EP0394732B1 - Outer wall of a building standing close to a radar - Google Patents

Outer wall of a building standing close to a radar Download PDF

Info

Publication number
EP0394732B1
EP0394732B1 EP90106729A EP90106729A EP0394732B1 EP 0394732 B1 EP0394732 B1 EP 0394732B1 EP 90106729 A EP90106729 A EP 90106729A EP 90106729 A EP90106729 A EP 90106729A EP 0394732 B1 EP0394732 B1 EP 0394732B1
Authority
EP
European Patent Office
Prior art keywords
radar
constructional elements
external wall
wall according
individual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90106729A
Other languages
German (de)
French (fr)
Other versions
EP0394732A1 (en
Inventor
Erhard Prof. Dr. Möller
Lutz Bernstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vegla Vereinigte Glaswerke GmbH
Original Assignee
Vegla Vereinigte Glaswerke GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vegla Vereinigte Glaswerke GmbH filed Critical Vegla Vereinigte Glaswerke GmbH
Priority to AT90106729T priority Critical patent/ATE96946T1/en
Publication of EP0394732A1 publication Critical patent/EP0394732A1/en
Application granted granted Critical
Publication of EP0394732B1 publication Critical patent/EP0394732B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures

Definitions

  • the invention relates to an outer wall of a structure standing near a stationary radar.
  • the measurements are often disturbed by structures such as building walls or soundproof walls, the outer skin of which has high reflectivity for the radar radiation.
  • structures such as building walls or soundproof walls, the outer skin of which has high reflectivity for the radar radiation.
  • large buildings such as hangars, which can be up to several hundred meters long and up to several ten meters high, have an extremely disruptive effect.
  • the outer walls of these buildings generate radar reflections, which make it difficult for the radar to locate planes safely.
  • the invention has for its object to design the outer wall of a building so that disturbing radar reflections are avoided without having to use additional reflective screens or special absorber systems.
  • the outer wall consists of individual components, each with a flat outer surface and high reflectivity for the radar radiation, the surface dimensions of which are larger than the wavelength of the radar radiation, but smaller than the surface illuminated by a radar pulse, and that the individual components are alternately staggered in depth, so that the planes in which adjacent components are arranged are at such a distance from one another that, at the given angle of incidence, leads to a phase difference in the radiation reflected from the staggered components, which causes the extinction.
  • the depth of the individual components is a quarter of a wavelength when the radar radiation is incident perpendicularly.
  • the extent of the depth graduation is to be selected in accordance with a cosine function of the angle of incidence of the radar radiation.
  • the surface design of the outer wall according to the invention ensures that each radar pulse that strikes such a surface is reflected by a plurality of surface segments arranged at different depths.
  • the radar waves reflected by the various surface segments show a due to the depth gradation of the surface segments Phase difference of half a wavelength against each other, so that the reflected waves cancel each other. In this way, the radar beams reflected on the wall of the building are largely extinguished by destructive interference, so that the feared disturbances no longer occur.
  • the wavelength of the radar radiation from airport all-round vision systems is now 30 centimeters worldwide.
  • the surface dimensions of the individual reflective components are expediently chosen to be so large that the diffraction phenomena occurring in the edge zones of the individual components can be neglected. This is the case if the surface dimensions of the reflective components are approximately three to five times the wavelength used. This means that with rectangular components, the edge length should be 90 to 150 centimeters or more in both dimensions.
  • the area illuminated by a radar beam depends on the one hand on the opening angle of the radiation and on the other hand on the distance from the radar transmitter. With the usual opening angle of the radar radiation of approximately 4 degrees, the illuminated surface already has a surface extension of approximately 70 m at a distance of 1000 m from the radar transmitter. Under the normal circumstances, the individual components are sufficiently small compared to the area illuminated by the radar radiation to achieve the desired extinguishing effect of the reflected radar radiation.
  • the design of a building outer wall according to the invention can be realized in different ways and with different materials. For example, components with two different thickness dimensions can be produced, the surfaces of which face the inside of the building form a plane, while the outer surfaces have the depth grading according to the invention. Accordingly, such an outer wall does not have a uniform wall thickness, but changes its thickness from one area segment to another.
  • a building wall is that panels with plane-parallel surfaces and the same thickness are mounted in a grid or grid construction in an alternating depth position.
  • Such a construction can be realized particularly easily by means of a grid-like metal frame construction, the profiled bars of which have approximately the cross-sectional dimensions specified by the depth grading and in which the plates forming the individual segments alternate approximately flush with the outer surface of the frame construction and the surface of the frame construction facing the interior Frame construction can be installed.
  • a building wall constructed in accordance with the invention can also be designed such that, despite the depth grading of the reflective components, the outer surface of the wall has a continuous outer skin.
  • This can be achieved, for example, by filling in the fields in which the recessed components are arranged on the outside with plates that are transparent to radar radiation, for example with plates made of a suitable plastic. These plates are expediently arranged in the plane of the projecting reflective components. In this case, the radar beams penetrate the plastic plates unhindered and are reflected on the surface of the component located behind them. In this way, facades with a closed flat surface can be realized.
  • the surface segments i.e. the individual components, can basically have any shape. In their simplest form, they have a square or rectangular shape. However, they can also have the shape of triangles or hexagons that adjoin one another.
  • the surface segments of a building wall expediently all have the same shape and the same dimensions, but it is of course also possible to combine components of different shapes and sizes with one another if there is a statistically uniform distribution of the surface portions staggered in depth within the area illuminated by the radar radiation .
  • the wall elements or the panels for the construction of the building wall can consist, for example, of sheet metal.
  • silicate glass panes are used instead of flat metal sheets for the construction of the outer wall.
  • the part of the radar radiation penetrating the glass panes can be absorbed and attenuated in the interior of the building, so that this part can also be rendered harmless.
  • translucent glass panes are used as components for the building wall, this not only enables the building to be illuminated with natural light, but at the same time the known good properties of glass, such as weather resistance, durability, etc., can also be used.
  • silicate glass panes are used for the components, which are provided with a translucent thin metal coating, for example a silver layer of 5 to 20 nanometers in thickness.
  • Coated glass panes of this type in which the silver layer is usually embedded between adhesive and protective layers made of a metal oxide, are known and are usually used as infrared-reflecting, that is to say heat-reflecting, glass panes.
  • Such metal-coated glass panes have an increased reflection factor, which corresponds to the reflection factor of a metal plate.
  • the invention can be used with particular advantage in the case of glazing and gates of hangars on the grounds of airports.
  • the application of the invention is not limited to airports and their surroundings. Since the same problems occasionally also occur with other radar stations, for example for monitoring shipping routes, the invention can also be used successfully in these cases. It is only necessary to ensure that the surface dimensions of the individual components and the spacing of the levels in which the components are arranged are matched to the wavelength of the respective radar transmitter.
  • FIGs 1 and 2 the invention is explained using a wall element.
  • This wall element can be a permanently installed or a movable part of a building, such as a window or a gate of a building or a hangar.
  • the invention is not limited to such wall elements.
  • the invention can in particular also be implemented in such a way that the entire facade construction of a building is constructed in accordance with the teaching of the invention, the facade construction forming individual fields in which the panels or components forming the partial surfaces are inserted.
  • the manner of the holding structure for the individual surface segments that is to say for the plates forming the individual structural elements, can be carried out in different ways.
  • the component shown in Fig. 1 comprises an outer frame 1, for example made of rectangular profile bars, and a series of longitudinal struts 2 and cross struts 3 arranged within the frame 1, which form a uniform grid pattern within the frame 1.
  • the grid pattern of the component is designed such that the width B and the height H of each grid field are each approximately 1 m. Under these conditions, the radar beams experience only a slight reflection on the grating itself, that is to say the grating as such is largely penetrated by the radar beams.
  • Each grid is closed by an inserted glass pane 4 or 5.
  • the glass panes 4 and 5, where it to increase the reflective properties are glass panes that are provided with a partially reflective metallic surface coating, for example with a thin translucent silver layer, which is arranged between adhesive and protective layers made of metal oxides, are alternately in the rear boundary plane of the grid and in the front boundary plane of the Grid arranged and fixed there in the usual way.
  • the distance A, which the front reflecting surfaces of the glass panes 4 and 5 form, corresponds to a quarter wavelength of the radar radiation used in the case of vertical incidence; at a wavelength of 30 cm, it is therefore 7.5 cm.
  • the distance A decreases in accordance with the cosine of the angle of incidence.
  • a facade construction in which the distance A between the two reflection planes can be changed, for example by the brackets for the glass panes 4 and 5 being adjustable within the facade construction in the direction perpendicular to the pane plane and being fixable at the desired location.
  • Such a facade construction can basically be used for any constellation of the facade with the radar transmitter, and it is only necessary to determine the distance A in individual cases.
  • the invention can also be used successfully in cases in which the radar radiation from two different radar transmitters impinges on the building facade, as is often the case, in particular, in large airports.
  • the two meet Radar transmitters emitting radar beams onto the building facade at different angles of incidence.
  • the conditions for extinguishing the reflected rays by interference are therefore different for the radiation emitted by one radar transmitter than for the radiation emitted by the other transmitter.
  • the principle of the invention can be used to largely extinguish the reflected radiation of both radar transmitters if one provides staggered components for one radar transmitter as well as for the other radar transmitter at different distances and nests the two systems one inside the other.
  • FIGS. 3 and 4 An example of a facade construction constructed in this way is shown in FIGS. 3 and 4.
  • the facade construction consists of a grid of horizontally extending profile bars 11 and vertically extending profile bars 12, which form the individual fields of the facade.
  • a glass pane 13 provided with a suitable translucent metal coating is arranged.
  • the glass panes 13 are arranged in four different levels in this case, which are referred to as level I, level II, level III and level IV.
  • the glass panes 13 are fastened within the lattice grid with the aid of frames 14.
  • the frames 14 and the profiled bars 11 and 12 are provided with suitable fastening means which fasten the frames 14 in the desired position in planes I, II, III and IV allowed.
  • each vertical row of glass panes 13 is offset by the distance C v , that is to say that the planes III and IV, like the planes I and II, are at a distance C v from one another.
  • those glass panes 13 which are arranged offset from one another by the distance D h largely extinguish the radar beams reflected on these glass panes and which come from a first fixed radar transmitter
  • those glass panes 13 which are arranged offset from one another by the distance C v are the extensive extinction of the radar beams reflected on these glass panes, which are emitted by a second fixed radar transmitter.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Load-Bearing And Curtain Walls (AREA)
  • Aerials With Secondary Devices (AREA)
  • Building Environments (AREA)

