EP0420885A1 - Tachogenerator - Google Patents

Tachogenerator

Info

Publication number
EP0420885A1
EP0420885A1 EP89906774A EP89906774A EP0420885A1 EP 0420885 A1 EP0420885 A1 EP 0420885A1 EP 89906774 A EP89906774 A EP 89906774A EP 89906774 A EP89906774 A EP 89906774A EP 0420885 A1 EP0420885 A1 EP 0420885A1
Authority
EP
European Patent Office
Prior art keywords
coil
pole pairs
turns
windings
generator according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP89906774A
Other languages
English (en)
French (fr)
Inventor
Adelbert Schalk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Thomson Brandt GmbH
Original Assignee
Deutsche Thomson Brandt GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Thomson Brandt GmbH filed Critical Deutsche Thomson Brandt GmbH
Publication of EP0420885A1 publication Critical patent/EP0420885A1/de
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/48Generators with two or more outputs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/14Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with speed sensing devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/26Windings characterised by the conductor shape, form or construction, e.g. with bar conductors consisting of printed conductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S310/00Electrical generator or motor structure
    • Y10S310/06Printed-circuit motors and components

Definitions

  • servo-controlled motors For driving a head drum e.g. in video recorders, servo-controlled motors are known which are equipped with one or more tachogenerators according to the preamble of claim 1.
  • the meandering turns and also the associated pole pairs in the rotor are aligned radially.
  • a signal with a frequency dependent on the speed is generated in the coil formed by the meandering arrangement of the individual turns.
  • This signal is evaluated in the servo system of the device in order to derive a readjustment for the speed control of the motor.
  • known systems have a so-called pick-up pulse generator, by means of which one or more switching pulses are generated with each rotor revolution. These pulses are used for synchronous control between the recorded signal and the sequence control in the device.
  • the tachometer generator in principle, different signals are generated with only one generator by the action of azimuth angles - both in the stator part and in the rotor part. While in one generator part, in which the meandering turns of a first coil z. B. are inclined by +45 with respect to a point on the coil diameter, a frequency is generated for the regulation of the motor speed, the pick-up im pulses are generated in a second coil, the meandering turns of which are inclined, for example, by -45. Both coils have the same mean winding diameter.
  • the arrangement of the pole pairs in the rotating part i.e. their number and direction must correspond to the arrangement of the coils.
  • This is achieved in a magnetization process of the magnetic disk by a single pole pair, which can be positioned accordingly via a rotary adjuster.
  • the existing magnetization is overwritten at certain intervals which correspond to the arrangement of the mantans of the second coil.
  • FIG. 1 shows an arrangement of the meandering windings in one plane for two coils with an azimuth offset
  • FIG. 2 shows an arrangement corresponding to FIG. 1 for a higher frequency generator amplitude
  • FIG. 3 shows an arrangement of the magnetization of the
  • FIG. 4 shows the spatial association of the meandering windings with the magnetic disk
  • FIG. 5 shows in a detail the course of the signals generated in the coils.
  • Fig. 1 shows an arrangement of the meandering turns in one plane for two coils with azimuth offset.
  • the coils 2 and 3 are circular z. B. executed as printed conductor tracks.
  • the Spu len are interleaved and have a common connection point A.
  • the coil 2 serves as a frequency generator.
  • Their meandering turns are made at an angle +, relative to a point on the center line 4.
  • the individual turns are connected in series.
  • the point S2 forms the connection for this coil.
  • the coil 3 is provided for the generation of pick-up signals.
  • the individual meandering turns are made at an angle of -.
  • the connection point for this coil is S3.
  • two coils nested one inside the other are shown.
  • it is also possible to arrange further coils on the circumference o for example for the generation of further pick-up signals.
  • Fig. 2 shows an arrangement corresponding to Fig.l.
  • a higher frequency generator amplitude is achieved by a modified coil 2.
  • Several individual pulses can be tapped at the connections B1 to BIO of coil 3.
  • a printed circuit board designed in double-sided lamination the thickness of which should be as small as possible, it is possible to carry out the coil 2 on one side of the plate continuously, that is to say without interruption through the coil 3, while on the the other side of the plate is the coil 3.
  • FIG. 3 shows an arrangement of the magnetization of the magnetic disk in association with FIG. 1.
