EP0401106B1 - Chambre de réacteur et procédé pour sa fabrication - Google Patents

Chambre de réacteur et procédé pour sa fabrication Download PDF

Info

Publication number
EP0401106B1
EP0401106B1 EP19900401424 EP90401424A EP0401106B1 EP 0401106 B1 EP0401106 B1 EP 0401106B1 EP 19900401424 EP19900401424 EP 19900401424 EP 90401424 A EP90401424 A EP 90401424A EP 0401106 B1 EP0401106 B1 EP 0401106B1
Authority
EP
European Patent Office
Prior art keywords
chamber
densification
wall
fluid
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19900401424
Other languages
German (de)
English (en)
Other versions
EP0401106A1 (fr
Inventor
Philippe H. Ramette
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Societe Europeenne de Propulsion SEP SA
Original Assignee
Societe Europeenne de Propulsion SEP SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Europeenne de Propulsion SEP SA filed Critical Societe Europeenne de Propulsion SEP SA
Publication of EP0401106A1 publication Critical patent/EP0401106A1/fr
Application granted granted Critical
Publication of EP0401106B1 publication Critical patent/EP0401106B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/007Continuous combustion chambers using liquid or gaseous fuel constructed mainly of ceramic components

Definitions

  • the present invention relates to a reactor chamber, in particular a ramjet or turbojet, and more particularly a chamber of the type in which a fluid is introduced by transpiration through a porous refractory wall.
  • the use of a porous refractory material in a turboprop jet tube is described in GB-A-2 089 434 and US-A-2,658,332.
  • the tube is formed by an internal conduit made of low density porous refractory material and an external reinforcement whose presence is necessary due to the lack of mechanical strength of the porous refractory material.
  • the latter is formed from silica and alumina fibers, while the external reinforcement comprises a network of circumferential and axial tubes and an external envelope of metal or resin reinforced with carbon fibers.
  • the pipes can be traversed by a refrigerant or fuel and have perforated walls allowing the refrigerant or fuel to infiltrate the interior insulating material.
  • the object of the present invention is to provide a reactor chamber in which the functions of resistance to high temperatures, of mechanical resistance and of fuel injection can be ensured with a structure as simple as possible.
  • the wall of the reactor chamber is made of refractory composite material, comprising a reinforcement texture densified by a matrix, and comprises at least one injection zone defined by a porous wall part permeable to a fluid. to be injected into the chamber, the permeability of the or each part of the wall defining an injection zone resulting from a less densification of the composite material in comparison with the rest of the wall which is impermeable to the fluid to be injected.
  • refractory composite material is meant here a ceramic or carbon matrix composite.
  • the or each wall part defining an injection zone is for example in the form of a ring whose surface opposite to that which constitutes an internal surface part of the chamber is in communication with a source of the fluid to be injected.
  • a ceramic matrix (CMC) or carbon matrix refractory composite material is particularly suitable for producing a reactor chamber in the wall of which one or more zones for injecting fluid by transpiration through a porous material are integrated.
  • thermostructural properties that is to say mechanical behavior and resistance to high temperatures, which make it suitable for producing structural elements of the chamber.
  • an external reinforcement around the composite wall such as that described in document GB-A-2 089 434, is not necessary.
  • the porosity of a composite can be easily controlled by acting on the volume ratio of fibers constituting its fibrous reinforcing texture and / or on the degree of densification by the material constituting the matrix, in order to obtain the permeability or the non-permeability to the fluid to be injected.
  • a material of type C / SiC (reinforcement of carbon fibers and matrix of silicon carbide) or of type SiC / SiC (reinforcement of fibers essentially of silicon carbide and matrix of silicon carbide), or also of type C / C protected (carbon fiber reinforcement, carbon matrix and anti-oxidation protection), may be suitable.
  • connection between the or each wall part defining an injection zone and the or each wall part forming the rest of the chamber is advantageously carried out by assembling all the constituent parts of the wall in an incompletely densified state relative to the level desired final densification for each of the parts, and by co-densification of the assembled wall parts.
