EP0436151A1 - Kältestabile Erdölmitteldestillate, enthaltend Polymere als Paraffindispergatoren - Google Patents

Kältestabile Erdölmitteldestillate, enthaltend Polymere als Paraffindispergatoren Download PDF

Info

Publication number
EP0436151A1
EP0436151A1 EP90123728A EP90123728A EP0436151A1 EP 0436151 A1 EP0436151 A1 EP 0436151A1 EP 90123728 A EP90123728 A EP 90123728A EP 90123728 A EP90123728 A EP 90123728A EP 0436151 A1 EP0436151 A1 EP 0436151A1
Authority
EP
European Patent Office
Prior art keywords
copolymers
middle distillates
petroleum middle
polymers
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90123728A
Other languages
English (en)
French (fr)
Other versions
EP0436151B2 (de
EP0436151B1 (de
Inventor
Knut Dr. Oppenlaender
Heinrich Dr. Hartmann
Walter Denzinger
Brigitte Dr. Wegner
Klaus Dr. Barthold
Erich Dr. Schwartz
Egon Buettner
Hans-Jürgen Raubenheimer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6395577&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0436151(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BASF SE filed Critical BASF SE
Priority to AT90123728T priority Critical patent/ATE94896T1/de
Publication of EP0436151A1 publication Critical patent/EP0436151A1/de
Application granted granted Critical
Publication of EP0436151B1 publication Critical patent/EP0436151B1/de
Publication of EP0436151B2 publication Critical patent/EP0436151B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • C10L1/2364Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof homo- or copolymers derived from unsaturated compounds containing amide and/or imide groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/143Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/188Carboxylic acids; metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/196Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
    • C10L1/1963Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/196Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
    • C10L1/1966Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof poly-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/197Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid
    • C10L1/1973Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/24Organic compounds containing sulfur, selenium and/or tellurium
    • C10L1/2431Organic compounds containing sulfur, selenium and/or tellurium sulfur bond to oxygen, e.g. sulfones, sulfoxides
    • C10L1/2437Sulfonic acids; Derivatives thereof, e.g. sulfonamides, sulfosuccinic acid esters

