EP0402309A1 - Profilstange aus kompaktem Verbundwerkstoff und Herstellungsverfahren - Google Patents

Profilstange aus kompaktem Verbundwerkstoff und Herstellungsverfahren Download PDF

Info

Publication number
EP0402309A1
EP0402309A1 EP90810364A EP90810364A EP0402309A1 EP 0402309 A1 EP0402309 A1 EP 0402309A1 EP 90810364 A EP90810364 A EP 90810364A EP 90810364 A EP90810364 A EP 90810364A EP 0402309 A1 EP0402309 A1 EP 0402309A1
Authority
EP
European Patent Office
Prior art keywords
profile
core
bar according
matrix
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90810364A
Other languages
English (en)
French (fr)
Other versions
EP0402309B1 (de
Inventor
Hansjürg Gysin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sulzer Markets and Technology AG
Original Assignee
Sulzer Innotec AG
Sulzer AG
Gebrueder Sulzer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer Innotec AG, Sulzer AG, Gebrueder Sulzer AG filed Critical Sulzer Innotec AG
Priority to AT90810364T priority Critical patent/ATE98159T1/de
Publication of EP0402309A1 publication Critical patent/EP0402309A1/de
Application granted granted Critical
Publication of EP0402309B1 publication Critical patent/EP0402309B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04CBRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
    • D04C1/00Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof
    • D04C1/02Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof made from particular materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • B29C70/083Combinations of continuous fibres or fibrous profiled structures oriented in one direction and reinforcements forming a two dimensional structure, e.g. mats
    • B29C70/085Combinations of continuous fibres or fibrous profiled structures oriented in one direction and reinforcements forming a two dimensional structure, e.g. mats the structure being deformed in a three dimensional configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • B29C70/525Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0003Producing profiled members, e.g. beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0046Producing rods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/06Rods, e.g. connecting rods, rails, stakes

Definitions

  • the invention relates to a profile rod made of compact composite material and profile pieces made therefrom and a method for their production.
  • profile bars are e.g. known in the form of fiber-reinforced thermosets such as epoxies and polyester with reinforcements made of glass or carbon fibers.
  • these known profiles are either still mechanically weak, such as glass mat-polyester profiles, or they are very complex and correspondingly expensive to manufacture, e.g. wound carbon fiber epoxy tubes. They are also not deformable and are only manufactured for a precisely defined, relatively narrowly limited application. Above all, connections and connections with such profiles are difficult and expensive to manufacture.
  • the object of the present invention is to provide high-strength profiles in a simple and inexpensive manner, which can be used very universally. Above all, they should be formable and enable connections to other parts to be made in a simple manner and with as little loss of strength as possible, and also to be adaptable to existing connecting elements. In addition, they should have high mechanical strengths, especially torsional and shear strengths, as well as a wear-resistant surface. This is the case with the inventive Profile bars solved in that the composite material consists of technical continuous fibers in a thermoplastic matrix and that it has an inner core with unidirectional fibers and at least one sheath enveloping the core with a braided fiber tube.
  • thermoplastic matrix and the structure according to the invention make it possible to deform the profile rods or cut profile pieces in a wide variety of ways without losing their compactness and the good mechanical properties, for example bending them or pressing them flat at the ends. Eyes, for example for screw connections or the insertion of bolts, can also be subsequently molded in thermoplastic, without material having to be removed, and thus without significant weakening of the profile at the sensitive connection point. Welding with other profile pieces or with compatible foreign parts is also possible.
  • thermoplastic polymers such as PEEK, PPS, PES, PEI, PA, PP, PC or PS can be used as a matrix, which can be processed easily and without high temperatures.
  • Light, inorganic matrix materials such as glass, aluminum or titanium can also be used.
  • Carbon, aramid, glass or boron fibers are particularly suitable as high-strength and light reinforcing fibers. Good combinations result from PEEK or PPS with at least 45 volume percent of carbon, aramid or glass fibers.
  • a cross-sectional area of the sheathing which is at least 15% of the cross-sectional area of the UD core
  • high tensile and compressive strengths as well as good torsional and shear strengths can be achieved.
  • enveloping sheath braids can be produced particularly torsion-resistant and also flexible profile bars.
  • the mechanical properties can be further adapted and optimized through different fiber angles in the individual sheathing layers.
  • further unidirectional fabrics can also be inserted between the cladding layers.
  • the unidirectional core can be slightly twisted to facilitate length compensation on bends.
  • the profile bars can be designed in cross sections of various shapes for a large number of areas of application.
  • Profile pieces are formed from the profile rod according to the invention by reshaping or bending in at least one partial area. This enables a large number of high-strength components to be produced in a simple manner, such as levers, connecting rods or springs. These profile pieces can have flats, molded eyes or welds with other parts.
  • the method for producing the profiled bars according to the invention is that the unidirectional core and the covering braids are first heated and then continuously formed together in one operation in a pultrusion device, whereby they are compactly consolidated under pressure and partial cooling and pressed into the specified profile shape, whereby Preheating, feed, tensile forces, cooling rate, shaping and forming section in the pultrusion device are matched to the matrix and fibers in such a way that the consolidation takes place under optimal pressure.
  • This process is particularly simple and efficient.
  • FIG. 1 shows in section an inventive compact, light profile rod 10 with a thermoplastic matrix, an inner core 1 with unidirectional, high-strength technical continuous fibers and an enveloping outer jacket layer 6 made of a braided fiber tube.
  • the cross-sectional area 12 of the cladding layer is preferably at least 15% of that (11) of the UD core.
  • the braid jacket 6 also results in a strong cohesion of the UD core and good wear properties, since no individual fibers can sprout on the surface.
  • the fiber angle W of the sheath braid to the longitudinal axis 13 from here, for example, approximately 45 °. Thanks to this fiber arrangement and the thermoplastic matrix, the profile bars can be easily thermoplastic deformed and bent for a wide variety of applications. Only the matrix is deformed, while the length of the high-strength fibers necessarily remains constant. Changes in shape are only possible by arranging the fibers in the matrix or changing them. A deformation, for example from a circular cross section with the circumference U1 to an elliptical shape with a larger circumference U2 in FIG. 3, can take place with a constant cross-sectional area F in that the fiber angle W changes accordingly, that is to say W2 becomes larger than W1.
  • a length compensation for thermoplastic bending of the profile bar are made possible (Fig. 2, 5).
  • a length compensation of the core fibers can also take place without a twisted core 1, as is shown, for example, in FIG. 8 by the cross-sectional planes 31, 32, 33 with the same fiber length.
  • Fig. 4 shows a profile bar with several superimposed sheath braid layers 6, 7, 8.
  • the individual sheath layers can have different fiber angles W, e.g. between 30 and 60 °, in order to optimize the desired torsional strength and bending properties.
  • Fig. 5 two sheath braids 6 and 7 are shown with increasing fiber angle W outwards.
  • the fiber angle W3 of e.g. 50 ° is larger than W4 with e.g. 40 °. In the area of the bend 15, this facilitates the compensation of the different lengths of the outer and inner bend.
  • the length compensation in the UD core 1 is achieved here by a slight torsion 27 of the UD fibers.
  • UD longitudinal fibers shows additional further UD cladding layers 2 and 3 between the outer cladding braids 6, 7, 8, which can also be twisted slightly.
  • the proportion of UD longitudinal fibers, the number, arrangement and thickness of the different layers are combined in accordance with the desired requirement profile. Long tensile and compressive strengths are achieved with UD longitudinal fibers, braided sheaths with optimized fiber angles result in high torsional and shear strengths.
  • FIG. 7 a to f show various possible cross-sectional shapes of the profile bars according to the invention: with a flattened oval shape 21, rounded triangle 24, rectangle 23 and polygon 22 and also with concave cross sections such as L and T shapes 25 and 26.
  • profiles can be made in one Operation can be continuously manufactured, e.g. first formed into a flat rectangle 23 and immediately afterwards formed into an L-shape 25 or first into a triangular shape 24 into a T-shape 26, which in the two partial areas 51, 52 of FIG. 11, and O1, O2 of Fig. 12 is executed.
  • profile pieces of various shapes can be produced in the simplest possible way. Any components such as levers, springs, tension rods, etc. can be created by simply cutting, bending, shaping and connecting. This is not possible with high-strength metal profiles or with previous thermoset composite profiles.
  • a spiral spring part 57 consists of two double arches 37, 38, each of which was produced by thermoplastic deformation of the entire double arch from a round profile with a non-twisted UD core 1.
  • the length compensation in the core 1 takes place in the thermoplastic matrix, 31, 32, 33 representing cross-sectional planes of the same fiber length.
  • a flattening 41 with a molded-in eye 42 is produced thermoplastic.
  • the profile piece 57 is screwed to a holder and a support 39 is supported in the middle.
  • Fig. 9 shows a connection end with a flat 41, eye 42 and an additional thermoplastic reinforcement 43 made of profile material.
  • a spring 44 in FIG. 10 is welded 46 to a holder.
  • FIG. 11 shows a pultrusion device 47 for producing profile bars 10 according to the invention, which are pulled out of the device 47 by a tensile force Z1 with the feed speed V.
  • a tensile force Z1 with the feed speed V.
  • the necessary temperature T1 is generated by a heating source 48.
  • the necessary pressure P1 is built up in the inlet area 49.
  • the shaping and consolidation area O is used for the shaping and consolidation of the profile rod, which is subsequently cooled in the cooling area A, still under pressure P1, to a temperature T2 at which no further plastic deformation occurs.
  • the method according to the invention is further explained on the basis of the temperature and pressure profiles of FIG. 12 corresponding to the pultrusion device 47.
  • the heating area H the starting material is brought to the necessary forming temperature T1.
  • the pressure build-up on P1 takes place in area D, followed by the forming area O, O1, O2.
  • the pressure P1 is still cooled to the fixed temperature T2.
  • the finished profile rod 10 then drops in pressure and is cooled further.
  • the areas H, D, O1, O2, A of FIG. 12 correspond to the device parts 48, 49, 51, 52, 56 in FIG. 11.
  • Fibers, fiber arrangement and a desired profile shape with sufficient forming distance L are the parameters heating rate H, tensile forces Z1, Z2, Z3 and cooling rate set that an optimal feed speed V is achieved with the necessary course of T and P according to FIG. 12. This also depends on the type of raw material.
  • surface-treated fibers can be used as UD rovings or fiber braid sleeves mixed with thermoplastic threads, mixed fibers (hybrid yarn), rovings in thermoplastic hoses or even pre-impregnated rovings.
  • Non-impregnated fibers require higher pressures P1 than prepreg materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

