EP0404703A1 - Pieux de fondation, procédés, outils et machines pour la construction desdits pieux - Google Patents

Pieux de fondation, procédés, outils et machines pour la construction desdits pieux Download PDF

Info

Publication number
EP0404703A1
EP0404703A1 EP90430015A EP90430015A EP0404703A1 EP 0404703 A1 EP0404703 A1 EP 0404703A1 EP 90430015 A EP90430015 A EP 90430015A EP 90430015 A EP90430015 A EP 90430015A EP 0404703 A1 EP0404703 A1 EP 0404703A1
Authority
EP
European Patent Office
Prior art keywords
auger
concrete
casing
elements
piles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP90430015A
Other languages
German (de)
English (en)
Inventor
Raymond Louis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0404703A1 publication Critical patent/EP0404703A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/50Piles comprising both precast concrete portions and concrete portions cast in situ
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/52Piles composed of separable parts, e.g. telescopic tubes ; Piles composed of segments
    • E02D5/523Piles composed of separable parts, e.g. telescopic tubes ; Piles composed of segments composed of segments
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/62Compacting the soil at the footing or in or along a casing by forcing cement or like material through tubes

Definitions

  • the present invention relates to new foundation piles and methods. tools and machines for the construction of these piles.
  • the technical sector of the invention is that of the construction of piles intended to serve as a foundation for common works.
  • a first category is that of injected micropiles having a diameter of less than 200 mm.
  • a borehole is dug with a drill bit and this hole is fitted with perforated casing.
  • a cement grout is injected inside the casing and this grout passes through the perforations in the casing and penetrates into the surrounding land.
  • the micropiles have the advantage of very good friction between the pile and the ground.
  • a second category of common piles are traditional beaten and molded piles with a diameter greater than or equal to 0.4 m.
  • a machine used for the construction of traditional piles, which comprises a vertical auger and which is moved along a vertical mast and which is rotated at low speed, so that it penetrates into the ground as a Once the auger is pressed down to the bottom of a pile, we pull up with jacks while sending a concrete slurry through the hollow auger shaft.
  • the auger As the auger rises, it carries with it a cylindrical core of ground in the manner of a corkscrew and the vacuum which is thus created is filled with concrete grout.
  • the objective of the present invention is to provide new foundation piles intermediate between the micropiles and the traditional piles, which combine the advantages of these, that is to say which allow to set up during digging a reinforced or prestressed concrete casing collaborating in the bearing capacity of the pile, to fill it in whole or in part, using concrete, cement grout, sand ... where elimination of the risk of landslides or cavities in the filling material, inject a cement grout into the surrounding soil to improve lateral friction and obtain piles with a diameter sufficient to avoid the risk of buckling and armed piles which resist horizontal forces well .
  • foundation piles which include: - a concrete casing, composed of tubular elements of reinforced concrete or prestressed concrete, having an external diameter, of the order of 300 to 800 mm and a thickness of the order of 80 to 150 mm, which elements include radial channels - and if necessary a cement grout which forms a core poured over at least part of the interior of said casing and which is injected under pressure into the surrounding lands through said radial channels.
  • the prefabricated tubular elements have, at their two ends, vertical reservation holes and two superimposed elements are assembled end to end by connecting bars, which are engaged in two facing holes and which are sealed with a polymerizable resin. .
  • a method of constructing a foundation pile according to the invention comprises the following operations: - Tubular elements in reinforced concrete or in prestressed concrete are prefabricated in the factory, having an external diameter of the order of 300 to 800 mm and a thickness of the order of 80 to 100 mm and comprising radial channels; - said elements are lowered one by one vertically into the ground by cutting by means of an auger which is engaged inside the prefabricated elements, which carries at its end a retractable cutting tool and which is rotated at a speed sufficient to remove the cuttings; - when an element is fully sunk into the ground, the auger is removed and a second tubular element is erected on the first, then the auger is lowered inside the two elements and the havage is continued; - And, when the prefabricated casing is in place, we proceed either to the filling using concrete, cement grout, sand, or we put in it an inflatable obturator at an intermediate level and we inject , in the zone located inside the casing and below said obturator
  • a tool for implementing a method according to the invention comprises a vertical shaft which is rotated by a mobile rotation table along a vertical mast and which carries a helical screw forming an auger, and said shaft carries at its end, a collapsible cutting tool, which fits in the folded position inside a circle having a diameter less than the internal diameter of said prefabricated tubular elements and which has, in the working position, a greater external diameter with external diameter said prefabricated tubular elements.
  • the cutting tool comprises a metal blade which is located below the lower end of said helical screw and which pivots around a vertical articulation axis eccentric relative to the axis of said auger.
  • the invention results in new foundation piles having an external diameter of the order of 300 mm to 800 mm.
  • the piles according to the invention are intermediate between the micropiles and the traditional beaten and molded piles.
  • the piles according to the invention have the following advantages: in unstable ground, the holding of the ground is ensured by the precast concrete elements which act as collaborating casing.
  • the piles according to the invention can pass through relatively hard layers of ground using a drilling tool comprising destructive cutters allowing the crossing of these terrains.
  • the reinforced concrete tubular elements are prefabricated in the factory and can be prestressed, which ensures good reliability of the qualities of the concrete.
  • the filling in concrete, cement grout, sand ... or grout injected under pressure is carried out away from the lost casing, which allows a homogeneous filling.
  • the piles according to the invention make it possible to inject cement grout through the casing into the host soil and to obtain a coefficient of lateral friction of the pile which is two to four times higher than that of piles driven or molded in place .
  • the piles according to the invention can withstand a limit unit friction identical to that of the micropiles.
  • the piles according to the invention can withstand high horizontal forces thanks to the reinforcements of the prefabricated casing and to the connecting bars between tubular elements.
  • the resistance to horizontal forces can be increased by adding a reinforcement in the central part of the pile before filling it with a cement grout. It is even possible to exert the post prestressing by means of a tie rod central tensioned.