Abstract

In order to decrease the interfering reflection of radar radiation from building walls during radar surveillance on the ground, the outer walls are formed on their surfaces so that the reflected radar waves are subjected in part to a phase shift of one half wavelength with respect to each other. This results in a partial obliteration of the reflected waves. The reflecting surface of the outer wall comprises for that purpose of individual elements whose superficial extent is smaller than the surface irradiated by a radar impulse, and which are staggered in depth in such manner that adjoining surface elements are located at a distance from each other which is equal, for perpendicular incidence of the radar radiation, to one quarter wavelength of the radar radiation used.

Description

Die Erfindung betrifft eine Aussenwand eines in der Naehe eines stationaer angeordneten Radars stehenden Bauwerks.The invention relates to an outer wall of a structure standing near a stationary radar.

Bei der Erfassung und Ortsbestimmung von Flugzeugen und Schiffen in Bodennaehe mit Hilfe der Radartechnik werden die Messungen haeufig durch Bauwerke wie Gebaeudewaende oder Schallschutzwaende gestoert, deren Aussenhaut hohes Reflexionsvermoegen fuer die Radarstrahlung aufweist. Beispielsweise bei der Radarueberwachung von Flugzeugen am Boden oder in geringen Hoehen wirken sich grosse Gebaeude wie die Hangars, die bis zu mehreren hundert Metern lang und bis zu mehreren zehn Metern hoch sein koennen, ausserordentlich stoerend aus. Die Aussenwaende dieser Gebaeude erzeugen naemlich Radar-Reflexionen, die es dem Radar schwermachen, Flugzeuge sicher zu orten.When detecting and determining the location of aircraft and ships near the ground with the help of radar technology, the measurements are often disturbed by structures such as building walls or soundproof walls, the outer skin of which has high reflectivity for the radar radiation. For example, when radar monitoring aircraft on the ground or at low altitudes, large buildings such as hangars, which can be up to several hundred meters long and up to several ten meters high, have an extremely disruptive effect. The outer walls of these buildings generate radar reflections, which make it difficult for the radar to locate planes safely.

Es sind verschiedene technische Loesungen bekannt, um die stoerenden Radar-Reflexionen auszuschalten. Gemaess einer ersten bekannten Loesung werden vor den Bauwerken reflektierende Schirme angeordnet, durch die die auftreffende Radarstrahlung in eine weniger stoerende Richtung abgelenkt wird. Nach einem anderen bekannten Prinzip, fuer das in der US-PS 4.327.364 praktische Ausfuehrungsformen beschrieben sind, werden die betreffenden Gebaeudeflaechen, die die stoerenden Reflexe hervorrufen, mit speziell aufgebauten Absorbersystemen belegt, in denen die Radarstrahlung absorbiert und in Waermestrahlung umgewandelt wird.Various technical solutions are known for eliminating the interfering radar reflections. According to a first known solution, reflective screens are arranged in front of the buildings, by means of which the incident radar radiation is deflected in a less disturbing direction. According to another known principle, for which practical embodiments are described in US Pat. No. 4,327,364, the building surfaces in question which cause the disturbing reflections are covered with specially constructed absorber systems in which the radar radiation is absorbed and converted into heat radiation.