Die Profilstange besteht aus technischen Endlosfasern in einer thermoplastischen Matrix mit einem inneren unidirektionalen Kern (1) und mindestens einem umhüllenden Mantelgeflecht (6). Diese Profile sind hochfest, leicht und universell einsetzbar, da sie einfach thermoplastisch umformbar und verbindbar sind. Mit einem Pultrusionsverfahren sind sie zudem einfach herstellbar.

Description

  • Die Erfindung betrifft eine Profilstange aus kompaktem Verbundwerkstoff und daraus gefertigte Profilstücke und ein Verfahren zu deren Herstellung. Solche Profilstangen sind z.B. in Form von faserverstärkten Duroplasten wie Epoxide und Polyester mit Verstärkungen aus Glas- oder Kohlefasern bekannt. Diese bekannten Profile sind jedoch entweder mechanisch noch relativ schwach wie beispiels­weise Glasmatten-Polyester-Profile oder sie sind sehr aufwendig und entsprechend teuer herzustellen, wie z.B. gewickelte Kohlefaserepoxyrohre. Sie sind auch nicht verformbar und nur für eine genau definierte, relativ eng begrenzte Anwendung hergestellt. Vor allem Anschlüsse und Verbindungen mit solchen Profilen sind schwer und auf­wendig herzustellen.
  • Aufgabe der vorliegenden Erfindung ist es nun, auf ein­fache und kostengünstige Art hochfeste Profile zu schaf­fen, welche sehr universell einsetzbar sind. Sie sollen vor allem umformbar sein und auf einfache Art und mit möglichst geringem Festigkeitsverlust Verbindungen mit anderen Teilen ermöglichen wie auch an bestehende Verbin­dungselemente angepasst werden können. Zudem sollen sie hohe mechanische Festigkeiten, speziell Torsions- und Schubfestigkeiten wie auch eine verschleissfeste Ober­fläche aufweisen. Dies wird bei den erfindungsgemässen Profilstangen dadurch gelöst, dass der Verbundwerkstoff aus technischen Endlosfasern in einer thermoplastischen Matrix besteht, und dass er einen inneren Kern mit unidirektionalen Fasern und mindestens einen den Kern umhüllenden Mantel mit einem geflochtenen Faserschlauch aufweist. Durch die thermoplastische Matrix und den erfindungsgemässen Aufbau ist es möglich, die Profilstan­gen, bzw. zugeschnittene Profilstücke, auf verschiedenste Arten zu verformen, ohne dass deren Kompaktheit und die guten mechanischen Eigenschaften verloren gehen, bei­spielsweise zu biegen oder an den Enden flach zu drücken. Auch Augen, z.B. für Verschraubungen oder die Aufnahme von Bolzen können nachträglich thermoplastisch eingeformt werden, ohne dass Material abgetragen werden muss, und damit ohne wesentliche Schwächung des Profils an der empfindlichen Verbindungsstelle. Auch eine Verschweissung mit anderen Profilstücken oder mit kompatiblen Fremdtei­len ist möglich.
  • Die abhängigen Ansprüche betreffen besonders vorteilhafte Ausführungen der Erfindung. Danach können thermoplasti­sche Polymere wie PEEK, PPS, PES, PEI, PA, PP, PC oder PS als Matrix eingesetzt werden, welche einfach und ohne hohe Temperaturen verarbeitbar sind. Es können auch leichte, anorganische Matrixmaterialien wie Glas, Aluminium oder Titan eingesetzt werden. Als hochfeste und leichte Verstärkungsfasern können sich besonders gut Kohle, Aramid, Glas oder Borfasern eignen. Gute Kombinationen ergeben sich aus PEEK oder PPS mit mindestens 45 Volumen-­Prozent an Kohle, Aramid oder Glasfasern. Mit einer Querschnittsfläche der Ummantelung, welche mindestens 15 % der Querschnittsfläche des UD-Kerns beträgt, können sowohl hohe Zug- und Druckfestigkeiten als auch gute Torsions- und Schubfestigkeiten erreicht werden. Mit mehreren übereinanderliegenden, umhüllenden Mantelge­flechten können besonders torsionsfeste und auch biegefä­hige Profilstangen erzeugt werden. Durch unterschiedliche Faserwinkel in den einzelnen Ummantelungsschichten können die mechanischen Eigenschaften weiter angepasst und optimiert werden. Für dicke Profilstangen können zwischen den Mantelschichten auch weitere unidirektionale Gelege eingeschoben sein. Der unidirektionale Kern kann leicht tordiert sein zur Erleichterung eines Längenausgleichs bei Biegungen. Die Profilstangen können in Querschnitten verschiedenster Form für eine Grosszahl von Einsatzberei­chen ausgebildet sein. Profilstücke werden aus der erfindungsgemässen Profilstange gebildet durch Umformung oder Biegung in mindestens einem Teilbereich. Dadurch kann auf einfache Art eine Vielzahl von hochfesten Bauelementen erzeugt werden wie Hebel, Verbindungsstangen oder Federn. Diese Profilstücke können Abflachungen, eingeformte Augen oder auch Verschweissungen mit anderen Teilen aufweisen.