Definitions

  • the invention relates to low-temperature petroleum middle distillates containing low molecular weight polymers with copolymerized monoethylenically unsaturated dicarboxylic acids which are reacted with unbranched, secondary fatty amines and have improved cold flowability and better dispersion of the separated wax crystals.
  • Middle distillates such as gas oils, diesel oils or heating oils, which are obtained from petroleum by distillation, have different paraffin contents depending on the origin of the crude oil.
  • solid paraffins are excreted (cloud point or cloud point, CP).
  • cloud point or cloud point, CP cloud point
  • the platelet-shaped n-paraffin crystals form a "card house structure" and the middle distillate stops, although the majority of the middle distillate is still liquid.
  • the fluidity of the petroleum distillate fuels is significantly impaired by the unusual n-paraffins in the temperature region between the cloud point and pour point or pour point.
  • the paraffins clog filters and cause uneven or completely interrupted fuel supply to the combustion units. Similar problems occur with heating oils.
  • suitable additives can be used to modify the crystal growth of the paraffins in the petroleum middle distillate fuels.
  • Well-effective additives on the one hand prevent middle distillates from forming such house of cards structures and, at temperatures a few degrees Celsius below the temperature at which the first wax crystals crystallize, already become solid and, on the other hand, they form fine, well-crystallized, separate wax crystals, which filters in motor vehicles and heating systems pass or at least form a filter cake permeable to the liquid part of the middle distillates, so that trouble-free operation is ensured.
  • a disadvantage of the additives mentioned is that the failed wax crystals, owing to their higher density than the liquid part, tend to settle more and more on the bottom of the container during storage. This creates a homogeneous low-paraffin phase in the upper part of the container and a two-phase paraffin-rich layer on the bottom. Since both in vehicle tanks and in storage or delivery tanks of mineral oil dealers, the middle distillate is mostly a little above the Bottom of the container takes place, there is a risk that the high concentration of solid paraffins leads to blockages of filters and metering devices. This danger increases the further the storage temperature falls below the paraffin separation temperature, since the amount of paraffin excreted is a function of the temperature and increases with decreasing temperature.
  • the paraffin crystal modifiers are polymers which change the crystal growth of the n-paraffins through co-crystallization (interaction) and improve the flow properties of the middle distillate at low temperatures.
  • the effectiveness of the flow improver is expressed indirectly according to DIN 51428 by measuring the "Cold Filters Plugging Point” (CFPP).
  • ethylene copolymers especially copolymers of ethylene and unsaturated esters, are used.
  • reaction products of monoamines with maleic anhydride polymers to the corresponding imides are also described, with the use of less than one mole of amine per mole of maleic anhydride unit to neutralize remaining carboxyl groups.
  • dialkylamines are also mentioned as reactants in the general description in the cited patent specification, there is no concrete information about a reaction with a secondary amine. Rather, there is always talk of imide to be formed, the formation of which is only possible with a primary amine. Finally, the reaction product should not contain any free acid groups; these are converted into metal salts by neutralization.
  • R1 and R2 independently of one another are hydrogen or low molecular weight alkyl or together represent a tetramethylene radical and in which
  • R3 and R4 are unbranched alkyl radicals with 14 to 24 carbon atoms, meet this requirement.
  • Particularly suitable polymers are those which contain recurring units of the formula I, preferably those with units of the formula I '
  • Copolymers of styrene with maleic anhydride are particularly preferred.
  • radicals of the formula I are derived from z. B. maleic acid, fumaric acid, tetrahydrophthalic acid, citraconic acid, preferably maleic anhydride. They can be used both in the form of their homopolymers and of the copolymers. Suitable comonomers are: styrene and alkylstyrenes, straight-chain and branched olefins with 2 to 12 carbon atoms, and mixtures with one another.
  • Examples include: styrene, ⁇ -methylstyrene, dimethylstyrene, ⁇ -ethylstyrene, diethylstyrene, i-propylstyrene, tert-butylstyrene, ethylene, propylene, n-butylene, i-butylene, di-i-butylene and dodecene. Styrene and isobutene are preferred, styrene is particularly preferred.
  • polymers which may be mentioned in detail are: polymaleic acid, a molar, alternating styrene / maleic acid copolymer, randomly constructed styrene / maleic acid copolymers in a ratio of 10:90 to 90:10 and an alternating copolymer of maleic acid and i-butene.
  • the molar masses of the polymers are generally from 500 g / mol to 20,000 g / mol, preferably from 700 to 2000 g / mol.
  • Dialkylamines of the formula come as amines: considered in the
  • R3, R4 is a straight-chain alkyl radical having 14 to 24 carbon atoms.
  • Dioleylamine, dipalmitinamine and dibehenylamine and preferably ditallow fatty amine may be mentioned in particular.
  • the dicarboxylic acids in the form of the anhydrides, e.g. Maleic anhydride, citraconic anhydride and tetrahydrophthalic anhydride, since the anhydrides usually copolymerize better with the olefins.
  • the anhydride groups of the copolymers can then be reacted directly with the amines.
  • the reaction of the polymers or copolymers with the secondary fatty amines takes place at temperatures of 50 to 200 ° C in the course of 0.3 to 30 hours.
  • the secondary fatty amine is used in amounts of approximately one mole per mole of polymerized dicarboxylic acid anhydride, ie approximately 0.9 to 1.1 moles / mole.
  • the use of larger or smaller amounts is possible, but has no advantage. If larger amounts than one mole are used, ammonium salts are obtained in part, since the formation of a second amide group requires higher temperatures, longer residence times and the elimination of water. If amounts smaller than one mole are used, there is no complete conversion to the monoamide and a correspondingly reduced effect is obtained.
  • the polymers are prepared by known discontinuous or continuous polymerization processes such as bulk, suspension, precipitation or solution polymerization and initiation with customary radical donors such as acetylcyclohexanesulfonyl peroxide, diacetyl peroxidicarbonate, dicyclohexyl peroxidicarbonate, di-2-ethylhexyl peroxidicylate, 2,2'-azodobio-butylate, tert.-butodoboxylate, tert.-butodobio-butylate, tert-butyl-tert-butyl-tert-butyl-tert-butyl-tert (4-methoxy-2,4-dimethylvaleronitrile), tert-butyl perpivalate, tert-butyl per-2-ethyl hexanoate, tert-butyl permaleinate, 2,2'-azobis (isobutyronitrile), bis (tert-buty
  • the polymerization is generally carried out at from 40 to 400 ° C., preferably from 80 to 300 ° C., and when olefins or solvents are used, boiling temperatures below the polymerization temperature are advantageously carried out under pressure.
  • the polymerization is advantageously carried out in the absence of air, ie if it is not possible to work under boiling conditions, e.g. B. carried out under nitrogen, since oxygen delays the polymerization.
  • the reaction can be accelerated by the use of redox coinitiators such as benzoin, dimethylaniline, ascorbic acid and organically soluble complexes of heavy metals such as copper, cobalt, manganese, iron, nickel and chromium.
  • the amounts usually used are 0.1 to 2000 ppm by weight, preferably 0.1 to 1000 ppm by weight.
  • regulators are, for example, allyl alcohols, such as buten-1-ol-3, organic mercapto compounds such as 2-mercaptoethanol, 2-mercaptopropanol, mercaptoacetic acid, mercaptopropionic acid, tert-butyl mercaptan, n-butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan and tert.- Dodecyl mercaptan, which are generally used in amounts of 0.1% by weight to 10% by weight.
  • Equipment suitable for the polymerization is e.g. Conventional stirred kettles with, for example, armature, blade, impeller or multi-stage impulse countercurrent stirrers and for the continuous production of stirred kettle cascades, tubular reactors and static mixers.
  • the simplest method of polymerization is bulk polymerization.
  • the olefins and the acid group- or acid anhydride group-containing monomer are polymerized in the presence of an initiator and in the absence of solvents. This process is particularly suitable for those copolymers in which the olefin used has 6 and more carbon atoms.
  • all monomers are mixed in the desired composition and a small part, e.g. about 5 to 10%, in the reactor before, heated to the desired polymerization temperature with stirring and metered in the remaining monomer mixture and the initiator and optionally coinitiator and regulator evenly within 1 to 10 hours, preferably 2 to 5 hours.
  • copolymer can then be converted to the paraffin dispersant according to the invention directly in the melt or after dilution with a suitable solvent.
  • a continuous high-pressure process is also suitable for producing the desired copolymers, which permits space-time yields of 1 to 50 kg of polymer per liter of reactor and hour.
  • a polymerization vessel, a pressure vessel cascade, a pressure tube or a pressure vessel with a downstream reaction tube, which is provided with a static mixer, can be used as the polymerization apparatus.
  • the monomers are preferably polymerized from olefins and monoethylenically unsaturated compounds containing acid anhydride groups or acid groups in at least 2 polymerization zones connected in series.
  • One reaction zone can consist of a pressure-tight vessel, the other of a heatable static mixer. You get sales of more than 99%.
  • a copolymer of styrene and maleic anhydride can be prepared, for example, by continuously feeding the monomers and a suitable initiator to a reactor or two reaction zones connected in series, for example a reactor cascade, and the reaction product after a residence time of 2 to 60, preferably 5 to 30 minutes, at temperatures between 200 and 400 ° C continuously discharged from the reaction zone.
  • the polymerization is expediently carried out at pressures of more than 1 bar, preferably between 1 and 200 bar.
  • the copolymers obtained with solids contents above 99 ° C. can then be further converted to the corresponding amides.
  • solvents are used in which the monomers are soluble and the copolymer formed is insoluble and fails.
  • solvents are ethers such as diethyl ether, dipropyl ether, dibutyl ether, methyl tert-butyl ether, diethylene glycol dimethyl ether, toluene, xylene, ethylbenzene, cumene, high-boiling aromatic mixtures such as Solvesso 100®, 150 and 200, aliphatic and cycloaliphatic hydrocarbons and mixtures with one another.
  • a protective colloid When carrying out the precipitation polymerization, it is expedient to use a protective colloid to prevent the formation of aggregates, in particular when working at concentrations of more than 40% by weight.
  • Suitable protective colloids are polymeric substances which are readily soluble in the solvents and which do not react with the monomers.
  • copolymers of maleic anhydride with vinyl alkyl ethers and / or olefins with 8 to 20 C atoms and their monoesters with C10 to C20 alcohols or mono- and diamides with C10 to C20 alkyl amines and polyalkyl vinyl ethers whose alkyl group is 1 to 20 C are suitable Contains atoms, such as polymethyl, polyethyl, polyisobutyl and polyoctadecyl vinyl ether.
  • the amounts of protective colloid added are usually 0.05 to 4% by weight (based on the monomers used), preferably 0.1 to 2% by weight, it often being advantageous to combine several protective colloids.
  • the solvent, the protective colloid and part of the monomer mixture in the reactor and to meter in the rest of the monomer mixture and the initiator and, if appropriate, the point and regulator at the selected polymerization temperature with vigorous stirring.
  • the feed times for monomer and initiator are generally between 1 and 10 hours, preferably 2 and 5 hours. It is also possible to polymerize all of the starting materials together in one reactor, but problems with heat dissipation can occur, so that such a procedure is less appropriate.
  • the concentrations of the monomers to be polymerized are between 20 and 80% by weight, preferably 30 to 70% by weight.
  • the polymer suspensions can be used directly in evaporators, for example belt dryers polymers, paddle dryers, spray dryers and fluidized bed dryers.
  • Another embodiment for the preparation of the copolymers is solution polymerization. It is carried out in solvents in which the monomers and the copolymers formed are soluble. All solvents that meet this requirement and that do not react with the monomers are suitable for this. For example, these are acetone, methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone, ethyl acetate, butyl acetate, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol diethyl ether, tetrahydrofuran and dioxane.
  • the concentrations of the monomers to be polymerized are between 20 and 80% by weight, preferably 30 and 70% by weight.
  • the solid copolymer can be isolated easily by evaporating the solvent. But here, too, it is expedient to choose a solvent in which the further reaction with amines can take place.
  • the additives according to the invention are added to the petroleum middle distillates in amounts of 50 to 1000 ppm, preferably 100 to 500 ppm.
  • middle distillates already contain flow improvers such as ethylene-vinyl ester copolymers.
  • Preferred copolymers (b) are those which essentially contain ethylene and 25 to 45% by weight of vinyl acetate, vinyl propionate or ethylhexyl acrylate. Also to be mentioned are copolymers which contain, for example, fumaric acid esters.
  • the molecular weight of the flow improvers is generally 500 to 5000, preferably 1000 to 3000.
  • hydrocarbon-soluble carboxylic acids and / or sulfonic acids or their salts are suitable as conductivity improvers (c) for middle distillates.
  • middle distillates The basic conductivity of middle distillates is approx. 5 to 10 ps / m, measured according to DIN 51412. Variations occur due to different contents of water, salts, naphthenic acids, phenols and other compounds containing sulfur and nitrogen.
  • metal salts of hydrocarbon-soluble carboxylic and sulfonic acids as are commercially available under the name ASA3®Shell, as well as other conventional conductivity improvers, such as the commercially available Stadis® 450 commercial product from DuPont, whose composition is not known, are also suitable.
  • Examples 1 to 5 describe the preparation of the polymers, which are then reacted with ditallow fatty amine according to Examples 6 to 11 to give the paraffin dispersants according to the invention.
  • the molecular weights were determined by gel permeation chromatography, using tetrahydrofuran as eluent and narrowly distributed fractions of polystyrene for calibration.
  • a reaction mixture of 32.1 g of the polymer suspension according to Example 3 and 77.2 g of ditallow fatty amine was first stirred at 80 ° C. for 1.5 hours and then again at 150 ° C. for 7 hours. 94.6 g of the product were obtained as a yellow-brown, viscous oil.
  • a reaction mixture of 60 g styrene / maleic anhydride copolymer and 60.2 g stearylamine in 368 g neutral oil IA is heated to 220 ° C. for 20 hours. The mixture was then allowed to cool to 125 ° C. and 10.9 g of calcium hydroxide (dissolved in water) were metered in. After 2 hours of stirring at this temperature, the reaction mixture was filtered and the water was separated off.
  • Example 13 (Production according to DE 2531234, Example 2)
  • middle distillate I, II, III where I and II mean diesel fuel and III heating oil EL.
  • the middle distillates were tested with different amounts of flow improvers alone and / or together with paraffin dispersants in combination with / without conductivity improvers at temperatures below the cloud point.
  • the cooling was carried out using a temperature program.
  • the middle distillates I, II (Tables I, II) were cooled from room temperature to -12 ° C at a cooling rate of 1 ° C / h and stored at -12 ° C for 24 h.
  • the middle distillate III (Table III) was also cooled from approx. 20 ° C 1 ° C / h to -4 ° C and stored at -4 ° C / 24 h.
  • the experiments were carried out with 100 ml and 1000 ml middle distillate volumes.
  • Tables I - III list: volume of the sedimented paraffin phase (%) optically assessed, cloud point (CP) and cold filter plugging point (CFPP) of the lower area (lower 40 vol%), CP and CFPP of the upper area (upper 60 vol.%) As well as the CP and CFPP of the middle distillate containing the additives before the storage test.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Lubricants (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Kältestabile Erdölmitteldestillate,enthaltend geringe Mengen von Polymere oder Copolymeren, die wesentliche Anteile von Einheiten der Formel I <IMAGE> enthalten oder aus diesen bestehen, in der R¹ und R² unabhängig voneinander Wasserstoff oder niedermolekulares Alkyl oder zusammen einen Tetramethylenrest bedeuten und in der R³ und R<4> unverzweigte Alkylreste mit 14 bis 24 C-Atomen bedeuten. Die Zusätze bewirken eine sehr gute Dispergierung und Fließverbesserung.