Der Erfindung liegt die Aufgabe zugrunde, die Aussenwand eines Bauwerks so zu gestalten, dass stoerende Radarreflexionen vermieden werden, ohne zusaetzliche reflektierende Schirme oder besondere Absorbersysteme verwenden zu muessen.The invention has for its object to design the outer wall of a building so that disturbing radar reflections are avoided without having to use additional reflective screens or special absorber systems.

Gemaess der Erfindung wird diese Aufgabe dadurch geloest, dass die Aussenwand aus einzelnen Bauelementen mit jeweils ebener aeusserer Oberflaeche und hohem Reflexionsvermoegen fuer die Radarstrahlung besteht, deren Flaechenabmessungen groesser sind als die Wellenlaenge der Radarstrahlung, jedoch kleiner als die von einem Radarimpuls ausgeleuchtete Flaeche, und dass die einzelnen Bauelemente abwechselnd in der Tiefe gestaffelt angeordnet sind, so dass die Ebenen, in denen benachbarte Bauelemente angeordnet sind, einen solchen Abstand voneinander aufweisen, der bei dem gegebenen Einstrahlungswinkel zu einem die Ausloeschung bewirkenden Phasenunterschied der an den gestaffelt angeordneten Bauelementen reflektierten Strahlung fuehrt.According to the invention, this object is achieved in that the outer wall consists of individual components, each with a flat outer surface and high reflectivity for the radar radiation, the surface dimensions of which are larger than the wavelength of the radar radiation, but smaller than the surface illuminated by a radar pulse, and that the individual components are alternately staggered in depth, so that the planes in which adjacent components are arranged are at such a distance from one another that, at the given angle of incidence, leads to a phase difference in the radiation reflected from the staggered components, which causes the extinction.

Die Tiefenstaffelung der einzelnen Bauelemente betraegt bei senkrechtem Einfall der Radarstrahlung eine Viertelwellenlaenge. Bei schraegem Einfall, das heisst, wenn die Gebaeudewand unter einem von 90 Grad verschiedenen Winkel zum Radarsender ausgerichtet ist, ist das Ausmass der Tiefenstaffelung entsprechend einer Kosinusfunktion des Einfallswinkels der Radarstrahlung zu waehlen.The depth of the individual components is a quarter of a wavelength when the radar radiation is incident perpendicularly. In the case of an oblique incidence, that is to say if the building wall is oriented at an angle to the radar transmitter that is different from 90 degrees, the extent of the depth graduation is to be selected in accordance with a cosine function of the angle of incidence of the radar radiation.

Durch die erfindungsgemaesse Oberflaechengestaltung der Aussenwand wird erreicht, dass jeder Radarimpuls, der auf eine solche Oberflaeche auftrifft, von mehreren in unterschiedlicher Tiefe angeordneten Oberflaechensegmenten reflektiert wird. Die von den verschiedenen Oberflaechensegmenten reflektierten Radarwellen weisen infolge der Tiefenstaffelung der Oberflaechensegmente einen Phasenunterschied von einer halben Wellenlaenge gegeneinander auf, so dass die reflektierten Wellen sich gegenseitig ausloeschen. Auf diese Weise werden die an der Gebaeudewand reflektierten Radarstrahlen durch destruktive Interferenz weitgehend ausgeloescht, so dass die befuerchteten Stoerungen nicht mehr auftreten.The surface design of the outer wall according to the invention ensures that each radar pulse that strikes such a surface is reflected by a plurality of surface segments arranged at different depths. The radar waves reflected by the various surface segments show a due to the depth gradation of the surface segments Phase difference of half a wavelength against each other, so that the reflected waves cancel each other. In this way, the radar beams reflected on the wall of the building are largely extinguished by destructive interference, so that the feared disturbances no longer occur.

Die Wellenlaenge der Radarstrahlung von Flughafen-Rundsichtanlagen (ASR- und SRE-Anlagen) betraegt heute weltweit einheitlich 30 Zentimeter. Die Flaechenabmessungen der einzelnen reflektierenden Bauelemente werden zweckmaessigerweise so gross gewaehlt, dass die in den Randzonen der einzelnen Bauelemente auftretenden Beugungserscheinungen vernachlaessigt werden koennen. Das ist der Fall, wenn die Flaechenabmessungen der reflektierenden Bauelemente etwa das Dreifache bis Fuenffache der verwendeten Wellenlaenge betragen. Das bedeutet, dass bei rechteckigen Bauelementen die Kantenlaenge in beiden Dimensionen 90 bis 150 Zentimeter oder mehr betragen soll.The wavelength of the radar radiation from airport all-round vision systems (ASR and SRE systems) is now 30 centimeters worldwide. The surface dimensions of the individual reflective components are expediently chosen to be so large that the diffraction phenomena occurring in the edge zones of the individual components can be neglected. This is the case if the surface dimensions of the reflective components are approximately three to five times the wavelength used. This means that with rectangular components, the edge length should be 90 to 150 centimeters or more in both dimensions.

Die von einem Radarstrahl ausgeleuchtete Flaeche haengt einerseits von dem Oeffnungswinkel der Strahlung und andererseits von der Entfernung vom Radarsender ab. Bei dem ueblichen Oeffnungswinkel der Radarstrahlung von etwa 4 Grad hat in einer Entfernung von 1000 m vom Radarsender die ausgeleuchtete Flaeche bereits eine Flaechenausdehnung von etwa 70 m. Unter den normalerweise gegebenen Umstaenden sind also die einzelnen Bauelemente im Vergleich zu der von der Radarstrahlung ausgeleuchteten Flaeche hinreichend klein, um den gewuenschten Ausloeschungseffekt der reflektierten Radarstrahlung zu erzielen.The area illuminated by a radar beam depends on the one hand on the opening angle of the radiation and on the other hand on the distance from the radar transmitter. With the usual opening angle of the radar radiation of approximately 4 degrees, the illuminated surface already has a surface extension of approximately 70 m at a distance of 1000 m from the radar transmitter. Under the normal circumstances, the individual components are sufficiently small compared to the area illuminated by the radar radiation to achieve the desired extinguishing effect of the reflected radar radiation.

