EP0434521B1 - Déversoir évacuateur de crues pour barrages et ouvrages similaires - Google Patents

Déversoir évacuateur de crues pour barrages et ouvrages similaires Download PDF

Info

Publication number
EP0434521B1
EP0434521B1 EP90403592A EP90403592A EP0434521B1 EP 0434521 B1 EP0434521 B1 EP 0434521B1 EP 90403592 A EP90403592 A EP 90403592A EP 90403592 A EP90403592 A EP 90403592A EP 0434521 B1 EP0434521 B1 EP 0434521B1
Authority
EP
European Patent Office
Prior art keywords
level
water level
spillway
predetermined
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90403592A
Other languages
German (de)
English (en)
Other versions
EP0434521A1 (fr
Inventor
François Lemperiere
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GTM Entrepose SA
Original Assignee
GTM Entrepose SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GTM Entrepose SA filed Critical GTM Entrepose SA
Priority to AT90403592T priority Critical patent/ATE95257T1/de
Publication of EP0434521A1 publication Critical patent/EP0434521A1/fr
Application granted granted Critical
Publication of EP0434521B1 publication Critical patent/EP0434521B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B8/00Details of barrages or weirs ; Energy dissipating devices carried by lock or dry-dock gates
    • E02B8/06Spillways; Devices for dissipation of energy, e.g. for reducing eddies also for lock or dry-dock gates
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B7/00Barrages or weirs; Layout, construction, methods of, or devices for, making same
    • E02B7/16Fixed weirs; Superstructures or flash-boards therefor