  • This co-densification is preferably carried out by chemical vapor infiltration.
  • the chamber 10 is of cylindrical shape with circular section and comprises, in the direction of air flow (arrow A), an upstream sealed section 12, an injection ring 20 for injection of a gaseous fuel flow, and a downstream sealed section 14.
  • the interior surfaces of the sections 12, 14 and of the injection ring 20 define the cylindrical continuous internal wall of the ramjet chamber.
  • the outer surface of the ring 20 delimits a fuel injection chamber 22 which communicates with a fuel source (not shown).
  • the fuel is for example hydrogen which is injected in the gaseous state, the pressure prevailing in the injection chamber 22 being greater than that prevailing in the combustion chamber of the ramjet.
  • the ring 20 is made in a single piece of porous composite material with a ceramic or carbon matrix.
  • the porosity of the material constituting the ring 20 gives the latter the permeability necessary to allow the injection of the gaseous flow of fuel by transpiration through the injection ring.
  • the flow rate of fuel injected into the combustion chamber is defined by the porosity of the injection ring, its length, and the pressure difference between the outer and inner surfaces of the ring.
  • the constituent material of the ring 20 is a composite material consisting of a fibrous reinforcement partially densified by a ceramic material or by carbon.
  • an annular preform is formed which constitutes the fibrous reinforcement.
  • the preform is made of carbon fibers or ceramic fibers, for example fibers essentially of silicon carbide.
  • the fibrous preform is produced by winding on a mandrel of a strip of fabric until the desired thickness is obtained.
  • the superimposed layers of fabric can be linked together by needling or implantation of threads.
  • the preform is densified by gas or by liquid.
  • densification is carried out by chemical vapor infiltration of the material constituting the matrix, for example silicon carbide or carbon.
  • the preform is impregnated with a precursor of the material constituting the matrix, the latter then being obtained by heat treatment.
  • an injection ring made of ceramic material C / SiC can be produced by manufacturing a carbon fiber preform having a fiber volume content of around 35% and densifying it by chemical vapor infiltration of silicon carbide until a residual porosity of about 40% is reached.
  • the sections 12, 14 of the ramjet chamber are preferably also made of a composite material with a ceramic or carbon matrix.
  • a material having a reinforcement and a matrix of the same type as that of the injection ring 20 will be chosen.
  • the sections 12, 14 are sealed, the seal being obtained by a densification sufficiently advanced to fill the porosity of the fibrous reinforcement until the material is impermeable.
  • connection between the sections 12, 14 of the wall of the chamber 10 and the injection ring 20 is produced by co-densification.
  • the sections 12, 14 and the ring 20 are produced separately while being incompletely densified with respect to the desired degree of final densification.
  • the elements are then assembled end to end and placed in an infiltration oven to undergo a final co-densification by chemical vapor infiltration.
  • the continuity of the matrix material at the interfaces between the sections 12, 14 and the ring 20 ensures the connection between these elements.
  • This final co-densification is continued until the desired degree of porosity for the injection ring 20 is obtained, the sections 12, 14 having previously been sufficiently pre-densified to finally obtain the desired seal.
  • the number of injection zones can be greater than 1 by providing one or more additional injection rings to carry out an additional injection of fuel or to carry out an injection of oxidant, for example for dilution purposes, downstream of the fuel injection.
  • shapes other than annular may be given to the injection areas.
  • the wall parts defining the injection zones can be produced and assembled with the rest of the wall of the chamber as described above with regard to the injection ring 20.
  • the injection of a gaseous combustible fluid inside a ramjet chamber can also be used in the case of the injection of a liquid fuel, by adapting for this purpose the porosity of the CMC or of the protected C / C in the injection zone.
  • the field of application of the invention is not limited to ramjet chambers, whether they are subsonic or supersonic combustion, and also includes the chambers of turbojets.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Products (AREA)
  • Moulding By Coating Moulds (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

