EP0427590B1 - Torche à plasma pourvue d'une bobine électromagnétique de rotation de pieds d'arc - Google Patents

Torche à plasma pourvue d'une bobine électromagnétique de rotation de pieds d'arc Download PDF

Info

Publication number
EP0427590B1
EP0427590B1 EP90403044A EP90403044A EP0427590B1 EP 0427590 B1 EP0427590 B1 EP 0427590B1 EP 90403044 A EP90403044 A EP 90403044A EP 90403044 A EP90403044 A EP 90403044A EP 0427590 B1 EP0427590 B1 EP 0427590B1
Authority
EP
European Patent Office
Prior art keywords
electrodes
electromagnetic coil
plasma torch
electrode
torch according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90403044A
Other languages
German (de)
English (en)
Other versions
EP0427590A1 (fr
Inventor
Maxime Labrot
Jean Feuillerat
Serge Georges Roger Muller
Patrick Lautissier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Group SAS
Original Assignee
Airbus Group SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Group SAS filed Critical Airbus Group SAS
Publication of EP0427590A1 publication Critical patent/EP0427590A1/fr
Application granted granted Critical
Publication of EP0427590B1 publication Critical patent/EP0427590B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/28Cooling arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/40Details, e.g. electrodes, nozzles using applied magnetic fields, e.g. for focusing or rotating the arc
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3421Transferred arc or pilot arc mode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3431Coaxial cylindrical electrodes

