanal, der den Zuführungskanal für den Flugstaub von außen umschließt. Die Verteilung des Primärsauerstoffes auf den ersten und zweiten Kanal erfolgt dabei auf Grund der Druckverluste etwa im Verhältnis 1 : 2. Dadurch wird erreicht, daß der Flugstaub besser mit dem Primärsauerstoff reagieren kann.When carrying out the method according to the invention, it is advantageously also possible to work with a gasification burner in which, in contrast to the burner construction described in EP-A1-0 370 201, the supply of the flying dust is not via a lance arranged in the axis of the supply duct for the primary oxygen, but via an appropriately arranged ring channel. As a result, the flow of primary oxygen is distributed over two channels, namely a first channel in the center of the gasification burner and an annular channel which surrounds the feed channel for the flying dust from the outside. The distribution of the primary oxygen over the first and second channels takes place due to the pressure losses in a ratio of approximately 1: 2. This ensures that the dust can react better with the primary oxygen.

Bei der Zuführung des Flugstaubes durch einen Ringkanal muß allerdings in den meisten Fällen die Förderstromdichte des Flugstaubes durch Zugabe eines Trägergases herabgesetzt werden. Hierfür kann beispielsweise N₂ und/oder CO₂ oder auch ein Teil des erzeugten Synthesegases verwendet werden. Um Verstopfungen im Ringkanal zu vermeiden, darf die Korngröße der Flugstaubpartikel nicht mehr als 1 mm betragen. Überkorn muß deshalb vor der Einleitung des Flugstaubes in den Vergasungsbrenner durch geeignete Maßnahmen entfernt werden.When the fly dust is fed through an annular channel, however, in most cases the flow density of the fly dust must be reduced by adding a carrier gas. For example, N₂ and / or CO₂ or part of the synthesis gas generated can be used for this. In order to avoid blockages in the ring channel, the particle size of the flying dust particles must not exceed 1 mm. Oversized grain must therefore before the introduction of the Airborne dust in the gasification burner can be removed by suitable measures.

Der Kopf eines zur Durchführung dieser Verfahrensvariante geeigneten Vergasungsbrenners ist in der Abbildung als Axialschnitt dargestellt. Hierbei ist der Brennermantel 1 mit einem umlaufenden Kühlkanal 2 und einem Ringkanal 3 für die Einleitung von Schutzgas versehen. Der Ringkanal 4 dient der Zuführung des Sekundärsauerstoffes und der Ringkanal 5 der Zuführung des Brennstoffes. Wie die Abbildung erkennen läßt, sind dabei die Austrittsöffnungen der Ringkanäle 3 bis 5 zur Brennerachse hin geneigt. Erfindungsgemäß erfolgt hier die Zuführung des Flugstaubes durch den Ringkanal 6, der im Bereich der zentralen Zuführung des Primärsauerstoffes angeordnet ist, so daß dieser durch den zentralen Zuführungskanal 7 und den Ringkanal 8 eingeleitet wird. Im Zuführungskanal 7 und im Ringkanal 8 können dabei die Drallkörper 9 angeordnet sein, durch die die Verwirbelung des Primärsauerstoffes mit dem Flugstaub und dem Brennstoff verbessert wird. Dieser Effekt wird außerdem dadurch unterstützt, daß die Austrittsöffnungen der Ringkanäle 3 bis 5 zur Brennerachse hin geneigt sind. Durch die Schutzgaszufuhr über den Ringkanal 3 wird die Sauerstoffkonzentration am gekühlten Brennermund 10 verringert.The head of a gasification burner suitable for carrying out this process variant is shown in the figure as an axial section. Here, the burner jacket 1 is provided with a circumferential cooling channel 2 and an annular channel 3 for the introduction of protective gas. The ring channel 4 serves to supply the secondary oxygen and the ring channel 5 serves to supply the fuel. As can be seen in the figure, the outlet openings of the ring channels 3 to 5 are inclined towards the burner axis. According to the invention, the dust is supplied here through the ring channel 6, which is arranged in the area of the central supply of the primary oxygen, so that it is introduced through the central supply channel 7 and the ring channel 8. The swirl bodies 9 can be arranged in the feed channel 7 and in the ring channel 8, by means of which the swirling of the primary oxygen with the flying dust and the fuel is improved. This effect is also supported by the fact that the outlet openings of the ring channels 3 to 5 are inclined towards the burner axis. The supply of protective gas via the ring channel 3 reduces the oxygen concentration on the cooled burner mouth 10.