Definitions

  • the present invention relates to a spillway spillway for dams and similar structures, of the type comprising a spillway threshold whose crest is located at a first predetermined level lower than a second predetermined level corresponding to a maximum level or highest water level , for which the dam is designed, the difference between said first and second levels corresponding to a predetermined maximum flow of an exceptional flood, and a mobile rise closing the weir.
  • a spillway threshold whose crest is located at a first predetermined level lower than a second predetermined level corresponding to a maximum level or highest water level , for which the dam is designed, the difference between said first and second levels corresponding to a predetermined maximum flow of an exceptional flood, and a mobile rise closing the weir.
  • the barrier with free overflow threshold offers compared to a work provided with valves the best safety vis-a-vis the hydrological hazard, which remains one of the major risks for the dams.
  • valve systems which close the overflow threshold when the valves are closed.
  • the valves of whatever nature, conventional or inflatable, of automatic or manual operation, are generally of a fairly high investment cost and they require periodic maintenance and maneuvers. They also require continuous human monitoring or a controlled mechanism reacting to the water level of the reservoir, a mechanism which is often expensive and sophisticated and which is never completely immune to failure.
  • the operational safety and reliability of a gated structure is lower than that of a structure with a free overflow threshold (not gated).
  • said rise comprises at least one rigid and massive rise element, which is placed on the crest of the overflow threshold and is held in place thereon by gravity, said element having a predetermined height, which is smaller than the difference of the first and second predetermined levels and which corresponds, for a water level substantially equal to said maximum level, to an average flood having a predetermined flow lower than said predetermined maximum flow, said riser being dimensioned in size and weight so that the moment of the thrust forces applied by water to the riser reaches the moment of gravity forces which tend to hold the riser in place on the threshold overflowing, and that consequently said rising element is unbalanced and driven out when the water reaches a third predetermined level higher than the top of the rising element, but at most equal to the second predetermined level.
  • the raising element (s) can be manufactured at a very moderate cost compared to the valves and, in the case where they are installed on the overflow threshold of an already existing dam, this installation can be done without the need for d '' make major modifications to the overflow threshold of the dam as we will see below.
  • a stop of predetermined height is preferably provided on the threshold overflowing at the foot of the raising element, on the downstream side thereof, to prevent it from sliding downstream on the threshold, without however preventing it from tipping over the stop when the water level reaches said third predetermined level.
  • the height of the stop is taken into account as will be seen below for the dimensioning in size and weight of the raising element or elements.
  • a seal may be disposed between the overflow threshold and the base of the riser, near the upstream edge of said base.
  • a seal is not absolutely essential if, in the absence of a seal, water leaks between the raising element and the overflow threshold are low and if the area of the overflow threshold on which the said elevation element (s) rests is suitably drained so that no appreciable underpressure can be established under the said elevation element (s).
  • means may be provided for automatically establishing an underpressure under the said raising element or elements when the water level reaches said third predetermined level, in order to promote the imbalance and the tilting of said or said rising elements when it becomes essential to evacuate an exceptional flood.
  • the invention can be applied both to the spillway of an existing dam and to that of a dam under construction.
  • the crest of the overhanging threshold is preferably leveled at a level lower than said first predetermined level and the one or more rising elements are placed on the leveled threshold.
  • the storage capacity of the dam can be kept equal to that which it had before the overflow threshold was lowered, or it can be increased depending on whether the elevating element (s) is given a height such that its or their apex finds at said first predetermined level, or at a level higher than this, but lower than said third predetermined level.
  • each rising element or a group of rising elements can be dimensioned so as to tilt for a predetermined water level lower than that at which another element or group of elements rise will tilt, the latter itself being dimensioned so as to tilt for a lower water level than that to which a third element or group of rise elements will tilt, and so on. In this way, a progressive increase in the evacuation capacity is obtained, if necessary, depending on the extent of the flood.
  • Figure 1 is a perspective view showing a structure, such as a dam, and its spillway spillway with free overflow threshold, to which the invention can be applied.
  • Figures 2a and 2b show, in vertical section and on a larger scale, the crest of the free overflow threshold of the dam of Figure 1 for two different water levels.
  • Figure 3 is an elevational view of the weir of Figure 1, seen from the downstream side and equipped with a fusible link according to the present invention.
  • FIG. 4 is a plan view of the weir of FIG. 3.
  • FIGS. 5a to 5e are views in vertical section making it possible to explain the operation of the fuse riser of the present invention, before, during and after the passage of a flood.
  • Figure 6 is a graph showing the various forces which, in service, can be applied to a riser according to the present invention.
  • FIG. 7 is a graph representing the variations of the moments of the driving and resistant forces as a function of the height of water above the overflow threshold, as well as the variations of the flow of water discharged as a function of the height of the overflow blade.
  • Figures 8a to 8c are cross-sectional views for comparing heights maximum of overhanging blades in the case of the present invention for rising elements having different heights (FIGS. 8a and 8b) and in the case of a known free overhanging threshold (FIG. 8c).
  • Figure 9 is a vertical sectional view showing a lifting element of the present invention, which is associated with a triggering device for tilting.
  • FIGS. 10a to 10c show, on a larger scale, various protective devices which can be provided at the upper end of the trigger device of FIG. 9.
  • Figures 11a to 11g show, in perspective, various embodiments of a rising element according to the present invention.
  • Figures 12 to 14 show, in vertical section, other alternative embodiments of the raising element of the invention.
  • FIG. 15 shows, in perspective, a detail of the rising element of FIG. 14.
  • Figure 16 shows, in perspective, another embodiment of the raising element of the invention.
  • FIG. 17 is a front view, downstream side, of the raising element of FIG. 16.
  • Figure 18 is a plan view of the riser of Figures 16 and 17.
  • Figure 19 is a sectional view along line XIX-XIX of Figure 18.
  • Figures 19a and 19b are views similar to that of Figure 19, showing variants.
  • Figure 20 is a view similar to Figure 19 showing another variant.
  • Figures 21 and 22 are plan views showing two other variants.
  • the structure 1 shown in FIG. 1 can be an embankment dam or a concrete or masonry dam.
  • the invention is not limited to the type of dam shown in FIG. 1, but on the contrary it can be applied to any type of known dam with a free overflow threshold.
  • the reference number 2 designates the crest of the dam, the number 3 its downstream facing, the number 4 its upstream facing, the number 5 a spillway spillway, the number 6 the weir threshold 5 and the number 7 an evacuation channel.
  • the spillway 5 can be located in the central part of the dam 1 or at the end of it or even excavated on a bank without this altering the possibility of using the invention.
  • the level RN of the normal reservoir in operation is that of the crest 8 of the overflow threshold 6. This level RN determines the maximum volume of reservoir that can be kept by the reservoir formed by the dam.
  • the vertical distance R called revenge, between the crest 8 of the weir and the crest 2 of the dam is the sum of two terms, namely, on the one hand, an increase h1 in the water level due to a flood, up to a maximum level RM or highest water level (PHE), allowing the discharge of the maximum flood (figure 2b) for which the structure is dimensioned, and, on the other hand, an additional height h2 intended to protect the ridge 2 of the dam against the oscillations of the water level at its maximum level RM (effect of wind, waves, etc.).
  • the reservoir portion located between the normal retention level RN and the maximum level RM is not stored and is therefore lost for operation.
  • One of the aims of the invention is to enable the level of normal operation of the reservoir to be raised almost permanently. increase its storage capacity, except during exceptional floods.
  • the invention provides for placing on the overhanging threshold 6 an increase 10, constituted by at least one solid element 11, for example five elements 11a-11e as shown in FIGS. 3 and 4, said increase 10 or the elements 11 being able to support, without breaking, the water load corresponding to a moderate spill (allowing the passage of the most frequent floods) while resisting by the effect of gravity, and being made fusible by tilting for a predetermined water load corresponding to a level N at most equal to the maximum level RM and then allowing the passage of the strongest floods.
  • an increase 10 constituted by at least one solid element 11, for example five elements 11a-11e as shown in FIGS. 3 and 4, said increase 10 or the elements 11 being able to support, without breaking, the water load corresponding to a moderate spill (allowing the passage of the most frequent floods) while resisting by the effect of gravity, and being made fusible by tilting for a predetermined water load corresponding to a level N at most equal to the maximum level RM and then allowing the passage of the strongest floods.
  • the number of elevating elements 11 is not limited to five elements as shown in Figures 3 and 4, but may be smaller or larger depending on the length of the weir 5 (measured in the longitudinal direction of the dam) .
  • the number of elevating elements 11 is chosen so as to obtain low unit masses allowing easy installation and replacement of said elevating elements.
  • each elevation element 11 is placed on the overflow threshold 6 and is held thereon by gravity.
  • each rising element 11 is retained, against any sliding downstream, by a stop 12 located at the foot of the element 11, on the downstream side thereof.
  • the stop 12 can for example be embedded in the threshold 6, as shown for example in Figure 5a, and it can be discontinuous as shown in Figures 3 and 4. However, if desired, the stop 12 could be continuous.
  • the height of the stop 12 is predetermined, but it can be variable according to the forces involved and according to the water level from which it is desired to initiate the tilting of each rising element 11.
  • seals 13 are also provided between the vertical side walls, two by two facing each other, adjacent elevation elements 11 as is also visible in FIG. 4.
  • a seal 15 is also provided between the overflow threshold 6 and the base of the elevating elements 11 near the upstream edge 16 of said base as is for example visible in Figures 4 and 5a.
  • FIG. 5c represents the seal 15 carried by the raising element 11, the seal 15 could also be installed in a groove provided in the overflow threshold 6. As shown in FIG.
  • the seals 13 and the seal 15 when the latter is provided, are arranged in the same vertical plane.
  • a drainage system can be arranged in a known manner in the overflow threshold 6, in the zone thereof underlying upward 10, in order to dry out this area and to avoid that under normal pressure, pressure is applied to the elevating elements 11.
  • the rise 10 of the present invention makes it possible to raise the level of the normal restraint of the level RN (level of the normal restraint of the free overflow threshold 6, that is to say without the rise 10) up to the level RN 'corresponding to the height of the rise 10 above the threshold 6.
  • each rise element 11 is dimensioned so as to be self-supporting for a water load below a level predetermined N, itself at most equal to the maximum level RM already mentioned above.
  • said predetermined level is equal to the level RM
  • the water pours over the rise 10 as shown in Figure 5b, without the increase is not destroyed.
  • the water level drops to level RN 'or to a lower level if water is drawn into the reservoir.
  • Protection can for example be constituted by floating lines on the reservoir, at a certain distance upstream of the weir, or by stop devices fixed on the upstream facing of the dam.
  • the dams and overflow weirs are dimensioned so that the level of the lake (level of the reservoir) reaches the maximum level RM for the exceptional flood envisaged (project flood).
  • This flood may for example be the flood occurring only one year in a thousand (millennial flood).
  • the flow of this project flood is for example 200 m3 / s and that the free spillway 6 has a length of 40 m.
  • the height H of the water layer necessary to evacuate the flow of the project flood corresponds to 5 m3 / s per linear meter of threshold.
  • the level of the threshold 6 of the weir 5 is leveled 2 m below the maximum level RM to allow the evacuation of the millennial flood, and we lose therefore a useful volume of water corresponding to a 2 meter section.
  • the level of the normal reservoir RN ' is raised to 1.20 m above the level of the normal reservoir RN of the overflow threshold 6 free, that is to say without the elevating elements 11.
  • elevation elements 11 having a height greater than 1.2 m the height of the admissible sheet of water will be less than 0.8 m and it will be necessary to allow the destruction of the elevation elements, for example every 10 years , but the level of normal restraint will be further increased.
  • elevation elements 11 having a height less than 1.2 m we can admit a sheet of water having a height greater than 0.8 m, the elevation elements then being destroyed than every 50 or 100 years, but the level of normal withholding will then be lower than in the previous cases.
  • the choice of the height of the elevating elements 11 is therefore essentially an economic choice. In general, it is probably desirable to fix the time interval between two successive total destructions of the fusible riser at approximately 20 years, which would lead to a theoretical height of 1.2 m for the augmentation elements in the example considered here.
  • the destruction of the first element 11c by a medium-sized flood may be sufficient for the flow of the flood without additional rise in the water level, which avoids the destruction of the other elements 11a, 11b, 11d and 11e .
  • the margin of 10 cm which is thus taken is added to the maximum permissible overhanging blade height, so that the height of the rising elements and, consequently, the slice of water gained (RN'-RN) becomes equal to 1.1 m (2m-0.8m-0.1m) in the example considered here.
  • the tilting of the elevation element (s) 11 and, consequently, their destruction depends on the balance between, on the one hand, the motor moment, that is to say the moment of the forces which tend to overturn the element considered, and, on the other hand, the resisting moment, that is to say the moment of the forces which tend to stabilize said rising element.
  • a trigger device directly linked to the water level, is not provided to trigger the tilting of the raising element with precision for a predetermined water level, the water height corresponding to the above-mentioned equilibrium cannot be fixed only with a margin of uncertainty of up to 0.2 m. Under these conditions, it is necessary, for safety, to reduce the height of the elevation element (s) 11 by an amount corresponding to this margin of uncertainty, for example 0.2 m.
  • it is possible to avoid having to reduce the height of the lifting elements by providing a trigger device which will be described later with reference to FIG. 9.
  • FIG. 6 shows the various forces which, in service, can be applied to a lifting element 11 of the present invention.
  • the element 11 has a parallelepiped shape and has a width L and a height H1.
  • RM designates the maximum level as before
  • B designates the height of the stop 12 above the threshold
  • H2 designates the height of the maximum permissible overhanging blade above the elevation element 11