Definitions

  • the present invention relates to plasma torches in which the plasma is obtained by heating a gas by an electric arc produced between two electrodes.
  • a plasma torch as taught for example the document US-A-3 301 995, comprises two tubular and coaxial electrodes, each being arranged in a support which surrounds it.
  • the plasma torch also comprises means for producing the initiation of an electric arc between the two electrodes and means for injecting a plasma gas, such as air, between the two electrodes, simultaneously with the electric arc.
  • Means for cooling the electrodes are also provided in each electrode support and are usually defined by a sealed cylindrical chamber provided in each support, a cylindrical separation wall providing the sealed chamber in two concentric annular spaces, in communication with one the other at one end of said wall and through which a cooling fluid circulates.
  • means are provided for moving the attachment feet of the arc on the internal surfaces of the tubular electrodes.
  • these means are defined by at least one electromagnetic coil surrounding one of the electrode supports.
  • one solution consists in arranging them in an internal volume provided in each electrode support, as taught in document US-A-3,832,519.
  • the gain in size n is not significant, the support being of larger dimension, and moreover, the coils are provided with complex internal cooling circuits.
  • the present invention aims to remedy these drawbacks and relates to an electric arc plasma torch, the arrangement of the means for moving the electric arc does not lead to an increase in volume of said torch, nor to complications. additional techniques.
  • the space previously imposed by the electromagnetic coil is completely eliminated since the latter is then integrated into said electrode holder support by replacing the cylindrical wall for separating the cooling means, initially provided in the support.
  • said coil is then effectively cooled by the fluid passing through the two concentric annular spaces between which the electromagnetic coil is arranged.
  • said electromagnetic coil extends approximately over the entire length of the electrode; preferably, it is associated with the support surrounding the upstream electrode (relative to the circulation of the plasma gas).
  • said electromagnetic coil is defined by two concentric windings of contiguous turns, an envelope of insulating material being interposed between the two concentric windings of turns.
  • This envelope of insulating material thus constitutes a sealed separation wall allowing the coolant to pass through the two annular spaces.
  • the two windings of turns can be obtained from a continuous metal wire.
  • This wire preferably has a rectangular section, so that each of said windings with contiguous turns then has a united surface.
  • said electromagnetic coil is connected by one of its ends to a power supply line and by the other end to a ring integral with said corresponding support.
  • the power supply line advantageously travels through the electrically insulating coolant supply pipe.
  • FIG. 1 schematically represents a half-view in longitudinal section contiguous to an external half-view of a particular embodiment of the plasma torch according to the invention.
  • Figure 2 is an enlarged half-section view of the electromagnetic coil disposed in the support of the upstream electrode.
  • the plasma torch 1 comprises a body 2 comprising in particular two cylindrical supports 3 and 4.
  • An upstream electrode or cathode 5 is housed inside the support 3, and, in an identical manner, an electrode downstream or anode 6 is housed inside the support 4.
  • These electrodes 5 and 6, of generally tubular shape, have a common axis 7, being spaced apart from each other along said axis, and they are connected to a power supply by circuits not shown but of known type.
  • the plasma torch 1 also comprises means 8.1 and 8.2 for cooling the electrodes, which are provided, in the usual way, in each of the supports 3 and 4, and which will be described later.
  • FIG. 1 shows the electric arc 10 thus generated, whose attachment feet 10.1 and 10.2 are located on the internal surfaces, respectively 5A and 6A, of the electrodes 5 and 6.
  • a plasma gas such as air
  • the gas coming from a circuit supply known per se and not shown, passes through a passage 12 formed in the body 1 then, transverse injection orifices 13 provided in a cylindrical part 14 surrounding the opposite ends of the electrodes, to then open into the chamber 11, the thermal plasma exiting through the downstream tubular electrode 6.
  • the plasma torch 1 comprises means for moving the attachment feet of the electric arc generated around the internal surfaces of the tubular electrodes 5 and 6. These means are defined by at least an electromagnetic coil 15 associated, in this embodiment, with the support 3 of the upstream electrode 5.
  • the electromagnetic coil 15 is integrated into the cooling circuit 8.1 of the electrode 5.
  • the cooling circuit 8.1 is defined by a sealed cylindrical chamber 16 provided between the support 3 and the external surface 58 of the electrode 5, being separated, by the electromagnetic coil 15, into two concentric annular spaces 16A and 16B through which the coolant circulates, said annular spaces being in communication with one the other at the downstream end 15A of said coil 15.
  • the electromagnetic coil 15 thus acts as a partition wall for the annular spaces 16A and 16B, so that this arrangement does not involve any additional bulk of the plasma torch.
  • the cooling fluid is electrically insulating such as, for example, deionized water.
  • This fluid coming from a supply circuit known per se and not shown, arrives via a conduit 27 opening into the sealed chamber 16 to circulate in the annular space 16A, between the support 3 and the coil 15, then in the annular space 16B, between the coil 15 and the external surface 58 of the electrode, to emerge through a passage 5C provided in the rear end 5D of the electrode 5 in the direction of said circuit.
  • the circulation of the fluid is indicated by arrows F. It can therefore be seen that the electromagnetic coil 15, which extends around the electrode 5, is cooled optimally by the cooling fluid.
  • the electromagnetic coil 15 is defined by two concentric windings 17A and 17B of contiguous turns, obtained from a continuous metallic wire 17, for example made of copper. Between the two windings of turns 17A and 17B is placed an envelope of insulating material 18 which thus constitutes a sealed wall separating the two annular spaces 16A and 16B. Furthermore, it can be seen that the wire of the turns forming the windings of the coil 15 advantageously has a solid rectangular section.
  • the coil 15 is fixed by one of its ends 20 to a metal ring 21 conforming to a part of the cooling circuit and interposed between the support 5 and the rear end 5D of the electrode 5, while the other end 22 of the coil, isolated from the metallic mass, is connected to an electrical supply line 23.
  • this supply line 23 travels inside the duct 27 for supplying cooling fluid, so that it is thus effectively cooled.
  • the cooling circuit 8.2 of the downstream electrode 6 is supplied with cooling fluid by a conduit 24.
  • the various supplies of plasma gas and of cooling fluid, as well as the electrical supplies of the electrodes and of the coil, are of known type. and are connected to a control system ensuring the proper functioning of the plasma torch according to the methods assigned to it.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Arc Welding Control (AREA)
  • Circuit Breakers (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