  • the magnetic disk 5 is designed as a circular ring. It is coupled to the rotating part of the motor by a connection, not shown. As shown in FIG. 4, the magnetic disk 5 is arranged centrically at a short distance from the fixed circuit board in order to generate the largest possible signal level in the coils when the disk rotates.
  • the geometrical arrangement of the pole pairs N, S shown corresponds to the arrangement of the turns of FIG. 1. The majority of the - -
  • Pole pairs are arranged at an angle of +, while 5 pole pairs are at an angle of -. If the rotor turns, the 5 magnetic pole pairs and the associated meandering turns of coil 3 are directly opposite each other once. Individual voltages are induced in each of these turns according to the law of induction, so that 5 times the voltage of a single turn is present at connection S3 of coil 3. When the rotor or the magnetic disk continues to rotate, on the other hand, only a small voltage is induced in coil 3 by the azimuth pole pairs for the frequency generator, from which the desired pick-up pulses clearly stand out.
  • FIG. 5 a shows the voltage U of the signals of the frequency generator, that is to say of coil 2, over time t, while the pick-up signals generated in coil 3 are shown in FIG. 5 b.
  • a further possibility for generating frequency generator signals as well as pick-up signals by means of nested coils with the same coil diameter and the same orientation of the individual meandering turns of the coils is to create the turns for the pick-up coil and their Associate associated magnetic pole pairs with different pitches within the frequency generator coil together with associated magnetic pole pairs.
  • the pitch for the pick-up coil is selected such that with an even number of turns, half of the turns have the pitch of the frequency generator, whereas the second half has an arrangement offset by half a pitch. It is thereby achieved that at a certain position of the magnetic disk in relation to the pick-up coil, corresponding voltages are induced in the individual turns by the associated magnetic pole pairs, which voltages generate a pulse per revolution by addition.
  • the magnetic pole pairs of the frequency generator in the windings of the pick-up coil Since the division in the frequency generator is constant, by the magnetic pole pairs of the frequency generator in the windings of the pick-up coil generate an equal number of in-phase and out-of-phase voltages which, when added together, cancel each other out. It is also possible, by designing the arrangement of the magnetic pole pairs, to generate two or more pulses in the pick-up coil during one revolution.
  • FIG. 6 shows an arrangement of the meandering turns in one plane together with the associated magnetic disk for two coils without an azimuth offset.
  • FIG. 7 shows in a detail the assignment of the magnetic pole pairs to the turns of the coils 6 and 7.
  • FIG. 6 shows on the left an arrangement of the meandering windings in one plane for two coils with the same coil diameter without an azimuth offset.
  • the coils 6 and 7 are circular, for example as a printed conductor track.
  • the coils are interleaved and have a common connection point A.
  • the coil 6 serves as a frequency generator. Their meandering turns are connected in series and have cutouts in which the coil 7 is arranged.
  • Point S2 forms the connection for coil 6.
  • the coil 7 is provided for the generation of pick-up signals.
  • the connection point for this coil is S3. While coil 6 has many turns with a constant pitch for the frequency generator, the pitch for the six turns of coil 7 is different.
  • the individual windings are labeled clockwise with 7a to 7f.
  • the windings of this coil are placed in such a way that the division of the windings 7a, 7c and 7e with the division of the windings conditions for the frequency generator match, while the windings 7b, 7d and 7f are offset by half a pitch.
  • This arrangement means that the magnetic pole pairs of the sequence generator induce winding voltages in the individual turns of the pick-up coil, and they cancel each other out in their addition. No voltage is thus generated by the magnetic pole pairs of the frequency generator in the coil 7.
  • the magnetic pole pairs assigned to the windings of the pick-up coil for the pick-up generator as shown in FIG.
  • FIG. 7 shows a detail of the assignment of the magnetic pole pairs to the turns of the coils 6 and 7.
  • the drawn position of the magnetic disk therefore corresponds to the state in which all six pick-up magnetic pole pairs are above the associated meandering turns of coil 7.
  • the individual winding voltages are therefore in phase and add up to a pick-up pulse.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Windings For Motors And Generators (AREA)
  • Brushless Motors (AREA)
  • Dc Machiner (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Control Of Eletrric Generators (AREA)
  • Control Of Electric Motors In General (AREA)
  • Holo Graphy (AREA)