  • z indicates the water level.
  • the driving forces which tend to tilt the raising element 11 are the thrust P of the water on the upstream face of the raising element 11 and the underpressure U which is possibly exerted on the base surface.
  • the resistive forces, which tend to stabilize the riser 11, are the sum W of the self-weight of the riser 11 and the weight of the column of water possibly present above said rising element.
  • Mm is the motor moment in the absence of underpressure U
  • MmU is the motor moment in the presence of an underpressure U
  • ⁇ w is the density of water
  • ⁇ b is the average density of l 'rising element.
  • vent pipe 21 which, in service normal, puts the area underlying the rising element 11 in relation to the atmosphere, the upper end 21a of the vent pipe 21 being situated at a level N equal to the level for which it is desired that the tilting of the elevation element 11 occurs.
  • the pipe 21 can be straight and pass through the raising element 11 as shown in solid lines in FIG. 9, or it can be bent as shown in phantom in 21 'in FIG. 9, so that its end upper is offset upstream relative to the elevating element 11, or the vent pipe can be partially embedded in the threshold 6 as also shown in phantom in 21 '' in Figure 9.
  • the levels N1, N2 and RM FIG.
  • each vent pipe 21 is associated with each raising element and each pipe 21 extends upwards to a level N equal to the level N1 or N2 or RM for which the corresponding element must tilt.
  • the zones of the threshold 6 which are underlying the raising elements which have to tilt for different water levels, must be isolated from each other by the appropriately arranged seals.
  • each vent pipe 21 can be fitted with a protection device against the floating bodies, so as not to be blocked by them, or a wave protection device, so that one or more successive waves do not inadvertently trigger the tilting of the elevating element 11.
  • a protection device against the floating bodies so as not to be blocked by them
  • a wave protection device so that one or more successive waves do not inadvertently trigger the tilting of the elevating element 11.
  • Such protective devices are shown in Figures 10a to 10c.
  • the protection device of FIG. 10a essentially consists of a funnel 22, the upper edge 23 of which is at a level higher than the level N and which comprises at least one small hole 24 at a level lower than the level N.
  • the protection device consists of the pipe 21 itself, the upper end of which is bent in the form of a siphon 25.
  • the protection device of FIG. 10c consists of a bell 26 , which covers the upper end 21a of the vent pipe 21 and the apex 27 of which is at a level slightly
  • the overflow threshold 6 of which was initially leveled depending on the project flood initially chosen, at a level determining the level of the normal reservoir RN (FIG. 8c), to level the threshold 6 a few decimeters below its current coast (corresponding to RN) and to place on the leveled threshold 6 a fuse increase 10 in accordance with the present invention, composed of at least one increase element 11 dimensioned in size and weight as described above to switch around the stop 12 when the water level reaches a predetermined level at most equal to the maximum level RM corresponding to the project flood.
  • the probability of opening of the increase 10 is not modified but, in the event of an exceptional flood, the flow section available after total destruction of the increase 10 is notably increased for the same water level in restraint, this which makes it possible to safely pass a flood having a flow rate much higher than that of the flood for which the structure was originally dimensioned.
  • the height chosen for the elevating elements 11 is equal to the leveling height of the threshold 6 (FIG. 8a)
  • each raising element 11 is constituted by a block having roughly a parallelepiped shape.
  • the block 11 can be a monolithic block, of reinforced or unreinforced concrete, with a flat upper face (FIG. 11a) or curved (FIG. 11b).
  • each raising element 11 can be constituted by a hollow block as shown in FIG. 11c, comprising one or more cells filled with ballast 32, such as for example sand, gravel or other materials weighing in bulk.
  • a cover (not shown) can be provided for closing the cell or cells 31 after they have been filled with ballast.
  • FIG. 11c is particularly suitable when the rise 10 must comprise several rise elements all having the same height, but having to tilt for different water levels. In this case, it suffices to adjust the weight of each of the elevating elements 11 by an appropriate amount of ballast to obtain the tilting of the element of corresponding increase for the desired predetermined water level.
  • each raising element 11 may be constituted by an assembly of plates, made of concrete, steel or any other suitable rigid and heavy material.
  • the plate assembly may include a rectangular base plate 33, horizontal or substantially horizontal, and a rectangular plate 34, vertical or substantially vertical, which rises from the downstream edge of the base plate 33.
  • the weight of the water column situated above the base plate 33 contributes, as a resisting force, to stabilize the rising element as long as the water level n 'has not reached the predetermined level at which the tilting of said rising element occurs.
  • the assembly of plates can comprise several substantially rectangular 34, vertical or substantially vertical, plates which are joined by their lower edge to the base plate 33 and which are joined in pairs by their edges vertical so as to form a sort of screen. All the plates 34 have the same height, but they can have the same width (FIG. 11e) or different widths (FIGS. 11f and 11g).
  • each rising element has a non-rectilinear crest line, for example a sawtooth line (figure 11e), or a truncated sawtooth line (figure 11f) or even a crenelated line (figure 11g).
  • FIG. 11d in which the raising element 11 is seen from the downstream side, in FIGS.
  • FIGS. 11e to 11g the raising element 11 is seen from the upstream side.
  • the embodiments shown in FIGS. 11e to 11g are interesting because they make it possible to increase the length of discharge, which, for a same water level, reduces the height of the overflow blade necessary for the evacuation of the lowest flood flows, therefore the most frequent, without causing the destruction of the rise and without compromising safety, as has already explained above.
  • this makes it possible to correspondingly increase the height of the lifting elements and, consequently, to the same extent the level of the normal restraint.
  • a slot arrangement like that of FIG. 11g, tripling the length of discharge makes it possible to reduce by half the height of the discharge blade at low flow rates, which allows a corresponding increase in the storage capacity of the reservoir without reduce the possibility of evacuation of exceptional flood flows.
  • FIG. 12 represents, in vertical section, a rising element 11 similar to those of FIGS. 11d to 11g, equipped in addition with a vent pipe 21 having the same function as that of FIG. 9.
  • the horizontal plate 33 is fixed to the vertical plate 34 so as to be at a distance above the threshold 6, and it comprises, on the upstream side, a flange 33a directed downwards.
  • the seal 15 is disposed between the flange 33a and the threshold 6.
  • Below the plate 33 is thus formed a chamber 35, into which the pipe 21 opens at its lower part.
  • An orifice 36 is provided at the base of the plate 34, the orifice 36 having a smaller section than that of the pipe 21.
  • FIG 13 shows, in vertical section, an elevation element 11 composed of several modules 11g to 11j which are stacked on top of each other.
  • the modules Preferably, the modules have shapes such that they fit into each other so as not to slide relative to each other, in service, under the pressure of the water.
  • the modules can all have the same vertical dimension or different vertical dimensions; for example, the upper module 11j has a smaller vertical dimension than those of the other modules.
  • FIG. 14 shows a modular elevating element 11 like that of FIG. 13, but formed by an assembly of plates 33, 34 and 37.
  • the plates 33 and 34 are rigidly fixed together, while the plate 37 can be mounted removably on the plate 34 to enhance the latter.
  • the plates 34 and 37 can be held together by at least two pairs of plates 38, one pair of which is visible in FIGS. 14 and 15, and which are rigidly fixed to one of the two plates 34 and 37.
  • the plates 38 one can also use bars extending over the entire length of the plates 34 and 37.
  • a seal 39 is provided between the plates 34 and 37.
  • more can be expected.
  • the parts of the raising element 11 which are identical or which play the same role as those of the preceding embodiments, in particular those represented in FIGS. 11f and 12 , are designated by the same reference numbers.
  • the upstream plates or panels 34a of the riser 11 are vertical and have a rectangular shape
  • the downstream plates or panels 34b have a trapezoidal shape and are inclined from upstream to downstream, their upper edge being more downstream than their lower edge.
  • the side and intermediate plates or panels 34c are vertical and have a trapezoidal shape.
  • the extension of the length of the discharge perimeter makes it possible, for a given flow rate, to reduce the height or the thickness of the discharge blade and, consequently, to increase correspondingly the height of the lifting elements.
  • the plates or panels 34a, 34b and 34c, as well as the bottom plate 33 are preferably made of steel, but they could also be made of concrete, plastic or any other suitable material.
  • the plate bottom 33 rests on and is anchored to a sole 41.
  • the sole 41 is preferably made of concrete, for example reinforced concrete.
  • the sole 41 has, seen from above, a trapezoidal perimeter, the large base of which is on the upstream side and the small base of the downstream side.
  • the sole 41 itself rests on a frame 42 having a trapezoidal perimeter corresponding to that of the sole 41.
  • the support frame 42 can be made for example of concrete, loaded or not, reinforced concrete , steel, plastic, or any other suitable material.
  • Two stops 12 are provided near the ends or at the ends of the downstream side of the support frame 42. These two stops 12 can be made in one piece with the support frame 42.
  • the support frame 42 is placed on threshold 6, previously leveled in the case of an already existing threshold or previously fitted out in the case of a new structure.
  • the threshold 6 is then reconstituted by a cement grout 6a serving to anchor the support frame 42 of which only the upper face is flush with the reconstituted threshold to receive and support the elevating element 11.
  • the underside of the sole 41 is hollowed out so as to define a chamber 35 between it and the top of the threshold 6.
  • At least one notch 36 is formed in the sole 41 on the front side of it.
  • the notch 36 defines a drainage orifice making it possible to evacuate any water present in the chamber 35.
  • the crest line of the riser 11 has two waves which respectively define two cells on the upstream side of the riser.
  • an added well 43 In one of the cells is disposed an added well 43, the bottom of which is pierced with an orifice which is coincident with two other orifices respectively drilled in the bottom plate 33 and in the sole 41 and which form a passage 44 the interior of the well 43 in communication with the chamber 35.
  • the well 43 has a horizontal section of approximately rectangular shape and greatly elongated in the upstream-downstream direction. This elongated shape makes it possible to obtain a very long discharge perimeter when the water level reaches the upper edge of the well.
  • the well 43 has a vertical extension 45.
  • the extension 45 forms a deflector which improves the flow regime of the water and at the same time serves to deflect any floating bodies to prevent them from enter well 43.
  • the well 43 can be made of steel, concrete, plastic or any other suitable material and, depending on the material used, it can be fixed to the bottom plate 33 and the downstream plate 34b by welding, by gluing, by bolting or by any other suitable fixing means.
  • the well 43 extends upward to a level N 'higher than the level RN' corresponding to the crest line of the rising element 11 and defining the level of normal restraint.
  • the formula (22) concretely highlights the sensitivity of the system: for a small variation in height z1 of the sheet of water pouring into well 43, there is a significant amplification effect on the height of water z2 in well 43.
  • This height of water z2 in well 43 therefore creates on the upper wall of the chamber 35, that is to say on the underside of the sole 41, an underpressure or lifting force which tends to tilt the raising element around the two stops 12. It is therefore possible to ensure that that, when the water level reaches a predetermined level N, the water in the well 43 quickly reaches a level sufficient to cause the tilting of the raising element.
  • the bottom plate 33, the plates 34a, 34b and 34c as well as the sole 41 are made in one piece, for example in concrete (FIG. 19a) or in a plastic material (figure 19b).
  • the elevation element 11 shown in figures 19a and 19b is identical to that of FIG. 19.
  • FIG. 20 shows an elevation element 11 similar to that of FIG. 19, but without a well 43.
  • the elevation element 11 of FIG. 20 does not have an opening in the sole 41 and in the plate bottom 33, that is to say that the opening 44 of Figure 19 is absent.
  • the water supply to the chamber 35 is here effected by a pipe 46, which is embedded in the threshold 6.
  • One end of the pipe 46 has a vertical part 46a which opens into the chamber 35, and its other end is connected to a water intake, which is located at any point upstream of the dam and which can have a shape such as that shown in FIGS. 10a to 10c or even a shape similar to that of well 43.
  • the elevating elements 11 switch individually or in groups, for example two elevating elements each time, and this for successive water levels whose values are increasing, it will suffice to give the well 43 of the various elevation elements 11 of different heights corresponding to the successive levels for which the tilting of rising elements must occur.
  • elevation element 11 depicted in Figures 16-18 has a two-wave crest line
  • its crest line could have a smaller or greater number of waves, for example a wave as shown in the figure 21 or three waves as shown in Figure 22.
  • Figure 22 shows only one well 43, it could be provided for example two wells respectively disposed in the end cells as shown in phantom in this figure.
  • the height of the rise 10 depends on an economic choice, on the desired progressiveness in the tilting of the various rising elements, on the precision of the water level at which the tilting (precision which can be improved by providing a water additive trigger device at the base of the raising element, as described above) and of the shape of the crest line of the raising, line which can be straight, broken, curved or wavy.
  • the height of the resulting rising elements can vary between 0.9 m and 1.5 m, allowing, depending on the options taken, to gain between 45 and 75% of the slice of water that would be lost without the use of the fuse holder.
  • the fusible link of the present invention makes it possible to substantially and almost permanently increase the storage capacity of a dam or other structure to free overflow threshold, while maintaining or increasing the operational safety specific to structures with free overflow threshold, reliably allowing the evacuation of exceptional floods by automatic opening (tilting of at least one element of the rise) without any monitoring or any human intervention or control device. It is also clear that the surge can be manufactured and installed on the weir sill of a dam or other structure for a lower cost than that of previously known valves, and without major modification of the weir sill.
  • the seal 15 located at the base of the raising element may not be located near the upstream edge of said base, but at any other desired location under the base.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Barrages (AREA)
  • Revetment (AREA)
  • Sewage (AREA)
  • Hydraulic Turbines (AREA)
  • Building Environments (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Sanitary Device For Flush Toilet (AREA)
  • Catching Or Destruction (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogenated Pyridines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Massaging Devices (AREA)
  • Devices For Dispensing Beverages (AREA)
  • Paper (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Bidet-Like Cleaning Device And Other Flush Toilet Accessories (AREA)
  • Operating, Guiding And Securing Of Roll- Type Closing Members (AREA)
  • Fertilizing (AREA)
  • Road Paving Structures (AREA)
  • Sink And Installation For Waste Water (AREA)