Description

  • Die Erfindung betrifft kältestabile Erdölmitteldestillate,enthaltend niedermolekulare Polymere mit einpolymerisierten monoethylenisch ungesättigten Dicarbonsäuren, welche mit unverzweigten, sekundären Fettaminen umgesetzt sind und eine verbesserte Kältefließfähigkeit und bessere Dispergie-rung der ausgeschiedenen Paraffinkristalle aufweisen.
  • Mitteldestillate wie Gasöle, Dieselöle oder Heizöle, die durch Destillation aus Erdölen gewonnen werden, haben je nach Herkunft des Rohöls unterschiedliche Gehalte an Paraffinen. Bei tieferen Temperaturen kommt es zur Ausscheidung fester Paraffine (Trübungspunkt oder Cloud Point, CP). Bei weiterer Abkühlung bilden die-plättchenförmigen n-Paraffinkristalle eine "Kartenhausstruktur" und das Mitteldestillat stockt, obwohl der überwiegende Teil des Mitteldestillates noch flüssig ist. Durch die ausgefallenen n-Paraffine im Temperaturgebiet zwischen Trübungspunkt und Stockpunkt bzw. Pour Point wird die Fließfähigkeit der Erdöldestillat-Brenn- bzw. Kraftstoffe erheblich beeinträchtigt. Die Paraffine verstopfen Filter und verursachen ungleichmäßige oder völlig unterbrochene Kraftstoffzufuhr zu den Verbrennungsaggregaten. Ähnliche Störungen treten bei Heizölen auf.
  • Es ist seit langem bekannt, daß durch geeignete Zusätze das Kristallwachstum der Paraffine in den Erdölmitteldestillat-Brenn- und Kraftstoffen modifiziert werden kann. Gut wirksame Additive verhindern einerseits, daß Mitteldestillate derartige Kartenhaus-Strukturen ausbilden und bei Temperaturen wenige Grad Celsius unterhalb der Temperatur, bei welcher die ersten Paraffinkristalle auskristallisieren, bereits fest werden und andererseits feine, gut kristallisierte, separate Paraffinkristalle bilden, welche Filter in Kraftfahrzeugen und Heizungsanlagen passieren oder zumindest einen für den flüssigen Teil der Mitteldestillate durchlässigen Filterkuchen bilden, so daß ein störungsfreier Betrieb sichergestellt ist.
  • Ein Nachteil der genannten Zusätze beruht darin, daß die ausgefallenen Paraffinkristalle aufgrund ihrer gegenüber dem flüssigen Teil höheren Dichte dazu neigen, sich beim Lagern mehr und mehr am Boden des Behälters abzusetzen. Dadurch bildet sich eine im oberen Behälterteil homogene paraffinarme Phase und am Boden eine zweiphasige paraffinreiche Schicht. Da sowohl in Fahrzeugtanks als auch in Lager- oder Liefertanks der Mineralölhändler der Abzug des Mitteldestillates meist wenig oberhalb des Behälterbodens erfolgt, besteht die Gefahr, daß die hohe Konzentration an festen Paraffinen zu Verstopfungen von Filtern und Dosiereinrichtungen führt. Diese Gefahr wird umso größer, je weiter die Lagertemperatur die Ausscheidungstemperatur der Paraffine unterschreitet, da die ausgeschiedene Paraffinmenge eine Funktion der Temperatur darstellt und mit sinkender Temperatur ansteigt.
  • Bei den Paraffinkristallmodifikatoren, den sog. Fließverbesserern, handelt es sich um Polymere, die durch Co-Kristallisation (Interaktion) das Kristallwachstum der n-Paraffine verändern und die Fließeigenschaften des Mitteldestillats bei niedrigen Temperaturen verbessern. Die Wirksamkeit der Fließverbeserer wird nach DIN 51428 indirekt durch Messung des "Cold Filters Plugging Points" (CFPP) ausgedrückt.
  • Als Kältefließverbesserer werden an sich bekannte Ethylencopolymere, vor allem Copolymere von Ethylen und ungesättigten Estern, verwendet. In DE 11 47 799 und 19 14 756 sind beispielsweise Copolymere des Ethylens mit Vinylacetat beschrieben, mit einem Gehalt von 25 bis 45 Gew.-% Vinylacetat und einem Molekulargewicht von 500 bis 5000.
  • Weiterhin ist aus GB 2 095 698 bekannt, Mitteldestillaten eine Kombination aus den genannten Copolymeren mit Amiden aus langkettigen Aminen und aromatischen oder cycloaliphatischen Carbonsäuren zuzusetzen.
  • In DE 2 531 234 wird der Zusatz von Dialkyldiamiden oder Monoalkylimiden von z.B. Styrol/Maleinsäureamid-Copolymeren als Stabilisator in Mineralölen empfohlen, d.h. die Carboxylgruppen des Maleinsäureanhydridrestes sind vollständig mit Aminen umgesetzt, so daß keine freien Carboxylgruppen vorliegen.
  • Gemäß US 3,506,625 sind ebenfalls Umsetzungsprodukte von Monoaminen mit Maleinsäureanhydridpolymeren zu den entsprechenden Imiden beschrieben wobei bei Anwendung von weniger als ein Mol Amin pro Mol Maleinsäureanhydrideinheit noch verbleibende Carboxylgruppen neutralisiert werden. Zwar sind in der genannten Patentschrift auch Dialkylamine als Reaktanden in der allgemeinen Beschreibung genannt, jedoch finden sich keine konkreten Angaben einer Umsetzung mit einem sekundären Amin. Vielmehr ist stets die Rede von zu bildendem Imid, dessen Bildung nur mit einem primären Amin möglich ist. Schließlich soll das Reaktionsprodukt keine freien Säuregruppen enthalten; diese werden durch Neutralisation in Metallsalze überführt.
  • Bezüglich der Handhabungs- und Dispergiereigenschaften der ausgeschiedenen Paraffine befriedigen diese Mischungen aber noch nicht. Ferner haben die genannten Diamide den Nachteil, daß eine 50%ige Lösung in einem üblichen Lösungsmittel, z.B. Solvesso® nur in der Wärme homogen ist und sich bei Raumtemperatur das Diamid ausscheidet. Schließlich ist die Herstellung der Diamide nur mit größerem Aufwand möglich, weil zur Einführung der zweiten Amidgruppe höhere Temperaturen, längere Verweilzeit und Auskreisen des entstandenen Wassers erforderlich ist.
  • Es bestand daher die Aufgabe, Zusätze zu Mitteldestillaten vorzuschlagen, die eine verbesserte Handhabung bei einfacherer Herstellung und zumindest gleich guter Paraffindispergierwirkung bei guter Fließverbesserung besitzen.
  • Überraschend wurde nun gefunden, daß kältestabile Erdölmitteldestillate enthaltend geringe Mengen von Polymeren oder Copolymeren, die wesentliche Anteile von Einheiten der Formel I
    Figure imgb0001

    enthalten oder aus diesen bestehen, in der
  • R¹ und R² unabhängig voneinander Wasserstoff oder niedermolekulares Alkyl oder zusammen einen Tetramethylenrest bedeuten und in der
  • R³ und R⁴ unverzweigte Alkylreste mit 14 bis 24 C-Atomen bedeuten, diese Forderung erfüllen.
  • Als Polymere kommen insbesondere solche in Betracht, die wiederkehrende Einheiten der Formel I enthalten, bevorzugt solche mit Einheiten der Formel I'
    Figure imgb0002
  • Besonders bevorzugt sind Copolymere des Styrols mit Maleinsäureanhydrid.
  • Im einzelnen leiten sich die Reste der Formel I ab von z. B. Maleinsäure, Fumarsäure, Tetrahydrophthalsäure, Citraconsäure, bevorzugt Maleinsäureanhydrid. Sie können sowohl in Form ihrer Homopolymeren als auch der Copolymeren eingesetzt werden. Als Comonomere sind geeignet: Styrol und Alkylstyrole, geradkettige und verzweigte Olefine mit 2 bis 12 Kohlenstoff-atomen, sowie Mischungen untereinander. Beispielsweise seien genannt: Styrol, α-Methylstyrol, Dimethylstyrol, α-Ethylstyrol, Diethylstyrol, i-Propylstyrol, tert.-Butylstyrol, Ethylen, Propylen, n-Butylen, i-Butylen, Di-i-butylen und Dodecen. Bevorzugt sind Styrol und Isobuten, besonders bevorzugt ist Styrol.
  • Als Polymere seien beispielsweise im einzelnen genannt: Polymaleinsäure, ein molares, alternierend aufgebautes Styrol/Maleinsäure-Copolymer, statistisch aufgebaute Styrol/Maleinsäure-Copolymere im Verhältnis 10:90 bis 90:10 und ein alternierendes Copolymer aus Maleinsäure und i-Buten. Die molaren Massen der Polymeren betragen im allgemeinen 500 g/mol bis 20000 g/mol bevorzugt 700 bis 2000 g/mol.
  • Als Amine kommen Dialkylamine der Formel:
    Figure imgb0003