  • Das Verfahren zur Herstellung der erfindungsgemässen Profilstangen besteht darin, dass der unidirektionale Kern und die Ummantelungsgeflechte zuerst aufgeheizt und dann zusammen in einem Arbeitsgang in einer Pultrusions­einrichtung kontinuierlich gebildet werden, wobei sie unter Druck und teilweiser Abkühlung kompakt konsolidiert und in die vorgegebene Profilform gepresst werden, wobei Vorheizung, Vorschub, Zugkräfte, Abkühlrate, Formgebung und Umformstrecke in der Pultrusionseinrichtung so auf Matrix und Fasern abgestimmt werden, dass die Konsolidie­rung unter optimalem Druck erfolgt. Dieses Verfahren ist besonders einfach und effizient.
  • Im folgenden wird die Erfindung anhand von Ausführungs­beispielen im Zusammenhang mit den Zeichnungen näher erläutert. Dabei zeigt:
    • Fig. 1 einen Querschnitt durch eine erfindungs­gemässe Profilstange mit UD-Kern und Geflechtmantel.
    • Fig. 2 eine teilweise geschnittene Ansicht einer Profilstange.
    • Fig. 3 eine Querschnittverformung einer Profil­stange.
    • Fig. 4 eine Profilstange mit mehreren Mantelge­flechtschichten.
    • Fig. 5 eine gebogene Profilstange mit zwei Mantelgeflechten und unterschiedlichen Faserwinkeln.
    • Fig. 6 eine Profilstange mit mehreren Mantelge­flechten und UD-Gelegen.
    • Fig. 7 verschiedene Beispiele von Querschnittfor­men.
    • Fig. 8 ein umgeformtes und gebogenes Profilstück.
    • Fig. 9 ein Profilstück mit eingeformtem Auge.
    • Fig. 10 ein Profilstück in Federform, an eine Halterung angeschweisst.
    • Fig. 11 ein Herstellverfahren für Profilstangen mit einer Pultrusionseinrichtung.
    • Fig. 12 Temperatur- und Druckverlauf beim Her­stellverfahren von Fig. 11.
  • Fig. 1 zeigt im Schnitt eine erfindungsgemässe kompakte, leichte Profilstange 10 mit thermoplastischer Matrix, einem inneren Kern 1 mit unidirektionalen, hochfesten technischen Endlosfasern und einer umhüllenden äusseren Mantelschicht 6 aus einem geflochtenen Faserschlauch.
  • Vorzugsweise beträgt die Querschnittsfläche 12 der Mantelschicht mindestens 15 % jener (11) des UD-Kerns. Der Geflechtmantel 6 ergibt dabei auch einen starken Zusammenhalt des UD-Kerns und gute Verschleisseigen­schaften, da an der Oberfläche keine einzelnen Fasern aufspriessen können.
  • In Fig. 2 ist der Faserwinkel W des Mantelgeflechts zur Längsachse 13 von hier z.B. ca. 45° gezeigt. Dank dieser Faseranordnung und der thermoplastischen Matrix können die Profilstangen für verschiedenste Anwendungen auf einfache Art thermoplastisch verformt und gebogen werden. Dabei wird nur die Matrix verformt, während die Länge der hochfesten Fasern notwendigerweise konstant bleibt. Nur durch die Anordnung der Fasern in der Matrix bzw. deren Aenderung werden Formänderungen ermöglicht. Eine Verfor­mung z.B. von einem kreisförmigen Querschnitt mit Umfang U1 zu elliptischer Form mit grösserem Umfang U2 in Fig. 3 kann bei gleichbleibender Querschnittsfläche F dadurch erfolgen, dass der Faserwinkel W entsprechend ändert, also W2 grösser wird als W1. Mittels einer leichten Torsion 27 des UD-Kerns um die Längsachse 13 kann auch hier ein Längenausgleich bei thermoplastischem Verbiegen der Profilstange ermöglicht werden (Fig. 2, 5). Bei einer Doppelbiegung, bei der die Längsachse 13 vor und nach der Biegung parallel ist, kann auch ohne tordierten Kern 1 ein Längenausgleich der Kernfasern erfolgen, wie dies z.B. in Fig. 8 durch die Querschnittebenen 31, 32, 33 mit gleicher Faserlänge dargestellt ist.
  • Fig. 4 zeigt eine Profilstange mit mehreren übereinander­liegenden Mantelgeflechtschichten 6, 7, 8. Dabei können die einzelnen Mantelschichten unterschiedliche Faserwin­kel W, z.B. zwischen 30 und 60° liegend, aufweisen, um damit gewünschte Torsionsfestigkeiten und Biegeeigen­schaften zu optimieren.
  • In Fig. 5 sind zwei Mantelgeflechte 6 und 7 mit nach aussen zunehmendem Faserwinkel W dargestellt. Der Faser­winkel W3 von z.B. 50° ist grösser als W4 mit z.B. 40°. Im Bereich der Biegung 15 erleichtert dies die Kompensa­tion der unterschiedlichen Längen von äusserem und innerem Bogen. Der Längenausgleich im UD-Kern 1 wird hier durch eine leichte Torsion 27 der UD-Fasern erreicht.
  • Fig. 6 zeigt zusätzliche weitere UD-Mantelschichten 2 und 3 zwischen den äusseren Mantelgeflechten 6, 7, 8, welche auch leicht tordiert sein können. Der Anteil der UD-Längsfasern, die Anzahl, Anordnung und Stärke der verschiedenen Schichten werden entsprechend dem gewünsch­ten Anforderungsprofil kombiniert. Mit UD-Längsfasern werden hohe Zug- und Druckfestigkeiten erzielt, Mantelge­flechte mit optimierten Faserwinkeln ergeben hohe Torsions- und Schubfestigkeiten.
  • Fig. 7 a bis f zeigen verschiedene mögliche Querschnitt­formen der erfindungsgemässen Profilstangen: Mit abge­flachter Ovalform 21, abgerundeten Dreieck 24, Rechteck 23 und Vieleck 22 sowie auch mit konkaven Querschnitten wie L- und T-Formen 25 und 26. Dabei können solche Profile in einem Arbeitsgang kontinuierlich hergestellt werden, z.B. zuerst Formung in ein flaches Rechteck 23 und unmittelbar anschliessend Umformung in eine L-Form 25 oder zuerst in eine Dreieckform 24 übergehend in eine T-Form 26, was in den beiden Teilbereichen 51, 52 von Fig. 11, bzw. O1, O2 von Fig. 12 ausgeführt wird.