Description

  • La présente invention concerne un déversoir évacuateur de crues pour barrages et ouvrages similaires, du type comportant un seuil déversant dont la crête est située à un premier niveau prédéterminé plus bas qu'un second niveau prédéterminé correspondant à un niveau maximal ou niveau des plus hautes eaux, pour lequel le barrage est conçu, la différence desdits premier et second niveaux correspondant à un débit maximal prédéterminé d'une crue exceptionnelle, et une hausse mobile obturant le déversoir. Un tel type d'ouvrage est connu de façon générale dans le domaine technique considéré.
  • L'état actuel de la pratique de la conception et de la construction des barrages à seuil déversant conduit à dimensionner ces ouvrages pour des conditions de crues (millénale par exemple) conduisant à des hauteurs de lame déversante importantes (de l'ordre de 1 à 5m suivant les ouvrages).
  • A dimensionnement égal des organes d'évacuation des crues, le barrage à seuil déversant libre offre par rapport à un ouvrage muni de vannes la meilleure sécurité face à l'aléa hydrologique, qui reste un des risques majeurs pour les barrages.
  • En contre-partie, l'adoption d'un seuil déversant complètement libre conduit à une perte de la tranche de retenue utile correspondant à la hauteur maximale de la lame déversante, c'est-à-dire à la différence susmentionnée desdits premier et second niveaux prédéterminés. Cette perte peut représenter, notamment pour des ouvrages de petite ou moyenne importance, une part significative du volume utile de la retenue, (cette part pouvant atteindre ou dépasser 50%).
  • Le problème que la présente invention cherche à résoudre peut se résumer aux deux objectifs principaux suivants, qui peuvent être recherchés simultanément ou alternativement:
    • 1°/ augmenter de façon quasi-permanente la capacité de stockage d'un barrage à seuil déversant libre;
    • 2°/ maintenir et/ou accroître la sécurité de fonctionnement propre aux ouvrages à seuil déversant, en permettant de façon fiable le passage des crues exceptionnelles, tout en tolérant un déversement des crues de faible ou moyenne importance, sans intervention extérieure et sans modification majeure de l'ouvrage.
  • Divers dispositifs ont déjà été proposés et existent actuellement pour augmenter la capacité de stockage d'une retenue. En majorité, ces dispositifs sont essentiellement constitués par des systèmes de vannes, qui obturent le seuil déversant quand les vannes sont fermées. Les vannes, de quelque nature qu'elles soient, classiques ou gonflables, de fonctionnement automatique ou manuel, sont en général d'un coût d'investissement assez élevé et elles nécessitent un entretien et des manoeuvres périodiques. Elles nécessitent en outre une surveillance humaine continue ou un mécanisme asservi réagissant au niveau d'eau de la retenue, mécanisme qui est souvent onéreux et sophistiqué et qui n'est jamais totalement à l'abri d'une défaillance. Enfin, à capacité d'évacuation égale, la sécurité d'exploitation et la fiabilité d'un ouvrage vanné sont inférieures à celles d'un ouvrage à seuil déversant libre (non vanné).
  • Certains dispositifs existent, qui permettent d'augmenter temporairement la capacité de stockage d'une retenue, tels que sacs de sable ou batardeaux (également appelés flash boards). Ces dispositifs restent cependant d'une ampleur limitée et, du fait qu'ils nécessitent une intervention humaine préalable à chaque crue, ils présentent un aléa de fonctionnement important.
  • Il existe également, sur certains grands barrages en remblais, une section de digue fusible, arasée à une côte inférieure à celle du reste de l'ouvrage et fonctionnant suivant le principe de l'érosion de ses matériaux constitutifs, érosion qui est engendrée par une montée extrême du niveau de la retenue lors d'une crue d'importance très exceptionnelle. Cette digue fusible a en fait pour but d'éviter le déversement incontrôlé et catastrophique d'une crue extrême sur l'ensemble d'un ouvrage, en concentrant les effets de la crue sur une section specialement aménagée pour se rompre par érosion et offrir ainsi une capacité d'évacuation supplémentaire. Après la rupture de la digue fusible, des travaux de réparation importants seraient nécessaires pour permettre à nouveau l'exploitation normale de l'ouvrage.
  • A la connaissance de la demanderesse, il semble donc qu'aucun dispositif existant ne réponde de manière satisfaisante aux objectifs indiqués plus haut, avec une exploitation simple et pour un coût d'investissement modéré.
  • Selon la présente invention, le problème susmentionné est résolu par le fait que ladite hausse comprend au moins un élément de hausse rigide et massif, qui est posé sur la crête du seuil déversant et est maintenu en place sur celui-ci par gravité, ledit élément ayant une hauteur prédéterminée, qui est plus petite que la différence des premier et second niveaux prédéterminés et qui correspond, pour un niveau d'eau sensiblement égal audit niveau maximal, à une crue moyenne ayant un débit prédéterminé plus faible que ledit débit maximal prédéterminé, ledit élément de hausse étant dimensionné en taille et en poids pour que le moment des forces de poussée appliquées par l'eau à l'élément de hausse atteigne le moment des forces de pesanteur qui tendent à maintenir l'élément de hausse en place sur le seuil déversant, et qu'en conséquence ledit élément de hausse soit déséquilibré et chassé quand l'eau atteint un troisième niveau prédéterminé plus élevé que le sommet de l'élément de hausse, mais au plus égal au second niveau prédéterminé.
  • Dans ces conditions, il est clair que la capacité de stockage du barrage est accrue d'une quantité correspondant à la hauteur de l'élément de hausse. Le ou les éléments de hausse peuvent être fabriqués à un coût très modéré par rapport aux vannes et, dans le cas où ils sont installés sur le seuil déversant d'un barrage déjà existant, cette installation peut être faite sans qu'il soit nécessaire d'apporter des modifications majeures au seuil déversant du barrage comme on le verra plus loin. Il est également clair que pour des crues d'importance moyenne, tant que le niveau de l'eau n'atteint pas ledit troisième niveau prédéterminé, lequel peut être déterminé de façon à être en pratique égal ou légèrement plus bas que ledit second niveau prédéterminé (niveau maximal ou niveau des plus hautes eaux), l'eau pourra passer par-dessus le ou lesdits éléments de hausse pour évacuer la crue, sans qu'il en résulte une destruction de la hausse et, par suite, sans qu'il en résulte une diminution de la capacité accrue de stockage du barrage. Par contre, si, dans le cas d'une crue exceptionnelle, le niveau de l'eau atteint ledit troisième niveau prédéterminé, le ou les éléments de hausse sont automatiquement déséquilibrés et chassés par l'eau, sous la seule action des forces de poussée de l'eau, donc sans aucune intervention extérieure, redonnant ainsi au seuil déversant sa pleine capacité d'évacuation correspondant à la hauteur maximale de la lame déversante pour laquelle le barrage a été conçu.
  • Bien que, théoriquement, cela ne soit pas absolument indispensable, une butée de hauteur prédéterminée est de préférence prévue sur le seuil déversant au pied de l'élément de hausse, du côté aval de celui-ci, pour l'empêcher de glisser vers l'aval sur le seuil, sans toutefois l'empêcher de basculer par-dessus la butée quand le niveau de l'eau atteint ledit troisième niveau prédéterminé. Bien entendu, dans ce cas,!a hauteur de la butée est prise en compte comme on le verra plus loin pour le dimensionnement en taille et en poids du ou des éléments de hausse.
  • Un joint d'étanchéité peut être disposé entre le seuil déversant et la base de l'élément de hausse, près du bord amont de ladite base. Toutefois, un tel joint d'étanchéité n'est pas absolument indispensable si, en l'absence de joint d'étanchéité, les fuites d'eau entre l'élément de hausse et le seuil déversant sont faibles et si la zone du seuil déversant sur laquelle repose le ou lesdits éléments de hausse est convenablement drainée de telle façon qu'aucune sous-pression appréciable ne puisse s'établir sous le ou lesdits éléments de hausse. Par contre, comme on le verra plus loin, des moyens peuvent être prévus pour établir automatiquement une sous-pression sous le ou lesdits éléments de hausse quand le niveau d'eau atteint ledit troisième niveau prédéterminé, afin de favoriser le déséquilibre et le basculement dudit ou desdits éléments de hausse au moment où cela devient indispensable pour évacuer une crue exceptionnelle.
  • L'invention peut être appliquée aussi bien au déversoir d'un barrage existant qu'à celui d'un barrage en cours de construction. Dans le premier cas, la crête du seuil déversant est de préférence dérasée à un niveau plus bas que ledit premier niveau prédéterminé et le ou lesdits éléments de hausse sont posés sur le seuil dérasé. Dans ce cas, la capacité de stockage du barrage peut être maintenue égale à celle qu'il avait avant dérasement du seuil déversant, ou elle peut être accrue selon que l'on donne à ou aux éléments de hausse une hauteur telle que son ou leur sommet trouve audit premier niveau prédéterminé, ou à un niveau supérieur à celui-ci, mais inférieur audit troisième niveau prédéterminé. Quelle que soit la hauteur du ou des éléments de hausse, dans les limites indiquées ci-dessus, on obtient une sécurité plus grande qu'avec le seuil déversant non dérasé, étant donné que l'ouverture qui est obtenue après basculement du ou des éléments de hausse a une hauteur plus grande que dans le cas d'un seuil déversant non dérasé, permettant ainsi d'évacuer un débit de crue plus important que le débit maximal de la crue exceptionnelle pour laquelle le barrage avait été initialement conçu.
  • De même, dans la conception d'un nouveau barrage, on pourra adopter une plus grande différence entre les premier et second niveaux prédéterminés (ce qui contribue à augmenter la sécurité) sans craindre que celà entraîne une diminution de la capacité de stockage du barrage, étant donné que cette capacité de stockage pourra être maintenue, voire même augmentée, sans diminution de la sécurité, en prévoyant un ou plusieurs éléments de hausse conformes à la présente invention.
  • Dans le cas où plusieurs éléments de hausse sont prévus, chaque élément de hausse ou un groupe d'éléments de hausse peut être dimensionné de façon à basculer pour un niveau d'eau prédéterminé plus bas que celui auquel un autre élément ou groupe d'éléments de hausse basculera, ce dernier étant lui-même dimensionné de façon à basculer pour un niveau d'eau plus bas que celui auquel basculera un troisième élément ou groupe d'éléments de hausse, et ainsi de suite. De cette manière, on obtient, si nécessaire, une augmentation progressive de la capacité d'évacuation suivant l'importance de la crue.
  • On notera également que, si un ou plusieurs éléments de hausse ont été basculés et chassés par une crue exceptionnelle, ils peuvent être facilement et économiquement remplacés par d'autres éléments de hausse, sans avoir à effectuer des réparations importantes, après que la crue a été évacuée.
  • D'autres caractéristiques et avantages apparaîtront au cours de la description qui va suivre de diverses formes d'exécution de la présente invention données à titre d'exemple, en référence aux dessins annexés dans lesquels:
  • la figure 1 est une vue en perspective montrant un ouvrage, tel qu'un barrage, et son déversoir évacuateur de crues à seuil déversant libre, auquel l'invention peut être appliquée.
  • Les figures 2a et 2b montrent, en coupe verticale et à plus grande échelle, la crête du seuil déversant libre du barrage de la figure 1 pour deux niveaux d'eau différents.
  • La figure 3 est une vue en élévation du déversoir de la figure 1, vu du côté aval et équipé d'une hausse fusible conforme à la présente invention.
  • La figure 4 est une vue en plan du déversoir de la figure 3.
  • Les figures 5a à 5e sont des vues en coupe verticale permettant d'expliquer le fonctionnement de la hausse fusible de la présente invention, avant, pendant et après le passage d'une crue.
  • La figure 6 est un graphique montrant les différentes forces qui, en service, peuvent être appliquées à un élément de hausse conforme à la présente invention.
  • La figure 7 est un graphique représentant les variations des moments des forces motrices et résistantes en fonction de la hauteur d'eau au dessus du seuil déversant, ainsi que les variations du débit d'eau évacué en fonction de la hauteur de la lame déversante.
  • Les figures 8a à 8c sont des vues en coupe transversale permettant de comparer les hauteurs maximales de lames déversantes dans le cas de la présente invention pour des éléments de hausse ayant des hauteurs différentes (figures 8a et 8b) et dans le cas d'un seuil déversant libre connu (figure 8c).
  • La figure 9 est une vue en coupe verticale montrant un élément de hausse de la présente invention, auquel est associé un dispositif déclencheur de basculement.
  • Les figures 10a à 10c montrent, à plus grande échelle, divers dispositifs protecteurs pouvant être prévus à l'extrémité supérieure du dispositif déclencheur de la figure 9.
  • Les figures 11a à 11g montrent, en perspective, diverses formes d'exécution d'un élément de hausse conforme à la présente invention.
  • Les figures 12 à 14 montrent, en coupe verticale, d'autres variantes de réalisation de l'élément de hausse de l'invention.
  • La figure 15 montre, en perspective, un détail de l'élément de hausse de la figure 14.
  • La figure 16 montre, en perspective, une autre forme d'exécution de l'élément de hausse de l'invention.
  • La figure 17 est une vue de face, côté aval, de l'élément de hausse de la figure 16.
  • La figure 18 est une vue en plan de l'élément de hausse des figures 16 et 17.
  • La figure 19 est une vue en coupe suivant la ligne XIX-XIX de la figure 18.
  • Les figures 19a et 19b sont des vues similaires à celle de la figure 19, montrant des variantes.
  • La figure 20 est une vue semblable à la figure 19, montrant une autre variante.
  • Les figures 21 et 22 sont des vues en plan montrant deux autres variantes.
  • L'ouvrage 1 représenté dans la figure 1 peut être un barrage en remblais ou un barrage en béton ou maçonnerie. Toutefois, il y a lieu de noter que l'invention n'est pas limitée au type de barrage montré dans la figure 1, mais qu'au contraire elle peut s'appliquer à n'importe quel type de barrage connu à seuil déversant libre.
  • Dans la figure 1, le numéro de référence 2 désigne la crête du barrage, le numéro 3 son parement aval, le numéro 4 son parement amont, le numéro 5 un déversoir évacuateur de crues, le numéro 6 le seuil du déversoir 5 et le numéro 7 un chénal d'évacuation. Le déversoir 5 peut être implanté dans la partie centrale du barrage 1 ou en extrémité de celui-ci ou encore excavé sur une rive sans que cela n'altère la possibilité d'utilisation de l'invention.
  • Pour un ouvrage à seuil déversant libre, le niveau RN de la retenue normale en exploitation (voir aussi la figure 2a) est celui de la crête 8 du seuil déversant 6. Ce niveau RN détermine le volume maximal de retenue qui peut être conservé par le réservoir formé par le barrage. La distance verticale R, appelée revanche, entre la crête 8 du déversoir et la crête 2 du barrage est la somme de deux termes à savoir, d'une part, une surélévation h₁ du niveau d'eau due à une crue, jusqu'à un niveau maximal RM ou niveau des plus hautes eaux (PHE), permettant le déversement de la crue maximale (figure 2b) pour laquelle l'ouvrage est dimensionné, et, d'autre part, une surhauteur additionnelle h₂ destinée à protéger la crête 2 du barrage contre les oscillations du plan d'eau à son niveau maximal RM (effet du vent, vagues, etc.).
  • Dans un barrage classique à seuil déversant libre comme celui montré dans la figure 1, la tranche de réservoir située entre le niveau de retenue normale RN et le niveau maximal RM n'est pas stockée et est donc perdue pour l'exploitation. L'un des buts de l'invention est de permettre de relever de façon quasi-permanente le niveau d'exploitation normale de la retenue et donc d'augmenter sa capacité de stockage, sauf lors du passage de crues exceptionnelles.
  • A cet effet, l'invention prévoit de disposer sur le seuil déversant 6 une hausse 10, constituée par au moins un élément massif 11, par exemple cinq éléments 11a-11e comme montré dans les figures 3 et 4, ladite hausse 10 ou les éléments de hausse 11 étant capables de supporter, sans se rompre, la charge d'eau correspondant à un déversement modéré (permettant le passage des crues les plus fréquentes) en résistant par l'effet de la pesanteur, et étant rendus fusibles par basculement pour une charge d'eau prédéterminée correspondant à un niveau N au plus égal au niveau maximal RM et permettant alors le passage des plus fortes crues.
  • Bien entendu, le nombre des éléments de hausse 11 n'est pas limité à cinq éléments comme montré dans les figures 3 et 4, mais peut être plus petit ou plus grand selon la longueur du déversoir 5 (mesurée dans le sens longitudinal du barrage). De préférence, le nombre des éléments de hausse 11 est choisi de façon à obtenir des masses unitaires faibles permettant une mise en place et un remplacement aisé desdits éléments de hausse.
  • Chaque élément de hausse 11 est posé sur le seuil déversant 6 et est maintenu sur celui-ci par gravité. De préférence, chaque élément de hausse 11 est retenu, contre tout glissement vers l'aval, par une butée 12 située au pied de l'élément 11, du côté aval de celui-ci. La butée 12 peut être par exemple encastrée dans le seuil 6, comme montré par exemple dans la figure 5a, et elle peut être discontinue comme montré dans les figures 3 et 4. Toutefois, si on le désire, la butée 12 pourrait être continue. Comme on le verra plus loin, la hauteur de la butée 12 est prédéterminée, mais elle peut être variable suivant les efforts en jeu et suivant le niveau d'eau à partir duquel on souhaite amorcer le basculement de chaque élément de hausse 11.
  • Comme montré dans la figure 4, un joint d'étanchéité classique 13, par exemple en caoutchouc, est prévu à chacune des deux extrémités de la hausse 10 entre celle-ci et les flancs latéraux 14 du déversoir 5. Quand la hausse 10 est constituée par plusieurs éléments 11, des joints d'étanchéité 13 sont également prévus entre les parois latérales verticales, deux à deux en vis-à-vis, des éléments adjacents de hausse 11 comme cela est également visible dans la figure 4. De préférence, un joint d'étanchéité 15 est aussi prévu entre le seuil déversant 6 et la base des éléments de hausse 11 près du bord amont 16 de ladite base comme cela est par exemple visible dans les figures 4 et 5a. Bien que la figure 5c représente le joint 15 porté par l'élément de hausse 11, le joint 15 pourrait être aussi bien installé dans une rainure aménagée dans le seuil déversant 6. Comme montré dans la figure 4, les joints 13 et le joint 15, lorsque ce dernier est prévu, sont disposés dans un même plan vertical. Au lieu de prévoir le joint 15 ou en plus de celui-ci, un système de drainage peut être aménagé de façon connue dans le seuil déversant 6, dans la zone de celui-ci sous-jacente à la hausse 10, afin d'assècher cette zone et d'éviter que, en service normal, une sous-pression ne soit appliquée aux éléments de hausse 11.
  • Comme montré dans la figure 5a, la hausse 10 de la présente invention permet de relever le niveau de la retenue normale du niveau RN (niveau de la retenue normale du seuil déversant libre 6, c'est-à-dire sans la hausse 10) jusqu'au niveau RN' correspondant à la hauteur de la hausse 10 au-dessus du seuil 6. Comme cela sera expliqué plus loin, chaque élément de hausse 11 est dimensionné de manière à être autostable pour une charge d'eau inférieure à un niveau prédéterminé N, lui-même au plus égal au niveau maximal RM déjà mentionné plus haut. Ainsi, en supposant par exemple que ledit niveau prédéterminé est égal au niveau RM, tant que le niveau de l'eau reste inférieur au niveau RM pour des crues de faible ou moyenne importance et est compris entre les niveaux RN' et RM, l'eau se déverse par-dessus la hausse 10 comme montré dans la figure 5b, sans que la hausse ne soit détruite. Dans ce cas, après évacuation de la crue, le niveau de l'eau retombe au niveau RN' ou à un niveau plus bas si de l'eau est soutirée dans la retenue.
  • Par contre, si le niveau de l'eau atteint, dans l'hypothèse susmentionnée, un niveau prédéterminé N égal ou légèrement plus bas que le niveau maximal RM dans le cas d'une forte crue ou crue exceptionnelle, au moins un élément 11 de la hausse 10 est déséquilibre sous la poussée de l'eau et bascule autour de la butée 12 comme montré dans la figure 5c, et le ou les éléments 11 qui sont basculés sont évacués par l'eau de la crue au moins jusqu'au pied du déversoir 5, permettant ainsi l'évacuation des crues les plus fortes. Après évacuation d'une forte crue ayant entraînée le basculement de la hausse 10, le seuil déversant 6 se retrouve dans l'état montré dans la figure 5d, le niveau de l'eau étant revenu au niveau de la retenue normale RN ou à un niveau plus bas encore. On peut éventuellement prévoir quelques éléments 11 de rechange, disponibles en permanence sur le site du barrage, pour permettre une réparation de la hausse 10 en cas de besoin et rétablir ainsi le niveau de la retenue normale au niveau RN' comme montré dans la figure 5e. Il faut noter cependant que le non-remplacement d'un ou plusieurs éléments 11 après une crue exceptionnelle ayant entraîné le basculement d'au moins un élément 11 ne diminue pas la sécurité de fonctionnement de l'ouvrage.
  • Les risques de mauvais fonctionnement dûs à des corps flottants peuvent être facilement éliminés par une protection amont selon des techniques conventionnelles adaptables à chaque cas particulier. La protection peut être par exemple constituée par les lignes flottantes sur la retenue, à une certaine distance en amont du déversoir, ou par des dispositifs d'arrêt fixés sur le parement amont du barrage.
  • On donnera maintenant un exemple numérique de dimensionnement d'une hausse fusible conforme à la présente invention. Habituellement, les barrages et les seuils déversants sont dimensionnés pour que le niveau du lac (niveau de la retenue) atteigne le niveau maximal RM pour la crue exceptionnelle envisagée (crue de projet). Cette crue peut être par exemple la crue ne se produisant qu'une année sur mille (crue millénale).
  • Pour fixer les idées, on supposera que le débit de cette crue de projet est par exemple de 200 m³/s et que le seuil déversant libre 6 a une longueur de 40 m. Dans ces conditions, la hauteur H de la lame d'eau nécessaire pour évacuer le débit de la crue de projet correspond à 5 m³/s par mètre linéaire de seuil. Cette hauteur H peut être calculée par la formule suivante: Q = 1,8 H 3/2
    Figure imgb0001