    in Betracht, in der
  • R³, R⁴ einen geradkettigen Alkylrest mit 14 bis 24 Kohlenstoffatomen, bedeutet. Im einzelnen seien Dioleylamin, Dipalmitinamin und Dibehenylamin und vorzugsweise Ditalgfettamin genannt.
  • In der Regel ist es von Vorteil, die Dicarbonsäuren in Form der Anhydride, soweit verfügbar, bei der Copolymerisation einzusetzen, z.B. Maleinsäureanhydrid, Citraconsäureanhydrid und Tetrahydrophthalsäureanhydrid, da die Anhydride in der Regel besser mit den Olefinen copolymerisieren. Die Anhydridgruppen der Copolymeren können dann direkt mit den Aminen umgesetzt werden.
  • Die Umsetzung der Polymeren oder Copolymeren mit den sekundären Fettaminen erfolgt bei Temperaturen von 50 bis 200°C im Verlauf von 0,3 bis 30 Stunden. Das sekundäre Fettamin wird dabei in Mengen von ungefähr einem Mol pro Mol einpolymerisiertem Dicarbonsäureanhydrid, d.i. ca. 0,9 bis 1,1 Mol/Mol, angewandt. Die Verwendung größerer oder geringerer Mengen ist möglich, bringt aber keinen Vorteil. Werden größere Mengen als ein Mol angewandt, erhält man zum Teil Ammoniumsalze, da die Bildung einer zweiten Amidgruppierung höhere Temperaturen, längere Verweilzeiten und Wasseraus-kreisen erfordert. Werden geringere Mengen als ein Mol angewandt, findet keine volllständige Umsetzung zum Monoamid statt und man erhält eine dementsprechend verringerte Wirkung.
  • Anstelle der nachträglichen Umsetzung der Carboxylgruppen in Form des Di-carbonsäureanhydrids mit Aminen zu den entsprechenden Amiden kann es manchmal von Vorteil sein, die Monoamide der Monomeren herzustellen und dann bei der Polymerisation direkt einzupolymerisieren. Meist ist das jedoch technisch viel aufwendiger, da sich die Amine an die Doppelbindung der monomeren Mono- und Dicarbonsäure anlagern können und dann keine Copolymerisation mehr möglich ist.
  • Die Herstellung der Polymeren erfolgt nach bekannten diskontinuierlichen oder kontinuierlichen Polymerisationsverfahren wie Masse-, Suspensions-, Fällungs- oder Lösungspolymerisation und Initiierung mit üblichen Radikalspendern wie Acetylcyclohexansulfonylperoxid, Diacetylperoxidicarbonat, Dicyclohexylperoxidicarbonat, Di-2-ethylhexylperoxidicarbonat, tert.-Butylperneodecanoat, 2,2' Azobis(4-methoxi-2,4-dimethylvaleronitril), tert.-Butylperpivalat, tert.-Butylper-2-ethyl-hexanoat, tert.-Butylpermaleinat, 2,2' -Azobis(isobutyronitril), Bis-(tert.-butylperoxid)cyclohexan, tert.-Butylperoxiisopropylcarbonat, tert.-Butylperacetat, Dicumylperoxid, Di-tert.-amylperoxid, Di-tert.-butylperoxid, p-Methanhydroperoxid, Cumolhydroperoxid und tert.-Butylhydroperoxid und Mischungen untereinander. Im allgemeinen werden diese Initiatoren in Mengen von 0,1 bis 20 Gew.-% vorzugsweise 0,2 bis 15 Gew.-%, berechnet auf die Monomeren, eingesetzt.
  • Die Polymerisation erfolgt in der Regel bei Temperaturen von 40 bis 400°C, vorzugsweise 80 bis 300°C, wobei bei Verwendung von Olefinen oder Lösungsmitteln mit Siedetemperaturen unterhalb der Polymerisationstemperatur zweckmäßig unter Druck gearbeitet wird. Die Polymerisation wird zweckmäßig unter Luftausschluß, d.h., wenn nicht unter Siedebedingungen gearbeitet werden kann, z. B. unter Stickstoff durchgeführt, da Sauerstoff die Polymerisation verzögert. Durch Mitverwendung von Redox-Coinitiatoren wie Benzoin, Dimethylanilin, Ascorbinsäure sowie organisch löslichen Komplexen von Schwermetallen wie Kupfer, Kobalt, Mangan, Eisen, Nickel und Chrom kann die Reaktion beschleunigt werden. Die üblicherweise eingesetzten Mengen liegen bei 0,1 bis 2000 Gew.-ppm, vorzugsweise 0,1 bis 1000 Gew.-ppm. Bei der Wahl des Initiators bzw. des Initiatorsystems ist es zweckmäßig, bei der gewählten Polymerisationstemperatur darauf zur achten, daß die Halbwertszeit des Initiators oder des Initiatorsystems weniger als 3 Std. beträgt.
  • Zur Erzielung niedermolekularer Copolymerer ist es oftmals zweckmäßig, in Gegenwart von Reglern zu arbeiten. Geeignete Regler sind beispielsweise Allylalkohole, wie Buten-1-ol-3, organische Merkaptoverbindungen wie 2-Merkaptoethanol, 2-Merkaptopropanol, Merkaptoessigsäure, Merkaptopropionsäure, tert.-Butylmerkaptan, n-Butylmerkaptan, n-Octylmerkaptan, n-Dodecylmerkaptan und tert.-Dodecylmerkaptan, die im allgemeinen in Mengen von 0,1 Gew.-% bis 10 Gew.-% eingesetzt werden.
  • Für die Polymerisation geeignete Apparaturen sind z.B. übliche Rührkessel mit beispielsweise Anker-, Blatt-, Impeller- oder Mehrstufenimpuls-Gegenstrom-Rührer und für die kontinuierliche Herstellung Rührkesselkaskaden, Rohrreaktoren und statische Mischer.
  • Die einfachste Polymerisationsmethode ist die Massepolymerisation. Dabei werden die Olefine und das säuregruppen- oder säureanhydridgruppenhaltige Monomere in Gegenwart eines Initiators und in Abwesenheit von Lösungsmitteln polymerisiert. Dieses Verfahren ist besonders geeignet für solche Co-polymeren, bei denen das verwendete Olefin 6 und mehr C-Atome besitzt. Zweckmäßigerweise mischt man alle Monomeren in der gewünschten Zusammensetzung und legt einen kleinen Teil, z.B. ca. 5 bis 10%, im Reaktor vor, erhitzt unter Rühren auf die gewünschte Polymerisationstemperatur und dosiert die restliche Monomerenmischung und den Initiator und gegebenenfalls Coinitiator sowie Regler innerhalb von 1 bis 10 Std., vorzugsweise 2 bis 5 Std., gleichmäßig zu. Es ist dabei zweckmäßig, den Initiator sowie den Coinitiator getrennt in Form von Lösungen in einer kleinen Menge eines geeigneten Lösungsmittels zuzudosieren. Das Copolymere läßt sich dann zum erfindungsgemäßen Paraffindispergator direkt in der Schmelze oder auch nach Verdünnen mit einem geeigneten Lösungsmittel umsetzen.
  • Geeignet zur Herstellung der gewünschten Copolymeren ist auch ein kontinuierliches Hochdruckverfahren, das Raum-Zeit-Ausbeuten von 1 bis 50 kg Polymer pro Liter Reaktor und Stunde zuläßt. Als Polymerisationsapparatur kann z.B. ein Druckkessel, eine Druckkesselkaskade, ein Druckrohr oder auch ein Druckkessel mit einem nachgeschalteten Reaktionsrohr, das mit einem statischen Mischer versehen ist, verwendet werden. Vorzugsweise polymerisiert man die Monomeren aus Olefinen und säureanhydridgruppen- bzw. säuregruppenhaltigen monoethylenisch ungesättigten Verbindungen in mindestens 2 hintereinander geschalteten Polymerisationszonen. Dabei kann die eine Reaktionszone aus einem durckdichten Kessel, die andere aus einem beheizbaren statischen Mischer bestehen. Man erhält dabei Umsätze von mehr als 99%. Ein Copolymerisat aus Styrol und Maleinsäureanhydrid kann bei spielsweise dadurch hergestellt werden, daß man die Monomeren und einen geeigneten Initiator einem Reaktor oder zwei hintereinandergeschalteten Reaktionszonen, beipsielsweise eine Reaktorkaskade, kontinuierlich zuführt, und das Reaktionsprodukt nach einer Verweilzeit von 2 bis 60, vorzugsweise von 5 bis 30 Minuten, bei Temperaturen zwischen 200 und 400°C kontinuierlich aus der Reaktionszone ausschleust. Die Polymerisation wird zweckmäßig bei Drücken von mehr als 1 bar, vorzugsweise zwischen 1 und 200 bar, durchgeführt. Die erhaltenen Copolymeren mit Feststoffgehalten von über 99°C können dann weiter zu den entsprechenden Amiden umgesetzt werden.
  • Eine weitere Methode zur einfachen Herstellung der Copolymeren ist die Fällungspolymerisation. Bei der Fällungspolymerisation werden solche Lösungsmittel eingesetzt, in denen die Monomeren löslich und das gebildete Copolymere unlöslich ist und ausfällt. Solche Lösungsmittel sind beispielsweise Ether wie Diethylether, Dipropylether, Dibutylether, Methyl-tert.-butylether, Diethylenglykoldimethylether, Toluol, Xylol, Ethylbenzol, Cumol, hochsiedente Aromatengemische wie z.B. Solvesso 100®, 150 und 200, aliphatische und cycloaliphatische Kohlenwasserstoffe und Mischungen untereinander. Bei der Durchführung der Fällungspolymerisation ist es zweckmäßig, insbesondere wenn bei Konzentrationen von über 40 Gew.-% gearbeitet wird, ein Schutzkolloid zur Verhinderung der Aggregatbildung zu verwenden. Als Schutzkolloide sind polymere Stoffe geeignet, die in den Lösungsmitteln gut löslich sind und keine Reaktion mit den Monomeren eingehen. Geeignet sind beispielsweise Copolymere des Maleinsäureanhydrids mit Vinylalkylethern und/oder Olefinen mit 8 bis 20 C-Atomen sowie deren Monoester mit C₁₀- bis C₂₀-Alkoholen oder Mono- und Diamide mit C₁₀- bis C₂₀-Alkylaminen sowie Polyalkylvinylether, deren Alkylgruppe 1 bis 20 C-Atome enthält, wie Polymethyl-, Polyethyl-, Polyisobutyl-sowie Polyoktadecylvinylether. Die zugesetzten Mengen an Schutzkolloid liegen üblicherweise bei 0,05 bis 4 Gew.-% (berechnet auf eingesetzte Monomere), vorzugsweise 0,1 bis 2 Gew.-%, wobei es oftmals von Vorteil ist, mehrere Schutzkolloide zu kombinieren. Bei der Polymerisation ist es zweckmäßig, das Lösungsmittel, das Schutzkolloid und einen Teil der Monomerenmischung im Reaktor vorzulegen und bei gewählter Polymerisationstemperatur unter intensivem Rühren den Rest der Monomerenmischung und den Initiator sowie gegebenenfalls den Cointiator und Regler zuzudosieren. Die Zulaufzeiten für Monomer und Initiator sind im allgemeinen zwischen 1 und 10 Std., vorzugsweise 2 und 5 Std. Es ist auch möglich, alle Einsatzstoffe gemeinsam in einem Reaktor zu polymerisieren, wobei jedoch Probleme mit der Wärmeabführung auftreten können, so daß eine solche Arbeitsweise weniger zweckmäßig ist. Die Konzentrationen der zu polymerisierenden Monomeren liegen zwischen 20 und 80 Gew.-%, bevorzugt 30 bis 70 Gew.-%. Aus den Polymerisatsuspensionen können direkt in Verdampfern, beispielsweise Bandtrock nern, Schaufeltrocknern, Sprühtrocknern und Wirbelbett-Trocknern die Polymeren isoliert werden.
  • Beim Arbeiten in geeigneten Lösungsmitteln, die Kraftstoffen direkt zugesetzt werden können, kann die weitere Umsetzung zum Amid direkt in der Suspension durchgeführt werden. Dies ist die bevorzugte Herstellungsform für die Herstellung von Maleinsäureanhydrid-Homopolymeren und Copolymeren mit Styrol, Isobuten und Diisobuten.
  • Eine weitere Ausführungsform für die Herstellung der Copolymeren ist die Lösungpolymerisation. Sie wird durchgeführt in Lösungsmitteln, in denen die Monomeren und die gebildeten Copolymeren löslich sind. Es sind hierfür alle Lösungsmittel geeignet, die diese Vorgabe erfüllen und die mit den Monomeren keine Reaktionen eingehen. Beispielsweise sind dies Aceton, Methylethylketon, Diethylketon, Methylisobutylketon, Ethylacetat, Butylacetat, Ethylenglykoldimethylether, Diethylenglykoldimethylether, Ethylenglykoldiethylether, Diethylenglykoldiethylether, Tetrahydrofuran und Dioxan, wobei zur Erzielung niedermolekularer Copolymerer, Tetrahydrofuran und Dioxan besonders gut geeignet sind. Wie bei der Masse-und Fällungspolymerisation ist es auch hier zweckmäßig, das Lösungsmittel und einen Teil der Monomerenmischung (z. B. ca. 5 bis 20%) vorzulegen und den Rest der Monomerenmischung mit dem Initiator und gegenbenenfalls Co-Initiator und Regler zuzudosieren. Es können auch Lösungsmittel und Olefin, besonders bei C₄- bis C₁₂-α-Olefinen im Polymerisationsreaktor vorgelegt und nach Erreichen der Polymerisationstemperatur dann das säuregruppenhaltige bzw. säureanhydridgruppenhaltige Monomere, gegebenenfalls gelöst im Lösungsmittel, und der Initiator sowie gegebenenfalls Coinitiator und Regler zudosiert werden. Die Konzentrationen der zu polymerisierenden Monomeren liegen zwischen 20 und 80 Gew.-%, bevorzugt 30 und 70 Gew.-%. Das feste Copolymer kann problemlos durch Verdampfen des Lösungsmittels isoliert werden. Aber auch hier ist es zweckmäßig, ein Lösungsmittel zu wählen, in dem die weitere Umsetzung mit Aminen erfolgen kann.
  • Die erfindungsgemäßen Additive werden den Erdölmitteldestillaten in Mengen von 50 bis 1000 ppm, bevorzugt 100 bis 500 ppm, zugesetzt. In der Regel enthalten solche Mitteldestillate bereits Fließverbesserer wie Ethylen-Vinylester-Copolymere.