  • Figure 1 shows a stake intended as a foundation for a structure.
  • This pile comprises a casing 1 which is composed of tubular elements 1a, 1b, etc., of reinforced concrete or of prestressed concrete which are prefabricated in the factory.
  • Each tubular element has an outside diameter of the order of 400 mm, which can vary for example between 300 and 800 mm, a thickness of the order of 80 to 150 mm, an inside diameter of the order of 200 to 600 mm. and a length of the order of 5 to 6 meters.
  • Figure 1 shows, by way of illustration, a pile comprising two elements 1a, 1b superimposed. The number of elements can be higher.
  • the elements 1a, 1b being prefabricated in the factory, are manufactured with care and it is possible to calculate the resistance of the pile by taking into account 75% of the maximum rate of stress that the reinforced concrete can support.
  • the prefabricated elements 1a, 1b have small radial channels 2 which pass right through them and which are distributed over their entire height.
  • the tubular elements 1a, 1b have, on their upper edge and on their lower edge, vertical reservation holes which face two by two when two elements are superimposed. These high-strength steel connecting bars 3 are placed in these holes and sealed with a quick-setting polymerizable resin.
  • the tubular elements 1a, 1b can be dimensioned so as to withstand the entire load that each pile must support.
  • each pile has, over part of its height, a cement grout 4 which fills the inside the casing 1 and which penetrates into the surrounding land by passing through the small radial channels 2.
  • the casing 1 can be filled with cement grout over its entire height, if necessary.
  • FIG. 2 represents a pile according to the invention during the driving in of a first concrete element 1a.
  • tubular elements 1a, 1b prefabricated in the factory and sinking equipment mounted on a vehicle 5 which carries a mast 6 shown in dotted lines in the folded position and in solid lines in the vertical position of job.
  • the mast 6 has a total height which may correspond to the height of the pile. It can be made up of several sections which are gradually put in place.
  • the sinking equipment further comprises a tool comprising a hollow vertical shaft 7 which is rotated by a rotation table 8 movable along the mast 6 and which carries a helical screw 9 forming an auger and, at its lower end , a cutting tool 10.
  • the external diameter of the screw 9 is less than the internal diameter of the prefabricated elements 1a, 1b.
  • the rotation table 8 When a first element la has been driven into the ground, the rotation table 8 is rotated in the opposite direction, which has the effect of automatically folding the cutting tool 10 whose external diameter is then less than the internal diameter of the element la and then the rotation table and the auger are raised sufficiently high to be able to place a second prefabricated element 1b vertically above the first element la.
  • vertical bars 3 are engaged in the vertical holes reserved at the upper end of the element 1a then the vertical holes reserved at the lower end of the element 1b are fitted onto these bars and the bars are sealed with a polymerizable resin.
  • the hollow shaft 7 and the auger 9 can be composed of several sections which are assembled end to end as the casing sinks into the ground.
  • one or more inflatable shutters of any known type are placed inside the casing 1, which are lowered to a determined level which has been chosen to constitute the head of the anchoring zone of the casing.
  • This cement slurry injection ensures a good bond between the pile and the ground both from the point of view of the force at the tip of the pile, as well as the lateral friction of the pile. This injection also provides a good mechanical connection between the various concrete elements 1a, 1b.
  • Figure 3 is an elevational view of the lower end of the tool in the cutting position.
  • a first prefabricated element in reinforced concrete la which carries, advantageously at its lower end, a metal shoe 11 comprising a cylindrical skirt 12 which surrounds the external periphery of the element 1a and a frustoconical skirt 13 which diverges towards the low.
  • Shoe 11 is optional. It facilitates the downward gravity movement of the casing and it facilitates the folding of the lifting tool when raising the auger.
  • the lower end of the hollow shaft 7 carries fixed peaks 14, distributed around its periphery which dig in the ground a pilot hole having a diameter slightly greater than the diameter of the shaft 7.
  • the shaft 7 carries a fixed metal blade 15 whose external diameter is substantially equal to the external diameter of the helical screw 9.
  • the blade 15 is helical and it extends the helical screw 9.
  • the leading edge of the blade 15 is equipped with peaks 15a.
  • a cutting tool 10 comprising a blade 16 whose leading edge 17 carries peaks 18.
  • the blade 16 is articulated around a vertical axis 19 which is eccentric relative to the axis zzl of the shaft 7.
  • the blade 16 is slightly helical to facilitate the removal of the cuttings.
  • Figure 4 is a bottom view of the lower end of the tool on which there is shown in solid lines the working position of the cutting tool 10 and in dotted lines the folded position of the same tool.
  • This figure shows the eccentric axis 19 around which the blade 16 of the cutting tool pivots.
  • this blade 16 has the general shape of a portion of the crown which is delimited by an external arc of a circle 161 whose diameter is equal to the external diameter of the helical screw 9 and by an internal arc of circle 162, the diameter is equal to the outer diameter of the hollow shaft 7.
  • the two arcs 161 and 162 are parallel. They extend over about a semicircle. They have a common center 0 which is located at a distance from the pivot axis 19 equal to the eccentricity e of the axis 19 relative to the axis zzl of the shaft 7, so that the center 0 moves on a circle centered on axis 19 and passing through axis zzl.
  • the internal edge 162 envelops half of the periphery of the hollow shaft 7 and the external edge 161 coincides with the projection of the external periphery of the helical screw 9.
  • the peaks 14, 16. 18 have cutting edges made of a hard material, for example example made of tungsten carbide or any other material commonly used to make drilling or rock drilling tools.
  • the cutting tool 10 may consist of two blades 16. each occupying half of the circular section C1 in the folded position, the two axes 19 being diametrically opposite.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

L'invention a pour objet des pieux de fondation et des procédés, des outils et des machines pour la construction de ces pieux.
Un pieu selon l'invention comporte un tubage collaborant (1) qui est composé d'éléments tubulaires (1a, 1b...) préfabriqués, en béton armé ou béton précontraint, qui ont un diamètre externe compris entre 300 et 500 mm et une épaisseur de l'ordre de 80 à 100 mm, qui sont assemblés bout à bout par des barres de liaison (3) scellées à la résine et qui comportent des canaux radiaux (2). Il comporte, en outre, un remplissage (4) de béton, coulis de ciment, de sable... ou qui est injecté sous pressiondans les terrains encaissants à travers les canaux (2). Pour enfoncer les éléments de tubage dans le sol, on utilise une tarière qui passe à l'intérieur du tubage et qui porte, à son extrémité, un outil de havage.
Une application est la construction de pieux de fondation d'ouvrages de génie-civil courants et de bâtiments.