Description

- 4 -
Tachogenerator
Für den Antrieb einer Kopftrommel z.B. bei Videorecordern sind servogesteuerte Motore bekannt, die mit einem oder meh¬ reren Tachogeneratoren nach dem Oberbegriff von Anspruch 1 ausgerüstet sind. Die mäanderförmigen Windungen und auch die zugehörigen Polpaare im Rotor sind radial ausgerichtet. Wäh¬ rend der Rotation wird in der durch die mäanderförmige Anord¬ nung der einzelnen Windungen ausgebildeten Spule ein Signal mit einer von der Drehzahl abhängigen Frequenz erzeugt. Die¬ ses Signal wird im Servosystem des Gerätes ausgewertet um daraus eine Nachsteuerung für die DrehzahlSteuerung des Mo¬ tors abzuleiten. Zusätzlich weisen bekannte Systeme einen sogenannten Pick-up-Pulse-Generator auf, durch den ein oder mehrere Umschaltimpulse bei jeder Rotorumdrehung erzeugt wer¬ den. Diese Impulse dienen der synchronen Steuerung zwischen dem aufgezeichneten Signal und der Ablaufsteuerung im Gerät.
Es ist Aufgabe der Erfindung, mit nur einer Generatoranord¬ nung die erforderlichen Steuersignale zu erzeugen.
Diese Aufgabe wird gemäß der Erfindung durch im Anspruch 1 oder 2 aufgeführten Merkmale gelöst. Weiterbildungen der Er¬ findung sind in den abhängigen Unteransprüchen gekennzeich¬ net.
Im Prinzip werden bei dem erfindungsgemäßen Tachogenerator nach Anspruch 1 durch die Wirkung von Azimutwinkeln -sowohl im Statorteil als auch im Rotorteil- unterschiedliche Signa¬ le mit nur einem Generator erzeugt. Während in dem einen Ge¬ neratorteil, bei dem die mäanderförmigen Windungen einer er¬ sten Spule z. B. um +45 gegenüber einem Punkt auf dem Spu¬ lendurchmesser geneigt sind, eine Frequenz für die Regelung der Motorgeschwindigkeit erzeugt wird, können die Pick-up-Im- pulse in einer zweiten Spule, deren mäanderförmige Windungen z.B. um -45 geneigt sind, erzeugt werden. Beide Spulen wei¬ sen den gleichen mittleren Windungsdurchmesser auf.
Die Anordnung der Polpaare im rotierenden Teil d.h. deren Zahl und Richtung muß der Anordnung der Spulen entsprechen. Dieses wird bei einem Magnetisierungsvorgang der Magnetschei¬ be durch ein Einzelpolpaar erreicht, welches über einen Dreh¬ versteller entsprechend positioniert werden kann. So wird z.B. zunächst die Magnetisierung für die Drehzahlregelung, also für den Frequenzgenerator durchgeführt, in dem über den gesamten Umfang Polpaare mit +45 auf agnetisiert werden. In einem zweiten Magnetisierungsvorgang mit dem auf -45 ausge¬ richteten Einzelpolpaar wird die bestehende Magnetisierung in bestimmten Abständen, die der Anordnung der Mänander der zweiten Spule entsprechen, überschrieben.
Im folgenden soll die Erfindung gemäß Anspruch 1 und den zu¬ geordneten Unteransprüchen anhand eines Ausführungsbeispie¬ les näher erläutert werden: Fig. 1 zeigt eine Anordnung der mäanderförmigen Windungen in einer Ebene für zwei Spulen mit Azimutwinkelversatz, Fig. 2 zeigt eine Anordnung entsprechend Fig.l für eine höhe¬ re Frequenzgeneratoramplitude, Fig. 3 zeigt eine Anordnung der Magnetisierung der
Magnetscheibe in Zuordnung zu Fig. 1, Fig. 4 zeigt die räumliche Zuordnung der mäanderförmigen Win¬ dungen zur Magnetscheibe, Fig. 5 zeigt in einem Ausschnitt den Verlauf der in den Spulen erzeugten Signale.