  • La présente invention concerne les torches à plasma dans lesquelles le plasma est obtenu en chauffant un gaz par un arc électrique produit entre deux électrodes.
  • On connaît déjà de nombreuses réalisations de torches à plasma. Généralement, une torche à plasma, telle que l'enseigne par exemple le document US-A-3 301 995, comprend deux électrodes tubulaires et coaxiales, chacune étant agencée dans un support qui l'entoure. La torche à plasma comporte également des moyens pour produire l'amorçage d'un arc électrique entre les deux électrodes et des moyens pour injecter un gaz plasmagène, tel que de l'air, entre les deux électrodes, simultanément à l'arc électrique. Des moyens de refroidissement des électrodes sont également prévus dans chaque support d'électrode et sont usuellement définis par une chambre cylindrique étanche prévue dans chaque support, une paroi cylindrique de séparation ménageant la chambre étanche en deux espaces annulaires concentriques, en communication l'un avec l'autre à une extrémité de ladite paroi et à travers lesquels circule un fluide de refroidissement.
  • Par ailleurs, comme l'enseignent par exemple les documents US-A-3 301 995 et EP-A-0 032 100, pour éviter une usure prématurée des électrodes, on prévoit des moyens pour déplacer les pieds d'accrochage de l'arc électrique sur les surfaces internes des électrodes tubulaires. Généralement, ces moyens sont définis par au moins une bobine électromagnétique entourant l'un des supports d'électrode. Ainsi, en modulant le champ magnétique axial engendré par la bobine lorsqu'elle est excitée, les pieds d'accrochage de l'arc électrique se déplacent autour des surfaces internes des électrodes en évitant la formation de cratères locaux et la destruction rapide des électrodes.
  • Toutefois, l'agencement d'une telle bobine électromagnétique autour du support porte-électrode implique une augmentation importante de l'encombrement de la torche à plasma, de sorte que, dans certaines applications, les torches à plasma ainsi équipées ne satisfont pas aux exigences de volume et de forme requises.
  • Pour diminuer l'encombrement extérieur imposé par les bobines, une solution consiste à les agencer dans un volume interne prévu dans chaque support d'électrode, comme l'enseigne le document US-A-3 832 519. Néanmoins, le gain en encombrement n'est pas significatif, le support étant de dimension plus importante, et de plus, les bobines sont munies de circuits de refroidissement internes complexes.
  • La présente invention a pour but de remédier à ces inconvénients et concerne une torche à plasma d'arc électrique, dont l'agencement des moyens de déplacement de l'arc électrique n'entraîne pas une augmentation de volume de ladite torche, ni de complications techniques supplémentaires.
  • A cet effet, la torche à plasma du type comportant :
    • deux électrodes tubulaires et coaxiales, en prolongement l'une de l'autre, chaque électrode étant agencée dans un support ;
    • des moyens de refroidissement desdites électrodes parcourus par un fluide de refroidissement, lesdits moyens de refroidissement d'au moins une desdites électrodes comprenant une chambre cylindrique étanches, prévue dans le support correspondant et séparée par une paroi cylindrique de séparation partageant la chambre en deux espaces annulaires, en communication l'un avec l'autre à une extrémité de ladite paroi et à travers lesquels circule ledit fluide de refroidissement ;
    • des moyens pour produire l'amorçage d'un arc électrique entre les deux électrodes ;
    • des moyens pour injecter un gaz plasmagène entre les deux électrodes ; et,
    • des moyens à bobine électromagnétique pour déplacer les pieds d'accrochage de l'arc électrique sur les surfaces internes desdites électrodes,