  • La présente invention concerne une chambre de réacteur, notamment de statoréacteur ou turboréacteur, et plus particulièrement une chambre du type dans lequel un fluide est introduit par transpiration à travers une paroi réfractaire poreuse.
  • L'utilisation d'un matériau réfractaire poreux dans un tube à réaction de turbopropulseur est décrite dans le document GB-A-2 089 434 et US-A-2,658,332. Le tube est formé par un conduit interne en matériau réfractaire poreux à faible densité et un renfort extérieur dont la présence est nécessaire en raison de l'absence de tenue mécanique du matériau réfractaire poreux. Ce dernier est formé à partir de fibres en silice et en alumine, tandis que le renfort extérieur comprend un réseau de tubulures circonférentielles et axiales et une enveloppe externe en métal ou en résine renforcée par des fibres en carbone. Les tubulures peuvent être parcourues par un réfrigérant ou du combustible et avoir des parois perforées permettant au réfrigérant ou au combustible de s'infiltrer dans le matériau isolant intérieur.
  • La présente invention a pour but de proposer une chambre de réacteur dans laquelle les fonctions de tenue aux températures élevées, de résistance mécanique et d'injection de combustible peuvent être assurées avec une structure aussi simple que possible.
  • Conformément à l'invention, la paroi de la chambre du réacteur est réalisée en matériau composite réfractaire, comportant une texture de renfort densifiée par une matrice, et comprend au moins une zone d'injection définie par une partie de paroi poreuse perméable à un fluide à injecter dans la chambre, la perméabilité de la ou chaque partie de paroi définissant une zone d'injection résultant d'une moindre densification du matériau composite en comparaison avec le reste de la paroi qui est étanche au fluide à injecter.
  • Par matériau composite réfractaire, on entend ici un composite à matrice céramique ou carbone.
  • La ou chaque partie de paroi définissant une zone d'injection est par exemple en forme d'anneau dont la surface opposée à celle qui constitue une partie de surface intérieure de la chambre est en communication avec une source du fluide à injecter.
  • Un matériau composite réfractaire à matrice céramique (CMC) ou à matrice carbone est particulièrement adapté à la réalisation d'une chambre de réacteur dans la paroi de laquelle sont intégrées une ou plusieurs zone d'injection de fluide par transpiration à travers un matériau poreux.
  • En effet, un tel matériau a des propriétés thermostructurales, c'est-à-dire un comportement mécanique et une tenue aux températures élevées, qui le rendent apte à la réalisation d'éléments de structure de la chambre. En particulier, un renfort extérieur autour de la paroi en composite, tel que celui décrit dans le document GB-A-2 089 434, n'est pas nécessaire.
  • En outre, la porosité d'un composite peut être facilement controlée en agissant sur le taux volumique de fibres constitutives de sa texture fibreuse de renfort et/ou sur le degré de densification par le matériau constitutif de la matrice, pour obtenir la perméabilité ou la non-perméabilité au fluide à injecter.
  • Un matériau de type C/SiC (renfort en fibres de carbone et matrice en carbure de silicium) ou de type SiC/SiC (renfort en fibres essentiellement en carbure de silicium et matrice en carbure de silicium), ou encore de type C/C protégé (renfort en fibres de carbone, matrice en carbone et protection anti-oxydation), pourra convenir.
  • La liaison entre la ou chaque partie de paroi définissant une zone d'injection et la ou chaque partie de paroi formant le reste de la chambre est avantageusement réalisée par assemblage de toutes les parties constitutives de la paroi dans un état incomplètement densifié par rapport au niveau de densification finale souhaité pour chacune des parties, et par co-densification des parties de paroi assemblées. Cette co-densification est de préférence réalisée par infiltration chimique en phase vapeur.
  • L'invention sera mieux comprise à la lecture de la description faite ci-après, à titre indicatif, mais non limitatif, en référence au dessin annexé, sur lequel la figure unique est une vue très schématique, en coupe axiale, d'une chambre de statoréacteur constituant un mode particulier de réalisation de l'invention.
  • Dans l'exemple illustré, la chambre 10 est de forme cylindrique à section circulaire et comprend, dans le sens d'écoulement de l'air (flèche A), un tronçon étanche amont 12, un anneau d'injection 20 pour l'injection d'un flux de combustible gazeux, et un tronçon étanche aval 14. Les surfaces intérieures des tronçons 12, 14 et de l'anneau d'injection 20 définissent la paroi interne continue cylindrique de la chambre du statoréacteur.
  • La surface extérieure de l'anneau 20 délimite une chambre 22 d'injection de combustible qui communique avec une source de combustible (non représentée). Le combustible est par exemple de l'hydrogène qui est injecté à l'état gazeux, la pression régnant dans la chambre d'injection 22 étant supérieure à celle régnant dans la chambre de combustion du statoréacteur.