  • Aus diesen Profilstangen 10 als Meterware können auf denkbar einfachste Art Profilstücke verschiedenster Formen hergestellt werden. Durch einfaches Zuschneiden, Biegen, Umformen und Verbinden können beliebige Bauele­mente wie Hebel, Federn, Zugstäbe etc. erzeugt werden. Dies ist weder mit hochfesten Metallprofilen noch mit bisherigen Duroplastverbundprofilen möglich.
  • Die Fig. 8 bis 10 zeigen Beispiele solcher Profilstücke. Ein Biegefederteil 57 besteht aus zwei Doppelbogen 37, 38, welche je durch thermoplastische Verformung des ganzen Doppelbogens aus einem Rundprofil mit nichttor­diertem UD-Kern 1 erzeugt wurden. Der Längenausgleich im Kern 1 erfolgt dabei in der thermoplastischen Matrix, wobei 31, 32, 33 Querschnittebenen gleicher Faserlänge darstellen. In den Teilbereichen 35, 36 ist eine Abfla­chung 41 mit eingeformtem Auge 42 thermoplastisch er­zeugt. Hier ist das Profilstück 57 an eine Halterung angeschraubt und in der Mitte wird eine Auflage 39 abgestützt. Fig. 9 zeigt ein Verbindungsende mit Abflachung 41, Auge 42 und einer zusätzlichen thermoplastischen Verstärkung 43 aus Profilmaterial. Eine Feder 44 in Fig. 10 ist an eine Halterung angeschweisst 46.
  • Fig. 11 zeigt eine Pultrusionseinrichtung 47 zur Herstel­lung erfindungsgemässer Profilstangen 10, welche durch eine Zugkraft Z1 mit der Vorschubgeschwindigkeit V aus der Einrichtung 47 herausgezogen werden. Am Eingang werden der UD-Kern 1 und das Mantelgeflecht 6 je unter den Zugkräften Z2 bzw. Z3 stehend zugeführt. Durch eine Heizquelle 48 wird dabei die notwendige Temperatur T1 erzeugt. Im Einlaufbereich 49 wird der notwendige Druck P1 aufgebaut. Im Form- und Konsolidierbereich O erfolgt die Umformung und Konsolidierung der Profilstange, welche anschliessend im Kühlbereich A, immer noch unter Druck P1, auf eine Temperatur T2 abgekühlt wird, bei welcher keine weitere plastische Verformung mehr auftritt.
  • Das erfindungsgemässe Verfahren wird weiter erläutert anhand der, der Pultrusionseinrichtung 47 entsprechenden Temperatur und Druckverläufe von Fig. 12. Im Aufheiz­bereich H wird das Ausgangsmaterial auf die notwendige Umformtemperatur T1 gebracht. Der Druckaufbau auf P1 erfolgt im Bereich D, gefolgt vom Umformbereich O, O1, O2. Im anschliessenden Abkühlbereich A wird noch unter Druck P1 auf die Festtemperatur T2 gekühlt. Anschliessend erfolgt Druckabfall und weitere Auskühlung der fertigen Profilstange 10. Die Bereiche H, D, O1, O2, A von Fig. 12 entsprechen den Vorrichtungsteilen 48, 49, 51, 52, 56 in Fig. 11. Für ein gegebenes Ausgangsmaterial mit Matrix, Fasern, Faseranordnung und eine gewünschte Profilform mit ausreichender Umformstrecke L werden die Parameter Aufheizrate H, Zugkräfte Z1, Z2, Z3 und Abkühlrate so eingestellt, dass eine optimale Vorschubgeschwindigkeit V mit dem notwendigen Verlauf von T und P nach Fig. 12 erreicht wird. Dies hängt auch von der Art des Ausgangs­materials ab. So können oberflächenbehandelte Fasern als UD-Rovings oder Faserflechtschläuche vermischt mit Thermoplastfäden, gemischte Fasern (hybrid yarn), Rovings in Thermoplastschläuchen oder auch vorimprägnierte Rovings eingesetzt werden. Nichtimprägnierte Fasern erfodern dabei höhere Drücke P1 als Prepreg-Materialien.
  • Bezeichnungsliste
    • 1 Innerer UD-Kern
    • 2, 3 UD-Mantelschichten
    • 6 äussere Mantelgeflechtschicht
    • 7, 8 Weitere Mantelgeflechte
    • 10 Profilstange
    • 11 Querschnittsfläche von 1
    • 12 Querschnittsfläche von 6 bis 8
    • 13 Längsachse
    • 15 Biegung
    • 21 Profilquerschnitt abgeflacht
    • 22 Vieleckig
    • 23 Flach rechteckig
    • 24 Dreieckig
    • 25 L-förmig
    • 26 T-förmig
    • 27 Torsionsrichtung von UD-Fasern
    • 31, 32, 33 Querschnittebenen gleicher Faserlänge
    • 35, 36 Teilbereich Abflachung, Auge
    • 37, 38 Teilbereich Doppelbiegung
    • 39 Auflage
    • 41 Abflachung
    • 42 Auge
    • 43 Verstärkung
    • 44 Federförmiges Profilstück
    • 46 Schweissverbindung zur Halterung
    • 47 Pultrusionseinrichtung
    • 48 Heizung
    • 49 Einlauf
    • 51, 52 Profilformen
    • 56 Kühlteil
    • 57 Biegefederteil
    • W, W1-W4 Faserwinkel
    • U1, 2 Umfang
    • F Fläche
    • Z1 Zugkraft an Profilstange
    • Z2 Zugkraft an UD-Kern
    • Z3 Zugkraft an Mantelgeflecht
    • V Vorschubgeschwindigkeit
    • T Temperatur
    • T1 Umformtemperatur
    • T2 Festtemperatur
    • P Druck
    • P1 Optimaler Druck
    • H Aufheizbereich
    • D Druckaufbau
    • O1, 2 Form und Konsolidierbereich
    • A Kühlbereich und
    • L Länge von O, Umformstrecke