    d'après laquelle on peut voir que H est sensiblement égal à 2 m dans l'hypothèse faite plus haut. Toujours dans cette hypothèse, en l'absence de dispositif de vannes ou de hausses, le niveau du seuil 6 du déversoir 5 est arasé à 2 m en-dessous du niveau maximal RM pour permettre l'évacuation de la crue millénale, et on perd donc un volume utile d'eau correspondant à une tranche de 2 mètres.
  • Pour la détermination de la hauteur des éléments de hausse 11, l'invention est basée sur la constatation que le débit maximum atteint en moyenne sur 20 ans est beaucoup plus faible que celui de la crue de projet. Il peut être d'environ 50 m³/s dans l'exemple choisi ici. D'après la formule (1) ce débit correspond alors à une lame d'eau ayant une hauteur d'environ 0,8 m. Si l'on admet que des éléments de hausse 11 peuvent être détruits en moyenne tous les 20 ans, on peut alors donner aux éléments de hausse une hauteur de 2 m - 0,8 m = 1,2 m, permettant ainsi le passage au-dessus des éléments de hausse 11 d'une lame d'eau de 0,8 m de hauteur correspondant au débit de 50 m³/s. Dans ce cas, le niveau de la retenue normale RN' est élevé à 1,20 m au-dessus du niveau de la retenue normale RN du seuil déversant 6 libre, c'est-à-dire sans les éléments de hausse 11. Si on choisit des éléments de hausse 11 ayant une hauteur superieure à 1,2 m, la hauteur de la lame d'eau admissible sera inférieure à 0,8 m et il faudra admettre la destruction des éléments de hausse, par exemple tous les 10 ans, mais le niveau de la retenue normale sera encore augmenté. En revanche, si on choisit des éléments de hausse 11 ayant une hauteur plus petite que 1,2 m, on pourra admettre une lame d'eau ayant une hauteur plus forte que 0,8 m, les éléments de hausse n'étant alors détruits que tous les 50 ou 100 ans, mais le niveau de la retenue normale sera alors plus faible que dans les cas précédents. Le choix de la hauteur des éléments de hausse 11 est donc essentiellement un choix économique. Il est probablement souhaitable en général de fixer à 20 ans environ l'intervalle de temps entre deux destructions totales successives de la hausse fusible, ce qui conduirait à une hauteur théorique de 1,2 m des éléments de hausse dans l'exemple considéré ici.
  • Il est par ailleurs avantageux que la destruction de tous les éléments de hausse 11 ne se produise pas exactement pour le même niveau d'eau. On peut prévoir par exemple qu'un seul élément tel que l'élément 11c des figures 3 et 4 soit détruit lorsque l'eau atteint un premier niveau N1 situé environ 10 cm en-dessous du niveau maximal RM, qu'au moins un autre élément 11, tel que les éléments 11b et 11d, soient détruits lorsque l'eau atteint un second niveau N2 situé environ 5 cm en-dessous du niveau maximal RM, et que les autres éléments 11, tels que les éléments 11a et 11e, soient détruits lorsque l'eau atteint ledit niveau maximal RM.
  • De cette façon, la destruction du premier élément 11c par une crue d'importance moyenne peut suffire à l'écoulement de la crue sans montée supplémentaire du niveau d'eau, ce qui évite la destruction des autres éléments 11a, 11b, 11d et 11e. Toutefois, la marge de 10 cm qui est ainsi prise s'ajoute à la hauteur de lame déversante maximale admissible, de sorte que la hauteur des éléments de hausse et, par suite, la tranche d'eau gagnée (RN'-RN) devient égale à 1,1 m (2m-0,8m-0,1 m) dans l'exemple considéré ici.
  • Le basculement du ou des éléments de hausse 11 et, par suite, leur destruction dépend de l'équilibre entre, d'une part, le moment moteur, c'est-à-dire le moment des forces qui tendent à renverser l'élément de hausse considéré, et, d'autre part, le moment résistant, c'est-à-dire le moment des forces qui tendent à stabiliser ledit élément de hausse. Si on ne prévoit pas un dispositif déclencheur, directement lié au niveau d'eau, pour déclencher le basculement de l'élément de hausse avec précision pour un niveau d'eau prédéterminé, la hauteur d'eau correspondant à l'équilibre susmentionné ne peut être fixée qu'avec une marge d'incertitude pouvant atteindre 0,2 m. Dans ces conditions, il est nécessaire, par sécurité, de réduire la hauteur du ou des éléments de hausse 11 d'une quantité correspondant à certe marge d'incertitude, par exemple 0,2 m. Toutefois, on peut éviter d'avoir à réduire la hauteur des éléments de hausse en prévoyant un dispositif déclencheur qui sera décrit plus loin en faisant référence à la figure 9.
  • Il est possible, pour le débit de 50m³/s considéré dans le présent exemple, de réduire à moins de 0,8 m la hauteur de la lame déversante maximale admissible avant basculement des éléments de hausse, en faisant en sorte que la ligne de crête des éléments de hausse 11, considérés individuellement ou ensemble, ne soit plus disposée parallèlement à la crête du seuil déversant 6, mais suivant une ligne non rectiligne, par exemple une ligne brisée ou courbe, pour allonger la longueur de déversement du débit susmentionné. Si l'on double cette longueur, le débit de 50 m³/s est alors réparti sur 80 m au lieu de 40 m et la hauteur de la lame maximale admissible correspondante est ramenée de 0,8 m à 0,5 m. Ceci permet, toutes choses égales par ailleurs, de remonter de 0,3 m la hauteur des éléments de hausse 11 et d'augmenter en conséquence le volume d'eau stocké dans la retenue. Diverses formes d'éléments de hausse permettant d'allonger la longueur de déversement seront décrits plus loin en faisant référence aux figures 11e à 11g.
  • La figure 6 montre les différentes forces qui, en service, peuvent être appliquées à un élément de hausse 11 de la présente invention. Pour la description qui va suivre, on supposera que l'élément 11 a une forme parallélépipédique et a une largeur L et une hauteur H₁. Dans la figure 6, RM désigne comme auparavant le niveau maximal, B désigne la hauteur de la butée 12 au-dessus du seuil 6, H₂ désigne la hauteur de la lame déversante maximale admissible au-dessus de l'élément de hausse 11 et z désigne le niveau de l'eau. Les forces motrices, qui tendent à faire basculer l'élément de hausse 11 sont la poussée P de l'eau sur la face amont de l'élément de hausse 11 et la sous-pression U qui s'exerce éventuellement sur la surface de base dudit élément de hausse et qui est due à l'existence de fuites éventuelles aux joints d'étanchéité ou à la présence d'un dispositif déclencheur qui sera décrit plus loin. Les forces résistantes, qui tendent à stabiliser l'élément de hausse 11, sont la somme W du poids propre de l'élément de hausse 11 et du poids de la colonne d'eau éventuellement présente au-dessus dudit élément de hausse.
  • Pour calculer les valeurs de P, U et W, ainsi que les valeurs des moments moteur et résistant correspondants par rapport à la butée 12, il y a lieu de considérer plusieurs cas en fonction de la hauteur d'eau z au dessus du seuil 6. Les valeurs de P, U et W et des moments moteur et résistant correspondants sont résumés ci-dessous pour les différents cas, lesdites valeurs étant données par unité de longueur de l'élément de hausse 11.
    • a) si : 0 < z < 3 B : P = 1 2 . Υ W . z²
      Figure imgb0002
      U = 1 2 . Υ W . z . L
      Figure imgb0003
      W = Υ b . H₁ . L
      Figure imgb0004
      Mm = 0
      Figure imgb0005
      MmU = 1 3 . Υ W . z. L²
      Figure imgb0006
      Mr = 1 2 . Υ b . H₁ . L² + 1 2 . Υ W . z² . (B - z 3 )
      Figure imgb0007
    • b) si : 3 B < z < H₁ : P = 1 2 . Υ W . z²
      Figure imgb0008
      U = 1 2 . Υ W . z . L
      Figure imgb0009
      W = Υ b . H₁ . L
      Figure imgb0010
      Mm = 1 2 . Υ W . z² . ( z 3 - B)
      Figure imgb0011
      MmU = Mm + 1 3 . Υ W . z. L²
      Figure imgb0012
      Mr = 1 2 . Υ b . H₁ . L²
      Figure imgb0013
    • c) Si : H₁ < z : P = 1 2 . Υ W . H 1 2 + Υ W . H₁ . ( z - H₁)
      Figure imgb0014
      U = 1 2 . Υ W . z . L
      Figure imgb0015
      W = Υ b . H₁ . L + Υ W . ( z - H₁ ) . L
      Figure imgb0016
      Mm = 1 2 Υ W .H 1 2 .( H₁ 3 - B) + Υ W .H₁.(z-H₁)( H₁ 2 - B)
      Figure imgb0017
      MmU = Mm + 1 3 Υ W . z. L²
      Figure imgb0018
      Mr = 1 2 Υ b . H₁ . L² + 1 2 Υ W . (z - H₁) . L²
      Figure imgb0019
  • Dans les formules sus-indiquée, P, U, W, L, H₁, B et z ont les significations déjà indiquées plus haut. Mm est le moment moteur en l'absence de sous-pression U, MmU est le moment moteur en présence d'une sous-pression U, Υw est le poids volumique de l'eau et Υb est le poids volumique moyen de l'élément de hausse.
  • Dans le graphique de la figure 7, les tracés A, C et D représentent respectivement les variations de Mr, Mm et MmU en fonction de la hauteur d'eau z au-dessus du seuil 6, et le tracé E représente la variation du débit d'eau évacuée Q en fonction de la hauteur H de la lame déversante [Q = 1,8. H3/2, H étant égal à (z - H₁) avant basculement de l'élément de hausse 11 et à z après basculement dudit élément]. Les tracés A, C, D et E ont été obtenus à partir des formules indiquées plus haut et pour H₁ = 1,2 m, L = 1,1 m, B = 0,15 m, Υw = 1 et Υb = 2,4.
  • En considérant les tracés A et C, on voit que le moment moteur Mm (sans sous-pression U) atteint la même valeur que le moment résistant Mr pour une valeur de z environ égal à 2,4 m. Autrement dit, en l'absence d'une sous-pression U, le basculement de l'élément de hausse 11 se produira quand le niveau de l'eau atteindra une hauteur de 2,4 m au-dessus du seuil 6. De même, en considérant les tracés A et D, on voit qu'en présence d'une sous-pression U, le moment moteur MmU atteint la même valeur que le moment résistant Mr pour une valeur de z d'environ 2 m, c'est-à-dire pour le niveau maximal RM dans l'exemple numérique considéré ici. Autrement dit, en présence d'une sous-pression U, le basculement de l'élément de hausse 11 aura lieu lorsque le niveau de l'eau atteindra le niveau maximal RM. D'après les formules (17) et (19), on voit que si l'on avait voulu que, en l'absence de sous-pression U et sans changer la valeur de la hauteur H₁ de l'élément de hausse 11, le basculement de ce dernier se produise pour une valeur de z égale à 2 m, donc pour le niveau d'eau maximal RM, il aurait fallu diminuer la valeur de Υb et/ou la valeur de L et/ou la valeur de B par rapport aux valeurs indiquées plus haut.
  • D'après ce qui précède, on voit que, par un dimensionnement approprié en taille et en poids de l'élément de hausse 11 et par un dimensionnement approprié de la butée 12, on peut faire en sorte que l'élément de hausse 11 bascule pour un niveau d'eau prédéterminé. On voit également que si l'élément de hausse 11 a été dimensionné pour basculer à un niveau d'eau prédéterminé en l'absence d'une sous-pression à sa base et si l'étanchéité entre l'élément de hausse et le seuil 6 n'est pas parfaite, une sous-pression s'exercera sur la base de l'élément de hausse, ce qui provoquera son basculement pour un niveau d'eau inférieur au niveau d'eau prédéterminé susmentionné. Un défaut d'étanchéité n'est donc pas catastrophique mais constitue plutôt un facteur de sécurité dans la mesure où il aide au basculement de l'élément de hausse.
  • Ceci peut être mis à profit pour provoquer le basculement de l'élément de hausse 11 de manière encore plus sûre et avec une plus grande précision en ce qui concerne le niveau d'eau auquel se produit le basculement. En effet, il peut être avantageux de prendre des dispositions pour que la sous-pression U appliquée à l'élément de hausse reste nulle ou très faible tant que le niveau de l'eau reste inférieur à un niveau prédéterminé, et pour qu'une sous-pression de valeur substantiellement plus forte soit brusquement appliquée à l'élément de hausse 11 à l'instant où le niveau de l'eau atteint ledit niveau prédéterminé, le dimensionnement des éléments étant tel qu'à cet instant le moment moteur passe brusquement d'une valeur Mm un peu plus petite que la valeur du moment résistant Mr à une valeur MmU substantiellement plus grande que la valeur dudit moment résistant Mr. A cet effet, on peut utiliser par exemple un dispositif déclencheur tel que celui montré dans la figure 9. Le dispositif déclencheur montré dans la figure 9 est essentiellement constitué par un tuyau d'évent 21 qui, en service normal, met la zone sous-jacente à l'élément de hausse 11 en relation avec l'atmosphère, l'extrémité supérieure 21a du tuyau d'évent 21 étant située à un niveau N égal au niveau pour lequel on désire que le basculement de l'élément de hausse 11 se produise. Le tuyau 21 peut être droit et passer à travers l'élément de hausse 11 comme montré en trait plein dans la figure 9, ou il peut être coudé comme montré en trait mixte en 21' dans la figure 9, de telle façon que son extrémité supérieure soit déportée vers l'amont par rapport à l'élément de hausse 11, ou encore le tuyau d'évent peut être en partie noyé dans le seuil 6 comme cela est également montré en trait mixte en 21'' dans la figure 9. Dans le cas où plusieurs éléments de hausse 11 sont prévus et doivent basculer pour des niveaux d'eau différents, tels que les niveaux N₁, N₂ et RM (figure 3) au moins un tuyau d'évent 21 est associé à chaque élément de hausse et chaque tuyau 21 s'étend vers le haut jusqu'à un niveau N égal au niveau N₁ ou N₂ ou RM pour lequel l'élément correspondant doit basculer. Naturellement, dans ce cas, les zones du seuil 6 qui sont sous-jacentes à des éléments de hausse devant basculer pour des niveaux d'eau différents, doivent être isolées les unes des autres part des joints d'étanchéité disposés de manière appropriée.
  • L'extrémité supérieure de chaque tuyau d'évent 21 peut être équipée d'un dispositif de protection contre les corps flottants, afin de ne pas être obturé par ceux-ci, ou d'un dispositif de protection contre les vagues, afin qu'une ou plusieurs vagues successives ne déclenchent pas intempestivement le basculement de l'élément de hausse 11. De tels dispositifs de protection sont montrés dans les figures 10a à 10c. Le dispositif de protection de la figure 10a est essentiellement constitué par un entonnoir 22 dont le bord supérieur 23 se trouve à un niveau plus élevé que le niveau N et qui comporte au moins un petit trou 24 à un niveau plus bas que le niveau N. Dans la figure 10b, le dispositif de protection est constitué par le tuyau 21 lui-même dont l'extrémité supérieure est recourbée sous la forme d'un siphon 25. Enfin, le dispositif de protection de la figure 10c est constitué par une cloche 26, qui coiffe l'extrémité supérieure 21a du tuyau d'évent 21 et dont le sommet 27 se trouve à un niveau légèrement plus élevé que le niveau N.
  • Il peut être avantageux, pour améliorer la sécurité d'un ouvrage existant dont le seuil déversant 6 avait été initialement arasé, en fonction de la crue de projet initialement choisie, à un niveau déterminant le niveau de la retenue normale RN (figure 8c), de déraser le seuil 6 de quelques décimètres en-dessous de sa côte actuelle (correspondant à RN) et de poser sur le seuil dérasé 6 une hausse fusible 10 conforme à la présente invention, composée d'au moins un élément de hausse 11 dimensionné en taille et en poids de la manière décrite plus haut pour basculer autour de la butée 12 lorsque le niveau de l'eau atteint un niveau prédéterminé au plus égal au niveau maximal RM correspondant à la crue de projet. Dans ces conditions, la probabilité d'ouverture de la hausse 10 n'est pas modifiée mais, en cas de crue exceptionnelle, la section d'écoulement disponible après destruction totale de la hausse 10 est notablement augmentée pour un même niveau d'eau dans la retenue, ce qui permet de passer sans risque une crue ayant un débit très supérieur à celui de la crue pour laquelle l'ouvrage avait été initialement dimensionné. Dans le cas où la hauteur choisie pour les éléments de hausse 11 est égale à la hauteur de dérasement du seuil 6 (figure 8a), on obtient simplement une augmentation de la sécurité de l'ouvrage, sans changement du niveau de la retenue normale RN, par rapport à l'ouvrage existant avant dérasement de son seuil 6 (figure 8c). Toutefois, on peut à la fois augmenter la sécurité de l'ouvrage et réhausser le niveau de la retenue normale à un niveau RN' en donnant aux éléments de hausse 11 une hauteur telle que leur sommet se trouve à un niveau plus élevé que le niveau RN, mais inférieur au niveau maximal RM (figure 8b).
  • Dans la description qui précède, on a supposé que chaque élément de hausse 11 est constitué par un bloc ayant en gros une forme parallélépipédique. Le bloc 11 peut être un bloc monolithique, en béton armé ou non armé, avec une face supérieure plane (figure 11a) ou bombée (figure 11b). Suivant une autre forme d'exécution, chaque élément de hausse 11 peut être constitué par un bloc creux comme montré dans la figure 11c, comportant un ou plusieurs alvéoles remplis d'un lest 32, comme par exemple du sable, des graviers ou autres matériaux pesant en vrac. Un couvercle (non montré) peut être prévu pour obturer le ou les alvéoles 31 après qu'ils ont été remplis d'un lest. La forme d'exécution de la figure 11c convient particulièrement bien quand la hausse 10 doit comporter plusieurs éléments de hausse ayant tous la même hauteur, mais devant basculer pour des niveaux d'eau différents. Dans ce cas, il suffit en effet de régler le poids de chacun des éléments de hausse 11 par une quantité de lest appropriée pour obtenir le basculement de l'élément de hausse correspondant pour le niveau d'eau prédéterminé désiré.