Description

  • La présente invention a pour objet de nouveaux pieux de fondation ainsi que des procédés. des outils et des machines pour la construction de ces pieux.
  • Le secteur technique de l'invention est celui de la construction des pieux destinés à servir de fondation pour des ouvrages courants.
  • Dans le domaine des fondations sur pieux courantes, c'est-à-dire des pieux devant supporter des charges comprises entre 400 et 2000 K.N, on utilise à ce jour, deux catégories de pieux.
  • Une première catégorie est celle des micropieux injectés ayant un diamètre inférieur à 200 mm.
  • Les micropieux sont obtenus par les techniques de forage utilisées dans les domaines miniers ou pétroliers
  • Dans une première phase, on creuse un forage avec un trépan et on équipe ce forage d'un tubage perforé.
  • Dans une deuxième phase, on injecte un coulis de ciment à l'intérieur du tubage et ce coulis passe à travers les perforations du tubage et pénètre dans les terrains encaissants.
  • Grâce à cette injection, les micropieux présentent l'avantage d'un très bon frottement entre le pieu et le sol.
  • Par contre, ils présentent l'inconvénient d'une faible inertie, d'où des risques de flambement et une faible résistance aux efforts horizontaux. Il n'est pas envisageable de construire économiquement des pieux ayant un diamètre supérieur à 200 mm par les techniques de forage au trépan, ce qui entraînerait la construction d'outils de forage très onéreux.
  • Une deuxième catégorie de pieux courants sont les pieux traditionnels battus et moulés ayant un diamètre supérieur ou égal à 0,4 m.
  • On connaît une machine, utilisée pour la construction de pieux traditionnels, qui comporte une tarière verticale et qui est déplacée le long d'un mât vertical et qui est entraînée en rotation à vitesse lente, de sorte qu'elle pénètre dans le sol comme un tire-bouchon Une fois la tarière enfoncée jusqu 'au niveau du fond d'un pieu, on tire vers le haut avec des vérins tout en envoyant un coulis de béton à travers l'arbre creux de la tarière.
  • A mesure que la tarière remonte, elle entraîne avec elle une carotte cylindrique de terrain à la manière d'un tire-bouchon et le vide qui est ainsi créé est rempli de coulis de béton.
  • Cette technique permet d'obtenir des pieux de grand diamètre qui ne risquent pas de flamber. Toutefois, elle présente des difficultés de mise en oeuvre en terrain instable. De plus, comme le béton est coulé en place à mesure qu'on retire la carotte de terrain, il n'est pas possible de contrôler la qualité du remplissage en béton du puits.
  • Les caractéristiques de frottement entre le sol et un pieu traditionnel sont moins bonnes que celles des pieux injectés.
  • Les nombreux désordres intervenus sur des pieux traditionnels ont conduit à exiger des contrôles de qualité et à limiter les contraintes admissibles dans le béton coulé en place à des taux de travail de l'ordre de 5 à 6 MPa, c'est-à-dire moins de la moitié du taux de travail théorique.
  • L'objectif de la présente invention est de procurer de nouveaux pieux de fondation intermédiaires entre les micropieux et les pieux traditionnels, qui cumulent les avantages de ceux-ci, c'est-à-dire qui permettent de mettre en place en cours de creusement un tubage en béton armé ou précontraint collaborant à la force portante du pieu, de le remplir en totalité ou en partie, àl'aide de béton, de coulis de ciment, de sable... d'où élimination des risques d'éboulements ou de cavités dans le matériau de remplissage, d'injecter un coulis de ciment dans les terrains encaissants pour améliorer le frottement latéral et d'obtenir des pieux ayant un diamètre suffisant pour éviter les risques de flambement et des pieux armés qui résistent bien aux efforts horizontaux.
  • Cet objectif est atteint au moyen de pieux de fondation qui comportent :
    - un tubage en béton, composé d'éléments tubulaires en béton armé ou en béton précontraint, ayant un diamètre externe, de l'ordre de 300 à 800 mm et une épaisseur de l'ordre de 80 à 150 mm, lesquels éléments comportent des canaux radiaux
    - et si nécessaire un coulis de ciment qui forme une âme coulée sur une partie au moins de l'intérieur dudit tubage et qui est injecté sous pression dans les terrains encaissants à travers lesdits canaux radiaux.
  • Avantageusement, les éléments tubulaires préfabriqués comportent, à leurs deux extrémités, des trous de réservation verticaux et deux éléments superposés sont assemblés bout à bout par des barres de liaison , qui sont engagées dans deux trous se faisant face et qui sont scellées par une résine polymérisable.
  • Un procédé de construction d'un pieu de fondation selon l'invention comporte les opérations suivantes :
    - on préfabrique en usine des éléments tubulaires en béton armé ou en béton précontraint, ayant un diamètre externe de l'ordre de 300 à 800 mm et une épaisseur de l'ordre de 80 à 100 mm et comportant des canaux radiaux ;
    - on descend un par un lesdits éléments verticalement dans le sol par havage au moyen d'une tarière qui est engagée à l'intérieur des éléments préfabriqués, qui porte à son extrémité un outil de havage escamotable et qui est entraînée en rotation à une vitesse suffisante pour évacuer les déblais;
    - lorsqu'un élément est entièrement enfoncé dans le sol, on retire la tarière et on dresse un deuxième élément tubulaire sur le premier, puis on redescend la tarière à l'intérieur des deux éléments et on poursuit le havage;
    - et, lorsque le tubage préfabriqué est en place, on procède soit au remplissate à l'aide de béton, de coulis de ciment, de sable, soit on met en place dans celui-ci un obturateur gonflable à un niveau intermédiaire et on injecte, dans la zone située à l'intérieur du tubage et au-dessous dudit obturateur, un coulis de ciment qui pénètre dans les terrains encaissants à travers lesdits canaux radiaux pour former un ancrage dans le sol.
  • Un outil pour la mise en oeuvre d'un procédé selon l'invention comporte un arbre vertical qui est entraîné en rotation par une table de rotation mobile le long d'un mât vertical et qui porte une vis hélicoîdale formant une tarière, et ledit arbre porte à son extrémité, un outil de havage repliable, qui s'inscrit en position repliée à l'intérieur d'un cercle ayant un diamètre inférieur au diamètre interne desdits éléments tubulaires préfabriqués et qui a, en position de travail, un diamètre externe supérieur au diamètre externe desdits éléments tubulaires préfabriqués.