    est remarquable, selon l'invention, en ce que le fluide de refroidissement de ladite électrode dont la chambre cylindrique étanche comporte la paroi de séparation est électriquement isolant et en ce que ladite bobine électromagnétique fait office de ladite paroi cylindrique de séparation.
  • Ainsi, grâce à l'invention, l'encombrement imposé préalablement par la bobine électromagnétique est totalement supprimé puisque celle-ci est alors intégrée audit support porte-électrode en se substituant à la paroi cylindrique de séparation des moyens de refroidissement, prévue initialement dans le support.
  • Par ailleurs, on remarquera que ladite bobine est alors refroidie efficacement par le fluide parcourant les deux espaces annulaires concentriques entre lesquels est agencée la bobine électromagnétique.
  • Avantageusement, ladite bobine électromagnétique s'étend approximativement sur toute la longueur de l'électrode ; de préférence, elle est associée au support entourant l'électrode amont (par rapport à la circulation du gaz plasmagène).
  • Dans un mode préféré de réalisation, ladite bobine électromagnétique est définie par deux enroulements concentriques de spires jointives, une enveloppe de matière isolante étant intercalée entre les deux enroulements concentriques de spires. Cette enveloppe de matière isolante constitue ainsi une paroi de séparation étanche permettant au fluide de refroidissement de parcourir les deux espaces annulaires.
  • Selon une autre caractéristique, les deux enroulements de spires peuvent être obtenus à partir d'un fil métallique continu. Ce fil présente, de préférence, une section rectangulaire, de sorte que chacun desdits enroulements à spires jointives présente alors une surface unie.
  • Par ailleurs, ladite bobine électromagnétique est raccordée par l'une de ses extrémités à une ligne d'alimentation électrique et par l'autre extrémité à une bague solidaire dudit support correspondant. La ligne d'alimentation électrique chemine avantageusement à travers le conduit d'amenée de fluide de refroidissement électriquement isolant.
  • Les figures du dessin annexé feront bien comprendre comment l'invention peut être réalisée. Sur ces figures, des références identiques désignent des éléments semblables.
  • La figure 1 représente schématiquement une demi-vue en coupe longitudinale contiguë à une demi-vue extérieure d'un mode particulier de réalisation de la torche à plasma selon l'invention.
  • La figure 2 est une demi-vue en coupe agrandie de la bobine électromagnétique disposée dans le support de l'électrode amont.
  • En se référant à la figure 1, la torche à plasma 1 comporte un corps 2 comprenant notamment deux supports cylindriques 3 et 4. Une électrode amont ou cathode 5 est logée à l'intérieur du support 3, et, de façon identique, une électrode aval ou anode 6 est logée à l'intérieur du support 4. Ces électrodes 5 et 6, de forme générale tubulaire, présentent un axe commun 7, en étant espacées l'une de l'autre le long dudit axe, et elles sont reliées à une alimentation électrique par des circuits non représentés mais de type connu.
  • La torche à plasma 1 comprend également des moyens de refroidissement 8.1 et 8.2 des électrodes, qui sont prévus, de façon usuelle, dans chacun des supports 3 et 4, et qui seront décrits ultérieurement.
  • Par ailleurs, pour amorcer un arc électrique entre les deux électrodes 5 et 6, on prévoit, par exemple, une électrode auxiliaire de démarrage 9 qui est montée, de façon coulissante, sur le support 4 en étant liée électriquement à l'électrode aval 6. Dans ce cas, on réalise l'amorçage de l'arc électrique par court-circuit en mettant en contact l'électrode auxiliaire 9 avec l'électrode amont 5. On a représenté sur la figure 1 l'arc électrique 10 ainsi engendré, dont les pieds d'accrochage 10.1 et 10.2 sont situés sur les surfaces internes, respectivement 5A et 6A, des électrodes 5 et 6.
  • Dès l'apparition de l'arc électrique 10, un gaz plasmagène, tel que de l'air, est injecté dans une chambre d'injection 11, entre les électrodes 5 et 6. Pour cela, le gaz, issu d'un circuit d'alimentation connu en soi et non représenté, traverse un passage 12 ménagé dans le corps 1 puis, des orifices transversaux d'injection 13 prévus dans une pièce cylindrique 14 entourant les extrémités en regard des électrodes, pour déboucher ensuite dans la chambre 11, le plasma thermique sortant par l'électrode tubulaire aval 6.
  • Pour éviter une usure prématurée des électrodes 5 et 6, la torche à plasma 1 comprend des moyens pour déplacer les pieds d'accrochage de l'arc électrique engendré autour des surfaces internes des électrodes tubulaires 5 et 6. Ces moyens sont définis par au moins une bobine électromagnétique 15 associée, dans ce mode de réalisation, au support 3 de l'électrode amont 5.
  • Selon l'invention, la bobine électromagnétique 15 est intégrée au circuit de refroidissement 8.1 de l'électrode 5. En se référant aux figures 1 et 2, on voit que le circuit de refroidissement 8.1 est défini par une chambre cylindrique étanche 16 prévue entre le support 3 et la surface externe 58 de l'électrode 5, en étant séparée, par la bobine électromagnétique 15, en deux espaces annulaires concentriques 16A et 16B à travers lesquels circule le fluide de refroidissement, lesdits espaces annulaires étant en communication l'un avec l'autre à l'extrémité aval 15A de ladite bobine 15.
  • La bobine électromagnétique 15 fait ainsi office de paroi de séparation des espaces annulaires 16A et 16B, de sorte que cet agencement n'implique aucun encombrement supplémentaire de la torche à plasma.
  • Le fluide de refroidissement est électriquement isolant tel que, par exemple, de l'eau désionisée. Ce fluide, issu d'un circuit d'alimentation connu en soi et non représenté, arrive par un conduit 27 débouchant dans la chambre étanche 16 pour circuler dans l'espace annulaire 16A, entre le support 3 et la bobine 15, puis dans l'espace annulaire 16B, entre la bobine 15 et la surface externe 58 de l'électrode, pour ressortir par un passage 5C prévu dans l'extrémité arrière 5D de l'électrode 5 en direction dudit circuit. La circulation du fluide est indiquée par des flèches F. On voit donc que la bobine électromagnétique 15, qui s'étend autour de l'électrode 5, est refroidie de façon optimale par le fluide de refroidissement.
  • Dans un mode préféré de réalisation illustré sur la figure 2, la bobine électromagnétique 15 est définie par deux enroulements concentriques 17A et 17B de spires jointives, obtenus à partir d'un fil métallique continu 17, par exemple en cuivre. Entre les deux enroulements de spires 17A et 17B est disposée une enveloppe de matière isolante 18 qui constitue ainsi une paroi étanche séparant les deux espaces annulaires 16A et 16B. Par ailleurs, on voit que le fil des spires formant les enroulements de la bobine 15 présente avantageusement une section rectangulaire pleine.
  • La bobine 15 est fixée par l'une 20 de ses extrémités à une bague métallique 21 conformant une partie du circuit de refroidissement et interposée entre le support 5 et l'extrémité arrière 5D de l'électrode 5, tandis que l'autre extrémité 22 de la bobine, isolée de la masse métallique, est raccordée à une ligne d'alimentation électrique 23. Avantageusement, cette ligne d'alimentation 23 chemine à l'intérieur du conduit 27 d'amenée en fluide de refroidissement, de sorte qu'elle est ainsi efficacement refroidie.
  • Le circuit de refroidissement 8.2 de l'électrode aval 6 est alimenté en fluide de refroidissement par un conduit 24. Les diverses alimentations en gaz plasmagène et en fluide de refroidissement, ainsi que les alimentations électriques des électrodes et de la bobine, sont de type connu et sont reliées à un système de commande assurant le bon fonctionnement de la torche à plasma selon les modalités qui lui ont été assignées.