Die erfindungsgemaesse Ausgestaltung einer Gebaeude-Aussenwand kann auf verschiedene Weise und mit verschiedenen Materialien realisiert werden. Beispielsweise lassen sich Bauelemente mit zwei verschiedenen Dickenabmessungen herstellen, deren zur Innenseite des Gebaeudes gerichtete Oberflaechen eine Ebene bilden, waehrend die Aussenflaechen die erfindungsgemaesse Tiefenstaffelung aufweisen. Eine solche Aussenwand hat dementsprechend keine einheitliche Wandstaerke, sondern wechselt von einem Flaechensegment zum anderen seine Dicke.The design of a building outer wall according to the invention can be realized in different ways and with different materials. For example, components with two different thickness dimensions can be produced, the surfaces of which face the inside of the building form a plane, while the outer surfaces have the depth grading according to the invention. Accordingly, such an outer wall does not have a uniform wall thickness, but changes its thickness from one area segment to another.

Eine andere Moeglichkeit zur Ausgestaltung einer Gebaeudewand gemaess der Erfindung besteht darin, dass Platten mit planparallelen Oberflaechen und derselben Dicke in einer Raster- oder Gitterkonstruktion in abwechselnder Tiefenposition montiert werden. Eine solche Konstruktion laesst sich besonders einfach durch eine rasterartige Metallrahmenkonstruktion verwirklichen, deren Profilstaebe etwa die durch die Tiefenstaffelung vorgegebenen Querschnittsabmessungen aufweisen und bei der die die einzelnen Segmente bildenden Platten abwechselnd etwa buendig mit der Aussenflaeche der Rahmenkonstruktion und der dem Innenraum zugewandten Oberflaeche der Rahmenkonstruktion in die Rahmenkonstruktion eingebaut werden.Another possibility for designing a building wall according to the invention is that panels with plane-parallel surfaces and the same thickness are mounted in a grid or grid construction in an alternating depth position. Such a construction can be realized particularly easily by means of a grid-like metal frame construction, the profiled bars of which have approximately the cross-sectional dimensions specified by the depth grading and in which the plates forming the individual segments alternate approximately flush with the outer surface of the frame construction and the surface of the frame construction facing the interior Frame construction can be installed.

Eine erfindungsgemaess aufgebaute Gebaeudewand kann auch so ausgestaltet sein, dass trotz der Tiefenstaffelung der reflektierenden Bauelemente die aeussere Oberflaeche der Wand eine durchgehende Aussenhaut aufweist. Das kann man z.B. dadurch erreichen, dass diejenigen Felder, in denen die zurueckspringenden Bauelemente angeordnet sind, auf der Aussenseite mit Platten ausgefuellt sind, die fuer Radarstrahlung transparent sind, beispielsweise mit Platten aus einem geeigneten Kunststoff. Diese Platten sind zweckmaessigerweise in der Ebene der vorspringenden reflektierenden Bauelemente angeordnet. Die Radarstrahlen durchdringen in diesem Fall die Kunststoffplatten ungehindert und werden an der dahinter liegenden Oberflaeche des Bauelements reflektiert. Auf diese Weise lassen sich Fassaden mit einer geschlossenen ebenen Oberflaeche realisieren.A building wall constructed in accordance with the invention can also be designed such that, despite the depth grading of the reflective components, the outer surface of the wall has a continuous outer skin. This can be achieved, for example, by filling in the fields in which the recessed components are arranged on the outside with plates that are transparent to radar radiation, for example with plates made of a suitable plastic. These plates are expediently arranged in the plane of the projecting reflective components. In this case, the radar beams penetrate the plastic plates unhindered and are reflected on the surface of the component located behind them. In this way, facades with a closed flat surface can be realized.

Die Flaechensegmente, das heisst die einzelnen Bauelemente, koennen grundsaetzlich eine beliebige Gestalt haben. In ihrer einfachsten Ausgestaltung haben sie quadratische oder rechteckige Form. Sie koennen jedoch auch die Form von Dreiecken oder Sechsecken aufweisen, die sich aneinander anschliessen. Zweckmaessigerweise haben die Flaechensegmente einer Gebaeudewand alle die gleiche Form und die gleichen Abmessungen, doch ist es selbstverstaendlich auch moeglich, Bauelemente verschiedener Form und Groesse miteinander zu kombinieren, wenn innerhalb der von der Radarstrahlung ausgeleuchteten Flaeche eine statistisch gleichmaessige Verteilung der in der Tiefe gestaffelten Flaechenanteile vorliegt.The surface segments, i.e. the individual components, can basically have any shape. In their simplest form, they have a square or rectangular shape. However, they can also have the shape of triangles or hexagons that adjoin one another. The surface segments of a building wall expediently all have the same shape and the same dimensions, but it is of course also possible to combine components of different shapes and sizes with one another if there is a statistically uniform distribution of the surface portions staggered in depth within the area illuminated by the radar radiation .

Die Wandelemente bzw. die Platten fuer den Aufbau der Gebaeudewand koennen beispielsweise aus Metallblechenbestehen. Metallbleche mit ebener Oberflaeche haben bei senkrechter Einstrahlung der Radarstrahlung einen Reflexionsfaktor von R=1, das heisst die auftreffende Radarstrahlung wird an der Oberflaeche der Metallbleche zu 100 % reflektiert. Durch die erfindungsgemaesse Ausgestaltung einer aus Metallblech bestehenden Wand erfolgt eine derart starke Ausloeschung der reflektierten Strahlung, dass in der Praxis eine Reduzierung der reflektierten Strahlung gegenueber der einfallenden Strahlung um bis zu 90 % erreicht werden kann.The wall elements or the panels for the construction of the building wall can consist, for example, of sheet metal. Metal sheets with a flat surface have a reflection factor of R = 1 when the radar radiation is perpendicular, which means that the radar radiation is reflected 100% on the surface of the metal sheets. Due to the inventive design of a wall made of sheet metal, the reflected radiation is extinguished to such an extent that in practice there is a reduction in the reflected radiation compared to the incident radiation can be achieved by up to 90%.