  • Nach einer besonders bevorzugten Ausführungsform der Erfindung enthalten die Erdölmitteldestillate geringe Mengen der folgenden Additivkombination aus
    • a) 50 bis 1000 ppm, bevorzugt 100 bis 500 ppm der erfindungsgemäßen Umsetzungsprodukte niedermolekularer Polymerer, die Einheiten monoethylenisch ungesättigter Dicarbonsäuren enthalten, mit unverzweigten, sekundären Fettaminen zu den Monoamiden,
    • b) an sich bekannten Ethylencopolymerisat-Fließverbesserern, z. B. Ethylen-Vinylestercopolymerisaten, in Mengen von 50 bis 1000 ppm, bevorzugt 50 bis 500 ppm und
    • c) Leitfähigkeitsverbesserer in Form von Salzen, insbesondere von Carbonsäuren und Sulfonsäuren bzw. deren Metall- und Ammoniumsalzen in Mengen von 0,1 bis 40 ppm, bevorzugt 0,25 bis 20 ppm.
  • Die an sich bekannten Fließverbesserer (b) sind in der Patentliteratur eingehend beschrieben. Beispielsweise seien die Deutsche Patentschrift 19 14 756, EP 214786 (α-Olefin/MSA-Ester) und EP 155807 (Alkylfumarate/VAC-Copolymere) genannt, auf die hiermit Bezug genommen wird. Es kommen jedoch auch gleichermaßen Terpolymerisate in Betracht, die neben Ethylen und Vinylestern oder Acrylestern noch weitere Comonomere einpolymerisiert enthalten.
  • Bevorzugte Copolymerisate (b) sind solche, die im wesentlichen Ethylen und 25 bis 45 Gew.-% Vinylacetat, Vinylpropionat oder Ethylhexylacrylat enthalten. Ferner sind Copolymerisate zu nennen, die beispielsweise Fumar-säureester enthalten. Das Molekulargewicht der Fließverbesserer beträgt in der Regel 500 bis 5000, vorzugsweise 1000 bis 3000.
  • Als Leitfähigkeitsverbesserer (c) für Mitteldestillate kommen allgemein kohlenwasserstofflösliche Carbonsäuren und/oder Sulfonsäuren oder deren Salze in Betracht.
  • Die Grundleitfähigkeit von Mitteldestillaten beträgt ca. 5 bis 10 ps/m, gemessen nach DIN 51412. Schwankungen treten auf durch unterschiedliche Gehalte an Wasser, Salzen, Naphthensäuren, Phenolen und anderen schwefel-und stickstoffhaltigen Verbindungen.
  • Eine Anhebung der Leitfähigkeit um den Faktor 2 bis 3, bezogen auf die Grundleitfähigkeit, hat sich bei einigen der untersuchten Mitteldestillate als vorteilhaft für das Dispergierverhalten der Paraffine erwiesen.
  • Der Zusatz der Leitfähigkeitsverbesserer, wie sie z.B. in DE-OS 21 16 556 beschrieben sind, bewirken bereits in Mengen von 0,3 bis 1 ppm im Mitteldestillat eine Verbesserung des Ansprechverhaltens. Andere, weniger wirksame Leitfähigkeitsverbesserer erfordern naturgemäß eine höhere Konzentra tion. Der Zusatz deutlich größerer Mengen als der angegebenen 40 ppm ist zwar möglich, bringt aber keine wesentlichen technischen Vorteile.
  • Im einzelnen kommen ferner Metallsalze von kohlenwasserstofflöslichen Carbon- und Sulfonsäuren, wie sie sich unter der Bezeichnung ASA3®Shell im Handel befinden, sowie andere übliche Leitfähigkeitsverbesserer, wie das marktübliche Handelsprodukte Stadis® 450 von DuPont, dessen Zusammensetzung nicht bekannt ist, in Betracht.
  • Die Erfindung wird durch die folgenden Beispiele erläutert:
  • Herstellung der Paraffindispergatoren
  • In den Beispielen 1 bis 5 wird die Herstellung der Polymeren beschrieben, die anschließend mit Ditalgfettamin gemäß Beispiele 6 bis 11 zu den erfindungsgemäßen Paraffindispergatoren umgesetzt werden.
  • Die Molmassen wurden durch Gelpermeationschromatographie bestimmt, wobei als Elutionsmittel Tetrahydrofuran und zur Eichung eng verteilte Fraktionen von Polystyrol eingesetzt wurden.
  • Herstellbeispiele Beispiel 1
  • In einem Reaktor, der versehen war mit Rührer, Heizung und Zulaufvorrichtungen wurden 88,2 g Maleinsäureanhydrid, 388 g Solvesso 150® (hochsiedendes Aromatengemisch der Firma Esso) und 5,43 g Polyvinylethylether vom Molgewicht 50000 g/mol im schwachen Stickstoffstrom unter Rühren auf 180°C erhitzt und innerhalb von 3 Std. gleichmäßig 93,6 g Styrol und eine Lösung von 3,62 g Ditertiärbutylperoxid in 36,4 g Solvesso bei 180°C zudosiert. Anschließend wurde noch 1 Stunde bei 180°C nacherhitzt und nach Abkühlen die grobe Polymerisatsuspension weiter umgesetzt. Die Molmasse des Copolymeren aus Maleinsäureanhydrid und Styrol betrug 1000.
  • Beispiel 2
  • In einem Reaktor gemäß Beispiel 1 wurden 64,15 g Maleinsäureanhydrid und 416, 10g Solvesso 150 im schwachen Stickstoffstrom unter Rühren auf 150°C erhitzt und innerhalb von 5 Std. wurden 68,07 g Styrol und eine Lösung von 2,64 g Ditertiärbutylperoxid in 23,1 g Solvesso gleichmäßig bei 150°C zudosiert. Anschließend wurde noch 1 St. nacherhitzt und abgekühlt. Die grobe Polymerisatsuspension wurde dann weiter umgesetzt. Die Molmasse des Copolymeren betrug 1800 g/mol.
  • Beispiel 3
  • In einem Reaktor gemäß Beispiel 1 wurden 400 g Maleinsäureanhydrid, 333 g Solvesso 150 und 10 g Polyvinylether vom Molweicht 50000 g/mol im schwachen Stickstoffstrom unter Rühren auf 150°C erhitzt und innerhalb von 3 Std. eine Lösung von 100 g Styrol und 25 g Solvesso 150 und innerhalb von 5 Std. eine Lösung von 75 g tert. Butylperethylhexanonat in 88 g Solvesso 150 gleichmäßig zudosiert. Anschließend wurde noch 1 Std. nacherhitzt, abgekühlt und die grobkörnige Suspension dann weiter umgesetzt. Die Molmasse des Polymeren betrug 1000.
  • Beispiel 4
  • In einem Druckreaktor gemäß Beispiel 1 wurden 980 g Maleinsäureanhydrid, 1440 g Toluol und 14 g Polyvinylethylether vom Molgewicht 50000 eingefüllt, der Reaktor 3 mal mit 4 bar Stickstoff abgepresst und auf 140°C unter Rühren erhitzt. Nun wurden innerhalb von 5 Std. 600 g Isobuten und innerhalb von 6 Std. eine Lösung von 23,1 g tert. Butylperethylhexanoat und 15,4 g Ditertiärbutylperoxid in 100 g Toluol zudosiert. Anschließend wurde noch 1 Std. nacherhitzt. Während der Polymerisation stellt sich ein Druck von 7 bar ein. Anschließend wurde die Mischung gekühlt und die dünne, feine Suspension des molaren Copolymeren aus Maleinsäureanhydrid und Isobuten weiter umgesezt. Die Molmasse des Polymeren betrug 3500.
  • Beispiel 5
  • In einem Reaktor gemäß Beispiel 1 wurden 500 g Maleinsäureanhydrid und 333 g o-Xylol unter Rühren bis zum Sieden unter 152°C erhitzt und innerhalb von 5 Std. eine Lösung von 75 g tert. Butylperethylhexanoat in 15 g o-Xylol zudosiert. Anschließend wurde noch 1 Std. nacherhitzt und dann das Polymere, welches in Form einer sehr groben Suspension vorlag, weiter umgesetzt. Die Molmasse des Polymeren betrug 1000.
  • Beispiel 6
  • 188,4 g der Polymerisatsuspension aus Beispiel 1 wurden vorgelegt und auf 150°C erhitzt. Dazu wurden 153, 1 g Ditalgfettamin zudosiert und die Reaktionsmischung noch 4 Stunden bei 150°C gerührt. Man erhielt 257,1 g Produkt als gelbbraunes, viskoses Öl.
  • Beispiel 7
  • 188,4 g der Polymerisatsuspension aus Beispiel 1 wurden vorgelegt und auf 80°C erhitzt. Dazu wurden 153,1 g Ditalgfettamin zudosiert und die Reaktionsmischung solange bei 80°C gerührt (ca. 8,5 Stunden) bis ein Amintiter von <0,4 erreicht war.
  • Beispiel 8
  • Zu dem gemäß Beispiel 2 hergestellten Copolymer wurden bei 145°C 333,8 g Ditalgfettamin in Schmelze zudosiert. Man ließ noch 2 Stunden bei dieser Temperatur nachrühren bis ein Amintiter von <0,6 erreicht war.
  • Beispiel 9
  • Eine Reaktionsmischung aus 32,1 g der Polymerisatsuspension gemäß Beispiel 3 und 77,2 g Ditalgfettamin wurde zunächst 1,5 Stunden bei 80°C und anschließend nochmals 7 Stunden bei 150°C gerührt. Man erhielt 94,6 g des Produktes als gelbbraunes, zähes Öl.
  • Beispiel 10
  • 30,8 g Polymer (hergestellt durch Eindampfen der Suspension von Beispiel 4) und 102,0 g Ditalgfettamin wurden ca. 12 Stunden bei 150°C gerührt bis ein Amintiter <1 erreicht war.
  • Beispiel 11
  • Zu 259,4 g Ditalgfettamin wurden bei 80°C 81,7 g Polymaleinsäureanhydrid (Suspension gemäß Beispiel 5) zudosiert. Anschließend wurde die Reaktionsmischung stufenweise auf 140°C erwärmt und bei dieser Temperatur gerührt bis eine homogene Mischung und ein Amintiter von 0,6 erreicht war (ca. 24 Stunden).
  • Vergleichsbeispiele: Beispiel 12 (Herstellung entsprechend US 3506625, Beispiel III)
  • Eine Reaktionsmischung aus 60 g Styrol/Maleinsäureanhydrid-Copolymerem und 60,2 g Stearylamin in 368 g Neutralöl IA wird 20 Stunden auf 220°C erhitzt. Anschließend ließ man auf 125°C abkühlen und dosierte 10,9 g Calciumhydroxid (gelöst in Wasser) zu. Nach 2 Stunden nachrühren bei dieser Temperatur wurde die Reaktionsmischung filtriert und das Wasser abgetrennt.
  • Beispiel 13 (Herstellung entsprechend DE 2531234, Beispiel 2)
  • Eine Reaktionsmischung aus 27 g Stearylamin und 91,1 g 17%ige Lösung eines Isobuten/Maleinsäureanhydrid-Copolymerem in Xylol wurde 40 Stunden lang auf 100 bis 150°C erhitzt. Das Produkt, 37 g brauner Feststoff, zeigte deutliche Imidbanden im IR-Spektrum.
  • Verwendungsbeispiele
  • Im folgenden bedeuten:
  • A.
    Umsetzungsprodukte niedermolekularer Polymerer, die Einheiten monoethylenisch ungesättigter Dicarbonsäuren enthalten, mit Ditalgfettamin
    FI
    Fließverbesserer, im besonderen
    • FI(A) Ethylen/Vinylpropionat (mit ca. 40 Gew.-% Vinylpropionat) mit einem mittleren Molekulargewicht von ca. 2500 (bestimmt durch Dampfdruckosmometrie)
    • FI(B) Ethylen/Vinylacetat (mit ca. 30 Gew.-% Vinylacetat) mit einem mittleren Molekulargewicht von ca. 2500.
    • FI(c) Ethylen/Ethylhexylacrylat (mit 50 Gew.-% Ethylhexylacrylat) mit einem mittleren Molekulargewicht von ca. 2500.
    LV
    Leitfähigkeitsverbesserer, im besonderen
    • LV(E) gemäß Beispiel 1 DE 21 16 556
    • LV(F) (ASA 3/Shell) Kohlenwasserstofflösliches sulfocarbonsaures Salz
    • LV(G) (Stadis 450/DuPont) Leitfähigkeitsverbesserer unbekannter Zusammensetzung.
  • Als Mitteldestillate wurden für die folgenden Versuche Heizöl EL und Dieselkraftstoff in handelsüblicher westdeutscher Raffineriequalität verwendet. Sie sind als Mittteldestillat I, II, III bezeichnet, wobei I und II Dieselkraftstoff und III Heizöl EL bedeutet.
    Figure imgb0004
  • Beschreibung der Testmethode
  • Die Mitteldestillate wurden mit unterschiedlichen Mengen an Fließverbesserern allein und/oder zusammen mit Paraffindispergatoren in Kombination mit/ohne Leitfähigkeitsverbesserern bei Temperaturen unterhalb des Trübungspunktes geprüft. Die Abkühlung erfolgte mit Hilfe eines Temperaturprogramms. Die Mitteldestillate I, II (Tabellen I, II) wurden dabei von Raumtemperatur auf -12°C mit einer Abkühlrate von 1°C/h abgekühlt und bei -12°C 24 h gelagert. Das Mitteldestillat III (Tabelle III) wurde ebenfalls von ca. 20°C 1°C/h auf -4°C abgekühlt und bei -4°C/24 h gelagert. Die Versuche wurden mit 100 ml und 1000 ml Mitteldestillatvolumina durchgeführt. In den Tabellen I - III sind aufgeführt: Volumen der sedimentierten Paraffinphase (%) optisch bewertet, cloud point (CP) und cold filter plugging point (CFPP) des unteren Bereichs (untere 40 Vol%), CP und CFPP des oberen Bereichs (obere 60 Vol.%) sowie der CP und CFPP des die Zusätze enthaltenden Mitteldestillates vor dem Lagertest.
  • Wie sich aus folgenden Tabellen ergibt, wird durch Zusatz von leitfähigkeitsverbessernden Additiven die Sedimentation der Paraffine zusätzlich reduziert.
  • Tabelle I
    Prüfung in Mitteldestillat I
    Tabelle II
    Prüfung in Mitteldestillat II
    Tabelle III
    Prüfung in Mitteldestillat III
    Tabelle IV-VI
    Prüfung in Mitteldestillat I
    In diesen Tabellen bedeuten:
  • BS =
    Bodensatz
    K =
    klar
    T =
    trüb
    LT =
    leicht trüb
    LD =
    leicht dispergiert
    D =
    dispergiert
    FI =
    Mitteldestillatfließverbesserer
    PD =
    Paraffindispergator
    PD (D1) =
    Paraffindispergator gem. Beispiel 8
    PD (D2) =
    Paraffindispergator gem. Beispiel 10
    LV =
    Leitfähigkeitsverbesserer
    PD (D3) =
    Paraffindispergator gem. DE 25 31 234, Vergleichsbeispiel 13
    PD (D4) =
    Paraffindispergator gem. US 3,506,625, Vergleichsbeispiel 12
    Figure imgb0005
    Figure imgb0006
    Figure imgb0007
    Figure imgb0008
    Figure imgb0009
    Figure imgb0010
    Figure imgb0011