  • Suivant une autre forme d'exécution de la présente invention, chaque élément de hausse 11 peut être constitué par un assemblage de plaques, en béton, en acier ou en tout autre matière appropriée rigide et pesante. Comme montré dans la figure 11d, l'assemblage de plaques peut comporter une plaque rectangulaire de base 33, horizontale ou sensiblement horizontale, et une plaque rectangulaire 34, verticale ou sensiblement verticale, qui se dresse à partir du bord aval de la plaque de base 33. On notera que, dans ce cas, le poids de la colonne d'eau située au-dessus de la plaque de base 33 contribue, comme effort résistant, à stabiliser l'élément de hausse tant que le niveau de l'eau n'a pas atteint le niveau prédéterminé auquel se produit le basculement dudit élément de hausse.
  • Comme montré dans les figures 11e à 11g, l'assemblage de plaques peut comporter plusieurs plaques sensiblement rectangulaires 34, verticales ou sensiblement verticales, qui sont jointes par leur bord inférieur à la plaque de base 33 et qui sont jointes deux à deux par leurs bords verticaux de manière à former une sorte de paravent. Toutes les plaques 34 ont la même hauteur, mais elles peuvent avoir la même largeur (figure 11e) ou des largeurs différentes (figures 11f et 11g). Dans ce cas, chaque élément de hausse a une ligne de crête non-rectiligne, par exemple une ligne en dents de scie (figure 11e), ou une ligne en dents de scie tronquées (figure 11f) ou encore une ligne en créneau (figure 11g). Contrairement à la figure 11d, dans laquelle l'élément de hausse 11 est vu du côté aval, dans les figures 11e à 11g, l'élément de hausse 11 est vu du côté amont. Les formes d'exécution montrées dans les figures 11e à 11g sont intéressantes car elles permettent d'augmenter la longueur de déversement, ce qui, pour un même niveau d'eau, permet de réduire la hauteur de la lame déversante nécessaire à l'évacuation des débits des crues les plus faibles, donc les plus fréquentes, sans provoquer la destruction de la hausse et sans nuire à la sécurité, comme cela a déjà été expliqué plus haut. En outre, cela permet d'augmenter de manière correspondante la hauteur des éléments de hausse et, par conséquent, dans la même mesure le niveau de la retenue normale. Par exemple, une disposition en créneau comme celle de la figure 11g, triplant la longueur de déversement, permet de réduire de moitié la hauteur de la lame déversante des faibles débits, ce qui permet un accroissement correspondant de la capacité de stockage de la retenue sans réduire la possibilité d'évacuation des débits des crues exceptionnelles.
  • Au lieu d'utiliser des plaques 34 planes, on pourrait aussi utiliser des plaques cintrées ou ondulées pour augmenter la longueur de déversement.
  • La figure 12, représente, en coupe verticale, un élément de hausse 11 semblable à ceux des figures 11d à 11g, équipé en plus d'un tuyau d'évent 21 ayant la même fonction que celui de la figure 9. Dans la figure 12, la plaque horizontale 33 est fixée à la plaque verticale 34 de façon à se trouver à distance au-dessus du seuil 6, et elle comporte, du côté amont, un rebord 33a dirigé vers le bas. Le joint d'étanchéité 15 est disposé entre le rebord 33a et le seuil 6. Au-dessous de la plaque 33 est ainsi formée une chambre 35, dans laquelle débouche le tuyau 21 à sa partie inférieure. Un orifice 36 est prévu à la base de la plaque 34, l'orifice 36 ayant une section plus petite que celle du tuyau 21.
  • Avec l'élément de hausse de la figure 12, quand, en service, le niveau de l'eau est voisin du niveau N, mais plus bas que celui-ci, les vagues éventuelles en surface peuvent provoquer des entrées d'eau dans le tuyau 21. Ces entrées d'eau rempliront partiellement la chambre 35 qui, en même temps se videra par l'orifice 36. On évite ainsi qu'une sous-pression ne soit appliquée à la plaque 33 à cause des vagues, tant que le niveau d'eau n'a pas atteint le niveau N auquel on désire que le basculement de l'élément de hausse 11 se produise. La chambre 35 et l'orifice 36 permettent donc d'augmenter la précision du niveau auquel se produit le basculement. Bien entendu on peut prévoir sous l'élément 11 de la figure 9 une chambre semblable à la chambre 35, ainsi qu'un orifice de drainage de cette chambre semblable à l'orifice 36.
  • La figure 13 montre, en coupe verticale, un élément de hausse 11 composé de plusieurs modules 11g à 11j qui sont empilés les uns sur les autres. De préférence, les modules ont des formes telles qu'ils s'emboîtent les uns dans les autres pour ne pas glisser les uns par rapport aux autres, en service, sous la poussée de l'eau. Les modules peuvent avoir tous la même dimension verticale ou des dimensions verticales différentes; par exemple, le module supérieur 11j a une dimension verticale plus faible que celles des autres modules. Avec une telle construction de l'élément de hausse, non seulement les opérations de mise en place de la hausse sont facilitées, mais il est aussi possible de donner à la hausse des hauteurs différentes selon les saisons, sans que cela nécessite une surveillance humaine particulière.
  • La figure 14 montre un élément de hausse 11 modulaire comme celui de la figure 13, mais formé par un assemblage de plaques 33, 34 et 37. Les plaques 33 et 34 sont fixées rigidement entre elles, tandis que la plaque 37 peut être montée de manière amovible sur la plaque 34 pour rehausser cette dernière. Les plaques 34 et 37 peuvent être maintenues ensemble par au moins deux paires de plaquettes 38, dont une paire est visible dans les figures 14 et 15, et qui sont fixées rigidement à l'une des deux plaques 34 et 37. Au lieu des plaquettes 38 on peut aussi utiliser des barrettes s'étendant sur toute la longueur des plaques 34 et 37. Un joint d'étanchéité 39 est prévu entre les plaques 34 et 37. Bien entendu, au lieu d'avoir seulement deux plaques verticales 34 et 37, il peut en être prévu un plus grand nombre.
  • Dans la forme d'exécution représentée sur les figures 16 à 19, les parties de l'élément de hausse 11 qui sont identiques ou qui jouent le même rôle que ceux des modes de réalisation précédents, en particulier ceux représentés sur les figures 11f et 12, sont désignées par les mêmes numéros de référence. Comme on peut le voir dans les figures 16, 17 et 19, les plaques ou panneaux amont 34a de l'élément de hausse 11 sont verticaux et ont une forme rectangulaire, tandis que les plaques ou panneaux aval 34b ont une forme trapézoïdale et sont inclinés de l'amont vers l'aval, leur bord supérieur étant plus en aval que leur bord inférieur. Enfin, les plaques ou panneaux latéraux et intermédiaires 34c sont verticaux et ont une forme trapézoïdale. De cette manière, lorsqu'une crue se déverse par dessus l'élément de hausse, on améliore le régime d'écoulement de l'eau par dessus la hausse et on augmente encore la longueur du périmètre de déversement par rapport à la forme d'exécution de la figure 11f. Comme on l'a déjà indiqué plus haut, l'allongement de la longueur du périmètre de déversement permet, pour un débit donné, de réduire la hauteur ou l'épaisseur de la lame déversante et, par conséquent, d'augmenter de manière correspondante la hauteur des éléments de hausses.
  • Les plaques ou panneaux 34a, 34b et 34c, ainsi que la plaque de fond 33 sont de préférence réalisés en acier, mais ils pourraient être aussi réalisés en béton, en matière plastique ou en tout autre matériau approprié. Comme on peut le voir dans la figure 19, la plaque de fond 33 repose sur une semelle 41 et est ancrée à celle-ci. La semelle 41 est de préférence réalisée en béton, par exemple en béton armé. Comme montré dans la figure 18, la semelle 41 a, vue de dessus, un périmètre de forme trapézoïdale, dont la grande base se trouve du côté amont et la petite base du côté aval. Ainsi, quand plusieurs éléments de hausses 11 sont juxtaposés, l'élément de hausse qui doit basculer le premier n'est pas gêné dans son mouvement de basculement par les éléments adjacents.
  • Comme montré dans la figure 19, la semelle 41 repose elle-même sur un cadre 42 ayant un perimètre trapézoïdal correspondant à celui de la semelle 41. Le cadre de support 42 peut être réalisé par exemple en béton, chargé ou non, en béton armé, en acier, en matière plastique,ou en tout autre matériau approprié. Deux butées 12 sont prévues près des extrémités ou aux extrémités du côté aval du cadre de support 42. Ces deux butées 12 peuvent être réalisées d'une seule pièce avec le cadre de support 42. Comme montré dans la figure 19 le cadre de support 42 est posé sur le seuil 6, préalablement dérasé dans le cas d'un seuil déjà existant ou préalablement aménagé dans le cas d'un ouvrage neuf. Le seuil 6 est ensuite reconstitué par un coulis de ciment 6a servant à ancrer le cadre de support 42 dont seule la face supérieure affleure le seuil reconstitué pour recevoir et supporter l'élément de hausse 11.
  • Comme cela est plus particulièrement visible dans la figure 19, la face inférieure de la semelle 41 est évidée de manière à définir une chambre 35 entre elle et le dessus du seuil 6. Au moins une encoche 36 est formée dans la semelle 41 du côté avant de celle-ci. L'encoche 36 définit un orifice de drainage permettant d'évacuer l'eau éventuellement présente dans la chambre 35.
  • Comme cela est visible dans la figure 18, la ligne de crête de l'élément de hausse 11 présente deux ondes qui définissent respectivement deux alvéoles du côté amont de l'élément de hausse. Dans l'un des alvéoles est disposé un puits rapporté 43, dont le fond est percé d'un orifice qui est en coïncidence avec deux autres orifices respectivement percés dans la plaque de fond 33 et dans la semelle 41 et qui forment un passage 44 mettant l'intérieur du puits 43 en communication avec la chambre 35.
  • Comme cela est visible dans la figure 18, le puits 43 a une section horizontale de forme approximativement rectangulaire et fortement allongée dans le sens amont-aval. Cette forme allongée permet d'obtenir un périmètre de déversement de grande longueur lorsque le niveau de l'eau atteint le bord supérieur du puits. A son extrémité supérieure, du côté amont, le puits 43 comporte un prolongement vertical 45. Le prolongement 45 forme un déflecteur qui améliore le régime d'écoulement de l'eau et en même temps sert à dévier les éventuels corps flottants pour les empêcher de pénétrer dans le puits 43.
  • Le puits 43 peut être réalisé en acier, en béton, en matière plastique ou en tout autre matériau approprié et, selon le matériau utilisé, il peut être fixé à la plaque de fond 33 et à la plaque aval 34b par soudage, par collage, par boulonnage ou par tout autre moyen de fixation approprié.
  • Comme on peut le voir dans les figures 17 et 19, le puits 43 s'étend vers le haut jusqu'à un niveau N' plus élevé que le niveau RN' correspondant à la ligne de crête de l'élément de hausse 11 et définissant le niveau de la retenue normale.
  • On décrira maintenant le fonctionnement de l'élément de hausse 11 représenté dans les figures 16 à 19. Quand le niveau de l'eau atteint le niveau RN' lors d'une crue, l'eau commence à se déverser par-dessus la ligne de crête de l'élément de hausse, mais celui-ci reste stable car le moment des forces de poussée par rapport aux butées 12 reste inférieur à la somme des moments du poids propre de l'élément de hausse et du poids de l'eau au-dessus de la plaque de fond 33. Ensuite, quand le niveau de l'eau atteint le niveau N', l'eau commence à se déverser dans le puits 43 et, de là, à travers le passage 44, dans la chambre 35, d'où elle s'échappe à travers l'orifice de drainage 36. En régime permanent, le débit d'eau entrant dans le puits 43 diminué du débit d'eau sortant par l'orifice 36 établit une certaine hauteur d'eau z₂ dans le puits 43. Si on désigne par z₁ l'épaisseur de la lame d'eau se déversant dans le puits 43 (figure 19), par Ld la longueur du périmètre de déversement à la partie supérieure du puits 43, le débit Q₋ = d'eau entrant dans le puits est donné par la formule: Q₋ = 1,8.z₁ 3/2 . L d
    Figure imgb0020
  • De même, si on désigne par s la section de passage de l'orifice de drainage 36, le débit Q₋ de l'eau sortant par l'orifice 36 est donné par la formule: Q₋ = 2,7 . s . z₂ 1/2
    Figure imgb0021
  • En régime permanent Q₋ = Q₋ et la hauteur d'eau z₂ se stabilise dans le puits 43. D'après les formules (20) et (21), z₂ peut être exprimé en fonction de z₁ de la manière suivante: z₂ = 0,44 . L d 2 . z 1 3
    Figure imgb0022
  • La formule (22) met concrètement en évidence la sensibilité du système: pour une petite variation de hauteur z₁ de la lame d'eau se déversant dans le puits 43, il y a un effet d'amplification important sur la hauteur d'eau z₂ dans le puits 43. Cette hauteur d'eau z₂ dans le puits 43 crée donc sur la paroi supérieure de la chambre 35, c'est-à-dire sur la face inférieure de la semelle 41, une sous-pression ou force de soulèvement qui tend à faire basculer l'élément de hausse autour des deux butées 12. On peut donc faire en sorte que, quand le niveau de l'eau atteint un niveau prédéterminé N, l'eau dans le puits 43 atteint rapidement un niveau suffisant pour provoquer le basculement de l'élément de hausse.
  • Dans les variantes d'exécution représentées sur les figures 19a et 19b, la plaque de fond 33, les plaques 34a, 34b et 34c ainsi que la semelle 41 sont réalisées d'une seule pièce, par exemple en béton (figure 19a) ou en une matière plastique (figure 19b). Pour le reste, l'élément de hausse 11 montré dans les fiugures 19a et 19b est identique à celui de la figure 19.
  • La figure 20 montre un élément de hausse 11 semblable à celui de la figure 19, mais dépourvu de puits 43. En outre, l'élément de hausse 11 de la figure 20 ne comporte pas d'ouverture dans la semelle 41 et dans la plaque de fond 33, c'est-à-dire que l'ouverture 44 de la figure 19 est absente. L'alimentation en eau de la chambre 35 est ici effectuée par un tuyau 46, qui est noyé dans le seuil 6. L'une des extrémités du tuyau 46 comporte une partie verticale 46a qui débouche dans la chambre 35, et son autre extrémité est raccordée à une prise d'eau, qui est située à un endroit quelconque en amont du barrage et qui peut avoir une forme telle que celle montrée dans les figures 10a à 10c ou encore une forme semblable à celle du puits 43.
  • Dans le cas où l'on désire que les éléments de hausse 11 basculent individuellement ou par groupe, par exemple deux éléments de hausse à chaque fois, et cela pour des niveaux d'eau successifs dont les valeurs sont croissantes, il suffira de donner au puits 43 des divers éléments de hausse 11 des hauteurs différentes correspondant aux niveaux successifs pour lesquels le basculement des éléments de hausse doit se produire. Dans le cas de la figure 20, il faut en outre prévoir plusieurs tuyaux 46, comme montré, un pour chaque élément 11 ou pour chaque groupe d'éléments 11 devant basculer ensemble pour un niveau prédéterminé.
  • Bien que l'élément de hausse 11 décrit dans les figures 16 à 18 comporte une ligne de crête à deux ondes, sa ligne de crête pourrait avoir un nombre plus petit ou plus grand d'ondes, par exemple une onde comme montré dans la figure 21 ou trois ondes comme montré dans la figure 22. Bien que la figure 22 ne montre qu'un seul puits 43, il pourrait être prévu par exemple deux puits disposés respectivement dans les alvéoles extrêmes comme montré en trait mixte dans cette figure.
  • Pour réaliser la hausse 10, il est possible de juxtaposer plusieurs éléments 11 ayant tous le même nombre d'ondes ou ayant des nombres d'ondes différents.
  • En conclusion, la hauteur de la hausse 10, donc de son ou ses éléments 11, dépend d'un choix économique, de la progressivité souhaitée dans le basculement des divers éléments de hausse, de la précision du niveau d'eau auquel se produit le basculement (précision qui peut être améliorée en prévoyant un dispositif déclencheur adducteur d'eau à la base de l'élément de hausse, comme décrit plus haut) et de la forme de la ligne de crête de la hausse, ligne qui peut être rectiligne, brisée, courbe ou ondulée. Dans l'exemple numérique décrit plus haut, la hauteur des éléments de hausse qui en résulte peut varier entre 0,9 m et 1,5 m, permettant, suivant les options prises, de gagner entre 45 et 75% de la tranche d'eau qui serait perdue sans l'utilisation de la hausse fusible.
  • D'après ce qui précède, il est clair que la hausse fusible de la présente invention permet d'augmenter substantiellement et de façon quasi-permanente la capacité de stockage d'un barrage ou autre ouvrage à seuil déversant libre, tout en maintenant ou en accroissant la sécurité de fonctionnement propre aux ouvrages à seuil déversant libre, en permettant de façon fiable l'évacuation des crues exceptionnelles par ouverture automatique (basculement d'au moins un élément de la hausse) sans aucune surveillance ni aucune intervention humaine ou d'un dispositif de contrôle. Il est également clair que la hausse peut être fabriquée et installée sur le seuil du déversoir d'un barrage ou autre ouvrage pour un coût plus faible que celui des vannes antérieurement connues, et sans modification majeure du seuil du déversoir.
  • Il est bien entendu que les formes d'exécution de la présente invention qui ont été décrites ci-dessus ont été données à titre purement indicatif et nullement limitatif, et que de nombreuses modifications peuvent être facilement apportées par l'homme de l'art sans pour autant sortir du cadre de la présente invention tel que défini par les revendications annexées. C'est ainsi notamment que le joint 15 situé à la base de l'élément de hausse peut ne pas être situé près du bord amont de ladite base, mais à tout autre emplacement désiré sous la base.