Fig. 1 zeigt eine Anordnung der mäanderförmigen Windungen in einer Ebene für zwei Spulen mit Azimutwinkelversatz. Auf ei¬ ner gemeinsamen Grundplatte 1 sind die Spulen 2 und 3 kreis¬ förmig z. B. als gedruckte Leiterbahnen ausgeführt. Die Spu- len sind ineinander verschachtelt und haben einen gemeinsa¬ men Anschlußpunkt A. Die Spule 2 dient als Frequenzgenera¬ tor. Ihre mäanderförmigen Windungen sind unter einem Winkel +, bezogen auf einen Punkt der Mittellinie 4, ausgeführt. Die einzelnen Windungen sind in Reihe geschaltet. Den An¬ schluß für diese Spule bildet der Punkt S2. Die Spule 3 ist für die Erzeugung von Pick-up-Signalen vorgesehen. Die ein¬ zelnen mäanderförmigen Windungen sind unter einem Winkel von - ausgeführt. Der Anschlußpunkt für diese Spule ist S3. Im vorliegenden Beispiel sind zwei ineinander verschachtelte Spulen dargestellt. Es ist aber auch möglich, weitere Spulen z.B. für die Erzeugung weiterer Pick-up-Signale auf dem Kreisumfango anzuordnen.
Fig. 2 zeigt eine Anordnung entsprechend Fig.l. Durch eine modifizierte Spule 2 wird eine höhere Frequenzgeneratorampli¬ tude erreicht. An den Anschlüssen Bl bis BIO von Spule 3 kön¬ nen mehrere Einzelimpulse abgegriffen werden. In einer anderen nicht dargestellten Ausführungsform mit ei¬ ner in doppelseitiger Kaschierung ausgeführten Leiterplatte, deren Dicke möglichst gering sein sollte, ist es möglich, auf der einen Seite der Platte die Spule 2 durchgehend, also ohne Unterbrechung durch Spule 3 auszuführen, während sich auf der anderen Seite der Platte die Spule 3 befindet.
Fig. 3 zeigt eine Anordnung der Magnetisierung der Magnet¬ scheibe in Zuordnung zu Fig. 1. Die Magnetscheibe 5 ist als Kreisring ausgeführt. Sie ist mit dem rotierenden Teil des Motors durch eine nichtdargestellte Verbindung gekuppelt. Die Magnetscheibe 5 ist -wie in Fig. 4 gezeigt- zentrisch mit geringem Abstand zu der feststehenden Leiterplatte ange¬ ordnet, um bei Rotation der Scheibe einen möglichst großen Signalpegel in den Spulen zu erzeugen. Die eingezeichneten Polpaare N, S, entsprechen in ihrer geometrischen Anordnung der Anordnung der Windungen von Fig. 1. Die Mehrzahl der - -
Polpaare ist unter einem Winkel von + angeordnet, während 5 Polpaare den Winkel von - aufweisen. Dreht sich der Rotor, so liegen sich einmal pro Umdrehung die 5 Magnetpolpaare und die zugehörigen mäanderförmigen Windungen von Spule 3 direkt gegenüber. In jeder dieser Windungen werden nach dem Indukti¬ onsgesetz Einzelspannungen induziert, so daß an Anschluß S3 von Spule 3 die 5-fache Spannung einer einzelnen Windung an¬ steht. Bei Weiterdrehen des Rotors bzw. der Magnetscheibe wird dagegen in Spule 3 durch die mit Azimut versehenen Polpaare für den Frequenzgenerator nur eine geringe Spannung induziert, von denen sich die gewünschten Pick-up-Impulse deutlich abheben.
Der Verlauf der in den Spulen 2 und 3 erzeugten Signale ist in Fig. 5 dargestellt. Fig. 5a zeigt über der Zeit t die Spannung U der Signale des Frequenzgenerators, also von Spu¬ le 2, während in Fig. 5b die Pick-up-Signale, erzeugt in Spu¬ le 3, dargestellt sind.
Eine weitere Möglichkeit, mittels ineinander verschachtelter Spulen mit gleichem Spulendurchmesser bei gleicher Ausrich¬ tung der einzelnen mäanderförmigen Windungen der Spulen so¬ wohl Frequenzgeneratorsignale als auch Pick-up-Signale zu erzeugen, besteht darin, die Windungen für die Pick-up-Spule und deren zugehörige Magnetpolpaare mit unterschiedlicher Teilung innerhalb der Frequenzgeneratorspule nebst zugehöri¬ ger Magnetpolpaare einzuordnen. Die Teilung für die Pick-up- Spule ist derart gewählt, daß bei gerader Windungszahl die eine Hälfte der Windungen die Teilung des Frequenzgenerators aufweist, wogegen die zweite Hälfte eine um eine halbe Tei¬ lung versetzte Anordnung aufweist. Dadurch wird erreicht, daß bei einer bestimmten Stellung der Magnetscheibe zur Pick-up-Spule von den zugehörigen Magnetpolpaaren