Claims (19)

1. Profilstange aus kompaktem Verbundwerkstoff, dadurch gekennzeichnet, dass der Verbundwerkstoff aus techni­schen Endlosfasern in einer thermoplastischen Matrix besteht, und dass er einen inneren Kern (1) mit uni­direktionalen Fasern und mindestens einen den Kern umhüllenden Mantel (6) aus einem geflochtenen Faser­schlauch aufweist.
2. Profilstange nach Anspruch 1, gekennzeichnet durch ein thermoplastisches Polymer als Matrix.
3. Profilstange nach Anspruch 2, dadurch gekennzeichnet, dass als thermoplastisches Polymer PEEK, PPS, PES, PEI, PA, PC oder PS vorgesehen ist.
4. Profilstange nach Anspruch 1, dadurch gekennzeichnet, dass modifizierte Duromere, z.B. modifizierte Poly­ester als thermoplastische Matrix vorgesehen sind.
5. Profilstange nach Anspruch 1, dadurch gekennzeichnet, dass Glas, Aluminium oder Titan als Matrix vorgesehen ist.
6. Profilstange nach Anspruch 1, dadurch gekennzeichnet, dass hochfeste Verstärkungsfasern aus Kohle, Aramid, Glas oder Bor vorgesehen sind.
7. Profilstange nach Anspruch 3, dadurch gekennzeichnet, dass PEEK oder PPS mit mindestens 45 Volumen Prozent an Verstärkungsfasern aus Kohle, Aramid oder Glas vorgesehen sind.
8. Profilstange nach Anspruch 1, dadurch gekennzeichnet, dass die Querschnittsfläche der Ummantelung (6) mindestens 15 % der Querschnittsfläche des UD-Kerns (1) beträgt.
9. Profilstange nach Anspruch 1, dadurch gekennzeichnet, dass mehrere übereinanderliegende, umhüllende Mantel­geflechte (6, 7, 8) vorgesehen sind.
10. Profilstange nach Anspruch 9, dadurch gekennzeichnet, dass die Ummantelungsschichten unterschiedliche Faserwinkel W aufweisen.
11. Profilstange nach Anspruch 10, dadurch gekennzeich­net, dass die Faserwinkel der Ummantelungsschichten nach aussen zunehmen.
12. Profilstange nach Anspruch 9, dadurch gekennzeichnet, dass zwischen den Mantelschichten weitere uni­direktionale Gelege (2, 3) vorgesehen sind.
13. Profilstange nach Anspruch 1, dadurch gekennzeichnet, dass der unidirektionale Kern (1) tordiert ist.
14. Profilstange nach Anspruch 1, dadurch gekennzeichnet, dass deren Querschnitt rund, abgeflacht (23) oder in abgerundeter Vieleckform (24, 26) ausgebildet ist.
15. Profilstück, welches aus einer Profilstange nach einem der Ansprüche 1 bis 14 gefertigt und mindestens in einem Teilbereich umgeformt oder gebogen ist.
16. Profilstück nach Anspruch 15, dadurch gekennzeichnet, dass es in einem Teilbereich (35) abgeflacht ist.
17. Profilstück nach Anspruch 15, dadurch gekennzeichnet, dass es ein eingeformtes Auge (42) aufweist.
18. Profilstück nach Anspruch 15, dadurch gekennzeichnet, dass es mit einem weiteren Profilstück anderer Form oder mit einem Fremdteil durch Verschweissung (46) der thermoplastischen Matrix verbunden ist.
19. Verfahren zur Herstellung von Profilstangen nach Anspruch 1, dadurch gekennzeichnet, dass der uni­direktionale Kern und die Ummantelungsgeflechte zuerst aufgeheizt und dann zusammen in einem Arbeits­gang in einer Pultrusionseinrichtung (47) kontinuier­lich gebildet werden, wobei sie unter Druck und teilweiser Abkühlung kompakt konsolidiert und in die vorgegebene Profilform gepresst werden, wobei Vor­heizung, Vorschub, Zugkräfte, Abkühlrate und Formge­bung in der Pultrusionseinrichtung so auf Matrix und Fasern abgestimmt sind, dass die Konsolidierung unter optimalem Druck erfolgt.
EP90810364A 1989-06-05 1990-05-18 Profilstange aus kompaktem Verbundwerkstoff und Herstellungsverfahren Expired - Lifetime EP0402309B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90810364T ATE98159T1 (de) 1989-06-05 1990-05-18 Profilstange aus kompaktem verbundwerkstoff und herstellungsverfahren.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2096/89 1989-06-05
CH209689 1989-06-05