Claims (6)

  1. Kältestabile Erdölmitteldestillate, enthaltend geringe Mengen von Polymeren oder Copolymeren, die wesentliche Anteile von Einheiten der Formel I
    Figure imgb0012
    enthalten oder aus diesen bestehen, in der
    R¹ und R² unabhängig voneinander Wasserstoff oder niedermolekulares Alkyl oder zusammen einen Tetramethylenrest bedeuten und in der
    R³ und R⁴ unverzweigte Alkylreste mit 14 bis 24 C-Atomen
    bedeuten.
  2. Erdölmitteldestillate gemäß Anspruch 1, dadurch gekennzeichnet, daß sie Copolymere mit wiederkehrenden Einheiten der Formel I enthalten.
  3. Erdölmitteldestillate gemäß Anspruch 1, enthaltend geringe Mengen von Polymeren oder Copolymeren, die wesentliche Anteile an wiederkehrenden Einheiten der Formel I
    Figure imgb0013
    enthalten, in der
    R³, R⁴ die in Anspruch 1 angegebene Bedeutung hat.
  4. Erdölmitteldestillate gemäß Anspruch 1, dadurch gekennzeichnet, daß die Copolymere solche des Styrols und Maleinsäureanhydrids sind, in denen das Molverhältnis Styrol zu Maleinsäureanhydrid 90:10 bis 10:90 beträgt und die Massen der Copolymere 500 bis 20.000 g/mol betragen und daß R³-N-R⁴ den Rest des Ditalgfettamins bedeutet.
  5. Erdölmitteldestillate gemäß Anspruch 1,dadurch gekennzeichnet, daß sie die Polymeren oder Copolymeren in Mengen von 50 bis 1000 ppm enthalten.
  6. Erdölmitteldestillate gemäß Anspruch 1, dadurch gekennzeichnet, daß sie zusätzlich
    A) 50 bis 1000 ppm Fließverbesserer ausgewählt aus der Gruppe bestehend aus Ethylen-Vinylacetat, Ethylen-Vinylpropionat und Ethylen-Vinylhexylacrylat-Copolymeren mit einem mittleren Molekulargewicht von 1000 bis 5000 und
    B) 0,1 bis 40 ppm Leitfähigkeitsverbesserer enthalten.
EP90123728A 1989-12-16 1990-12-10 Kältestabile Erdölmitteldestillate, enthaltend Copolymere als Paraffindispergatoren Expired - Lifetime EP0436151B2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90123728T ATE94896T1 (de) 1989-12-16 1990-12-10 Kaeltestabile erdoelmitteldestillate, enthaltend polymere als paraffindispergatoren.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3941561 1989-12-16
DE3941561A DE3941561A1 (de) 1989-12-16 1989-12-16 Kaeltestabile erdoelmitteldestillate, enthaltend polymere als paraffindispergatoren

