EP0432403B1 - Procédé d'injection intermittente de carburant dans la chambre de combustion d'un moteur à combustion interne et dispositit pour la mise en oeuvre de ce procédé - Google Patents

Procédé d'injection intermittente de carburant dans la chambre de combustion d'un moteur à combustion interne et dispositit pour la mise en oeuvre de ce procédé Download PDF

Info

Publication number
EP0432403B1
EP0432403B1 EP90119504A EP90119504A EP0432403B1 EP 0432403 B1 EP0432403 B1 EP 0432403B1 EP 90119504 A EP90119504 A EP 90119504A EP 90119504 A EP90119504 A EP 90119504A EP 0432403 B1 EP0432403 B1 EP 0432403B1
Authority
EP
European Patent Office
Prior art keywords
nozzle needle
nozzle
pressure
fuel
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90119504A
Other languages
German (de)
English (en)
Other versions
EP0432403A1 (fr
Inventor
Dietmar Ing. Henkel (Grad)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Truck and Bus SE
Original Assignee
MAN Nutzfahrzeuge AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Nutzfahrzeuge AG filed Critical MAN Nutzfahrzeuge AG
Publication of EP0432403A1 publication Critical patent/EP0432403A1/fr
Application granted granted Critical
Publication of EP0432403B1 publication Critical patent/EP0432403B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • F02M45/10Other injectors with multiple-part delivery, e.g. with vibrating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Definitions