  • L'anneau 20 est réalisé en une seule pièce en matériau composite poreux à matrice céramique ou carbone. La porosité du matériau constitutif de l'anneau 20 confère à ce dernier la perméabilité nécessaire pour permettre l'injection du flux gazeux de combustible par transpiration à travers l'anneau d'injection. Le débit de combustible injecté dans la chambre de combustion est défini par la porosité de l'anneau d'injection, la longueur de celui-ci, et la différence de pression entre les surfaces extérieure et intérieure de l'anneau.
  • Le matériau constitutif de l'anneau 20 est un matériau composite constitué d'un renfort fibreux partiellement densifié par une matière céramique ou par du carbone. Pour la fabrication de l'anneau, on réalise une préforme annulaire qui constitue le renfort fibreux. La préforme est réalisée en fibres de carbone ou en fibres céramique, par exemple en fibres essentiellement en carbure de silicium. A titre d'exemple, la préforme fibreuse est réalisée par bobinage sur un mandrin d'une bande de tissu jusqu'à obtention de l'épaisseur désirée. Les couches de tissu superposées peuvent être liées entre elles par aiguilletage ou implantation de fils.
  • La densification de la préforme est réalisée par voie gazeuse ou par voie liquide. Dans le premier cas, on réalise une densification par infiltration chimique en phase vapeur du matériau constitutif de la matrice, par exemple du carbure de silicium ou du carbone. Dans le deuxième cas, la préforme est imprégnée par un précurseur du matériau constitutif de la matrice, celle-ci étant obtenue ensuite par traitement thermique.
  • La durée d'infiltration chimique en phase vapeur ou le nombre de cycles imprégnation liquide-thermolyse sont choisis afin d'obtenir la porosité finale désirée compte tenu de la porosité initiale de la préforme. A titre indicatif, on pourra réaliser un anneau d'injection en matériau céramique C/SiC en fabriquant une préforme en fibres de carbone ayant un taux volumique de fibres d'environ 35 % et en densifiant celle-ci par infiltration chimique en phase vapeur de carbure de silicium jusqu'à atteindre une porosité résiduelle d'environ 40 %.
  • Dans le cas d'un matériau de type C/C, un traitement spécifique sera effectué pour protéger le matériau contre l'oxydation. Différents traitements de protection anti-oxydation des composites C/C sont bien connus.
  • Les tronçons 12, 14 de la chambre de statoréacteur sont de préférence également en un matériau composite à matrice céramique ou carbone. Avantageusement, on choisira un matériau ayant un renfort et une matrice de même nature que celui de l'anneau d'injection 20. Toutefois, contrairement à l'anneau 20, les tronçons 12, 14 sont étanches, l'étanchéité étant obtenue par une densification suffisamment poussée pour combler la porosité du renfort fibreux jusqu'à rendre le matériau imperméable.
  • De façon avantageuse, la liaison entre les tronçons 12, 14 de la paroi de la chambre 10 et l'anneau d'injection 20 est réalisée par co-densification. A cet effet, les tronçons 12, 14 et l'anneau 20 sont réalisés séparément en étant incomplètement densifiés par rapport au degré de densification finale désiré. Les éléments sont ensuite assemblés bout à bout et disposés dans un four d'infiltration pour subir une co-densification finale par infiltration chimique en phase vapeur. Au cours de la co-densification finale, la continuité du matériau de la matrice aux interfaces entre les tronçons 12, 14 et l'anneau 20 assure la liaison entre ces éléments. Cette co-densification finale est poursuivie jusqu'à obtenir le degré de porosité voulu pour l'anneau d'injection 20, les tronçons 12, 14 ayant été précédemment suffisamment pré-densifiés pour obtenir finalement l'étanchéité désirée.
  • De ce qui précède, il ressort bien que l'utilisation de CMC ou de C/C protégé permet de combiner, au sein d'une même structure de paroi de chambre, la tenue aux températures élevées et aux sollicitations mécaniques, et la fonction d'injection de fluide dans une zone définie de la paroi de la chambre.
  • Le nombre des zone d'injection peut être supérieur à 1 en prévoyant un ou plusieurs anneaux d'injection supplémentaires pour réaliser une injection complémentaire de combustible ou pour réaliser une injection de comburant, par exemple à des fins de dilution, en aval de l'injection de combustible. En outre, des formes autres qu'annulaires pourront être données aux zones d'injection. Dans tous les cas, les parties de paroi définissant les zones d'injection peuvent être réalisées et assemblées au reste de la paroi de la chambre comme décrit plus haut à propos de l'anneau d'injection 20.
  • Dans le mode de réalisation décrit en référence au dessin, il est envisagé l'injection d'un fluide combustible gazeux à l'intérieur d'une chambre de statoréacteur. L'invention est également utilisable dans le cas de l'injection d'un combustible liquide, en adaptant à cet effet la porosité du CMC ou du C/C protégé dans la zone d'injection. En outre, le domaine d'application de l'invention n'est pas limité aux chambres de statoréacteurs, qu'ils soient à combustion subsonique ou supersonique, et englobe aussi les chambres de turboréacteurs.