Claims (16)

  1. Déversoir évacuateur de crues pour barrages et ouvrages similaires, comportant un seuil déversant (6) dont la crête (8) est située à un premier niveau prédéterminé (RN) plus bas qu'un second niveau prédéterminé (RM) correspondant à un niveau maximal ou niveau des plus hautes eaux (PHE) pour lequel le barrage (1) est conçu, la différence desdits premier et second niveaux (RN et RM) corrrespondant à un débit maximal prédéterminé d'une crue exceptionnelle, et une hausse mobile (10) obturant le déversoir (5), caractérisé en ce que ladite hausse (10) comprend au moins un élément de hausse (11) rigide et massif, qui est posé sur la crête (8) du seuil déversant (6) et est maintenu en place sur celui-ci par gravité, ledit élément (11) ayant une hauteur prédéterminée (H₁), qui est plus petite que la différence des premier et second niveaux prédéterminés (RN et RM) et qui correspond, pour un niveau d'eau sensiblement égal audit niveau maximal (RM), à une crue moyenne ayant un débit prédéterminé plus faible que ledit débit maximal prédéterminé, ledit élément de hausse (11) étant dimensionné, en taille et en poids, pour que le moment des forces de poussée appliquées par l'eau à l'élément de hausse atteigne le moment des forces de pesanteur qui tendent à maintenir l'élément de hausse en place sur le seuil déversant (6), et qu'en conséquence ledit élément de hausse soit déséquilibré et chassé, quand l'eau atteint un troisième niveau prédéterminé (N) plus élevé que le sommet de l'élément de hausse (11), mais au plus égal au second niveau prédéterminé (RM).
  2. Déversoir selon la revendication 1, caractérisé en ce qu'il est prévu une butée (12) de hauteur prédéterminée (B) sur le seuil déversant (6), au pied de l'élément de hausse (11) du côté aval de celui-ci, pour l'empêcher de glisser vers l'aval sur ledit seuil.
  3. Déversoir selon la revendication 1 ou 2, caractérisé en ce que, dans le cas d'un déversoir (5) existant, la crête (8) du seuil déversant (6) est dérasée à un niveau plus bas que ledit premier niveau prédéterminé (RN), et en ce que l'élément de hausse (11) est posé sur le seuil dérasé et a une hauteur telle que son sommet se trouve au moins audit premier niveau prédéterminé (RN), mais à un niveau (RN') inférieur audit troisième niveau prédéterminé (N).
  4. Déversoir selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'un joint d'étanchéité (15) est disposé entre le seuil déversant (6) et la base de l'élément de hausse (11) près du bord amont (16) de ladite base.
  5. Déversoir selon l'une quelconque des revendications 1 à 4, caractérisé en ce que ledit élément de hausse (11) se présente sous la forme d'un bloc en gros parallélépipédique monolithique.
  6. Déversoir selon l'une quelconque des revendications 1 à 4, caractérisé en ce que ledit élément de hausse (11) se présente sous la forme d'un bloc en gros parallélépipédique creux, rempli d'un lest (32).
  7. Déversoir selon l'une quelconque des revendications 1 à 4, caractérisé en ce que ledit élément de hausse est constitué par un assemblage de plaques (33, 34), qui comprend au moins une plaque de base sensiblement horizontale (33) et au moins une plaque sensiblement verticale et sensiblement rectangulaire (34), qui se dresse à partir de la plaque de base (33).
  8. Déversoir selon la revendication 7, caractérisé en ce que la plaque verticale (34) se dresse à partir du bord aval de la plaque de base (33).
  9. Déversoir selon la revendication 7, caractérisé en ce que ledit assemblage comprend plusieurs plaques sensiblement rectangulaires et sensiblement verticales (34), qui sont jointes par leur bord inférieur à la plaque de base (33) et qui sont jointes deux à deux par leurs bord verticaux de manière à former une sorte de paravent.
  10. Déversoir selon l'une quelconque des revendications 1 à 9, caractérisé en ce que ledit élément de hausse (11) a une ligne de crête non-rectiligne.
  11. Déversoir selon l'une quelconque des revendications 1 à 10, caractérisé en ce que plusieurs éléments de hausse (11) sont disposés côte à côte le long de la crête (8) du seuil déversant (6), des joints d'étanchéité (13) étant disposés entre les parois verticales mutuellement en vis-à-vis des éléments contigüs de hausse.
  12. Déversoir selon la revendication 11, caractérisé en ce que les éléments de hausse (11) sont dimensionnés de telle façon qu'au moins un premier élément de hausse (11c) soit déséquilibré quand l'eau atteint ledit troisième niveau prédéterminé (N₁), celui-ci étant plus bas que ledit second niveau prédéterminé (RM), qu'au moins un second élément de hausse (11b, 11d) soit déséquilibré quand l'eau atteint un quatrième niveau prédéterminé (N₂) compris entre les second et troisième niveaux prédéterminés (RM et N₁), et qu'au moins un troisième élément de hausse (11a, 11e) soit déséquilibré quand l'eau atteint un cinquième niveau prédéterminé plus haut que le quatrième niveau (N₂) et au plus égal au second niveau prédéterminé (RM).
  13. Déversoir selon l'une quelconque des revendications 1 à 12, caractérisé en ce qu'un orifice (36) est prévu du côté aval de l'élément de hausse pour drainer l'espace sous-jacent entre l'élément de hausse (11) et le seuil (6).
  14. Déversoir selon la revendication 13, caractérisé en ce qu'il comprend au moins un conduit (21, 43), qui, en service normal, met ledit espace sous-jacent entre l'élément de hausse (11) et le seuil (6) en relation avec l'atmosphère, l'extrémité supérieure du conduit (21, 43) étant située à un niveau égal ou sensiblement égal audit troisième niveau prédéterminé (N) et à l'aplomb de l'élément de hausse (11) ou en amont de celui-ci.
  15. Déversoir selon la revendication 14, caractérisé en ce que la face inférieure de l'élément de hausse (11) est évidée de manière à définir une chambre (35), et le conduit (21, 43) débouche, à sa partie inférieure, dans ladite chambre (35).
  16. Déversoir selon l'une quelconque des revendications 1 à 15, caractérisé en ce que ledit élément de hausse (11) comprend plusieurs parties (11g-11j; 34, 37) empilées les unes sur les autres.
EP90403592A 1989-12-21 1990-12-14 Déversoir évacuateur de crues pour barrages et ouvrages similaires Expired - Lifetime EP0434521B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90403592T ATE95257T1 (de) 1989-12-21 1990-12-14 Hochwasserablass fuer daemme und gleichartige bauwerke.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8916960A FR2656354B1 (fr) 1989-12-21 1989-12-21 Deversoir evacuateur de crues pour barrages et ouvrages similaires.
FR8916960 1989-12-21