  • the invention relates to a method according to the preamble of claim 1.
  • an injection nozzle known from DE-OS 22 42 344
  • the injection process is controlled solely by the forces acting on the nozzle needle.
  • the nozzle needle is held in the closed position by the compression spring
  • the pressure of the fuel coming from an injection pump tries to raise the nozzle needle against the force of the compression spring.
  • it is supported by an auxiliary piston acting in the closing direction.
  • fuel is injected into the combustion chamber of the internal combustion engine by releasing an injection hole until the pressure spring and the auxiliary piston cause the nozzle needle to close by releasing the pressure.
  • this known injection method does not allow controlled multiple opening and closing of the injection nozzle during a work cycle.
  • an injection nozzle which serves to divide the injection process into a pre-injection and a main injection.
  • the nozzle needle has a round notch. From this round notch, holes running diagonally in the nozzle needle lead into a pressure chamber in front of the nozzle holes. In the closed position of the nozzle needle, the round notch is connected to an inlet bore for the fuel, so that when the injection pump begins to deliver, the fuel reaches the pressure chamber via the round notch and the diagonal bores and lifts the nozzle needle. After the nozzle needle has been raised, the inlet bore is partly covered again by the lower edge of the round notch, so that the fuel supply is throttled and the stroke speed of the nozzle needle is reduced.
  • the fuel supply is temporarily interrupted by running over the inlet hole through the lower edge of the round notch.
  • another edge of the nozzle needle clears the direct path of the fuel from the inlet bore to the pressure chamber. This keeps the nozzle needle in the open position until the delivery pressure of the injection pump drops. The nozzle needle then falls back into the closed position and only opens again when the injection pump is started again. An oscillating movement of the nozzle needle during a delivery process of the injection pump is therefore not possible.
  • the increased requirements for an improvement in exhaust gas values can no longer be satisfied with the conventional working method of the injection nozzle.
  • the exhaust gases of the diesel internal combustion engine should contain CH components and in their content of carcinogenic soot particles, which cause black smoke. At the same time, the proportion of NOx should also be reduced and the combustion noise reduced.
  • the invention has for its object to further develop the injection method such that the mixture preparation process and the quality of the combustion process dependent on it can be controlled so that the proportions of CH and soot are reduced without the proportion of NOx is increased and at the same time the combustion noise is minimized.
  • nozzle needle itself acts as a control element for a periodically periodic opening and closing enables the mixture preparation to be improved with comparatively little design effort.
  • the consequence of such a modulation of the injected fuel quantity is a combustion process characterized by a short ignition delay. Its - from an acoustical point of view - welcome reduction in structure-borne noise and thus airborne noise is due to a reduction in the rate of increase in combustion pressure up to the absence of excitation of standing wave fields in the combustion chamber. This, in turn, has an additional positive effect on the NOx content of the exhaust gas, since the high temperature peaks that otherwise occur in the local and temporal pressure maxima of the eigenmodes are also absent.
  • a device for performing the method according to claim 1 can be found in the characterizing part of claim 2.
  • the supply of fuel to the pressure chamber can be controlled by the nozzle needle itself.
  • the nozzle needle and the compression spring represent an oscillation system in which the nozzle needle is excited to high-frequency vibrations by opening and closing the fuel supply to the pressure chamber.
  • the injection process which otherwise takes place in one train or is subdivided into a pre-injection and main injection, is divided into many small steps with the advantages already described above.
  • the control of the fuel supply to the pressure chamber by means of the first and second groove with the ring notch of the nozzle needle shaft as a control element represents a possibility that can be realized without great constructional effort to break down the injection into small cycles.
  • a particularly advantageous development consists in that the power source is designed as a piston which can be acted upon by a map-controlled pressure source. As a result, the opening pressure can be adapted to the respective desired requirements.
  • FIG. 1 shows a longitudinal section through an injection valve.
  • This usually consists of the main components nozzle holder 1, a nozzle body 2 and a union nut 3 which connects the nozzle body 2 and the nozzle holder 1.
  • a nozzle needle 4 is guided in the nozzle body 2 and is held in the closed position by a compression spring 5.
  • the fuel is supplied via a pressure-resistant screw connection 6 and an inlet bore 7.
  • the compression spring 5 is relieved by an auxiliary piston 8 loaded with fuel pressure.
  • the auxiliary piston 8 with diameter d3 mainly contributes to the closing force.
  • the closing force is counteracted by a force acting on a pressure shoulder 9 of a nozzle needle shaft 10.
  • the effective pressure area results from the difference between the diameter d2 of the nozzle needle shaft 10 and the diameter d1 of the nozzle needle seat.
  • a pressure chamber 11 is not constantly pressurized via the inlet bore 7. Rather, the supply of fuel to the pressure chamber 11 can be blocked by the nozzle needle shaft 10 or released by a round notch 12.
  • the fuel passes through the inlet bore 7 and a connecting line 13 into a groove 14 Pressure.
  • This pressure exerts a force on the nozzle needle 4 which results from the product of the hydraulic pressure and the effective piston area - formed from the difference between the diameters d1 and d2. This force counteracts the sum of the forces from the spring force and the force of the auxiliary piston 8 and causes the valve to open.
  • the round notch 12 moves upwards and the nozzle needle shaft blocks the supply of fuel, during which the pressure in the pressure chamber 11 is reduced by injecting a partial volume through nozzle bores 16a to such an extent that the nozzle needle falls back into the closed position and the game begins again until the delivery of fuel by a pump element, not shown, of the injection pump stops.
  • the prevailing, very high, stroke frequency of the nozzle needle which is in the kHz range, is dependent on the parameters: instantaneous fuel delivery speed of the pump element of the injection pump, mass of the nozzle needle, static and dynamic properties of the pressure spring and the wave mechanical properties of the hydraulic path upstream. and located downstream of the slide valve function.
  • a stop 18 is also provided, which is inserted between the nozzle body 2 and the nozzle holder 1 and is fixed by means of the union nut 3.
  • a pressure generator provided by a pressure regulator, for example a gear pump
  • a spring plate 5a of the compression spring 5 directly as a piston and to dispense with the compression spring 5 entirely.
  • the auxiliary piston 8, which is acted upon by the pressure of the fuel, can act as a guide rod, while the space of the compression spring 5, which is no longer required, is connected to a controllable pressure generator via a control line 5b indicated by a broken line.
  • This variant without a compression spring 5 allows the opening pressure to be varied by acting on the control line 5b of the spring plate 5a, which is designed as a piston, with adjustable hydraulic pressure.
  • the opening pressure can be influenced in a manner known per se via a map control as a function of the engine state parameters such as engine speed and engine load.
  • Figure 2 shows a cross section II-II through the round notch 12.
  • the two grooves 14 and 15 only extended over part of the circumference, so that the path from the groove 14 to the second groove 15 can be interrupted by the nozzle needle shaft 10. Only the round notch 12 establishes the connection from the groove 14 via the second groove 15 to the pressure chamber 11 (FIG. 1).
  • FIG. 3 A detail of the round notch 12 is shown in FIG. 3.
  • the fuel supply is released via the grooves 14 and 15 to the pressure chamber 11 (FIG. 1).
  • the fuel supply is interrupted again by the second control edge 20.
  • FIG. 4 shows the forces acting on the nozzle needle 4 (FIG. 1) as a function of the fuel pressure p.
  • the straight line A-B1 gives the course of the force on the in Nozzle needle 4 located again in the closed position, as it results solely from the fuel pressure, if it acts on the surface as it results from the difference between the diameters d1 and d2 of the nozzle needle 4 (FIG. 1). This force acts in the opening direction.
  • FIG. 5 shows a function of the nozzle needle path plotted over time t.
  • the nozzle needle begins to lift and reaches its maximum stroke. The stroke is limited by the stop of the nozzle needle shaft 10 against the stop 18 (FIG. 1).
  • the pressure drops again, since the supply of further fuel, as described in FIG. 1, is interrupted by the nozzle needle shaft itself.
  • the nozzle needle is soft, or undergoes a reversal of movement shortly before touching down, with which the game starts again.
  • FIG. 6 shows the pressure curve over time t.
  • the pressure increases approximately linearly up to the opening pressure pö (see FIG. 4).
  • the nozzle needle opens and the line pressure drops into the combustion chamber when the fuel is sprayed out.
  • the fuel supply to the pressure chamber 11 is released again via the round notch 12 (FIG. 1), so that pressure builds up again until the opening pressure p0 is reached again in T2.
  • the release cross section A results from the stroke of the nozzle needle according to FIG. 5, the course of which is shown in FIG. 7 over time t.
  • FIG. 8 shows the course of the force F acting on the nozzle needle.
  • the compression spring 5 (FIG. 1) acts, which acts in the closing direction.
  • this spring force is superimposed on the differential pressure force resulting from the diameters d1 to d3 (FIG. 4) until in T1 the force in the opening direction exceeds the force in the closing direction.
  • the force in the opening direction suddenly increases when the diameter d1 is released to the full diameter d2 (jump from point B1 to D1 in FIG. 4).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Claims (3)