Ebenfalls gute Ergebnisse lassen sich erzielen, wenn anstelle von ebenen Metallblechen fuer den Aufbau der Aussenwand Silikatglasscheiben verwendet werden. Glasscheiben haben bei senkrechter Einstrahlung fuer Radarstrahlen einen Reflexionsfaktor R von etwa 0,35 bis 0,5, der mit zunehmendem Einfallswinkel bis auf R=1 zunehmen kann, so dass bei Verwendung von Glasscheiben fuer den erfindungsgemaessen Aufbau der Gebaeudewaende der reflektierte Anteil der Radarstrahlung ebenfalls durch Interferenz in diesem Umfang ausgeloescht wird. Der die Glasscheiben durchdringende Anteil der Radarstrahlung kann im Innern des Gebaeudes absorbiert und gedaempft werden, so dass auch dieser Anteil unschaedlich gemacht werden kann. Bei Verwendung von lichtdurchlaessigen Glasscheiben als Bauelemente fuer die Gebaeudewand wird auf diese Weise nicht nur dieAusleuchtung des Gebaeudes mit natuerlichem Licht ermoeglicht, sondern es lassen sich gleichzeitig die bekannten guten Eigenschaften von Glas, wie Witterungsbestaendigkeit, Dauerhaftigkeit usw. ebenfalls nutzen.Good results can also be achieved if silicate glass panes are used instead of flat metal sheets for the construction of the outer wall. With vertical radiation for radar beams, glass panes have a reflection factor R of approximately 0.35 to 0.5, which can increase to R = 1 with increasing angle of incidence, so that when glass panes are used for the construction of the building wall according to the invention, the reflected portion of the radar radiation is also is extinguished by interference to this extent. The part of the radar radiation penetrating the glass panes can be absorbed and attenuated in the interior of the building, so that this part can also be rendered harmless. When translucent glass panes are used as components for the building wall, this not only enables the building to be illuminated with natural light, but at the same time the known good properties of glass, such as weather resistance, durability, etc., can also be used.

In besonders zweckmaessiger Weiterbildung der Erfindung kommen fuer die Bauelemente Silikatglasscheiben zum Einsatz, die mit einer lichtdurchlaessigen duennen Metallbeschichtung, beispielsweise einer Silberschicht von 5 bis 20 Nanometer Dicke, versehen sind. Derartige beschichtete Glasscheiben, bei denen die Silberschicht ueblicherweise zwischen Haft- und Schutzschichten aus einem Metalloxid eingebettet ist, sind bekannt und finden ueblicherweise als infrarotreflektierende, das heisst waermestrahlenreflektierende Glasscheiben Verwendung.In a particularly expedient development of the invention, silicate glass panes are used for the components, which are provided with a translucent thin metal coating, for example a silver layer of 5 to 20 nanometers in thickness. Coated glass panes of this type, in which the silver layer is usually embedded between adhesive and protective layers made of a metal oxide, are known and are usually used as infrared-reflecting, that is to say heat-reflecting, glass panes.

Derartige metallbeschichtete Glasscheiben haben einen erhoehten Reflexionsfaktor, der dem Reflexionsfaktor einer Metallplatte entspricht.Such metal-coated glass panes have an increased reflection factor, which corresponds to the reflection factor of a metal plate.

Die Erfindung laesst sich mit besonderem Vorteil bei Verglasungen und bei Toren von Hangars auf dem Gelaende von Flughaefen einsetzen. Die Anwendung der Erfindung beschraenkt sich jedoch nicht auf Flughaefen und deren Umgebung. Da gelegentlich auch bei anderen Radarstationen, beispielsweise fuer die Ueberwachung von Schiffahrtswegen, dieselben Probleme auftreten, kann auch in diesen Faellen die Erfindung mit Erfolg eingesetzt werden. Dabei ist lediglich darauf zu achten, dass die Flaechenabmessungen der einzelnen Bauelemente und die Abstaende der Ebenen, in denen die Bauelemente angeordnet sind, auf die Wellenlaenge des jeweiligen Radarsenders abgestimmt werden.The invention can be used with particular advantage in the case of glazing and gates of hangars on the grounds of airports. However, the application of the invention is not limited to airports and their surroundings. Since the same problems occasionally also occur with other radar stations, for example for monitoring shipping routes, the invention can also be used successfully in these cases. It is only necessary to ensure that the surface dimensions of the individual components and the spacing of the levels in which the components are arranged are matched to the wavelength of the respective radar transmitter.

Ausfuehrungsbeispiele fuer lichtdurchlaessige Wandelemente fuer den Einsatz im Bereich des Radars eines Flugplatzes sind in den Zeichnungen dargestellt.Exemplary embodiments for translucent wall elements for use in the area of the radar of an airfield are shown in the drawings.

Von den Zeichnungen zeigt

Fig. 1
eine Ausfuehrungsform eines erfindungsgemaess aufgebauten Wandelementes in Form einer perspektivischen Gesamtansicht;
Fig. 2
einen Schnitt durch Fig. 1 entsprechend der Linie II-II;
Fig. 3
eine andere Ausfuehrungsform fuer den Aufbau einer erfindungsgemaessen Wand in Form einer perspektivischen Ansicht, und
Fig. 4
einen Schnitt durch die in Fig. 3 dargestellte Wand entlang der Linie IV-IV.
From the drawings shows
Fig. 1
an embodiment of a wall element constructed according to the invention in the form of an overall perspective view;
Fig. 2
a section through Figure 1 along the line II-II.
Fig. 3
another embodiment for the construction of a wall according to the invention in the form of a perspective view, and
Fig. 4
a section through the wall shown in Fig. 3 along the line IV-IV.

In den Figuren 1 und 2 ist die Erfindung anhand eines Wandelementes erlaeutert. Bei diesem Wandelement kann es sich um ein fest eingebautes oder um ein bewegliches Teil eines Gebaeudes, wie beispielsweise um ein Fenster oder um ein Tor eines Gebaeudes oder eines Hangars handeln. Selbstverstaendlich ist die Erfindung aber nicht auf derartige Wandelemente beschraenkt. Die Erfindung laesst sich insbesondere auch in der Weise realisieren, dass die gesamte Fassadenkonstruktion eines Gebaeudes nach der Lehre der Erfindung aufgebaut ist, wobei die Fassadenkonstruktion einzelne Felder bildet, in die die die Teilflaechen bildenden Platten bzw. Bauelemente eingesetzt werden. Die Art und Weise der Haltekonstruktion fuer die einzelnen Flaechensegmente, das heisst fuer die die einzelnen Bauelemente bildenden Platten, kann in unterschiedlicher Weise ausgefuehrt sein.In Figures 1 and 2, the invention is explained using a wall element. This wall element can be a permanently installed or a movable part of a building, such as a window or a gate of a building or a hangar. Of course, the invention is not limited to such wall elements. The invention can in particular also be implemented in such a way that the entire facade construction of a building is constructed in accordance with the teaching of the invention, the facade construction forming individual fields in which the panels or components forming the partial surfaces are inserted. The manner of the holding structure for the individual surface segments, that is to say for the plates forming the individual structural elements, can be carried out in different ways.