  • Selon un mode de réalisation préférentiel, l'outil de havage comporte une lame métallique qui est située au-dessous de l'extrémité inférieure de ladite vis hélicoïdale et qui pivote autour d'un axe d'articulation vertical excentré par rapport à l'axe de ladite tarière.
  • L'invention a pour résultat de nouveau pieux de fondation ayant un diamètre externe de l'ordre de 300 mm à 800 mm.
  • Les pieux selon l'invention sont intermédiaires entre les micropieux et les pieux traditionnels battus et moulés.
  • Les pieux selon l'invention présentent les avantages suivants : en terrain instable, la tenue des terrains est assurée par les éléments en béton préfabriqué qui font fonction de tubage collaborant.
  • Les pieux selon l'invention peuvent traverser des couches de terrain relativement dures en utilisant un outil de forage comportant des taillants destructifs permettant la traversée de ces terrains.
  • Les éléments tubulaires en béton armé sont préfabriqués en usine et peuvent être précontraints, ce qui assure une bonne fiabilité des qualités du béton.
  • Le remplissage en béton, coulis de ciment, sable... ou coulis injecté sous pression est réalisé à l'abri du tubage perdu, ce qui permet de réaliser un remplissage homogène.
  • Les contraintes de travail admissibles aussi bien dans le tubage préfabriqué que dans le remplissage en coulis de béton sont de 8 MPa.
  • Les pieux selon l'invention permettent d'injecter du coulis de ciment à travers le tubage dans les terrains encaissants et d'obtenir un coefficient de frottement latéral du pieux qui est deux à quatre fois plus élevé que celui des pieux battus ou moulés en place.
  • Il en résulte que les pieux selon l'invention peuvent supporter un frottement unitaire limite identique à celui du micropieux.
  • Les pieux selon l'invention peuvent supporter des efforts horizontaux élevés grâce aux armatures du tubage préfabriqué et aux barres de liaison entre éléments tubulaires.
  • Si cela s'avère nécessaire, on peut augmenter la résistance aux efforts horizontaux en ajoutant une armature dans la partie centrale du pieu avant de remplir celle-ci d'un coulis de ciment. Il est même possible d'exercer une précontrainte du pieu au moyen d'un tirant central mis en tension.
  • La description suivante se réfère aux dessins annexés qui représentent, sans aucun caractère limitatif, un exemple de réalisation d'un pieu selon l'invention.
    • La figure 1 est une coupe verticale d'un pieu selon l'invention passant par l'axe zzl de celui-ci.
    • La figure 2 est une vue en élévation d'un chantier de construction d'un pieu selon l'invention.
    • La figure 3 est une coupe verticale à grande échelle de l'extrémité inférieure d'un pieu et de l'outil de forage.
    • La figure 4 est une vue de dessous de l'outil de forage en position de travail et en position repliée.
  • La figure 1 représente un pieu destiné à servi de fondation pour un ouvrage.
  • Ce pieu comporte un tubage 1 qui est composé d'éléments tubulaires 1a, 1b etc..., en béton armé ou en béton précontraint qui sont préfabriqués en usine. Chaque élément tubulaire a un diamètre extérieur de l'ordre de 400 mm, qui peut varier par exemple entre 300 et 800 mm, une épaisseur de l'ordre de 80 à 150 mm, un diamètre intérieur de l'ordre de 200 à 600 mm et une longueur de l'ordre de 5 à 6 mètres.
  • La figure 1 représente, à titre d'illustration, un pieu comportant deux éléments 1a, 1b superposés. Le nombre d'éléments peut être supérieur.
  • Les éléments 1a, 1b étant préfabriqués en usine, sont fabriqués avec soin et il est possible de calculer la résistance du pieu en prenant en compte 75% du taux maximum de contrainte que le béton armé peut supporter.
  • Les éléments préfabriqués 1a, 1b comportent des petits canaux radiaux 2 qui les traversent de part en part et qui sont répartis sur toute leur hauteur.
  • Les éléments tubulaires 1a, 1b comportent, sur leur bord supérieur et sur leur bord inférieur, des trous de réservation verticaux qui se font face deux à deux lorsque deux éléments sont superposés. On place dans ces trous des barres de liaison 3 en acier à haute résistance que l'on scelle avec une résine polymérisable à prise rapide.
  • Les éléments tubulaires 1a, 1b peuvent être dimensionnés de façon à résister à la totalité de la charge que chaque pieu doit supporter.
  • Dans certains cas, l'on pourra tenir compte de la section centrale remplie de coulis de ciment pour définir la charge que pourra supporter le pieux.
  • Afin d'améliorer le frottement du pieu avec le terrain encaissant et de réduire l'effort qui s'exerce sur l'extrémité inférieure du pieu, chaque pieu comporte, sur une partie de sa hauteur, un coulis de ciment 4 qui remplit l'intérieur du tubage 1 et qui pénètre dans les terrains encaissant en passant à travers les petits canaux radiaux 2.
  • En variante, le tubage 1 peut être rempli de coulis de ciment sur toute sa hauteur, si cela est nécessaire.
  • La figure 2 représente un pieu selon l'invention en cours d'enfoncement d'un premier élément en béton la.
  • On amène sur le chantier où les pieux doivent être établis, les éléments tubulaires 1a, 1b préfabriqués en usine et un matériel de fonçage monté sur un véhicule 5 qui porte un mât 6 représenté en pointillés en position repliée et en traits pleins en position verticale de travail.
  • Le mât 6 a une hauteur totale qui peut correspondre à la hauteur du pieu. Il peut être composé de plusieurs tronçons qui sont mis en place progressivement.
  • Le matériel de fonçage comporte, en outre, un outil comportant un arbre vertical creux 7 qui est entraîné en rotation par une table de rotation 8 mobile le long du mât 6 et qui porte une vis hélicoïdale 9 formant une tarière et, à son extrémité inférieure, un outil de havage 10. Le diamètre externe de la vis 9 est inférieur au diamètre interne des éléments préfabriqués 1a, 1b.
  • Pour enfoncer un premier élément préfabriqué la dans le sol, on le pose verticalement sur le sol, puis en engage à l'intérieur de celui-ci la tarière 9 et l'outil de havage 10 qui est en position repliée. Lorsque l'outil 10 arrive au contact du sol, on augmente la vitesse de rotation de la table pour atteindre une vitesse suffisante pour que la tarière évacue les déblais par l'extrémité supérieure de l'élément 1a. Sous l'effet de la force centrifuge et du frottement du terrain, l'outil 10 vient occuper automatiquement une position en butée où son diamètre externe est légèrement supérieur au diamètre externe de l'élément la, de sorte qu'il creuse sous celui-ci une saignée de havage et que l'élément la s'enfonce progressivement dans le sol en suivant l'outil 10.