Die zentrale Zuführung von Primärsauerstoff über den Zuführungskanal 7 hat außerdem den Vorteil, daß im Zentrum des Vergasungsbrenners der Lichtleiter 11 eines außerhalb des Vergasungsbrenners installierten Flammenwächters angeordnet sein kann.The central supply of primary oxygen via the supply channel 7 also has the advantage that the light guide 11 of a flame detector installed outside the gasification burner can be arranged in the center of the gasification burner.

Der vorstehend beschriebene Vergasungsbrenner kann auch als Zündbrenner verwendet werden, wenn durch den Ringkanal 6 anstelle von Flugstaub ein gasförmiges Zündmedium, wie z.B. Erdgas oder Propan, eingeleitet wird. Diese Brennerkonstruktion ist deshalb auch hervorragend für den Anfahrbetrieb des Vergasungsreaktors geeignet.The gasification burner described above can also be used as a pilot burner if by the Ring channel 6, a gaseous ignition medium, such as natural gas or propane, is introduced instead of flying dust. This burner design is therefore also ideally suited for the start-up operation of the gasification reactor.

Claims (5)

Verfahren zum Betrieb einer Anlage für die Vergasung feinkörniger bis staubförmiger fester Brennstoffe, mit

Vergasungsreaktor, der mit Vergasungsbrennern ausgerüstet ist,

Einrichtung für die Flugstaubabscheidung aus dem Rohgas,

Flugstaubsammelbehälter und Einrichtung für die Flugstaubrückführung in den Vergasungsreaktor,

wobei mit Vergasungsbrennern gearbeitet wird, die einen zur Brennerachse koaxialen Zuführungskanal für Primärsauerstoff, einen umgebenden Ringkanal für die Brennstoffzuführung und einen diesen umgebenden Ringkanal für die Zuführung von Sekundärsauerstoff aufweisen und wobei der aus dem Rohgas abgeschiedene Flugstaub in die Achse von zumindest einem Brennstoff/Reaktionsmittel-Strahl eingeführt, von diesem in die Primärreaktionszone des Vergasungsreaktors eingebracht und in dieser eingeschmolzen wird, dadurch gekennzeichnet, daß mit einem Massenverhältnis von Primärsauerstoff zu Sekundärsauerstoff von 1 : 1 bis 1 : 4, vorzugsweise 1 : 1 bis 1 : 3, gearbeitet wird
Process for operating a plant for the gasification of fine-grained to dust-like solid fuels, with

Gasification reactor equipped with gasification burners,

Device for the separation of dust from the raw gas,

Dust collection container and device for the return of dust in the gasification reactor,

whereby gasification burners are used which have a feed channel for primary oxygen coaxial to the burner axis, a surrounding ring channel for the fuel feed and a surrounding ring channel for the feed of secondary oxygen, and the fly dust separated from the raw gas into the axis of at least one fuel / reactant Jet introduced, introduced into the primary reaction zone of the gasification reactor and melted therein, characterized in that the mass ratio of primary oxygen to secondary oxygen is from 1: 1 to 1: 4, preferably 1: 1 to 1: 3
Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß den Sauerstoffströmen Wasserdampf als Temperaturmoderator zugesetzt wird, wobei das Massenverhältnis von Sauerstoff (gesamt) zu Wasserdampf im Bereich von 1 : 0,1 bis 1 : 0,6 liegen soll.A method according to claim 1, characterized in that water vapor is added as a temperature moderator to the oxygen streams, the mass ratio of oxygen (total) to water vapor should be in the range of 1: 0.1 to 1: 0.6. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß der Wasserdampf vorzugsweise dem Sekundärsauerstoff zugesetzt wird.Process according to claims 1 and 2, characterized in that the water vapor is preferably added to the secondary oxygen. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß der Flugstaub über einen innerhalb des Primärsauerstoffstromes angeordneten Ringkanal eingeleitet wird.Method according to claims 1 to 3, characterized in that the flying dust is introduced via an annular channel arranged within the primary oxygen flow. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß bei Zuführung des Flugstaubes über einen Ringkanal die Förderstromdichte des Flugstaubes durch Zugabe eines Trägergases herabgesetzt und seine Korngröße auf Werte von < 1 mm begrenzt wird.Process according to claims 1 to 4, characterized in that when the fly dust is fed in via an annular channel, the flow density of the fly dust is reduced by adding a carrier gas and its grain size is limited to values of <1 mm.
EP90121843A 1989-12-19 1990-11-15 Process for operating a plant for the gassification of solid fuels Expired - Lifetime EP0437698B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3941816 1989-12-19
DE3941816A DE3941816A1 (en) 1988-11-05 1989-12-19 Burner nozzle for solid fuel gasification reactor - controls prim. to sec. oxygen ratio and feeds recycled dust and gas in ring channel in centre of prim. oxygen channel