  1. Procédé pour l'injection intermittente de carburant dans la chambre de combustion d'un moteur à combustion interne, procédé dans lequel une ouverture et une fermeture d'une aiguille d'injecteur (4) est vivement commandée conjointement par une force d'une source d'énergie agissant sur l'aiguille d'injecteur (4) en direction d'une position de fermeture, et d'une force agissant par l'intermédiaire de la pression du carburant sur l'aiguille d'injecteur (4) dans le sens d'un mouvement d'ouverture, de sorte que dans la position de fermeture de l'aiguille d'injecteur (4), le trajet du carburant, depuis un perçage d'arrivée (7) vers une chambre de pression (11) d'un corps d'injecteur (2) est libre, et que ce trajet du carburant est à nouveau fermé au cours d'un mouvement d'ouverture de l'aiguille d'injecteur (4) par de l'aiguille elle-même, procédé caractérisé en ce que, après l'épuisement de la plus grande course possible de l'aiguille d'injecteur (4), le trajet entre le perçage d'arrivée (7) et la chambre de pression (11) est bloqué par l'aiguille d'injecteur (4).
  2. Dispositif pour la mise en oeuvre du procédé selon la revendication 1, dans lequel la source d'énergie est constituée par un ressort de pression (5) sollicitant l'aiguille d'injecteur (4) dans le sens de la fermeture, et comporte un piston auxiliaire (8) assistant ce ressort de pression, tandis que l'aiguille d'injecteur, à son extrémité opposée, dans une chambre de pression (11) dispose d'un épaulement de pression (9) qui forme la transition entre l'aiguille d'injecteur (4) et le fût (10) de l'aiguille d'injecteur, dispositif caractérisé en ce que le fût (10) de l'aiguille d'injecteur comporte une entaille à fond arrondi (12), en ce que cette entaille à fond arrondi (12) libère le parcours du carburant entre une gorge (14) susceptible d'être reliée au perçage d'arrivée (7) par l'intermédiaire d'une canalisation de liaison (13) et une seconde gorge (15) d'axe parallèle placé sur le même plan, ou bien ferme à nouveau ce parcours lors du soulèvement de l'aiguille d'injecteur (4) dans sa position la plus haute, et en ce que la seconde gorge (15) est reliée par l'intermédiaire d'une canalisation (16) à la chambre de pression (11) dans un corps d'injecteur (2) (figure 1).
  3. Dispositif selon la revendication 2, caractérisé en ce que la source d'énergie est constituée par une coupelle de ressort (5a) revêtant la forme d'un piston, et en ce que cette coupelle de ressort (5a) est susceptible d'être sollicitée par l'intermédiaire d'une canalisation de commande (5b) dans le support d'injecteur (1) par un générateur de pression commandé par un champ caractéristique.
EP90119504A 1989-11-15 1990-10-11 Procédé d'injection intermittente de carburant dans la chambre de combustion d'un moteur à combustion interne et dispositit pour la mise en oeuvre de ce procédé Expired - Lifetime EP0432403B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3937917 1989-11-15
DE3937917A DE3937917A1 (de) 1989-11-15 1989-11-15 Verfahren zum intermittierenden einspritzen von brennstoff in den brennraum einer brennkraftmaschine, sowie vorrichtung zur durchfuehrung dieses verfahrens