Claims (5)

  1. Chambre de réacteur dans laquelle un fluide est introduit par transpiration à travers une zone d'injection réfractaire poreuse formant une partie de cette chambre, caractérisée en ce que de ladite chambre du réacteur est constituée d'une paroi unique réalisée en matériau composite à matrice céramique et comprenant au moins une zone d'injection définie par une partie de paroi (20) poreuse perméable à un fluide à injecter dans la chambre, la perméabilité de la ou chaque partie de paroi définissant une zone d'injection résultant d'une moindre densification du matériau composite à matrice céramique en comparaison avec le reste de la paroi (12, 14) qui est étanche au fluide à injecter.
  2. Chambre selon la revendication 1, caractérisée en ce que la ou chaque partie de paroi définissant une zone d'injection est par exemple en forme d'anneau (20) dont la surface opposée à celle qui constitue une partie de surface intérieure de la chambre est en communication avec une source du fluide à injecter.
  3. Chambre selon l'une quelconque des revendications 1 et 2, caractérisée en ce que le matériau composite à matrice céramique est choisi parmi un composite de type C/SiC et un composite de type SiC/SiC.
  4. Procédé de fabrication d'une chambre de réacteur selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la ou chaque partie de paroi définissant une zone d'injection et la ou chaque partie de paroi formant le reste de la chambre sont réalisées séparément en étant incomplètement densifiées par rapport au niveau de densification finale souhaité pour chacune des parties constitutives de la paroi, les parties constitutives de la paroi sont assemblées, et les parties constitutives assemblées sont liées les unes aux autres par co-densification jusqu'à atteindre le niveau de densification finale désiré pour chaque partie constitutive.
  5. Procédé selon la revendication 4, caractérisé en ce que la co'densification est réalisée par infiltration chimique en phase vapeur.
EP19900401424 1989-05-29 1990-05-29 Chambre de réacteur et procédé pour sa fabrication Expired - Lifetime EP0401106B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8907020A FR2647534B1 (fr) 1989-05-29 1989-05-29 Chambre de reacteur et procede pour sa fabrication
FR8907020 1989-05-29

Publications (2)

Publication Number Publication Date
EP0401106A1 EP0401106A1 (fr) 1990-12-05
EP0401106B1 true EP0401106B1 (fr) 1994-09-14

Family

ID=9382107

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19900401424 Expired - Lifetime EP0401106B1 (fr) 1989-05-29 1990-05-29 Chambre de réacteur et procédé pour sa fabrication

Country Status (4)

Country Link
EP (1) EP0401106B1 (fr)
JP (1) JPH0395308A (fr)
DE (1) DE69012427T2 (fr)
FR (1) FR2647534B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2453719C1 (ru) * 2010-11-09 2012-06-20 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Способ организации горения в гиперзвуковом прямоточном воздушно-реактивном двигателе и гиперзвуковой прямоточный воздушно-реактивный двигатель

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1062461B1 (fr) * 1998-03-10 2003-12-03 Siemens Aktiengesellschaft Chambre de combustion et mode de fonctionnement d'une chambre de combustion
TW522127B (en) * 2001-02-21 2003-03-01 Daifuku Kk Cargo storage facility
RU2542652C1 (ru) * 2013-09-18 2015-02-20 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Гиперзвуковой прямоточный воздушно-реактивный двигатель
FR3070626B1 (fr) * 2017-09-07 2020-12-11 Safran Ceram Procede de fabrication d'une piece en materiau composite munie d'un capteur