Publications (2)

Publication Number Publication Date
EP0437698A1 true EP0437698A1 (en) 1991-07-24
EP0437698B1 EP0437698B1 (en) 1993-02-03

Family

ID=6395735

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90121843A Expired - Lifetime EP0437698B1 (en) 1989-12-19 1990-11-15 Process for operating a plant for the gassification of solid fuels

Country Status (7)

Country Link
EP (1) EP0437698B1 (en)
CN (1) CN1025868C (en)
DE (1) DE59000845D1 (en)
DK (1) DK0437698T3 (en)
ES (1) ES2038862T3 (en)
PL (1) PL164928B3 (en)
ZA (1) ZA909213B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0767235A2 (en) * 1995-10-03 1997-04-09 Mitsubishi Jukogyo Kabushiki Kaisha Burner and a fuel supply method
AT402440B (en) * 1995-06-01 1997-05-26 Voest Alpine Ind Anlagen BURNER
WO2006113229A1 (en) 2005-04-18 2006-10-26 General Electric Company Improved feed indjector for gasification and related method
WO2009019272A1 (en) * 2007-08-06 2009-02-12 Shell Internationale Research Maatschappij B.V. Burner
DE102008063505A1 (en) 2008-12-17 2010-07-01 Uhde Gmbh Process for equalizing the production of fuels in a gasifier for the production of synthesis gas
US9032623B2 (en) 2007-08-06 2015-05-19 Shell Oil Company Method of manufacturing a burner front face
EP2238223B1 (en) 2008-01-28 2015-08-26 Shell Internationale Research Maatschappij B.V. Process to start-up a coal gasification reactor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8434700B2 (en) 2008-04-30 2013-05-07 General Electric Company Methods and systems for mixing reactor feed

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE968970C (en) * 1952-12-11 1958-04-17 Basf Ag Process for the gasification of dust-like to grainy fuels
US4443230A (en) * 1983-05-31 1984-04-17 Texaco Inc. Partial oxidation process for slurries of solid fuel
US4480559A (en) * 1983-01-07 1984-11-06 Combustion Engineering, Inc. Coal and char burner
EP0129921A2 (en) * 1983-06-24 1985-01-02 Shell Internationale Researchmaatschappij B.V. Process and burner for the gasification of solid fuel
EP0367966A1 (en) * 1988-11-05 1990-05-16 Krupp Koppers GmbH Burner for the gasification of fine grained and pulverulent solid fuels

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE968970C (en) * 1952-12-11 1958-04-17 Basf Ag Process for the gasification of dust-like to grainy fuels
US4480559A (en) * 1983-01-07 1984-11-06 Combustion Engineering, Inc. Coal and char burner
US4443230A (en) * 1983-05-31 1984-04-17 Texaco Inc. Partial oxidation process for slurries of solid fuel
EP0129921A2 (en) * 1983-06-24 1985-01-02 Shell Internationale Researchmaatschappij B.V. Process and burner for the gasification of solid fuel
EP0367966A1 (en) * 1988-11-05 1990-05-16 Krupp Koppers GmbH Burner for the gasification of fine grained and pulverulent solid fuels