Das in Fig. 1 dargestellte Bauelement umfasst einen aeusseren Rahmen 1, beispielsweise aus Rechteckprofilstaeben, und eine Reihe von innerhalb des Rahmens 1 angeordneten Laengsstreben 2 und Querstreben 3, die innerhalb des Rahmens 1 ein gleichmaessiges Gitterraster bilden.The component shown in Fig. 1 comprises an outer frame 1, for example made of rectangular profile bars, and a series of longitudinal struts 2 and cross struts 3 arranged within the frame 1, which form a uniform grid pattern within the frame 1.

Wenn beispielsweise fuer das Radar eines Flugplatzes eine Strahlung mit einer Wellenlaenge von 30 cm verwendet wird, wird das Gitterraster des Bauelements so ausgelegt, dass die Breite B und die Hoehe H eines jeden Rasterfeldes jeweils etwa 1 m betragen. An dem Gitterwerk selbst erfahren die Radarstrahlen unter diesen Bedingungen nur eine geringe Reflexion, das heisst, das Gitterwerk wird als solches von den Radarstrahlen weitestgehend durchdrungen. Jedes Rasterfeld ist durch eine eingesetzte Glasscheibe 4 bzw. 5 geschlossen. Die Glasscheiben 4 und 5, bei denen es sich zur Erhoehung der Reflexionseigenschaften um Glasscheiben handelt, die mit einer teilreflektierenden metallischen Oberflaechenbeschichtung versehen sind, beispielsweise mit einer duennen lichtdurchlaessigen Silberschicht, die zwischen Haft- und Schutzschichten aus Metalloxiden angeordnet ist, sind abwechselnd in der hinteren Begrenzungsebene des Gitterrasters und in der vorderen Begrenzungsebene des Gitterrasters angeordnet und dort in ueblicher Weise befestigt. Der Abstand A, den die vorderen reflektierenden Oberflaechen der Glasscheiben 4 und 5 bilden, entspricht bei senkrechtem Einfall einer Viertelwellenlaenge der verwendeten Radarstrahlung; bei einer Wellenlaenge von 30 cm betraegt er infolgedessen 7,5 cm.If, for example, radiation with a wavelength of 30 cm is used for the radar of an airfield, the grid pattern of the component is designed such that the width B and the height H of each grid field are each approximately 1 m. Under these conditions, the radar beams experience only a slight reflection on the grating itself, that is to say the grating as such is largely penetrated by the radar beams. Each grid is closed by an inserted glass pane 4 or 5. The glass panes 4 and 5, where it to increase the reflective properties are glass panes that are provided with a partially reflective metallic surface coating, for example with a thin translucent silver layer, which is arranged between adhesive and protective layers made of metal oxides, are alternately in the rear boundary plane of the grid and in the front boundary plane of the Grid arranged and fixed there in the usual way. The distance A, which the front reflecting surfaces of the glass panes 4 and 5 form, corresponds to a quarter wavelength of the radar radiation used in the case of vertical incidence; at a wavelength of 30 cm, it is therefore 7.5 cm.

Wenn die Radarstrahlung unter einem kleineren Winkel als 90 Grad auf die Gebaeudefassade auftrifft, verringert sich der Abstand A entsprechend dem Cosinus des Einfallswinkels. Es kann zweckmaessig sein, eine Fassadenkonstruktion zu waehlen, bei der der Abstand A der beiden Reflexionsebenen veraenderbar ist, indem beispielsweise die Halterungen fuer die Glasscheiben 4 und 5 innerhalb der Fassadenkonstruktion in Richtung senkrecht zur Scheibenebene verstellbar und an der gewuenschten Stelle festlegbar sind. Eine solche Fassadenkonstruktion ist grundsaetzlich fuer jede Konstellation der Fassade zum Radarsender brauchbar, und es braucht lediglich im Einzelfall der Abstand A ermittelt zu werden.If the radar radiation hits the building facade at an angle less than 90 degrees, the distance A decreases in accordance with the cosine of the angle of incidence. It may be expedient to choose a facade construction in which the distance A between the two reflection planes can be changed, for example by the brackets for the glass panes 4 and 5 being adjustable within the facade construction in the direction perpendicular to the pane plane and being fixable at the desired location. Such a facade construction can basically be used for any constellation of the facade with the radar transmitter, and it is only necessary to determine the distance A in individual cases.

Die Erfindung laesst sich mit Erfolg auch in solchen Faellen anwenden, in denen die Radarstrahlung von zwei verschiedenen Radarsendern auf die Gebaeudefassade auftrifft, wie es insbesondere bei grossen Flughaefen oft der Fall ist. In diesem Fall treffen die von den beiden Radarsendern ausgehenden Radarstrahlen unter verschiedenen Einfallswinkeln auf die Gebaeudefassade auf. Die Bedingungen fuer die Ausloeschung der reflektierten Strahlen durch Interferenz sind daher fuer die von dem einen Radarsender ausgesandte Strahlung anders als fuer die von dem anderen Sender ausgesandte Strahlung. Auch in diesem Fall laesst sich mit Hilfe des erfindungsgemaessen Prinzips eine weitgehende Ausloeschung der reflektierten Strahlung beider Radarsender erreichen, wenn man sowohl fuer den einen Radarsender als auch fuer den anderen Radarsender in verschiedenem Abstand gestaffelte Bauelemente vorsieht und beide Systeme ineinanderschachtelt.The invention can also be used successfully in cases in which the radar radiation from two different radar transmitters impinges on the building facade, as is often the case, in particular, in large airports. In this case, the two meet Radar transmitters emitting radar beams onto the building facade at different angles of incidence. The conditions for extinguishing the reflected rays by interference are therefore different for the radiation emitted by one radar transmitter than for the radiation emitted by the other transmitter. In this case, too, the principle of the invention can be used to largely extinguish the reflected radiation of both radar transmitters if one provides staggered components for one radar transmitter as well as for the other radar transmitter at different distances and nests the two systems one inside the other.

Ein Beispiel fuer eine in dieser Weise aufgebaute Fassadenkonstruktion ist in den Figuren 3 und 4 dargestellt. Die Fassadenkonstruktion besteht aus einem Gitterraster aus horizontal verlaufenden Profilstaeben 11 und aus vertikal verlaufenden Profilstaeben 12, die die einzelnen Felder der Fassade bilden. In jedem dieser Felder ist wiederum eine mit einer geeigneten lichtdurchlaessigen Metallbeschichtung versehene Glasscheibe 13 angeordnet. Insgesamt sind die Glasscheiben 13 in diesem Fall in vier verschiedenen Ebenen angeordnet, die als Ebene I, Ebene II, Ebene III und Ebene IV bezeichnet sind.An example of a facade construction constructed in this way is shown in FIGS. 3 and 4. The facade construction consists of a grid of horizontally extending profile bars 11 and vertically extending profile bars 12, which form the individual fields of the facade. In each of these fields, in turn, a glass pane 13 provided with a suitable translucent metal coating is arranged. Overall, the glass panes 13 are arranged in four different levels in this case, which are referred to as level I, level II, level III and level IV.