Publications (2)

Publication Number Publication Date
EP0434521A1 EP0434521A1 (fr) 1991-06-26
EP0434521B1 true EP0434521B1 (fr) 1993-09-29

Family

ID=9388803

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90403592A Expired - Lifetime EP0434521B1 (fr) 1989-12-21 1990-12-14 Déversoir évacuateur de crues pour barrages et ouvrages similaires

Country Status (30)

Country Link
US (1) US5032038A (fr)
EP (1) EP0434521B1 (fr)
JP (1) JPH03290519A (fr)
KR (1) KR0158879B1 (fr)
CN (1) CN1023722C (fr)
AT (1) ATE95257T1 (fr)
AU (1) AU623839B2 (fr)
BR (1) BR9006526A (fr)
CA (1) CA2032275C (fr)
CY (1) CY1961A (fr)
CZ (1) CZ278512B6 (fr)
DE (1) DE69003661T2 (fr)
DK (1) DK0434521T3 (fr)
DZ (1) DZ1464A1 (fr)
ES (1) ES2046747T3 (fr)
FR (1) FR2656354B1 (fr)
GE (1) GEP19970895B (fr)
MA (1) MA22017A1 (fr)
MY (1) MY105424A (fr)
NO (1) NO306870B1 (fr)
OA (1) OA09279A (fr)
PT (1) PT96136B (fr)
RO (1) RO111118B1 (fr)
RU (1) RU2049195C1 (fr)
TN (1) TNSN90158A1 (fr)
TR (1) TR25445A (fr)
UA (1) UA26373A (fr)
YU (1) YU47985B (fr)
ZA (1) ZA9010189B (fr)
ZW (1) ZW20290A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2870580A1 (fr) 2004-05-21 2005-11-25 Sc Brevets Lepelletier Soc Civ Transmission automatique multivitesses pour voitures particulieres ou vehicules utilitaires
WO2018142059A1 (fr) 2017-01-31 2018-08-09 Hydroplus Déversoir évacuateur de crues pour barrages et ouvrages similaires comportant un dispositif integre d'aeration de la nappe d'eau aval

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2671116B1 (fr) * 1990-12-28 1993-05-07 Gtm Batimen Travaux Publ Evacuateur de crues exceptionnelles pour barrage comportant au moins deux dispositifs d'evacuation de crues.
FR2733260B1 (fr) * 1995-04-19 1997-05-30 Hydroplus Dispositif pour declencher la destruction d'une partie choisie d'un ouvrage hydraulique tel qu'une levee, une digue ou un barrage en remblai, et ouvrage hydraulique comportant un tel dispositif
FR2743829A1 (fr) * 1996-01-19 1997-07-25 Hydroplus Hausse automatique pour ouvrage hydraulique tel que seuil en riviere, deversoir sur un barrage ou sur une digue de protection
CN1298935C (zh) * 2004-09-21 2007-02-07 河海大学 负荷分配型消除水翅泄水建筑物中墩
CN1295398C (zh) * 2004-09-21 2007-01-17 河海大学 水垫型消除水翅泄水建筑物中墩
US7785037B2 (en) * 2007-05-29 2010-08-31 Lederer Gary Spillway hydroelectric turbine
WO2009050342A1 (fr) * 2007-10-19 2009-04-23 Hydroplus Hausse fusible
US20100132108A1 (en) * 2008-06-02 2010-06-03 Weyand Helmut Rudi Pre-fabricated device for creating a vanishing edge effect and process for creating the same
CA2770782C (fr) * 2011-05-18 2013-07-09 Yuji Unno Appareil de generation de puissance hydraulique
US9689130B1 (en) 2012-02-29 2017-06-27 J.F. Brennan Co., Inc. Submersible bulkhead system and method of operating system
US8876431B1 (en) 2012-02-29 2014-11-04 J.F. Brennan Co., Inc. Submersible bulkhead system and method of operating same
RU2506369C1 (ru) * 2012-08-31 2014-02-10 Открытое акционерное общество "Федеральная гидрогенерирующая компания-РусГидро" Способ возведения тонкостенного лабиринтного водослива из сборных железобетонных элементов
EP2812496B1 (fr) 2012-12-05 2016-04-27 Raycap Intellectual Property Ltd. Grille pour barrages à déversoir libre
WO2014086403A1 (fr) * 2012-12-05 2014-06-12 Raycap Intellectual Property Ltd. Grille pour barrages à déversoir libre
CZ306409B6 (cs) * 2014-12-18 2017-01-11 ÄŚeskĂ© vysokĂ© uÄŤenĂ­ technickĂ© v Praze, Fakulta stavebnĂ­, Katedra hydrotechniky Zařízení pro zvýšení kapacity bezpečnostních přelivů na vysokých vodních dílech
CN105672209A (zh) * 2016-04-01 2016-06-15 刘有录 一种可叠加的农脉实用堰
US10597837B2 (en) 2016-04-15 2020-03-24 RiverRestoration.org, LLC Hydraulic system and method for water control
CN106677140B (zh) * 2016-12-31 2019-05-28 上海江浪科技股份有限公司 一种水闸门装置
IT201800009417A1 (it) * 2018-10-12 2020-04-12 Sws Eng Spa Impianto idrico a soglia di sfioro
FR3101363B1 (fr) 2019-10-01 2021-09-10 Hydroplus Hausse fusible avec système brise-glace
CN112554145B (zh) * 2020-12-21 2022-04-19 河南省水利第二工程局 一种水电站无退水闸的压力前池溢流堰控制方法
ES2894904B2 (es) * 2021-07-28 2022-06-16 Univ Madrid Politecnica Compuerta fusible recuperable de vertedero de tecla de piano con sistema de apertura y cierre de una seccion de paso de agua en una obra hidraulica
CN114687326B (zh) * 2022-04-29 2024-03-08 黄河勘测规划设计研究院有限公司 一种兼具交通和泄洪功能的土坝结构及施工装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US565019A (en) * 1896-08-04 Newbueg
US972059A (en) * 1910-05-11 1910-10-04 Thomas Curtis Clarke Temporary wall.
US2118535A (en) * 1937-08-27 1938-05-24 Betts Clifford Allen Hinged automatic flashboard gate
US2961731A (en) * 1953-02-20 1960-11-29 Dow A Buzzell Means and method for molding concrete sections of hydraulic concrete structures
US3342033A (en) * 1965-04-08 1967-09-19 Layne Texas Company Inc Method of providing a sealed joint employing a flexible bag
FR2129082A5 (fr) * 1971-03-15 1972-10-27 Marseille Grands Travaux
FR2557172B1 (fr) * 1983-12-23 1987-04-24 Aubert J Structure de genie civil prefabriquee, application a la construction d'un ouvrage et ouvrage en resultant
US4650368A (en) * 1985-05-10 1987-03-17 American Threshold Industries, Inc. Flood water containment bag
DE8808124U1 (de) * 1988-06-24 1988-10-20 Lohmar, Hans Josef, 5000 Köln Schutzwand, insbesondere zum Schutz gegen Überfluten durch Hochwasser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2870580A1 (fr) 2004-05-21 2005-11-25 Sc Brevets Lepelletier Soc Civ Transmission automatique multivitesses pour voitures particulieres ou vehicules utilitaires
WO2018142059A1 (fr) 2017-01-31 2018-08-09 Hydroplus Déversoir évacuateur de crues pour barrages et ouvrages similaires comportant un dispositif integre d'aeration de la nappe d'eau aval

Also Published As

Publication number Publication date
TR25445A (tr) 1993-05-01
CA2032275C (fr) 1994-11-22
CA2032275A1 (fr) 1991-06-22
DE69003661T2 (de) 1994-01-27
OA09279A (fr) 1992-08-31
BR9006526A (pt) 1991-10-01
CN1023722C (zh) 1994-02-09
JPH0520527B2 (fr) 1993-03-19
DK0434521T3 (da) 1994-02-21
PT96136B (pt) 1998-07-31
GEP19970895B (en) 1997-05-12
EP0434521A1 (fr) 1991-06-26
YU240090A (sh) 1994-06-24
ES2046747T3 (es) 1994-02-01
MA22017A1 (fr) 1991-07-01
NO306870B1 (no) 2000-01-03
UA26373A (uk) 1999-08-30
KR910012467A (ko) 1991-08-07
CS637690A3 (en) 1992-10-14
PT96136A (pt) 1991-09-30
AU623839B2 (en) 1992-05-21
RO111118B1 (ro) 1996-06-28
CN1052914A (zh) 1991-07-10
ZW20290A1 (en) 1991-06-19
NO905383L (no) 1991-06-24
MY105424A (en) 1994-10-31
YU47985B (sh) 1996-08-13
NO905383D0 (no) 1990-12-13
ATE95257T1 (de) 1993-10-15
TNSN90158A1 (fr) 1991-03-05
CY1961A (en) 1997-07-04
ZA9010189B (en) 1991-10-30
KR0158879B1 (ko) 1999-01-15
RU2049195C1 (ru) 1995-11-27
FR2656354A1 (fr) 1991-06-28
JPH03290519A (ja) 1991-12-20
DE69003661D1 (de) 1993-11-04
US5032038A (en) 1991-07-16
AU6805490A (en) 1991-06-27
FR2656354B1 (fr) 1992-03-06
CZ278512B6 (en) 1994-02-16
DZ1464A1 (fr) 2004-09-13

Similar Documents

Publication Publication Date Title
EP0434521B1 (fr) Déversoir évacuateur de crues pour barrages et ouvrages similaires
EP0493183B1 (fr) Evacuateur de crues exceptionnelles pour barrage comportant au moins deux dispositifs d&#39;évacuation de crues
EP2215308B1 (fr) Hausse fusible
EP0147311B1 (fr) Structure de génie civil préfabriquée, application à la construction d&#39;un ouvrage et ouvrage en résultant
EP0874941B1 (fr) Hausse automatique pour ouvrage hydraulique tel que seuil en riviere, deversoir sur un barrage ou sur une digue de protection
EP0435732B1 (fr) Déversoir évacuateur de crues pour barrages et ouvrages similaires
EP1793043A1 (fr) Digue mobile anti-inondations
EP1650355B1 (fr) Dispositif d&#39;atténuation d&#39;une houle
FR3062406A1 (fr) Deversoir evacuateur de crues pour barrages et ouvrages similaires comportant un dispositif integre d&#39;aeration de la nappe d&#39;eau aval.
WO2006114547A1 (fr) Dispositif allonge pour les amenagements maritimes et fluviaux et son procede de fabrication
CA2219576C (fr) Dispositif pour declencher la destruction d&#39;une partie choisie d&#39;un ouvrage hydraulique tel qu&#39;une levee, une digue ou un barrage en remblai et ouvrage hydraulique comportant un tel dispositif
WO2007000508A1 (fr) Vanne hydraulique automatique
EP0028558B1 (fr) Procédé pour l&#39;amélioration de la résistance au glissement d&#39;un ouvrage de génie civil et fondation s&#39;y rapportant
EP3625393B1 (fr) Dispositif de protection du littoral contre les risques de submersion marine comprenant une face avant incurvee et digue de protection comprenant une pluralite de dispositfs de protection alignes
FR2476712A1 (fr) Amortisseur de houles
FR2990965A1 (fr) Vanne automatique reglable.
FR2598162A1 (fr) Nervure de renforcement des terrains friables
EP3653793B1 (fr) Réduction du coefficient de réflexion d&#39;une paroi verticale dans un port
FR2545516A1 (fr) Dispositif de protection d&#39;un ouvrage en mer et de fragmentation du pack de glace
FR2476713A1 (fr) Amortisseur-stabilisateur hydraulique
FR2677052A1 (fr) Brise-lames.
FR2530696A1 (fr) Couronnement de digue brise-lames
FR2755985A1 (fr) Ouvrage de protection cotiere
FR2556379A1 (fr) Procede d&#39;elaboration de dispositif antihoule et dispositif s&#39;y rapportant
WO1996001925A1 (fr) Vanne automatique, autonome et montante

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL SE

17P Request for examination filed

Effective date: 19910502

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GTM-ENTREPOSE

17Q First examination report despatched

Effective date: 19920910

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL SE

REF Corresponds to:

Ref document number: 95257

Country of ref document: AT

Date of ref document: 19931015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69003661

Country of ref document: DE

Date of ref document: 19931104

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931026

ITF It: translation for a ep patent filed

Owner name: NOTARBARTOLO & GERVASI

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3009787

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2046747

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 90403592.0

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: CL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20051215

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20051223

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20051228

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20051230

Year of fee payment: 16

Ref country code: SE

Payment date: 20051230

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070703

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

EUG Se: european patent has lapsed
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070701

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: GTM-ENTREPOSE

Free format text: GTM-ENTREPOSE#61, AVENUE JULES QUENTIN#NANTERRE (FR) -TRANSFER TO- GTM-ENTREPOSE#61, AVENUE JULES QUENTIN#NANTERRE (FR)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20071214

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20071231

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20081210

Year of fee payment: 19

BERE Be: lapsed

Owner name: *GTM-ENTREPOSE

Effective date: 20081231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20081128

Year of fee payment: 19

Ref country code: GB

Payment date: 20081230

Year of fee payment: 19

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20071217

Year of fee payment: 18

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20091201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100122

Year of fee payment: 20

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091214

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20101215

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20091201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20091215