Publications (2)

Publication Number Publication Date
EP0402309A1 true EP0402309A1 (de) 1990-12-12
EP0402309B1 EP0402309B1 (de) 1993-12-08

Family

ID=4225794

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90810364A Expired - Lifetime EP0402309B1 (de) 1989-06-05 1990-05-18 Profilstange aus kompaktem Verbundwerkstoff und Herstellungsverfahren

Country Status (3)

Country Link
EP (1) EP0402309B1 (de)
AT (1) ATE98159T1 (de)
DE (1) DE59003759D1 (de)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0572750A1 (de) * 1992-06-04 1993-12-08 Sulzer Innotec Ag Mechanisches Funktionsteil hoher Festigkeit aus thermoplastischem Verbundwerkstoff
EP0579163A2 (de) * 1992-07-14 1994-01-19 Composite Development Corporation Strukturelement aus einem faserverstärkten thermoplastischen Material und Verfahren zu seiner Herstellung
DE4302409A1 (de) * 1993-01-28 1994-08-11 Ferriere Belloli & Co Zugkörper mit angeformtem Profil sowie Verfahren zur Herstellung derselben
WO1995015844A1 (de) * 1993-12-06 1995-06-15 Milliken Europe N.V. Verfahren zur herstellung eines produktes aus einem faserverstärkten verbundwerkstoff
EP0662391A2 (de) * 1994-01-07 1995-07-12 Composite Development Corporation Verbundachsenstruktur und Verfahren zu deren Herstellung
WO1996000647A1 (en) * 1994-06-28 1996-01-11 Marshall Industries Composites Apparatus for forming reinforcing structural rebar
US5580626A (en) * 1992-07-14 1996-12-03 Composite Development Corporation High strength, high stiffness, curved composite member
DE19544803A1 (de) * 1995-12-01 1997-06-05 Mtu Muenchen Gmbh Verbundbauteil
US5650109A (en) * 1994-06-28 1997-07-22 Reichhold Chemicals, Inc. Method of making reinforcing structural rebar
WO1998015403A1 (en) * 1996-10-07 1998-04-16 Marshall Industries Composites Reinforced composite product and apparatus and method for producing same
FR2756211A1 (fr) * 1996-11-26 1998-05-29 Eurocopter France Procede de fabrication d'un element composite flexible et torsible
DE19834873A1 (de) * 1998-08-01 2000-02-10 Dornier Gmbh Hochsteifes CFK-Rohr für schnelle Massenbewegung und Verfahren zu seiner Herstellung
EP0979724A2 (de) * 1998-08-11 2000-02-16 Sulzer Innotec Ag Herstellung von Profilen aus Faser-Kunststoff-Verbundstoffen
EP1275490A2 (de) * 2001-07-13 2003-01-15 Top Glass S.p.A. Formverfahren von pultrudierten Profilen, insbesondere zur Herstellung von Verstärkungselementen für Segel und dergleichen
WO2010115515A3 (de) * 2009-04-08 2010-12-09 Rehau Ag + Co Verfahren zur herstellung eines hochsteifen, hybriden endlosprofils sowie hochsteifes, hybrides endlosprofil
DE102010049563A1 (de) * 2010-10-25 2012-04-26 Daimler Ag Verfahren zum Herstellen einer Drehstabfeder
DE102011018419A1 (de) 2011-04-21 2012-10-25 Daimler Ag Flechtpultrusion eines thermoplastischen FVK-Hohlprofils mit optimierten Formkern
DE102011018422A1 (de) 2011-04-21 2012-10-25 Daimler Ag Kontinuierliches Flechtpultrusionsverfahren für ein thermoplastisches FVK-Hohlprofil und Flechtpultrusionsanlage
DE102011018420A1 (de) 2011-04-21 2012-10-25 Daimler Ag Flechtpultrusion eines thermoplastischen FVK-Hohlprofils mit optimierter Faserführung
DE102011100546A1 (de) 2011-05-05 2012-11-08 Daimler Ag Flechtpultrusionsverfahren und -anlage
DE102013215384A1 (de) * 2013-08-05 2015-02-26 Wobben Properties Gmbh Verfahren zur Herstellung eines Verbundformteils, Verbundformteil, Sandwichbauteil und Rotorblattelement und Windenergieanlage
DE102014222846A1 (de) * 2014-11-10 2016-05-12 Volkswagen Aktiengesellschaft Verfahren zum mittels Pultrusion Herstellen von Faserverbundstoffprofilteilen sowie Faserverbundstoffprofilteil
DE102017110535A1 (de) * 2017-05-15 2018-11-15 J. Schmalz Gmbh Verfahren zur Handhabung von Geflechtschläuchen sowie Vorrichtung zur Handhabung von Geflechtschläuchen
CN109693401A (zh) * 2017-10-20 2019-04-30 江苏源盛复合材料技术股份有限公司 复合材料拉挤模具、成型设备与其方法、型材及其应用
EP3450148A4 (de) * 2016-07-06 2019-07-17 Mitsubishi Heavy Industries, Ltd. Verbundstoff, pultrusionsvorrichtung und pultrusionsverfahren
DE102019210412A1 (de) * 2019-07-15 2021-01-21 Wafios Aktiengesellschaft Verfahren zur Herstellung eines Biegeteils und Biegemaschine zur Durchführung des Verfahrens

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007051517B4 (de) * 2006-12-22 2020-02-27 Leichtbau-Zentrum Sachsen Gmbh Hohlwelle aus Faserverbundwerkstoff und darauf zu befestigende Funktionselemente

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2558855A (en) * 1944-03-06 1951-07-03 Union Carbide & Carbon Corp Rod comprising bonded fibrous material and method of making same
US2602766A (en) * 1948-04-10 1952-07-08 Richard J Francis Reinforced plastic rods and methods of making same
US3124032A (en) * 1961-03-31 1964-03-10 Impregnated braided packing and method of making the same
GB1305198A (de) * 1969-10-24 1973-01-31
FR2502036A1 (fr) * 1981-03-20 1982-09-24 Honda Motor Co Ltd Procede pour produire une piece mecanique d'un corps de forme fibreuse de renforcement integre dans une matiere metallique, et piece mecanique obtenue, bielle
EP0100138A2 (de) * 1982-07-23 1984-02-08 Fisco Products Limited Bandmass
EP0102393A1 (de) * 1981-05-29 1984-03-14 USUI, Fumio Verfahren und vorrichtung zur herstellung von hohlartikeln
WO1987004916A1 (en) * 1986-02-19 1987-08-27 Harrington Arthritis Research Center Beam construction and method
EP0291023A2 (de) * 1987-05-11 1988-11-17 Roblon A/S Verfahren zum Herstellen eines kabelartigen Verbundkörpers aus Kunststoff
EP0308237A1 (de) * 1987-09-17 1989-03-22 Tonen Corporation Kohlenstoffaserverstärkte Harz-Pultrusionsgegenstände und Verfahren zu ihrer Herstellung