Claims (8)

  1. Torche à plasma du type comportant :
    - deux électrodes (5 et 6) tubulaires et coaxiales en prolongement l'une de l'autre, chaque électrode (5 et 6) étant agencée dans un support (3 et 4) ;
    - des moyens de refroidissement (8.1,8.2) desdites électrodes parcourus par un fluide de refroidissement, lesdits moyens de refroidissement d'au moins une desdites électrodes comprenant une chambre cylindrique étanche (16), prévue dans le support correspondant et séparée par une paroi cylindrique de séparation partageant la chambre en deux espaces annulaires (16A et 16B) en communication l'un avec l'autre à une extrémité de ladite paroi et à travers lesquels circule ledit fluide de refroidissement ;
    - des moyens (9) pour produire l'amorçage d'un arc électrique entre les deux électrodes ;
    - des moyens (11,12,13) pour injecter un gaz plasmagène entre les deux électrodes ; et,
    - des moyens à bobine électromagnétique (15) pour déplacer les pieds d'accrochage (10.1,10.2) de l'arc électrique (10) sur les surfaces internes desdites électrodes,
    caractérisée en ce que le fluide de refroidissement de ladite électrode, dont la chambre cylindrique étanche (16) comporte la paroi de séparation, est électriquement isolant et en ce que ladite bobine électromagnétique (15) fait l'office de ladite paroi cylindrique de séparation.
  2. Torche à plasma selon la revendication 1,
    caractérisée en ce que ladite bobine électromagnétique (15) est associée au support (3) entourant l'électrode amont (5), par rapport a la circulation du gaz plasmagène.
  3. Torche à plasma selon l'une des revendications 1 ou 2,
    caractérisée en ce que ladite bobine électromagnétique (15) s'étend approximativement sur toute la longueur de l'électrode.
  4. Torche à plasma selon l'une quelconque des revendications précédentes 1 à 3,
    caractérisée en ce que ladite bobine électromagnétique (15) est définie par deux enroulements concentriques (17A et 17B) de spires jointives, une enveloppe de matière isolante (18) étant intercalée entre les deux enroulements concentriques de spires.
  5. Torche à plasma selon la revendication 4,
    caractérisée en ce que les deux enroulements de spires sont obtenus à partir d'un fil métallique continu (17).
  6. Torche à plasma selon la revendication 5,
    caractérisée en ce que le fil de la bobine présente une section rectangulaire.
  7. Torche à plasma selon l'une quelconque des revendications précédentes 1 à 6,
    caractérisée en ce que ladite bobine électromagnétique est raccordée par l'une (22) de ses extrémités à une ligne d'alimentation électrique (23) et par l'autre extrémité (20) à une bague (21) solidaire dudit support correspondant.
  8. Torche à plasma selon la revendication 7,
    caractérisée en ce que ladite ligne d'alimentation électrique (23) chemine à travers le conduit (27) d'amenée du fluide de refroidissement électriquement isolant.
EP90403044A 1989-11-08 1990-10-29 Torche à plasma pourvue d'une bobine électromagnétique de rotation de pieds d'arc Expired - Lifetime EP0427590B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8914675 1989-11-08
FR8914675A FR2654295B1 (fr) 1989-11-08 1989-11-08 Torche a plasma pourvue d'une bobine electromagnetique de rotation de pieds d'arc.