gleichpha¬ sige Spannungen in den einzelnen Windungen induziert werden, die durch Addition einen Impuls pro Umdrehung erzeugen. Da die Teilung im Frequenzgenerator konstant ist, werden durch die Magnetpolpaare des Frequenzgenerators in den Windungen der Pick-up-Spule eine gleichgroße Zahl von gleich- und ge- genphasigen Spannungen erzeugt, die sich in ihrer Addition gegeneinander aufheben. Auch ist es möglich, durch Auslegung der Anordnung der Magnetpolpaare zwei oder mehrere Impulse während einer Umdrehung in der Pick-up-Spule zu erzeugen.
Im folgenden soll anhand eines Ausführungsbeispiels diese Art der Signalerzeugung aufgezeigt werden.
Figur 6 zeigt eine Anordnung der mäanderförmigen Windungen in einer Ebene nebst zugehöriger Magnetscheibe für zwei Spulen ohne Azimutversatz.
Figur 7 zeigt in einem Ausschnitt die Zuordnung der Magnet¬ polpaare zu den Windungen der Spulen 6 und 7.
Figur 6 zeigt links eine Anordnung der mäanderförmigen Win¬ dungen in einer Ebene für zwei Spulen mit gleichem Spulen¬ durchmesser ohne Azimutversatz. Auf einer gemeinsamen Grund¬ platte 1 sind die Spulen 6 und 7 kreisförmig z.B. als ge¬ druckte Leiterbahn ausgeführt. Die Spulen sind ineinander verschachtelt und haben einen gemeinsamen Anschlußpunkt A. Die Spule 6 dient als Frequenzgenerator. Ihre mäanderförmi¬ gen Windungen sind in Reihe geschaltet und weisen Aussparun¬ gen auf, in denen die Spule 7 angeordnet ist. Den Anschluß für Spule 6 bildet der Punkt S2. Die Spule 7 ist für die Er¬ zeugung von Pick-up-Signalen vorgesehen. Der Anschlußpunkt für diese Spule ist S3. Während Spule 6 für den Frequenzgene¬ rator viele Windungen mit einer konstanten Teilung aufweist, ist die Teilung für die sechs Windungen von Spule 7 unter¬ schiedlich ausgeführt. Die einzelnen Windungen sind im Uhr¬ zeigersinn mit 7a bis 7f beschriftet. Es ist zu erkennen, daß die Windungen dieser Spule so gelegt sind, daß die Tei¬ lung der Windungen 7a, 7c und 7e mit der Teilung der Windun- gen für den Frequenzgenerator übereinstimmen, während die Windungen 7b, 7d und 7f um eine halbe Teilung versetzt sind. Diese Anordnung bedeutet, daß die Magnetpolpaare des Ere- quenzgenerators in den einzelnen Windungen der Pick-up-Spule WindungsSpannungen induzieren, iie sich in ihrer Addition gegenseitig aufheben. Es wird also von den Magnetpolpaaren des Frequenzgenerators in der Spule 7 keine Spannung er¬ zeugt. Demgegenüber weisen die in ihrer Anordnung den Windun¬ gen der Pick-up-Spule zugeordneten Magnetpolpaare für den Pick-up-Generator, wie in Figur 6 rechts dargestellt, eben¬ falls drei um eine halbe Teilung versetzte Magnetpolpaare auf, so daß bei einer vorbestimmten Stellung der Magnetschei¬ be während einer Umdrehung in allen sechs Windungen der Pick-up-Spule gleichphasige Spannungen induziert werden, die in ihrer Addition einen Pick-up-Impuls mit großer Amplitude ergeben.
Figur 7 zeigt in einem Ausschnitt die Zuordnung der Magnet¬ polpaare zu den Windungen der Spulen 6 und 7. Es sind von Spule 7 aus Figur 6 die Windungen 7e und 7f dargestellt. Wäh¬ rend das über Windung 7e gezeichnete Magnetpolpaar ebenso wie die Windung 7e im Raster der Teilung tfg des Frequenzge¬ nerators liegt, ist die Windung 7f mit dem zugehörigen Ma¬ gnetpolpaar um eine halbe Teilung = tfg + tfg:2 versetzt. Die gezeichnete Stellung der Magnetscheibe entspricht daher dem Zustand, in welchem alle sechs Pick-up-Magentpolpaare über den zugehörigen Mäanderwindungen von Spule 7 stehen. Die einzelnen WindungsSpannungen sind also phasengleich und addieren sich zu einem Pick-up-Impuls.