  • Lorsqu'un premier élément la a été enfoncé dans le sol, on fait tourner la table de rotation 8 en sens inverse, ce qui a pour effet de replier automatiquement l'outil de havage 10 dont le diamètre externe est alors inférieur au diamètre interne de l'élément la et on remonte ensuite la table de rotation et la tarière suffisamment haut pour pouvoir placer un deuxième élément préfabriqué 1b verticalement au-dessus du premier élément la. Avant de mettre en place l'élément 1b, on engage des barres verticales 3 dans les trous verticaux réservés à l'extrémité supérieure de l'élément la puis on emboîte les trous verticaux réservés à l'extrémité inférieure de l'élément lb sur ces barres et on scelle les barres avec une résine polymérisable.
  • L'arbre creux 7 et la tarière 9 peuvent être composés de plusieurs tronçons que l'on assemble bout à bout à mesure que le tubage s'enfonce dans le sol.
  • Une fois le tubage en place, on sort la tarière, on nettoie l'intérieur du tubage et l'on procède au remplissage de béton, de coulis de ciment ou de sable. En variante, on place à l'intérieur du tubage 1 un ou plusieurs obturateurs gonflable de tout type connu, que l'on descend jusqu'à un niveau déterminé que l'on a choisi pour constituer la tête de la zone d'ancrage du tubage.
  • On injecte ensuite dans l'espace intérieur au tubage situé au­dessous de l'obturateur gonflable un coulis de ciment suffisamment fluide pour qu'il passe à travers les canaux radiaux 2 du tubage et pénètre dans les strates ou les fissures des terrains encaissants.
  • Cette injection de coulis de ciment assure une bonne liaison entre le pieu et le sol aussi bien du point de vue de l'effort en pointe du pieu, que du frottement latéral du pieu. Cette injection procure, en outre, une bonne liaison mécanique entre les divers éléments en béton 1a, 1b.
  • La figure 3 est une vue en élévation de l'extrémité inférieure de l'outil en position de havage.
  • On voit sur cette figure un premier élément préfabriqué en béton armé la qui porte, avantageusement à son extrémité inférieure, un sabot métallique 11 comportant une jupe cylindrique 12 qui entoure la périphérie externe de l'élément 1a et une jupe tronconique 13 qui diverge vers le bas. Le sabot 11 est facultatif. Il facilite le mouvement de descente par gravité du tubage et il facilite le repliement de l'outil de havage lorsqu'on remonte la tarière.
  • On voit sur la figure 3 l'arbre creux 7 qui porte à sa périphérie une vis hélicoïdale 9 formant une tarière destinée à l'évacuation des déchets vers le haut.
  • L'extrémité inférieure de l'arbre creux 7 porte des pics fixes 14, répartis sur sa périphérie qui creusent dans le terrain un avant-­trou ayant un diamètre légèrement supérieur au diamètre de l'arbre 7.
  • Un peu au-dessus de son extrémité inférieure, l'arbre 7 porte une lame métallique fixe 15 dont le diamètre externe est sensiblement égal au diamètre externe de la vis hélicoïdale 9.
  • Avantageusement, la lame 15 est hélicoïdale et elle prolonge la vis hélicoïdale 9.
  • Avantageusement, le bord d'attaque de la lame 15 est équipé de pics 15a.
  • Entre l'extrémité inférieure de la vis hélicoïdale 9 et la lame fixe 15 est monté un outil de havage 10 comportant une lame 16 dont le bord d'attaque 17 porte des pics 18.
  • La lame 16 est articulée autour d'un axe vertical 19 qui est excentré par rapport à l'axe zzl de l'arbre 7.
  • Avantageusement, la lame 16 est légèrement hélicoïdale pour faciliter l'évacuation des déblais.
  • La figure 4 est une vue de dessous de l'extrémité inférieure de l'outil sur laquelle on a représenté en traits pleins la position de travail de l'outil de havage 10 et en pointillés la position repliée de ce même outil.
  • On voit sur cette figure l'axe excentré 19 autour duquel pivote la lame 16 de l'outil de havage. On voit que cette lame 16 a la forme générale d'une portion de couronne qui est délimitée par un arc de cercle externe 16₁ dont le diamètre est égal au diamètre externe de la vis hélicoïdale 9 et par un arc de cercle interne 16₂, dont le diamètre est égal au diamètre externe de l'arbre creux 7. Les deux arcs de cercle 161 et 162 sont parallèles. Ils s'étendent sur environ un demi-cercle. Ils ont un centre commun 0 qui est situé à une distance de l'axe de pivotement 19 égale à l'excentration e de l'axe 19 par rapport à l'axe zzl de l'arbre 7, de sorte que le centre 0 se déplace sur un cercle centré sur l'axe 19 et passant par l'axe zzl.
  • Lorsque l'outil de havage 10 est dans la position repliée représentée en pointillés, le bord interne 16₂ enveloppe la moitié de la périphérie de l'arbre creux 7 et le bord externe 16₁ est confondu avec la projection de la périphérie externe de la vis hélicoïdale 9.
  • Lorsqu'on fait tourner l'arbre creux 7 dans le sens des aiguilles d'une montre, qui est le sens d'évacuation des terres, la réaction du terrain sur les pics 18 et sur la lame 16 fait pivoter automatiquement celle-ci autour de l'axe 19 dans le sens inverse des aiguilles d'une montre. La lame 16 comporte un talon 20 qui est situé au delà de l'axe 19 et qui vient s'appuyer contre l'arbre 7 bloquant ainsi la lame 16 dans la position de travail représentée en traits pleins sur la figure 4.
  • Dans cette position, les pics 18 et la lame 10 creusent dans le sol un havage circulaire limité par un cercle C2 qui est le cercle tangent à la lame 16. Le diamètre du cercle C2 est légèrement supérieur au diamètre externe des éléments de tubage préfabriqués.
  • Lorsqu'on a fini d'enfoncer un élément de tubage dans le sol, on inverse le sens de rotation de l'arbre creux 7 et on remonte la tarière. La lame pivotante 16 vient frotter contre le sabot métallique 13 ou contre l'extrémité inférieure de l'élément en béton la dans le cas où il n'y a pas de sabot métallique et le frottement exerce sur la lame 16 une poussée qui fait pivoter automatiquement celle-ci dans le sens des aiguilles d'une montre jusqu'à ce qu'elle soit appuyée contre l'arbre 7 dans la position représentée en pointillés sur la figure 4.
  • On voit que dans cette position, la totalité de l'outil de havage se trouve à l'intérieur du cercle Cl et peut donc remonter à l'intérieur du tubage.
  • Les pics 14, 16. 18 ont des taillants en un matériau dur, par exemple en carbure de tungstène ou en tout autre matériau utilisé couramment pour fabriquer des outils de forage ou de creusement des roches.
  • En variante, l'outil de havage 10 peut être constitué de deux lames 16. chacune occupant la moitié de la section circulaire C1 en position repliée les deux axes 19 étant diamétralement opposés.