Publications (2)

Publication Number Publication Date
EP0432403A1 EP0432403A1 (fr) 1991-06-19
EP0432403B1 true EP0432403B1 (fr) 1994-01-12

Family

ID=6393536

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90119504A Expired - Lifetime EP0432403B1 (fr) 1989-11-15 1990-10-11 Procédé d'injection intermittente de carburant dans la chambre de combustion d'un moteur à combustion interne et dispositit pour la mise en oeuvre de ce procédé

Country Status (4)

Country Link
US (1) US5167370A (fr)
EP (1) EP0432403B1 (fr)
JP (1) JPH03175147A (fr)
DE (2) DE3937917A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5487508A (en) * 1994-03-31 1996-01-30 Caterpillar Inc. Injection rate shaping control ported check stop for a fuel injection nozzle
US5485818A (en) * 1995-02-22 1996-01-23 Navistar International Transportation Corp. Dimethyl ether powered engine
WO1996038663A1 (fr) * 1995-06-02 1996-12-05 Caterpillar Inc. Injecteur a dispositif antiretour a commande directe
US5651345A (en) * 1995-06-02 1997-07-29 Caterpillar Inc. Direct operated check HEUI injector
GB9622335D0 (en) * 1996-10-26 1996-12-18 Lucas Ind Plc Injector arrangement
US5950931A (en) * 1998-01-30 1999-09-14 Caterpillar Inc. Pressure decay passage for a fuel injector having a trapped volume nozzle assembly
US6109536A (en) * 1998-05-14 2000-08-29 Caterpillar Inc. Fuel injection system with cyclic intermittent spray from nozzle
DE10047812B4 (de) * 2000-09-27 2014-01-16 Volkswagen Ag Verfahren und Vorrichtung zum Regeln des Betriebs eines Verbrennungsmotors
US7415969B2 (en) * 2006-02-28 2008-08-26 Caterpillar Inc. Fuel injector having recessed check top
DE102009054441A1 (de) * 2009-11-25 2011-06-30 L'Orange GmbH, 70435 Kraftstoff-Einspritzdüse für Brennkraftmaschinen

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB494951A (en) * 1937-05-01 1938-11-01 Attwood Diesel Equipment Compa Improvements in or relating to liquid fuel injectors for internal combustion engines
DE713777C (de) * 1939-11-25 1941-11-14 Henschel & Sohn G M B H Brennstoffeinspritzvorrichtung fuer Brennkraftmaschinen
DE921368C (de) * 1950-11-14 1954-12-16 Stuttgarter Motorzubehoer G M Nadelduese fuer Verbrennungskraftmaschinen
US2769669A (en) * 1951-10-29 1956-11-06 L Orange Rudolf Needle nozzle for internal combustion engines
US2647016A (en) * 1952-05-28 1953-07-28 American Locomotive Co Fuel injector
FR1242368A (fr) * 1959-08-20 1960-09-30 Renault Perfectionnement à certains montages notamment applicables aux injecteurs de combustibles à accumulation
US3469793A (en) * 1967-05-11 1969-09-30 Int Harvester Co Fuel injection system
GB1300060A (en) * 1969-03-05 1972-12-20 Cav Ltd Liquid supply nozzles
DE2242344A1 (de) * 1972-08-29 1974-03-14 Bosch Gmbh Robert Kraftstoffeinspritzduese fuer brennkraftmaschinen
GB1470507A (en) * 1973-05-12 1977-04-14 Cav Ltd Fuel injection systems for internal combustion engines
SU681206A1 (ru) * 1973-10-15 1979-08-25 Предприятие П/Я А-7703 Форсунка дл распыливани жидкого топлива
US4005685A (en) * 1975-07-29 1977-02-01 Endre Kovacs Fuel injection apparatus
DE2558790A1 (de) * 1975-12-24 1977-07-14 Bosch Gmbh Robert Kraftstoffeinspritzduese fuer brennkraftmaschinen
AT378244B (de) * 1982-12-14 1985-07-10 Steyr Daimler Puch Ag Einspritzduese fuer luftverdichtende, selbstzuendende hubkolben-brennkraftmaschinen
GB8315717D0 (en) * 1983-06-08 1983-07-13 Lucas Ind Plc Fuel injection nozzles
GB8319284D0 (en) * 1983-07-16 1983-08-17 Lucas Ind Plc Fuel injection nozzles
JPS60169664A (ja) * 1984-02-14 1985-09-03 Mitsui Eng & Shipbuild Co Ltd 超高圧燃料噴射弁
JPS60259764A (ja) * 1984-05-10 1985-12-21 Diesel Kiki Co Ltd 燃料噴射弁