Die Befestigung der Glasscheiben 13 innerhalb des Gitterrasters erfolgt mit Hilfe von Rahmen 14. Die Rahmen 14 und die Profilstaebe 11 und 12 sind mit geeigneten Befestigungsmitteln versehen, die die Befestigung der Rahmen 14 in der jeweils gewuenschten Position in den Ebenen I, II, III und IV ermoeglichen.The glass panes 13 are fastened within the lattice grid with the aid of frames 14. The frames 14 and the profiled bars 11 and 12 are provided with suitable fastening means which fasten the frames 14 in the desired position in planes I, II, III and IV allowed.

Wie aus den Figuren 3 und 4 zu ersehen ist, sind in jeder horizontalen Reihe die Glasscheiben 13 in jeweils zwei benachbarten Feldern im Abstand Dh angeordnet. Das bedeutet, dass die Ebenen I und III und die Ebenen II und IV jeweils den Abstand Dh aufweisen. Jede senkrechte Reihe von Glasscheiben 13 ist dagegen um den Abstand Cv versetzt, das heisst die Ebenen III und IV weisen ebenso wie die Ebenen I und II den Abstand Cv voneinander auf. Waehrend also diejenigen Glasscheiben 13, die um den Abstand Dh versetzt zueinander angeordnet sind, die weitgehende Ausloeschung der an diesen Glasscheiben reflektierten Radarstrahlen bewirken, die von einem ersten ortsfesten Radarsender kommen, bewirken diejenigen Glasscheiben 13, die um den Abstand Cv zueinander versetzt angeordnet sind, die weitgehende Ausloeschung der an diesen Glasscheiben reflektierten Radarstrahlen, die von einem zweiten ortsfesten Radarsender ausgesandt werden.As can be seen from FIGS. 3 and 4, the glass panes 13 are in two in each horizontal row adjacent fields arranged at a distance D h . This means that levels I and III and levels II and IV are each at a distance D h . By contrast, each vertical row of glass panes 13 is offset by the distance C v , that is to say that the planes III and IV, like the planes I and II, are at a distance C v from one another. Thus, while those glass panes 13 which are arranged offset from one another by the distance D h , largely extinguish the radar beams reflected on these glass panes and which come from a first fixed radar transmitter, those glass panes 13 which are arranged offset from one another by the distance C v are the extensive extinction of the radar beams reflected on these glass panes, which are emitted by a second fixed radar transmitter.

Claims (7)

  1. External wall of a building standing in the vicinity of a stationarily arranged radar, characterised thereby that the external wall consists of individual constructional elements with respective planar surfaces and high reflectivity for the radar emission, the areal dimensions of which are greater than the wavelength of the radar emission but smaller than the area illuminated by a radar pulse, and that the individual constructional elements are arranged staggered alternately in depth so that the planes in which adjacent constructional elements are arranged have a spacing from one another which at the given irradiation angle leads to a phase difference, which causes cancellation, of the radiation reflected at the constructional elements arranged staggered.
  2. External wall according to claim 1, characterised thereby that the individual constructional elements (4, 5; 13) have in both area dimensions an areal extent which corresponds to at least three times to five times the wavelength of the radar emission used.
  3. External wall according to claim 1 or 2, characterised thereby that the individual constructional elements (4, 5; 13) are inserted in a grid raster formed by horizontal profile rods (2; 11) and vertical profile rods (3; 12).
  4. External wall according to one of claims 1 to 3, characterised thereby that the constructional elements are arranged staggered in more than two planes (I, II, III, IV) in such a manner that the constructional elements (13) are arranged at alternately different spacings (Cv, Dh), so that the reflected radar emission from two different radar stations is largely cancelled.
  5. External wall according to one of claims 1 to 4, characterised thereby that the individual constructional elements (4, 5; 13) are silicate glass panes.
  6. External wall according to claim 5, characterised thereby that the silicate glass panes (4, 5; 13) are provided with a light permeable metal coating increasing the coefficient of reflection.
  7. External wall according to one of claims 1 to 6, characterised thereby that the constructional elements (13) are held in frames (14), which are fixable within the grid raster in any desired position.
EP90106729A 1989-04-24 1990-04-07 Outer wall of a building standing close to a radar Expired - Lifetime EP0394732B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90106729T ATE96946T1 (en) 1989-04-24 1990-04-07 EXTERIOR WALL OF A STRUCTURE NEAR A RADAR.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3913421A DE3913421A1 (en) 1989-04-24 1989-04-24 EXTERNAL WALL ELEMENT OF A BUILDING WITH HIGH REFLECTION DAMPING FOR RADAR BEAMS
DE3913421 1989-04-24

Publications (2)

Publication Number Publication Date
EP0394732A1 EP0394732A1 (en) 1990-10-31
EP0394732B1 true EP0394732B1 (en) 1993-11-03

Family

ID=6379321

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90106729A Expired - Lifetime EP0394732B1 (en) 1989-04-24 1990-04-07 Outer wall of a building standing close to a radar

Country Status (4)

Country Link
US (1) US5057842A (en)
EP (1) EP0394732B1 (en)
AT (1) ATE96946T1 (en)
DE (2) DE3913421A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006020470A1 (en) * 2006-04-28 2007-11-15 Universität Bremen Production of two layers arranged spaced from each other used in building with glass facade comprises applying a separating layer on a first layer before second layer is applied and vaporizing the separating layer to remove the second layer