Publications (2)

Publication Number Publication Date
EP0427590A1 EP0427590A1 (fr) 1991-05-15
EP0427590B1 true EP0427590B1 (fr) 1994-08-24

Family

ID=9387216

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90403044A Expired - Lifetime EP0427590B1 (fr) 1989-11-08 1990-10-29 Torche à plasma pourvue d'une bobine électromagnétique de rotation de pieds d'arc

Country Status (10)

Country Link
US (1) US5132511A (fr)
EP (1) EP0427590B1 (fr)
JP (1) JP3006720B2 (fr)
KR (1) KR0146046B1 (fr)
AT (1) ATE110515T1 (fr)
CA (1) CA2029508C (fr)
DE (1) DE69011814T2 (fr)
DK (1) DK0427590T3 (fr)
ES (1) ES2060984T3 (fr)
FR (1) FR2654295B1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5374801A (en) * 1993-11-15 1994-12-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Plasma heating for containerless and microgravity materials processing
FR2735941B1 (fr) * 1995-06-23 1997-09-19 Aerospatiale Torche a plasma a bobine electromagnetique de deplacement du pied d'arc independante et integree
FR2735940B1 (fr) * 1995-06-23 1997-09-19 Aerospatiale Torche a plasma a structure generale sensiblement axi-symetrique
US6897402B2 (en) * 2002-04-24 2005-05-24 Thermal Spray Technologies, Inc. Plasma-arc spray anode and gun body
DE102009005078A1 (de) 2009-01-16 2010-02-18 Daimler Ag Vorrichtung und Verfahren zum Lichtbogendrahtspritzen

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3832519A (en) * 1972-08-11 1974-08-27 Westinghouse Electric Corp Arc heater with integral fluid and electrical ducting and quick disconnect facility
US3924092A (en) * 1974-06-14 1975-12-02 Westinghouse Electric Corp Method and apparatus for cladding a base metal
DE2633510C3 (de) * 1976-08-16 1979-12-20 Kischinevskij Politechnitscheskij Institut Imeni S. Lazo Plasmatron
US4219726A (en) * 1979-03-29 1980-08-26 Westinghouse Electric Corp. Arc heater construction with total alternating current usage
US4227031A (en) * 1979-05-18 1980-10-07 Paton Boris E Nonconsumable electrode for melting metals and alloys
FR2473248A1 (fr) * 1980-01-07 1981-07-10 Commissariat Energie Atomique Generateur de gaz ionise a tres haute pression et tres haute temperature
US4535225A (en) * 1984-03-12 1985-08-13 Westinghouse Electric Corp. High power arc heater
US4668853A (en) * 1985-10-31 1987-05-26 Westinghouse Electric Corp. Arc-heated plasma lance