Also Published As

Publication number Publication date
JPH03175147A (ja) 1991-07-30
DE3937917A1 (de) 1991-05-16
DE59004225D1 (de) 1994-02-24
US5167370A (en) 1992-12-01
EP0432403A1 (fr) 1991-06-19

Similar Documents

Publication Publication Date Title
DE3428669C2 (fr)
EP0460381B1 (fr) Injecteur à plusieurs jets d'injection avec commande de coupe en travers
EP2480783B1 (fr) Soupape d'injection de carburant pour un moteur à combustion interne
DE10012969B4 (de) Einspritzdüse und ein Verfahren zur Bildung eines Kraftstoff-Luftgemischs
EP0432403B1 (fr) Procédé d'injection intermittente de carburant dans la chambre de combustion d'un moteur à combustion interne et dispositit pour la mise en oeuvre de ce procédé
EP0603616B1 (fr) Soupape d'injection de combustible
DE3511328C2 (fr)
EP0277939B1 (fr) Dispositif d'injection de combustible
DE3606246A1 (de) Kraftstoff-einspritzduese fuer brennkraftmaschinen
EP0467072B1 (fr) Injecteur de carburant pour des moteurs à combustion interne à compressiond'air
DE10012970B4 (de) Verfahren zur Bildung eines zündfähigen Kraftstoff-Luftgemischs
DE2938412C2 (fr)
DE10007175C2 (de) Einspritzventil für die Einspritzung von Kraftstoff in eine Verbrennungskraftmaschine
EP0637686B1 (fr) Injecteur de combustible pour moteurs à combustion interne
DE2856595C2 (de) Mehrzylinder-Dieselmotor mit einem Kraftstoffsteuerventil zur Zylinderschaltung
DE4200710C1 (en) Nozzle for injection of fuel into IC engine - utilises implosion of cavitation bubbles leaving passage contg. porous plug of sinter, whisker or ceramic foam
DE4106813A1 (de) Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
DE3811885A1 (de) Kraftstoffeinspritzvorrichtung mit vor- und haupteinspritzung fuer eine brennkraftmaschine, insb. solche mit luftverdichtung u. selbstzuendung
EP0586775A1 (fr) Méthode d'injection de carburant pour un moteur Diesel
DE10065528A1 (de) Brennstoffeinspritzventil
DE10061571A1 (de) Brennstoffeinspritzventil
EP0685645B1 (fr) Soupape d'injection pour un système d'injection de combustible d'un moteur à combustion interne, en particulier d'un moteur diesel
EP1481159B1 (fr) Soupape d'injection de carburant
EP0606436A1 (fr) Injecteur de carburant pour moteurs a combustion interne.
AT394760B (de) Kraftstoff-einspritzduese fuer brennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19910709

17Q First examination report despatched

Effective date: 19920601

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940112

Ref country code: FR

Effective date: 19940112

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19940112

REF Corresponds to:

Ref document number: 59004225

Country of ref document: DE

Date of ref document: 19940224

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19940112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941012

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 90119504.0

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950701

EUG Se: european patent has lapsed

Ref document number: 90119504.0

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051011