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8909768D0 (en) * 1989-04-28 1990-04-25 Racal Defence Electronics Rada Radar reflecting target
DE4007807A1 (en) * 1990-03-12 1991-09-19 Trube & Kings Kg LOW-REFLECTION WALL ELEMENT FOR RADAR RADIATION
DE4101074C2 (en) * 1991-01-16 1994-08-25 Flachglas Ag Glazing element with low reflectance for radar radiation
DE4103458C2 (en) 1991-02-06 1994-09-01 Flachglas Ag Optically transparent glazing element with low reflectance for radar radiation and high reflectance for IR radiation
JPH04316996A (en) * 1991-04-16 1992-11-09 Mitsubishi Heavy Ind Ltd Radar reflection reducing device for aircraft and the like
GB2264809A (en) * 1992-02-25 1993-09-08 Secr Defence Radar camouflage.
US5353029A (en) * 1993-05-17 1994-10-04 Johnston Beverly R Separable electromagnetic waveguide attenuator
DE10033259C2 (en) * 2000-07-10 2003-06-26 Univ Braunschweig Tech Optical component
US20060169930A1 (en) * 2003-08-21 2006-08-03 Butler Michael M Plane elements for the absorption or reduction of the reflection of electromagnetic waves
WO2008035038A1 (en) * 2006-09-22 2008-03-27 Bae Systems Plc Structure
RU2449435C1 (en) * 2011-02-07 2012-04-27 Государственное образовательное учреждение высшего профессионального образования Новгородский государственный университет имени Ярослава Мудрого Flat array of diffraction radiation antennas and power divider used in it
RU2461929C1 (en) * 2011-04-21 2012-09-20 Государственное образовательное учреждение высшего профессионального образования Академия Федеральной службы охраны Российской Федерации (Академия ФСО России) Method for optimal location and orientation of receiving/transmitting radiator in form of coaxially located dielectrics of cylindrical form in focal area of used collimating surfaces
FR2983578B1 (en) * 2011-12-06 2016-07-01 European Aeronautic Defence & Space Co Eads France STRUCTURE FOR COATING A WALL FOR REDIRECTION OF WAVES RECEIVED BY SAID WALL
FR2983577B1 (en) * 2011-12-06 2016-07-01 European Aeronautic Defence & Space Co Eads France ANTI-REFLECTION COATING STRUCTURE WITH DIFFRACTION NETWORK USING RESONANT ELEMENTS
US20130222171A1 (en) * 2012-01-12 2013-08-29 Booz, Allen & Hamilton Radio-frequency (rf) precision nulling device
US9343815B2 (en) * 2013-06-28 2016-05-17 Associated Universities, Inc. Randomized surface reflector
RU2541871C2 (en) * 2013-07-09 2015-02-20 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Ultra-wideband multi-beam mirror antenna
FR3018957B1 (en) * 2014-03-19 2017-07-14 Airbus Operations Sas DEVICE FOR DIFFRACTION TO BE FASTENED ON THE OUTER FACE OF A WALL
JP2020150221A (en) * 2019-03-15 2020-09-17 日東電工株式会社 Electromagnetic wave absorber and kit for the electromagnetic wave absorber
CN110718762B (en) * 2019-09-17 2020-11-03 东南大学 Single-beam 1-bit super surface excited by plane wave vertical incidence

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2527918A (en) * 1950-10-31 Method of minimizing reflection of
DE1119348B (en) * 1957-03-22 1961-12-14 Telefunken Patent Surface radiator for the emission and reception of electromagnetic waves from several widely spaced frequency bands
DE1234281B (en) * 1957-12-13
DE1116285B (en) * 1959-08-19 1961-11-02 Siemens Ag Broadband absorber for very short electromagnetic waves
US4118704A (en) * 1976-04-07 1978-10-03 Tdk Electronics Co., Ltd. Electromagnetic wave-absorbing wall
US4327364A (en) * 1978-12-22 1982-04-27 Rockwell International Corporation Apparatus for converting incident microwave energy to thermal energy
JPS6250131A (en) * 1985-08-29 1987-03-04 旭硝子株式会社 Safety glass
DE3543687A1 (en) * 1985-12-11 1987-06-19 Ge Elektronische Schutzsysteme Means for protecting rooms from perturbing radiation
DE3723219A1 (en) * 1987-07-14 1989-01-26 Ge Elektronische Schutzsysteme WINDOW GLAZING FOR SHIELDED ROOMS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006020470A1 (en) * 2006-04-28 2007-11-15 Universität Bremen Production of two layers arranged spaced from each other used in building with glass facade comprises applying a separating layer on a first layer before second layer is applied and vaporizing the separating layer to remove the second layer

Also Published As

Publication number Publication date
ATE96946T1 (en) 1993-11-15
DE59003283D1 (en) 1993-12-09
US5057842A (en) 1991-10-15
DE3913421A1 (en) 1990-10-25
EP0394732A1 (en) 1990-10-31

Similar Documents

Publication Publication Date Title
EP0394732B1 (en) Outer wall of a building standing close to a radar
DE4433051C2 (en) Window pane made of silicate glass which is permeable to electromagnetic radiation
EP1600727B1 (en) Device to conceal specular reflective surfaces
DE19700111C2 (en) Sun protection device in the manner of a blind
DE2732592A1 (en) SCREEN FOR RADIANT ENERGY
DE4103458C2 (en) Optically transparent glazing element with low reflectance for radar radiation and high reflectance for IR radiation
DE4012333C1 (en) Solar collector heat barrier - has honeycombed walls with areas having mirror surface finish
DE4008660C2 (en)
EP0236958A2 (en) Removable retroreflector for reflecting electromagnetic rays
DE4005676A1 (en) Radar wave absorber for building - uses ceramic plates attached to building wall with directly attached reflective layer
DE3612653C2 (en)
DE4101074C2 (en) Glazing element with low reflectance for radar radiation
EP0446408B1 (en) Wall element minimizing radar reflections
DE3916416A1 (en) RADAR RADIATION ABSORBING EXTERIOR FACADE
DE102008059018A1 (en) Facade covering for use in building near airports to generate diffuse reflection of radar waves from aircraft, has surface elements provided in sizes and shapes, where covering is made of material that reflects/partial absorbs radiation
EP3399592B1 (en) Antenna system
DE102021101186A1 (en) bird protection glass
DE202021100275U1 (en) bird protection glass
EP0377878A1 (en) Facade structure of a building with thermal insulation and method of producing an insulation
DE19512091C2 (en) Protection glass element
DE202005017154U1 (en) Transparent component made from glass and/or plastic for glazing windows and doors comprises a two- or three-dimensional inner engraving running at a distance to its upper surfaces and produced using a laser beam
EP2998499B1 (en) Daylight system
DE4035460A1 (en) Large surface, sandwiched sound insulating wall - has extra material layer on side exposed to impingement for narrow band suppression
WO1999032740A1 (en) Facing panel and façade for a building wall
AT525471A1 (en) Film product for attachment to a building envelope for protection against bird strikes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900806

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19930416

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19931103

Ref country code: DK

Effective date: 19931103

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19931103

Ref country code: NL

Effective date: 19931103

Ref country code: BE

Effective date: 19931103

Ref country code: SE

Effective date: 19931103

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19931103

REF Corresponds to:

Ref document number: 96946

Country of ref document: AT

Date of ref document: 19931115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59003283

Country of ref document: DE

Date of ref document: 19931209

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940127

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19940407

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940430

Ref country code: CH

Effective date: 19940430

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950331

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960407

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960418

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980523

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000201