Claims (8)

1. Procédé de construction d'un pieu de fondation, caractérisé en ce qu'il comporte les opérations suivantes :
- on préfabrique des éléments tubulaires (1a, 1b) en béton armé ou en béton précontraint, ayant un diamètre externe de l'ordre de 300 à 800 mm et une épaisseur de l'ordre de 80 à 150 mm et comportant des canaux radiaux (2);
- on descend un par un lesdits éléments (1a, 1b) verticalement dans le sol par havage au moyen d'une tarière (7, 9) qui est engagée à l'intérieur des éléments préfabriqués, qui porte à son extrémité un outil de havage (10) escamotable et qui est entraînée en rotation à une vitesse suffisante pour évacuer les déblais;
- lorsqu'un élément (1a, 1b) est entièrement enfoncé dans le sol, on retire la tarière (7, 9) et on dresse un deuxième élément tubulaire (1) sur le premier, puis on redescend la tarière (7, 9) à l'intérieur des deux éléments et on poursuit simultanément le forage et le havage;
- et, lorsque tous les éléments préfabriqués sont en place, on les remplit de béton, de coulis de ciment ou de sable ou l'on met en place dans ceux-ci, à un niveau intermédiaire un ou plusieurs obturateurs gonflables et on injecte, dans la zone située à l'intérieur du tubage et au-dessous desdits obturateurs, un coulis de ciment (4) qui pénètre dans les terrains encaissants à travers lesdits canaux radiaux pour former un ancrage dans le sol.
2. Outil pour la mise en oeuvre d'un procédé selon la revendication 1 du type comportant un arbre vertical (7) qui est entraîné en rotation par une table de rotation (8) mobile le long d'un mât vertical (6) et qui porte une vis hélicoïdale (9) formant une tarière, caractérisé en ce que ledit arbre porte à son extrémité, un outil de havage repliable. qui s'inscrit en position repliée à l'intérieur d'un cercle (C1) ayant un diamètre inférieur au diamètre interne desdits éléments tubulaires préfabriqués et qui a, en position de travail, un diamètre externe supérieur au diamètre externe desdits éléments tubulaires préfabriqués.
3. Outil selon la revendication 2, caractérisé en ce que ledit outil de havage comporte une lame métallique (16), qui est située au-dessous de l'extrémité inférieure de ladite vis hélicoïdale (9) et qui pivote autour d'un axe d'articulation vertical (19) excentré par rapport à l'axe de ladite tarière.
4. Outil selon la revendication 3, caractérisé en ce que le bord externe (16₁) et le bord interne (162) de ladite lame sont des arcs de cercle parallèles ayant un centre commun (0), qui est situé à une distance (e) dudit axe d'articulation égale à la distance entre l'axe de ladite tarière et ledit axe d'articulation (19) de ladite lame.
5. Outil selon la revendication 4, caractérisé en ce que ledit bord interne (16₂) a un rayon égal au rayon de l'arbre (7) de ladite tarière et ledit bord externe (16₁) a un rayon égal au diamètre externe de ladite vis hélicoïdale (9).
6. Outil selon l'une quelconque des revendications 2 à 5, caractérisé en ce que ledit arbre vertical (7) porte, à son extrémité, des pics (14), répartis autour de sa périphérie et une lame fixe (15) qui prolonge l'extrémité inférieure de ladite vis hélicoïdale et dont le bord d'attaque est équipé de pics (16).
7. Machine pour la mise en oeuvre d'un procédé selon la revendication 1, caractérisée en ce qu'elle comporte un outil selon l'une quelconque des revendications 2 à 6.
8. Pieu de fondation construit par un procédé selon la revendication 1, caractérisé en ce qu'il comporte un tubage en béton (1). qui est composé d'un ou plusieurs éléments tubulaires superposés (1a, 1b), qui sont préfabriqués en béton armé ou en béton précontraint et qui ont un diamètre externe de l'ordre de 300 à 800 mm, une épaisseur de l'ordre de 80 à 150 mm et un diamètre interne tel que ladite tarière (7, 9) puisse passer à passer à travers ledit tubage, et lesdits éléments tubulaires comportent des canaux radiaux (2) à travers lesquels un coulis de ciment est injecté dans les terrains encaissants.
EP90430015A 1989-06-21 1990-06-20 Pieux de fondation, procédés, outils et machines pour la construction desdits pieux Withdrawn EP0404703A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8908578 1989-06-21
FR8908578A FR2648839B1 (fr) 1989-06-21 1989-06-21 Pieux de fondation, procedes, outils et machines pour la construction desdits pieux