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT402440B (en) * 1995-06-01 1997-05-26 Voest Alpine Ind Anlagen BURNER
EP0767235A2 (en) * 1995-10-03 1997-04-09 Mitsubishi Jukogyo Kabushiki Kaisha Burner and a fuel supply method
EP0767235A3 (en) * 1995-10-03 1997-05-07 Mitsubishi Jukogyo Kabushiki Kaisha Burner and a fuel supply method
US5997595A (en) * 1995-10-03 1999-12-07 Mitsubishi Jukogyo Kabushiki Kaisha Burner and a fuel etc. supply method
WO2006113229A1 (en) 2005-04-18 2006-10-26 General Electric Company Improved feed indjector for gasification and related method
JP2008537092A (en) * 2005-04-18 2008-09-11 ゼネラル・エレクトリック・カンパニイ An improved feed injector and related method for gasification.
WO2009019272A1 (en) * 2007-08-06 2009-02-12 Shell Internationale Research Maatschappij B.V. Burner
AU2008285638B2 (en) * 2007-08-06 2011-02-10 Air Products And Chemicals, Inc. Burner
US9032623B2 (en) 2007-08-06 2015-05-19 Shell Oil Company Method of manufacturing a burner front face
US9546784B2 (en) 2007-08-06 2017-01-17 Shell Oil Company Burner
EP2238223B1 (en) 2008-01-28 2015-08-26 Shell Internationale Research Maatschappij B.V. Process to start-up a coal gasification reactor
DE102008063505A1 (en) 2008-12-17 2010-07-01 Uhde Gmbh Process for equalizing the production of fuels in a gasifier for the production of synthesis gas
WO2010075911A1 (en) 2008-12-17 2010-07-08 Uhde Gmbh Method and system for homogenizing the delivery of fuels in a gasifier for generating syngas

Also Published As

Publication number Publication date
PL288309A3 (en) 1991-12-02
PL164928B3 (en) 1994-10-31
ES2038862T3 (en) 1993-08-01
CN1025868C (en) 1994-09-07
EP0437698B1 (en) 1993-02-03
DE59000845D1 (en) 1993-03-18
ZA909213B (en) 1991-09-25
DK0437698T3 (en) 1993-06-01
CN1052889A (en) 1991-07-10

Similar Documents

Publication Publication Date Title
DE3444590C2 (en) Process for the production of synthesis gas from a hydrocarbon fuel
DE3544792C2 (en)
EP0437698B1 (en) Process for operating a plant for the gassification of solid fuels
EP1319151B1 (en) Method of regenerating a residual substance that contains sulphur and the use of a atomizing burner for carrying out the method
EP0177090A2 (en) Device for the production of inflammable solid/gas suspensions
DE10045322C2 (en) Atomizing burner for the thermal splitting of sulfur-containing residues
DE3902773A1 (en) METHOD FOR PRODUCING SYNTHESIS GAS BY PARTIAL OXIDATION
DE3441359C2 (en)
DE19718261A1 (en) Method and device for converting hydrogen sulfide into elemental sulfur
AT407052B (en) METHOD FOR PRODUCING LIQUID PIG IRON
DE3837586C2 (en)
DE2520883B2 (en) Process and device for the continuous gasification of coal or carbonaceous fuels in an iron bath reactor
DE3941816A1 (en) Burner nozzle for solid fuel gasification reactor - controls prim. to sec. oxygen ratio and feeds recycled dust and gas in ring channel in centre of prim. oxygen channel
DE3530683C2 (en)
DE3441355C2 (en)
DE2411086A1 (en) Fluidised bed coal dust gasification - in reactor with secondary gasifying medium admission nozzles for carbon on slag
DD229712A5 (en) METHOD AND DEVICE FOR REDUCING OXIDICAL MATERIAL AT THE CIRCULAR PRODUCTION OF A GAS SUITABLE FOR RECEIVING HEAT ENERGY
DE3921807A1 (en) METHOD AND DEVICE FOR HEATING A METALURGIC OVEN
DE3334156A1 (en) Coal dust burner and process for its operation
DE4101497A1 (en) METHOD FOR THERMALLY RECONSTRUCTING AMMONIUM SULPHATE-BASED RECIPES, ESPECIALLY AMMONIUM SULPHATE-BASED WASTEWATER
DE2224233C3 (en) Method for operating a mixed-fed shaft furnace for burning limestone and device for carrying out the method
EP0064089A1 (en) Device for the coal dust pressure-gasification
DE2249961A1 (en) METHOD FOR PRODUCTION OF SYNTHESIS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK ES GB NL

17P Request for examination filed

Effective date: 19910708

17Q First examination report despatched

Effective date: 19920519

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK ES GB NL

REF Corresponds to:

Ref document number: 59000845

Country of ref document: DE

Date of ref document: 19930318

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930222

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2038862

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19981012

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19981022

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19991014

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19991117

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19991115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20001102

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010601

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20011214