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2558855A (en) * 1944-03-06 1951-07-03 Union Carbide & Carbon Corp Rod comprising bonded fibrous material and method of making same
US2602766A (en) * 1948-04-10 1952-07-08 Richard J Francis Reinforced plastic rods and methods of making same
US3124032A (en) * 1961-03-31 1964-03-10 Impregnated braided packing and method of making the same
GB1305198A (de) * 1969-10-24 1973-01-31
FR2502036A1 (fr) * 1981-03-20 1982-09-24 Honda Motor Co Ltd Procede pour produire une piece mecanique d'un corps de forme fibreuse de renforcement integre dans une matiere metallique, et piece mecanique obtenue, bielle
EP0102393A1 (de) * 1981-05-29 1984-03-14 USUI, Fumio Verfahren und vorrichtung zur herstellung von hohlartikeln
EP0100138A2 (de) * 1982-07-23 1984-02-08 Fisco Products Limited Bandmass
WO1987004916A1 (en) * 1986-02-19 1987-08-27 Harrington Arthritis Research Center Beam construction and method
EP0291023A2 (de) * 1987-05-11 1988-11-17 Roblon A/S Verfahren zum Herstellen eines kabelartigen Verbundkörpers aus Kunststoff
EP0308237A1 (de) * 1987-09-17 1989-03-22 Tonen Corporation Kohlenstoffaserverstärkte Harz-Pultrusionsgegenstände und Verfahren zu ihrer Herstellung

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0572750A1 (de) * 1992-06-04 1993-12-08 Sulzer Innotec Ag Mechanisches Funktionsteil hoher Festigkeit aus thermoplastischem Verbundwerkstoff
US5580626A (en) * 1992-07-14 1996-12-03 Composite Development Corporation High strength, high stiffness, curved composite member
EP0579163A2 (de) * 1992-07-14 1994-01-19 Composite Development Corporation Strukturelement aus einem faserverstärkten thermoplastischen Material und Verfahren zu seiner Herstellung
EP0579163A3 (de) * 1992-07-14 1994-02-23 Composite Dev Corp
DE4302409A1 (de) * 1993-01-28 1994-08-11 Ferriere Belloli & Co Zugkörper mit angeformtem Profil sowie Verfahren zur Herstellung derselben
WO1995015844A1 (de) * 1993-12-06 1995-06-15 Milliken Europe N.V. Verfahren zur herstellung eines produktes aus einem faserverstärkten verbundwerkstoff
US5759323A (en) * 1993-12-06 1998-06-02 Van Hoey; Marc Process for the manufacture of a product made of a fiber-reinforced composite material
AU687964B2 (en) * 1993-12-06 1998-03-05 Milliken Europe N.V. Process for manufacturing products made of a fibre-reinforced composite material
EP0662391A3 (de) * 1994-01-07 1995-11-15 Composite Dev Corp Verbundachsenstruktur und Verfahren zu deren Herstellung.
EP0662391A2 (de) * 1994-01-07 1995-07-12 Composite Development Corporation Verbundachsenstruktur und Verfahren zu deren Herstellung
US5650109A (en) * 1994-06-28 1997-07-22 Reichhold Chemicals, Inc. Method of making reinforcing structural rebar
WO1996000647A1 (en) * 1994-06-28 1996-01-11 Marshall Industries Composites Apparatus for forming reinforcing structural rebar
DE19544803A1 (de) * 1995-12-01 1997-06-05 Mtu Muenchen Gmbh Verbundbauteil
DE19544803C2 (de) * 1995-12-01 2000-07-06 Mtu Muenchen Gmbh Verbundbauteil
US6221295B1 (en) 1996-10-07 2001-04-24 Marshall Industries Composites, Inc. Reinforced composite product and apparatus and method for producing same
US6493914B2 (en) 1996-10-07 2002-12-17 Marshall Industries Composites, Inc. Reinforced composite product and apparatus and method for producing same
WO1998015403A1 (en) * 1996-10-07 1998-04-16 Marshall Industries Composites Reinforced composite product and apparatus and method for producing same
US5961288A (en) * 1996-11-26 1999-10-05 Eurocopter Process for manufacturing a composite component capable of flexing and twisting
FR2756211A1 (fr) * 1996-11-26 1998-05-29 Eurocopter France Procede de fabrication d'un element composite flexible et torsible
DE19834873A1 (de) * 1998-08-01 2000-02-10 Dornier Gmbh Hochsteifes CFK-Rohr für schnelle Massenbewegung und Verfahren zu seiner Herstellung
DE19834873C2 (de) * 1998-08-01 2000-06-08 Dornier Gmbh Hochsteifes CFK-Rohr für schnelle Massenbewegung und Verfahren zu seiner Herstellung
EP0979724A3 (de) * 1998-08-11 2002-01-02 Sulzer Innotec Ag Herstellung von Profilen aus Faser-Kunststoff-Verbundstoffen
EP0979724A2 (de) * 1998-08-11 2000-02-16 Sulzer Innotec Ag Herstellung von Profilen aus Faser-Kunststoff-Verbundstoffen
EP1275490A2 (de) * 2001-07-13 2003-01-15 Top Glass S.p.A. Formverfahren von pultrudierten Profilen, insbesondere zur Herstellung von Verstärkungselementen für Segel und dergleichen
EP1275490A3 (de) * 2001-07-13 2003-04-09 Top Glass S.p.A. Formverfahren von pultrudierten Profilen, insbesondere zur Herstellung von Verstärkungselementen für Segel und dergleichen
WO2010115515A3 (de) * 2009-04-08 2010-12-09 Rehau Ag + Co Verfahren zur herstellung eines hochsteifen, hybriden endlosprofils sowie hochsteifes, hybrides endlosprofil
DE102010049563A1 (de) * 2010-10-25 2012-04-26 Daimler Ag Verfahren zum Herstellen einer Drehstabfeder
DE102010049563B4 (de) * 2010-10-25 2017-09-14 Daimler Ag Verfahren zum Herstellen einer Drehstabfeder
DE102011018420A1 (de) 2011-04-21 2012-10-25 Daimler Ag Flechtpultrusion eines thermoplastischen FVK-Hohlprofils mit optimierter Faserführung
DE102011018419A1 (de) 2011-04-21 2012-10-25 Daimler Ag Flechtpultrusion eines thermoplastischen FVK-Hohlprofils mit optimierten Formkern
DE102011018422A1 (de) 2011-04-21 2012-10-25 Daimler Ag Kontinuierliches Flechtpultrusionsverfahren für ein thermoplastisches FVK-Hohlprofil und Flechtpultrusionsanlage
DE102011100546A1 (de) 2011-05-05 2012-11-08 Daimler Ag Flechtpultrusionsverfahren und -anlage
DE102011100546B4 (de) * 2011-05-05 2013-08-29 Daimler Ag Flechtpultrusionsverfahren und -anlage
DE102013215384A1 (de) * 2013-08-05 2015-02-26 Wobben Properties Gmbh Verfahren zur Herstellung eines Verbundformteils, Verbundformteil, Sandwichbauteil und Rotorblattelement und Windenergieanlage
EP3150363A2 (de) 2013-08-05 2017-04-05 Wobben Properties GmbH Verfahren zur herstellung eines verbundformteils, verbundformteil, sandwichbauteil und rotorblattelement und windenergieanlage
DE102014222846A1 (de) * 2014-11-10 2016-05-12 Volkswagen Aktiengesellschaft Verfahren zum mittels Pultrusion Herstellen von Faserverbundstoffprofilteilen sowie Faserverbundstoffprofilteil
EP3450148A4 (de) * 2016-07-06 2019-07-17 Mitsubishi Heavy Industries, Ltd. Verbundstoff, pultrusionsvorrichtung und pultrusionsverfahren
US11752710B2 (en) 2016-07-06 2023-09-12 Mitsubishi Heavy Industries, Ltd. Composite material, pultrusion device, and pultrusion method
DE102017110535A1 (de) * 2017-05-15 2018-11-15 J. Schmalz Gmbh Verfahren zur Handhabung von Geflechtschläuchen sowie Vorrichtung zur Handhabung von Geflechtschläuchen
DE102017110535B4 (de) 2017-05-15 2024-02-15 Technische Universität Dresden Verfahren zur Handhabung von Geflechtschläuchen sowie Vorrichtung zur Handhabung von Geflechtschläuchen
CN109693401A (zh) * 2017-10-20 2019-04-30 江苏源盛复合材料技术股份有限公司 复合材料拉挤模具、成型设备与其方法、型材及其应用
CN109693401B (zh) * 2017-10-20 2024-05-28 江苏源盛复合材料技术股份有限公司 复合材料拉挤模具、成型设备与其方法、型材及其应用
DE102019210412A1 (de) * 2019-07-15 2021-01-21 Wafios Aktiengesellschaft Verfahren zur Herstellung eines Biegeteils und Biegemaschine zur Durchführung des Verfahrens