Publications (1)

Publication Number Publication Date
EP0404703A1 true EP0404703A1 (fr) 1990-12-27

Family

ID=9383183

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90430015A Withdrawn EP0404703A1 (fr) 1989-06-21 1990-06-20 Pieux de fondation, procédés, outils et machines pour la construction desdits pieux

Country Status (3)

Country Link
EP (1) EP0404703A1 (fr)
FR (1) FR2648839B1 (fr)
OA (1) OA09182A (fr)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994019605A1 (fr) * 1993-02-26 1994-09-01 Egon Gelhard Installation fonctionnant a l'energie eolienne
GB2299360A (en) * 1995-03-31 1996-10-02 Subsidence Surveys Limited Pile
US6773208B2 (en) * 2002-12-17 2004-08-10 Dewitt Wayne Method for casting a partially reinforced concrete pile in the ground
CN103290838A (zh) * 2013-07-02 2013-09-11 二十二冶集团天津建设有限公司 保证管桩承载力的施工方法
US20130294843A1 (en) * 2012-05-07 2013-11-07 Soilmec S.P.A. Helical drill bit for an auger of a ground excavation assembly, in particular for building excavated piles, and drilling method that uses such a bit
KR101448070B1 (ko) * 2014-01-15 2014-10-08 선병순 가드레일과 가드레일의 시공방법으로 시공되는 가드레일 및 가드레일의 보수 보강방법으로 보강되는 가드레일
CN105421446A (zh) * 2015-12-29 2016-03-23 武汉中力岩土工程有限公司 一种用于软基处理的混合土挤压固化预制桩及施工方法
CN107630407A (zh) * 2017-10-11 2018-01-26 河北工业大学 一种用于桥梁预应力的孔道压浆的连接设备
CN107761716A (zh) * 2016-08-15 2018-03-06 金陵科技学院 一种隧道暗挖段使用的地基桩及隧道暗挖段地基处理方法
CN108677934A (zh) * 2018-06-15 2018-10-19 金陵科技学院 抗拔桩及抗拔桩的施工方法
CN109594578A (zh) * 2018-12-27 2019-04-09 河南省信息咨询设计研究有限公司 一种塔柜的5g小微通信基站桩基机构
CN109914431A (zh) * 2019-04-08 2019-06-21 中国铁建大桥工程局集团有限公司 一种新型预制现浇组合排桩支护结构
CN115030170A (zh) * 2022-06-06 2022-09-09 中铁十二局集团有限公司 一种钻孔桩塌孔回填施工方法及回填辅助装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1979547A (en) * 1931-08-24 1934-11-06 Hood Andrew Construction of "in situ" concrete piles
FR1044695A (fr) * 1950-05-04 1953-11-19 Ed Zu Blin & Cie A G Procédé de fabrication de pieux segmentaires en béton armé
FR1347660A (fr) * 1960-05-25 1964-01-04 Nippon Sharyo Seizo Kk Pieux ou piles de fondation
DE2336617A1 (de) * 1973-07-18 1975-02-06 Siemens Ag Verfahren zum herstellen eines pfahles
FR2246181A5 (fr) * 1973-10-02 1975-04-25 Sefi
FR2382547A1 (fr) * 1977-03-02 1978-09-29 Leffer Stahl & App Tete de trepan rotatif pour formations terreuses et pierreuses
GB2158493A (en) * 1984-03-16 1985-11-13 Earl & Wright Ltd Method of installing a pile

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1044195A (fr) * 1951-08-10 1953-11-16 Marocaine De Prod Chim & Agric Perfectionnements apportés aux procédés de préparation synthétique d'un dérivé de la propanol-diamine
GB1471269A (en) * 1974-04-11 1977-04-21 Wests Piling Construct Piles
JPS61130527A (ja) * 1984-11-28 1986-06-18 Tokyo Seisakusho:Kk 穴掘削機械

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1979547A (en) * 1931-08-24 1934-11-06 Hood Andrew Construction of "in situ" concrete piles
FR1044695A (fr) * 1950-05-04 1953-11-19 Ed Zu Blin & Cie A G Procédé de fabrication de pieux segmentaires en béton armé
FR1347660A (fr) * 1960-05-25 1964-01-04 Nippon Sharyo Seizo Kk Pieux ou piles de fondation
DE2336617A1 (de) * 1973-07-18 1975-02-06 Siemens Ag Verfahren zum herstellen eines pfahles
FR2246181A5 (fr) * 1973-10-02 1975-04-25 Sefi
FR2382547A1 (fr) * 1977-03-02 1978-09-29 Leffer Stahl & App Tete de trepan rotatif pour formations terreuses et pierreuses
GB2158493A (en) * 1984-03-16 1985-11-13 Earl & Wright Ltd Method of installing a pile