Claims

- -
P a t e n t a n s p r ü c h e
Tachogenerator für einen servogesteuerten Motor, mit einer in einem Kreisring angeordneten, mäanderförmigen Windungen aufweisenden, feststehenden flachen Spulenan¬ ordnung und mit einer zentrisch über der Spulenanord¬ nung in geringem Abstand rotierenden, Magnetpolpaare aufweisenden Magnetscheibe, dadurch gekennzeichnet, daß:
a) die Mehrzahl der Windungen eine, einen mittleren Spu¬ lendurchmesser aufweisende erste Spule (2) bilden, de¬ ren mäanderförmige Windungen unter einem ersten Winkel mit gleichmäßiger Teilung zum Kreisdurchmesser (4) aus¬ gerichtet sind, und daß eine der Teilung und der Zahl der Mäander zugeordnete erste Zahl von Polpaaren (N,S) der Magnetscheibe (5) in Richtung dieser Mäander ausge¬ richtet ist.
b) eine Windung oder mehrere über den Kreisumfang ver¬ teilte Windungen mit dem mittleren Durchmesser der er¬ sten Spule (2) eine zweite Spule (3) bilden, deren mäan¬ derförmige Windungen unter einem zweiten Winkel zum Kreisdurchmesser (4) ausgerichtet sind und daß eine der Zahl und Teilung der Windungen der zweiten Spule (3) zugeordnete zweite Zahl von Polpaaren der Magnetscheibe (5) in Richtung dieser Mäander ausgerichtet ist, wobei die Verteilung der zweiten Polpaare am Umfang derart ausgebildet ist, daß an einer vorbestimmten Stellung der Magnetscheibe (5) während einer Umdrehung in den einzelnen Windungen der zweiten Spule (3) Spannungen durch die zweiten Polpaareinduziert werden.
2. Tachogenerator für einen servogesteuerten Motor, mit einer in einem Kreisring angeordneten, mäanderförmige Windungen aufweisenden, feststehenden flachen Spulenan¬ ordnung und mit einer zentrisch über der Spulenanord¬ nung in geringem Abstand rotierenden, Magnetpolpaare aufweisenden Magnetscheibe, dadurch gekennzeichnet, daß:
a) die Mehrzahl der Windungen eine einen mittleren Spu¬ lendurchmesser aufweisende erste Spule (6) bilden, de¬ ren mäanderförmige Windungen unter einem ersten Winkel mit gleichmäßiger Teilung zum Kreisdurchmesser (4) aus¬ gerichtet sind, und daß eine der Teilung und der Zahl der Mäander zugeordnete erste Zahl von Polpaaren (N,S) der Magnetscheibe (8) in Richtung dieser Mäander ausge¬ richtet ist.
b) mehrere, über einen Kreisumfang nach einem vorbe¬ stimmten Schema verteilte Windungen, mit dem mittleren Spulendurchmesser der ersten Spule (6) eine zweite Spu¬ le (7) bilden, deren mäanderförmige Windungen unter dem Winkel der ersten Spule (6) zum Kreisdurchmesser (4) ausgerichet sind und daß eine der Zahl der Windungen der zweiten Spule (7) zugeordnete zweite Zahl von Polpaaren der Magnetscheibe (8) in Richtung dieser Mäan¬ der ausgerichtet ist, wobei die Verteilung der Windun¬ gen der zweiten Spule (7) nebst zugehöriger Polpaare derart ausgebildet ist, daß an einer vorbestimmten Stel¬ lung der Magnetscheibe (8) während einer Umdrehung in - 3 -
einzelnen Windungen der zweiten Spule (7) Spannungen durch die zweiten Polpaare in gleicher Richtung (pha¬ sengleich) induziert werden.
3. Tachogenerator nach Anspruch 1, dadurch gekennzeichnet, daß die Mäander der ersten Spule (2) unter einem positi¬ ven und die Mäander der zweiten Spule (3) unter einem negativen Winkel zum Kreisdurchmesser (4) ausgerichtet sind.
4. Tachogenerator nach Anspruch 3, dadurch gekennzeichnet, daß beide Winkel gleich groß sind.
5. Tachogenerator nach Anspruch 4, dadurch gekennzeichnet, daß die Winkel 45 betragen.
6. Tachogenerator nach einem der Ansprüche 1 oder 2, da¬ durch gekennzeichnet, daß die Spulen (2,3,6,7) ineinan¬ der verschachtelt auf einer Leiterplattenseite (1) ange¬ ordnet sind.
7. Tachogenerator nach einer der Ansprüche 1 oder 2, da¬ durch gekennzeichnet, daß die Spulen (2,3,6,7) voneinan¬ der getrennt auf einer doppelseitig kaschierten Leiter¬ platte angeordnet sind.
8. Tachogenerator nach einer der Anspruch 1 oder 2, da¬ durch gekennzeichnet, daß die Magnetpolpaare der Magnet¬ scheibe (5,8) ineinander verschachtelt sind.
9. Tachogenerator nach einem der Ansprüche 1 oder 2, da¬ durch gekennzeichnet, daß die zweite Zahl der Polpaare (N,S) der Zahl der zugeordneten Mäander entspricht. - Λ0 -
10. Tachogenerator nach einem der Ansprüche 1 oder 2, da¬ durch gekennzeichnet, daß mehr als zwei Spulen ineinan¬ der verschachtelt sind.
11. Tachogenerator nach einem der Ansprüche 1 oder 2, da¬ durch gekennzeichne , daß die Anordnung der zweiten Spu¬ le (3,7) oder der zugehörigen Magnetpolpaare so gewählt ist, daß ein oder mehrere Impulse pro Umdrehung erzeugt werden.
12. Tachogenerator nach Anspruch 2, dadurch gekennzeichnet, daß die Windungszahl der zweiten Spule (7) geradzahlig ist.
EP89906774A 1988-06-22 1989-06-13 Tachogenerator Pending EP0420885A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3821050 1988-06-22
DE3821050A DE3821050A1 (de) 1988-06-22 1988-06-22 Tachogenerator