Publications (3)

Publication Number Publication Date
EP0436151A1 true EP0436151A1 (de) 1991-07-10
EP0436151B1 EP0436151B1 (de) 1993-09-22
EP0436151B2 EP0436151B2 (de) 1997-08-27

Family

ID=6395577

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90123728A Expired - Lifetime EP0436151B2 (de) 1989-12-16 1990-12-10 Kältestabile Erdölmitteldestillate, enthaltend Copolymere als Paraffindispergatoren

Country Status (5)

Country Link
EP (1) EP0436151B2 (de)
AT (1) ATE94896T1 (de)
CA (1) CA2032246A1 (de)
DE (2) DE3941561A1 (de)
ES (1) ES2059967T5 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998023843A1 (en) * 1996-11-22 1998-06-04 Clariant Gmbh Additives for inhibiting formation of gas hydrates
US5998530A (en) * 1997-01-07 1999-12-07 Clariant Gmbh Flowability of mineral oils and mineral oil distillates using alkylphenol-aldehyde resins
EP0964052A1 (de) * 1998-04-16 1999-12-15 Clariant GmbH Verwendung von stickstoffhaltigen Ethylencopolymeren zur Herstellung von Brennstoffölen mit verbesserter Schmierwirkung
DE102004014080A1 (de) * 2004-03-23 2005-10-13 Peter Dr. Wilharm Nukleierungsmittel auf der Basis von hyperverzweigten Polymeren
WO2013007994A1 (en) 2011-07-08 2013-01-17 Innospec Limited Improvement in the cold flow properties of fuels
EP3885424A1 (de) 2020-03-24 2021-09-29 Clariant International Ltd Zusammensetzungen und verfahren zur dispergierung von paraffinen in schwefelarmen brennstoffölen
WO2024037904A1 (de) * 2022-08-16 2024-02-22 Basf Se Zusammensetzung zur verminderung der kristallisation von paraffinkristallen in kraftstoffen

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0606055B1 (de) * 1993-01-06 1997-09-17 Hoechst Aktiengesellschaft Terpolymere auf Basis von alpha,beta-ungesättigten Dicarbonsäureanhydriden, alpha,beta-ungesättigten Verbindungen und Polyoxyalkylenethern von niederen, ungesättigten Alkoholen
JPH07149838A (ja) * 1993-07-27 1995-06-13 Shell Internatl Res Maatschappij Bv 高分子流動改善添加剤
EP2025737A1 (de) 2007-08-01 2009-02-18 Afton Chemical Corporation Umweltfreundliche Kraftstoffzusammensetzungen
GB201201550D0 (en) * 2012-01-30 2012-03-14 Innospec Ltd Improvements in or relating to fuels
WO2018054892A1 (de) 2016-09-21 2018-03-29 Basf Se TERPOLYMERE AUS MALEINSÄUREANHYDRID, ACRYLATEN UND ALPHA-OLEFINEN, INSBESONDERE ZUR VERWENDUNG ALS FLIEßVERBESSERER FÜR ERDÖL