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, vol. 10, no. 323 (M-531)[2379], 5 novembre 1986; & JP-A-61 130 527 (TOKYO SEISAKUSHO K.K.) 18-06-1986 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994019605A1 (fr) * 1993-02-26 1994-09-01 Egon Gelhard Installation fonctionnant a l'energie eolienne
GB2299360A (en) * 1995-03-31 1996-10-02 Subsidence Surveys Limited Pile
GB2299360B (en) * 1995-03-31 1998-10-14 Subsidence Surveys Limited Pile and pile segment
US6773208B2 (en) * 2002-12-17 2004-08-10 Dewitt Wayne Method for casting a partially reinforced concrete pile in the ground
US20130294843A1 (en) * 2012-05-07 2013-11-07 Soilmec S.P.A. Helical drill bit for an auger of a ground excavation assembly, in particular for building excavated piles, and drilling method that uses such a bit
US9157209B2 (en) * 2012-05-07 2015-10-13 Soilmec S.P.A. Helical drill bit for an auger of a ground excavation assembly, in particular for building excavated piles, and drilling method that uses such a bit
CN103290838A (zh) * 2013-07-02 2013-09-11 二十二冶集团天津建设有限公司 保证管桩承载力的施工方法
KR101448070B1 (ko) * 2014-01-15 2014-10-08 선병순 가드레일과 가드레일의 시공방법으로 시공되는 가드레일 및 가드레일의 보수 보강방법으로 보강되는 가드레일
CN105421446A (zh) * 2015-12-29 2016-03-23 武汉中力岩土工程有限公司 一种用于软基处理的混合土挤压固化预制桩及施工方法
CN107761716A (zh) * 2016-08-15 2018-03-06 金陵科技学院 一种隧道暗挖段使用的地基桩及隧道暗挖段地基处理方法
CN107630407A (zh) * 2017-10-11 2018-01-26 河北工业大学 一种用于桥梁预应力的孔道压浆的连接设备
CN107630407B (zh) * 2017-10-11 2024-02-09 河北工业大学 一种用于桥梁预应力的孔道压浆的连接设备
CN108677934A (zh) * 2018-06-15 2018-10-19 金陵科技学院 抗拔桩及抗拔桩的施工方法
CN108677934B (zh) * 2018-06-15 2024-01-19 金陵科技学院 抗拔桩及抗拔桩的施工方法
CN109594578A (zh) * 2018-12-27 2019-04-09 河南省信息咨询设计研究有限公司 一种塔柜的5g小微通信基站桩基机构
CN109914431A (zh) * 2019-04-08 2019-06-21 中国铁建大桥工程局集团有限公司 一种新型预制现浇组合排桩支护结构
CN115030170A (zh) * 2022-06-06 2022-09-09 中铁十二局集团有限公司 一种钻孔桩塌孔回填施工方法及回填辅助装置
CN115030170B (zh) * 2022-06-06 2023-12-12 中铁十二局集团有限公司 一种钻孔桩塌孔回填施工方法及回填辅助装置

Also Published As

Publication number Publication date
OA09182A (fr) 1992-03-31
FR2648839B1 (fr) 1993-11-12
FR2648839A1 (fr) 1990-12-28

Similar Documents

Publication Publication Date Title
EP0240493B1 (fr) Procede de compactage-armature-injection ou de decompactage-drainage et de construction d'ouvrages lineaires et d'ouvrages plans dans les sols
EP3002371B1 (fr) Machine et procédé pour la réalisation de colonnes dans un sol
EP1525371B1 (fr) Conduite de guidage telescopique de forage en mer
EP0404703A1 (fr) Pieux de fondation, procédés, outils et machines pour la construction desdits pieux
EP0747537B1 (fr) Mèche de refoulement et procédé pour la réalisation d'un pieu à vis dans le sol
WO2004035942A1 (fr) Procede d'excavation interne au travers d'un pieu et structure de tube-guide exterieur
US9217293B1 (en) Reversible displacement auger tool
EP0633965B1 (fr) Dispositif d'etancheite pour scellement de joints d'expansion coupes dans des barrages en beton et procede d'installation du dispositif
EP1132525B1 (fr) Appareil d'excavation pour la réalisation de pieux moulés
EP2900875B1 (fr) Procédé de réalisation d'un ancrage dans un sol
FR2909395A1 (fr) PROCEDE DE RENFORCEMENT DE FONDATIONS COMPORTANT UNE DALLE DANS LE SOL, NOTAMMENT DE FONDATIONS POUR PYLâNES, ET STRUCTURE OBTENUE
FR2574442A1 (fr) Procede pour le compactage des terrains et la construction d'ouvrages dans le sol enrobes de terrain compacte ou decompacte
EP1441076A1 (fr) Micropieu injectable vissé autoforant
CN110952535A (zh) 一种钢管桩施工方法
EP0418162A1 (fr) Procédé pour la construction d'ouvrages, notamment de passages sous une voie ferrée
JPH0749655B2 (ja) 基礎杭
EP0131562A1 (fr) Procédé pour enfoncer des pieux au moyen d'une vis à refoulement
BE522814A (fr)
FR3033174A1 (fr) Structure gravitaire destinee a une construction maritime de genie civil et procede de fabrication associe
EP1270825B1 (fr) Procédé et installation de compensation de mouvements de sol
JP2001234533A (ja) 管杭及びその管杭の回転圧入施工法
JP2002054135A (ja) 複合構造体
FR3047510A1 (fr) Dispositif de forage de roche en tranchee "forage revolver"
BE368065A (fr)
FR2491108A1 (fr) Equipement special de decoupe de chaussee pour pelle hydraulique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE ES GB IT LI NL SE

17P Request for examination filed

Effective date: 19910326

17Q First examination report despatched

Effective date: 19920424

ITF It: translation for a ep patent filed

Owner name: NOTARBARTOLO & GERVASI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19940301