Also Published As

Publication number Publication date
CA2029508A1 (fr) 1991-05-09
US5132511A (en) 1992-07-21
JPH03171599A (ja) 1991-07-25
CA2029508C (fr) 2000-05-02
KR910011095A (ko) 1991-06-29
EP0427590A1 (fr) 1991-05-15
DE69011814D1 (de) 1994-09-29
JP3006720B2 (ja) 2000-02-07
FR2654295A1 (fr) 1991-05-10
KR0146046B1 (ko) 1998-08-17
ES2060984T3 (es) 1994-12-01
DE69011814T2 (de) 1994-12-22
DK0427590T3 (da) 1994-09-19
ATE110515T1 (de) 1994-09-15
FR2654295B1 (fr) 1992-02-14

Similar Documents

Publication Publication Date Title
CA1177543A (fr) Generateur de plasma
EP0982976B1 (fr) Propulseur à plasma à dérive fermée d'électrons adapté à de fortes charges thermiques
CA2370479C (fr) Cartouche pour torche a plasma et torche a plasma equipee
US8384274B2 (en) High-intensity electromagnetic radiation apparatus and methods
CH543711A (fr) Générateur à jet de plasma
EP0427592B1 (fr) Torche à plasma à amorçage par court-circuit
EP0427590B1 (fr) Torche à plasma pourvue d'une bobine électromagnétique de rotation de pieds d'arc
EP1169889B1 (fr) Cartouche pour torche a plasma et torche a plasma
EP0480845A1 (fr) Four de fusion par induction en creuset froid
FR2929045A1 (fr) Magnetron
FR2774549A1 (fr) Electrode pour torche a plasma
EP0427591B1 (fr) Torche à plasma à injection non refroidie de gaz plasmogène
EP0161991A2 (fr) Enceinte étanche blindée équipée pour être utilisable en spectrométrie d'émission
WO1991001077A1 (fr) Torche a plasma
EP0330542B1 (fr) Tube électronique de puissance refroidi par circulation d'un fluide
EP0750450B1 (fr) Torche à plasme à structure générale sensiblement axi-symétrique
EP0750451A1 (fr) Torche à plasma à bobine électromagnétique de déplacement du pied d'arc indépendante et intégrée
FR3019707A1 (fr) Torche a plasma d'arc avec chambre d'arc a geometrie amelioree
WO2023143816A1 (fr) Tuyère aval pour une torche de coupage plasma
FR2750286A1 (fr) Tete de torche a plasma
CH420409A (fr) Chalumeau à plasma et procédé pour sa mise en action
FR2841684A1 (fr) Source de rayonnement, notamment ultraviolet a decharges
FR2798247A1 (fr) Torche a plasma avec systeme d'electrode a longue duree de vie
FR2525738A1 (fr) Buse a allumage par etincelles
FR2677566A1 (fr) Procede de soudage plasma et torche pour mise en óoeuvre du procede.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES GB IT LI NL SE

17P Request for examination filed

Effective date: 19910603

17Q First examination report despatched

Effective date: 19931102

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES GB IT LI NL SE

REF Corresponds to:

Ref document number: 110515

Country of ref document: AT

Date of ref document: 19940915

Kind code of ref document: T

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940826

REF Corresponds to:

Ref document number: 69011814

Country of ref document: DE

Date of ref document: 19940929

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2060984

Country of ref document: ES

Kind code of ref document: T3

EAL Se: european patent in force in sweden

Ref document number: 90403044.2

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: AEROSPATIALE SOCIETE NATIONALE INDUSTRIELLE

BERE Be: lapsed

Owner name: AEROSPATIALE SOC. NATIONALE INDUSTRIELLE

Effective date: 19951031

BERR Be: reestablished
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19970917

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19971007

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19971010

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981029

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981031

BERE Be: lapsed

Owner name: AEROSPATIALE SOC. NATIONALE INDUSTRIELLE

Effective date: 19981031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990929

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990930

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19991011

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19991027

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19991029

Year of fee payment: 10

Ref country code: ES

Payment date: 19991029

Year of fee payment: 10

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20001030

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 90403044.2

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20001029

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010703

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20011113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051029