Also Published As

Publication number Publication date
ATE98159T1 (de) 1993-12-15
EP0402309B1 (de) 1993-12-08
DE59003759D1 (de) 1994-01-20

Similar Documents

Publication Publication Date Title
EP0402309B1 (de) Profilstange aus kompaktem Verbundwerkstoff und Herstellungsverfahren
DE3851023T2 (de) Kohlenstoffaserverstärkte Harz-Pultrusionsgegenstände und Verfahren zu ihrer Herstellung.
DE69202542T2 (de) Fadenwickelrohr mit Gewindeverbindung.
DE3341368C2 (de)
DE69007648T2 (de) Pultrudierte thermoplastische Verbundstoffgegenstände mit variablem Querschnitt sowie Verfahren und Vorrichtung zu deren Herstellung.
DE69710418T2 (de) Verfahren und Vorrichtung zum Herstellen der Vorform einer Felge
DE102010049563B4 (de) Verfahren zum Herstellen einer Drehstabfeder
CA2671371A1 (en) Flexible fiber reinforced composite rebar
DE2923132C2 (de) Verfahren zur Herstellung eines Kunststoffadens für ein optisches Kabel sowie Vorrichtung zur Durchführung dieses Verfahrens
DE102019006280A1 (de) Verfahren zur Herstellung einer formschlüssigen Lasteinleitung für stabförmige Fasernbundstrukturen sowie deren Gestaltung
DE3506037C1 (de) Schraubenfeder sowie Verfahren zu deren Herstellung
DE4302409C2 (de) Zug- oder Felsanker mit angeformtem Gewinde sowie Verfahren zur Herstellung derselben
DE69319098T2 (de) Faserverstärkter Kunstoffstab und sein Herstellungsverfahren
EP2105286A1 (de) Strangziehverfahren und Strangziehvorrichtung zum Herstellen von Profilen aus Faserverbundwerkstoffen
EP2988923B1 (de) Verfahren zur herstellung eines composite-rohres
EP2556518B1 (de) Rotorbügel und Verfahren zu dessen Herstellung
DE102011018422A1 (de) Kontinuierliches Flechtpultrusionsverfahren für ein thermoplastisches FVK-Hohlprofil und Flechtpultrusionsanlage
DE3879077T2 (de) Fabrikationsverfahren fuer ein optisches kabel und danach hergestelltes kabel.
EP3892451A1 (de) Herstellungsverfahren und herstellungssystem zum herstellen eines endlosfaserverstärkten bauteils
DE69308739T2 (de) Schraubenfeder, deren Herstellungsverfahren und Draht benutzt für ihre Herstellung
EP0174295B1 (de) Verfahren zur Herstellung von Rohren
DE9104086U1 (de) Mechanisches Funktionsbauteil für hohe Belastungen
DE102006019156A1 (de) Niet, insbesondere Blindniet
DE4014400A1 (de) Verfahren zur herstellung von anschlussflanschen fuer rohre aus faserverstaerktem kunststoffmaterial, insbesondere transaxlerohre oder dergleichen fuer kraftfahrzeuge
DE1167514B (de) Verfahren zum Herstellen von Profilen aus faserverstaerktem, haertbarem Kunstharz

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19901112

17Q First examination report despatched

Effective date: 19920226

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SULZER INNOTEC AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 98159

Country of ref document: AT

Date of ref document: 19931215

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931215

REF Corresponds to:

Ref document number: 59003759

Country of ref document: DE

Date of ref document: 19940120

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020416

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020430

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020502

Year of fee payment: 13

Ref country code: AT

Payment date: 20020502

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020511

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020513

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030518

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031202

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030518

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040130

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20031201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050518