Publications (1)

Publication Number Publication Date
EP0420885A1 true EP0420885A1 (de) 1991-04-10

Family

ID=6357005

Family Applications (2)

Application Number Title Priority Date Filing Date
EP89110686A Expired - Lifetime EP0347722B1 (de) 1988-06-22 1989-06-13 Tachogenerator
EP89906774A Pending EP0420885A1 (de) 1988-06-22 1989-06-13 Tachogenerator

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP89110686A Expired - Lifetime EP0347722B1 (de) 1988-06-22 1989-06-13 Tachogenerator

Country Status (9)

Country Link
US (1) US5177389A (de)
EP (2) EP0347722B1 (de)
JP (1) JP2920834B2 (de)
KR (1) KR0140523B1 (de)
AT (1) ATE83591T1 (de)
DE (2) DE3821050A1 (de)
ES (1) ES2037334T3 (de)
HK (1) HK117794A (de)
WO (1) WO1989012925A1 (de)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3821050A1 (de) * 1988-06-22 1989-12-28 Thomson Brandt Gmbh Tachogenerator
US5406155A (en) * 1992-06-03 1995-04-11 Trw Inc. Method and apparatus for sensing relative position between two relatively rotatable members
US20030062889A1 (en) 1996-12-12 2003-04-03 Synaptics (Uk) Limited Position detector
US6208485B1 (en) 1995-03-16 2001-03-27 International Business Machines Corporation Microfile
US6430001B1 (en) 1995-03-16 2002-08-06 International Business Machines Corporation Integrated data storage disk and disk drive
US5789841A (en) * 1995-06-07 1998-08-04 Kollmorgen Corporation Axial air gap brushless motor with layered disk stator
US5717268A (en) * 1996-06-17 1998-02-10 Philips Electronics North America Corp. Electric motor with tachometer signal generator
US6788221B1 (en) 1996-06-28 2004-09-07 Synaptics (Uk) Limited Signal processing apparatus and method
JP2002502497A (ja) 1997-05-28 2002-01-22 シナプティクス(ユーケー)リミテッド 変換器および製造方法
GB9720954D0 (en) * 1997-10-02 1997-12-03 Scient Generics Ltd Commutators for motors
GB9721891D0 (en) 1997-10-15 1997-12-17 Scient Generics Ltd Symmetrically connected spiral transducer
GB9811151D0 (en) 1998-05-22 1998-07-22 Scient Generics Ltd Rotary encoder
ATE250784T1 (de) 1998-11-27 2003-10-15 Synaptics Uk Ltd Positionssensor
US7019672B2 (en) 1998-12-24 2006-03-28 Synaptics (Uk) Limited Position sensor
WO2002103622A2 (en) * 2001-05-21 2002-12-27 Synaptics (Uk) Limited Position sensor
KR200268109Y1 (ko) * 2001-12-06 2002-03-15 김정훈 편평형 무정류자 진동모터
GB2403017A (en) * 2002-03-05 2004-12-22 Synaptics Position sensor
AU2003232360A1 (en) * 2002-06-05 2003-12-22 Synaptics (Uk) Limited Signal transfer method and apparatus
GB0317370D0 (en) * 2003-07-24 2003-08-27 Synaptics Uk Ltd Magnetic calibration array
GB0319945D0 (en) * 2003-08-26 2003-09-24 Synaptics Uk Ltd Inductive sensing system
US8570028B2 (en) 2007-05-10 2013-10-29 Cambridge Integrated Circuits Limited Transducer for a position sensor
JP5534338B2 (ja) * 2010-09-30 2014-06-25 日立工機株式会社 ディスクモータ及び電動作業機
JP5534337B2 (ja) 2010-09-30 2014-06-25 日立工機株式会社 ディスクモータ及び電動作業機
GB2488389C (en) 2010-12-24 2018-08-22 Cambridge Integrated Circuits Ltd Position sensing transducer
GB2503006B (en) 2012-06-13 2017-08-09 Cambridge Integrated Circuits Ltd Position sensing transducer
GB201322478D0 (en) * 2013-12-18 2014-02-05 Gyo Gym Ltd Improvements in or relating to generating your own power
JP6862014B2 (ja) * 2017-08-29 2021-04-21 株式会社ExH 電力伝送システム及び電力伝送システムの製造方法
US11677303B2 (en) * 2021-10-21 2023-06-13 National Cheng Kung University Motor and coreless stator coil winding unit thereof
CN114814272B (zh) * 2022-06-28 2022-12-16 四川新川航空仪器有限责任公司 一种磁转速传感器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2970238A (en) * 1959-02-12 1961-01-31 Printed Motors Inc Printed circuit armature
DE2631017A1 (de) * 1976-07-09 1978-01-12 Oskar Hubert Richt Tachogenerator
US4410853A (en) * 1980-12-13 1983-10-18 Hitachi, Ltd. Frequency detector
US4488076A (en) * 1982-09-30 1984-12-11 Applied Motion Products, Inc. Tachometer assembly for magnetic motors
JPS60140158A (ja) * 1983-12-28 1985-07-25 Sony Corp 回転検出装置
US4656377A (en) * 1984-01-30 1987-04-07 Victor Company Of Japan, Ltd. Tachogenerator having a magnetoresistance stator coil
JPS60241756A (ja) * 1984-05-16 1985-11-30 Japan Servo Co Ltd 周波数発電機付電動機
JPS62262645A (ja) * 1986-05-09 1987-11-14 Sanyo Electric Co Ltd ブラシレスモ−タ
US4751415A (en) * 1987-04-28 1988-06-14 Matsushita Electric Industrial Co., Ltd. Brushless DC motor with means for compensating ripple torque
DE3821050A1 (de) * 1988-06-22 1989-12-28 Thomson Brandt Gmbh Tachogenerator
US5045740A (en) * 1988-09-16 1991-09-03 Yamamoto Electric Corporation Brushless motor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8912925A1 *