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2658332A (en) * 1951-03-21 1953-11-10 Carborundum Co Fluid cooled, refractory, ceramic lined rocket structure
US3114961A (en) * 1959-03-20 1963-12-24 Power Jets Res & Dev Ltd Treatment of porous bodies
CH427118A (de) * 1963-11-28 1966-12-31 Bbc Brown Boveri & Cie Verfahren zum Schützen von durch heisse Medien überstrichenen Oberflächenteilen eines hitzebeständigen Körpers
FR2461690B1 (fr) * 1979-07-19 1985-08-16 Europ Propulsion Materiau d'isolation thermique a haute temperature et son procede de fabrication
GB2089434A (en) * 1980-12-09 1982-06-23 Rolls Royce Composite Ducts for Jet Pipes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2453719C1 (ru) * 2010-11-09 2012-06-20 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Способ организации горения в гиперзвуковом прямоточном воздушно-реактивном двигателе и гиперзвуковой прямоточный воздушно-реактивный двигатель

Also Published As

Publication number Publication date
JPH0395308A (ja) 1991-04-19
DE69012427D1 (de) 1994-10-20
DE69012427T2 (de) 1995-02-02
FR2647534A1 (fr) 1990-11-30
EP0401106A1 (fr) 1990-12-05
FR2647534B1 (fr) 1991-09-13

Similar Documents

Publication Publication Date Title
EP1045971B1 (fr) Echangeur de chaleur en materiau composite et procede pour sa fabrication
EP2118448B1 (fr) Ensemble d'anneau de turbine pour turbine a gaz
FR2913718A1 (fr) Ensemble d'anneau de turbine pour turbine a gaz
FR2912469A1 (fr) Procede de fabrication d'une structure a lobes de melangeur de flux en cmc pour moteur aeronautique a turbine de gaz.
EP3830056A1 (fr) Procédé de fabrication d'une piece en cmc
EP3114324A2 (fr) Secteur de stator pour turbomachine et son procede de fabrication
FR2852003A1 (fr) Procede de realisation d'une piece multiperforee en materiau composite a matrice ceramique
EP0517593A1 (fr) Chemise de tube de canon en matériau composite, et son procédé de fabrication
EP0466603B1 (fr) Structures réfractaires refroidies et procédé pour leur fabrication
EP0239439B1 (fr) Procédé de fabrication d'une structure tubulaire stratifiée pour le renfort d'une pièce en matériau composite, et pièce ainsi obtenue
EP0401106B1 (fr) Chambre de réacteur et procédé pour sa fabrication
EP1342905A1 (fr) Moteur de fusée
EP0628235B1 (fr) Procede de formation d'un passage etanche dans une piece en materiau composite refractaire, et application a la realisation d'une structure en materiau composite refractaire refroidie par circulation de fluide
EP0401107B1 (fr) Chambre de statoréacteur à combustion supersonique
FR2782378A1 (fr) Piece de structure comportant une partie en materiau composite thermostructural refroidie par circulation de fluide
EP0421865A1 (fr) Chambre de combustion de propulseur
FR3101078A1 (fr) Outillage de conformation et installation pour l’infiltration chimique en phase gazeuse de préformes fibreuses
FR3141164A1 (fr) Preforme fibreuse et son procede de fabrication pour realiser une piece en materiau composite a matrice ceramique
WO2022112696A1 (fr) Piece en cmc et procede de fabrication d'une telle piece
FR3027959B1 (fr) Protection anti-feu d'une piece en materiau composite d'une turbine a gaz
FR2645071A1 (fr) Procede pour la realisation de trous dans une piece en materiau composite

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

17P Request for examination filed

Effective date: 19901217

17Q First examination report despatched

Effective date: 19920109

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOCIETE EUROPEENNE DE PROPULSION

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REF Corresponds to:

Ref document number: 69012427

Country of ref document: DE

Date of ref document: 19941020

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940923

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000512

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000523

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010529

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020301