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1147212A (fr) * 1955-03-22 1957-11-20 California Research Corp Composition combustible à base d'hydrocarbure
FR1527669A (fr) * 1963-08-12 1968-06-07 Socony Mobil Oil Co Compositions hydrocarbonées liquides perfectionnées
DE2022588A1 (de) * 1969-05-09 1970-11-12 Esso Res And Engineering Co Fliessverbesserer
FR2030358A1 (de) * 1969-02-07 1970-11-13 Mobil Oil Corp
US3578421A (en) * 1968-07-26 1971-05-11 Mobil Oil Corp Liquid hydrocarbon compositions containing reaction products of an amine and methyl vinyl ether-maleic anhydride copolymers as anti-static agents
US4163645A (en) * 1973-03-23 1979-08-07 Petrolite Corporation Organic liquids containing anti-static agents which are copolymers of alpha-olefins and maleic anhydrides reacted with amines
EP0040498A1 (de) * 1980-05-09 1981-11-25 M & T Chemicals B.V. Polymere mit bioziden Eigenschaften
EP0283293A1 (de) * 1987-03-18 1988-09-21 Exxon Chemical Patents Inc. Verwendung von Tieftemperaturfliessverbesserern in Destillatbrennstoffölen

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1147212A (fr) * 1955-03-22 1957-11-20 California Research Corp Composition combustible à base d'hydrocarbure
FR1527669A (fr) * 1963-08-12 1968-06-07 Socony Mobil Oil Co Compositions hydrocarbonées liquides perfectionnées
US3578421A (en) * 1968-07-26 1971-05-11 Mobil Oil Corp Liquid hydrocarbon compositions containing reaction products of an amine and methyl vinyl ether-maleic anhydride copolymers as anti-static agents
FR2030358A1 (de) * 1969-02-07 1970-11-13 Mobil Oil Corp
DE2022588A1 (de) * 1969-05-09 1970-11-12 Esso Res And Engineering Co Fliessverbesserer
US4163645A (en) * 1973-03-23 1979-08-07 Petrolite Corporation Organic liquids containing anti-static agents which are copolymers of alpha-olefins and maleic anhydrides reacted with amines
EP0040498A1 (de) * 1980-05-09 1981-11-25 M & T Chemicals B.V. Polymere mit bioziden Eigenschaften
EP0283293A1 (de) * 1987-03-18 1988-09-21 Exxon Chemical Patents Inc. Verwendung von Tieftemperaturfliessverbesserern in Destillatbrennstoffölen

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998023843A1 (en) * 1996-11-22 1998-06-04 Clariant Gmbh Additives for inhibiting formation of gas hydrates
US6544932B2 (en) 1996-11-22 2003-04-08 Clariant Gmbh Additives for inhibiting gas hydrate formation
US5998530A (en) * 1997-01-07 1999-12-07 Clariant Gmbh Flowability of mineral oils and mineral oil distillates using alkylphenol-aldehyde resins
EP0964052A1 (de) * 1998-04-16 1999-12-15 Clariant GmbH Verwendung von stickstoffhaltigen Ethylencopolymeren zur Herstellung von Brennstoffölen mit verbesserter Schmierwirkung
DE102004014080A1 (de) * 2004-03-23 2005-10-13 Peter Dr. Wilharm Nukleierungsmittel auf der Basis von hyperverzweigten Polymeren
WO2013007994A1 (en) 2011-07-08 2013-01-17 Innospec Limited Improvement in the cold flow properties of fuels
EP3885424A1 (de) 2020-03-24 2021-09-29 Clariant International Ltd Zusammensetzungen und verfahren zur dispergierung von paraffinen in schwefelarmen brennstoffölen
WO2021190793A1 (de) 2020-03-24 2021-09-30 Clariant International Ltd Zusammensetzungen und verfahren zur dispergierung von paraffinen in schwefelarmen brennstoffölen
WO2021190794A1 (de) 2020-03-24 2021-09-30 Clariant International Ltd Zusammensetzungen und verfahren zur dispergierung von paraffinen in schwefelarmen brennstoffölen
US11993756B2 (en) 2020-03-24 2024-05-28 Clariant International Ltd Compositions and methods of dispergating paraffins in sulphur-low fuel oils
WO2024037904A1 (de) * 2022-08-16 2024-02-22 Basf Se Zusammensetzung zur verminderung der kristallisation von paraffinkristallen in kraftstoffen

Also Published As

Publication number Publication date
DE3941561A1 (de) 1991-06-20
EP0436151B2 (de) 1997-08-27
EP0436151B1 (de) 1993-09-22
ES2059967T3 (es) 1994-11-16
CA2032246A1 (en) 1991-06-17
DE59002844D1 (de) 1993-10-28
ATE94896T1 (de) 1993-10-15
ES2059967T5 (es) 1997-10-16

Similar Documents

Publication Publication Date Title
EP0485773B1 (de) Erdölmitteldestillate mit verbesserten Fliesseigenschaften in der Kälte
EP0777712B1 (de) Polymermischungen und ihre verwendung als zusatz für erdölmitteldestillate
EP0606055B1 (de) Terpolymere auf Basis von alpha,beta-ungesättigten Dicarbonsäureanhydriden, alpha,beta-ungesättigten Verbindungen und Polyoxyalkylenethern von niederen, ungesättigten Alkoholen
EP0307815B1 (de) Kraftstoffe für Ottomotoren
DE19620119C1 (de) Terpolymerisate des Ethylens, ihre Herstellung und ihre Verwendung als Additive für Mineralöldestillate
EP0463518B1 (de) Terpolymerisate des Ethylens, ihre Herstellung und ihre Verwendung als Additive für Mineralöldestillate
EP0436151B1 (de) Kältestabile Erdölmitteldestillate, enthaltend Copolymere als Paraffindispergatoren
DE3905681A1 (de) Konzentrierte mischungen von pfropfcopolymerisaten aus estern von ungesaettigten saeuren und ethylen-vinylester-copolymerisaten
EP3394122B1 (de) Polymerzusammensetzungen mit verbesserter handhabbarkeit
EP0890589B1 (de) Lösungen oder Dispersionen auf Basis von Copolymere von Olefinen und ungesättigten Carbonsäureestern und ihre Verwendung als Mineralöladditive
EP0486836B1 (de) Erdölmitteldestillate mit verbesserten Fliesseigenschaften in der Kälte
EP0485774B1 (de) Erdölmitteldestillate mit verbesserten Fliesseigenschaften in der Kälte
EP0342497B1 (de) Kraftstoff für Ottomotoren
DE19927560C2 (de) Brennstoffölzusammensetzung
DE19729055C2 (de) Brennstofföle auf Basis von Mitteldestillaten und Copolymeren aus Ethylen und ungesättigten Carbonsäureestern
EP0937108A1 (de) Co- und terpolymere auf basis von g(a), g(b)-ungesättigten verbindungen und g(a), g(b)-ungesättigten dicarbonsäureanhydriden
EP0751963B1 (de) Copolymerisate auf basis von diketenen, ethylenisch ungesättigten dicarbonsäuren bzw. dicarbonsäurederivaten und ethylenisch ungesättigten kohlenwasserstoffen
EP0981557B1 (de) Fliessverbesserer für erdölmitteldestillate
EP0475052A1 (de) Kältestabile Erdölmitteldestillate, enthaltende Polymere als Paraffindispergatoren
WO1995025756A1 (de) Als paraffindispergatoren geeignete modifizierte copolymerisate, ihre herstellung und verwendung sowie diese enthaltende erdölmitteldestillate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901210

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT NL

17Q First examination report despatched

Effective date: 19920122

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT NL

REF Corresponds to:

Ref document number: 94896

Country of ref document: AT

Date of ref document: 19931015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59002844

Country of ref document: DE

Date of ref document: 19931028

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931019

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: EXXON CHEMICAL PATENTS INC.

Effective date: 19940621

NLR1 Nl: opposition has been filed with the epo

Opponent name: EXXON CHEMICAL PATENTS INC.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2059967

Country of ref document: ES

Kind code of ref document: T3

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19970827

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE DE ES FR GB IT NL

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)

Effective date: 19970910

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Kind code of ref document: T5

Effective date: 19970908

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

NLR2 Nl: decision of opposition
ET3 Fr: translation filed ** decision concerning opposition
NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20071125

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20071212

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081210

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20100113

Year of fee payment: 20

Ref country code: GB

Payment date: 20091209

Year of fee payment: 20

Ref country code: IT

Payment date: 20091217

Year of fee payment: 20

Ref country code: FR

Payment date: 20091221

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20091224

Year of fee payment: 20

Ref country code: DE

Payment date: 20091203

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20101209

BE20 Be: patent expired

Owner name: *BASF A.G.

Effective date: 20101210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20101209

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20120510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20101211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20101210