Also Published As

Publication number Publication date
JP2920834B2 (ja) 1999-07-19
JPH03505395A (ja) 1991-11-21
HK117794A (en) 1994-11-04
ATE83591T1 (de) 1993-01-15
US5177389A (en) 1993-01-05
DE3821050A1 (de) 1989-12-28
EP0347722B1 (de) 1992-12-16
KR0140523B1 (ko) 1998-08-17
DE58903000D1 (de) 1993-01-28
WO1989012925A1 (en) 1989-12-28
ES2037334T3 (es) 1993-06-16
EP0347722A1 (de) 1989-12-27
KR900702625A (ko) 1990-12-07

Similar Documents

Publication Publication Date Title
EP0347722B1 (de) Tachogenerator
DE2840562C2 (de) Elektromotor
DE69526770T2 (de) Resolver für Reluktanzmotor für Lenkhilfe mit Ringen und sinusförmigen Leitern
DE3486096T2 (de) Rotationsmessaufnehmer.
DE2647675C3 (de) Elektromotor
DE3806752C2 (de)
DE3140034C2 (de) Kollektorlose Gleichstrommaschine
DE2811282A1 (de) Traegheitsrad
DE3590633C2 (de)
DE3783674T2 (de) Verfahren zum antreiben eines buerstenlosen gleichstrommotors und geraet zum praezisen steuern der rotor-startposition.
DE2647687A1 (de) Elektromotor mit frequenzgenerator
EP0554900B1 (de) Elektromotor mit induktiv arbeitendem Stellungsdetektor
DE10033561B4 (de) Elektronisch kommutierter Motor mit Kommutierungssignal
DE2338307B2 (de) Elektromagnetische Einrichtung zum Antrieb und zur zentrierenden Lagerung von Drehkörpern
DE3018522A1 (de) Verfahren und steuersystem zum steuern eines elektromotors, insbesondere fuer einen fernschreiber
EP1397691A1 (de) Vorrichtung zur erzeugung eines drehzahlabhängigen signals für einen elektromotor, insbesondere für einen elektronisch kommutierten gleichstrommotor
EP0374805B1 (de) Elektronisch kommutierter Synchronmotorantrieb
DE3502899C2 (de)
DE69727464T2 (de) Elektromechanische vorrichtung, spulenanordnung fur diese vorrichtung und gerät fur datenspeicherung und/oder wiedergabe mit einer derartigen vorrichtung
DE4218674C2 (de) Indeximpuls-Erzeugungssystem bei einer Plattenspeicher-Vorrichtung
EP0907891A1 (de) Anordnung zur berührungslosen induktiven übertragung elektrischer messgrössen und/oder elektrischer energie zwischen einem rotor und einem stator
DE3151257C2 (de)
DE3718207A1 (de) Verfahren zur steuerung der drehzahl eines rotors
DE2532574A1 (de) Tachogenerator
DE3147526A1 (de) Rotationskopfzylinder fuer ein videobandaufzeichnungsgeraet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 19901122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

XX Miscellaneous (additional remarks)

Free format text: VERFAHREN ABGESCHLOSSEN INFOLGE VERBINDUNG MIT 89110686.6/0347722 (EUROPAEISCHE ANMELDENUMMER/VEROEFFENTLICHUNGSNUMMER) VOM 04.03.92.