EP0394306B1 - Control equipment for an internal combustion engine and process for adjusting the parameters for the equipment - Google Patents

Control equipment for an internal combustion engine and process for adjusting the parameters for the equipment Download PDF

Info

Publication number
EP0394306B1
EP0394306B1 EP89900183A EP89900183A EP0394306B1 EP 0394306 B1 EP0394306 B1 EP 0394306B1 EP 89900183 A EP89900183 A EP 89900183A EP 89900183 A EP89900183 A EP 89900183A EP 0394306 B1 EP0394306 B1 EP 0394306B1
Authority
EP
European Patent Office
Prior art keywords
individual
value
factor
lambda
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89900183A
Other languages
German (de)
French (fr)
Other versions
EP0394306A1 (en
Inventor
Ernst Wild
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0394306A1 publication Critical patent/EP0394306A1/en
Application granted granted Critical
Publication of EP0394306B1 publication Critical patent/EP0394306B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1418Several control loops, either as alternatives or simultaneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors

Definitions

  • the invention relates to a method for controlling the amount of fuel that is supplied to the cylinders of an internal combustion engine by an injection device to each cylinder, and a control device for carrying out this method.
  • a known control device has a pilot control timer which outputs pilot control times as a function of the speed and the amount of air drawn in, a respective pilot control time being common for all injection valves.
  • the pilot control is superimposed on a lambda control that acts uniformly on all cylinders.
  • the invention determines an individual effective pulse time for the fuel metering for each cylinder based on quantities that are the same for all cylinders, as well as multiplicative correction factors that are specific for each cylinder.
  • the invention has for its object to provide a method and a control device of the type mentioned, which has a compensating effect with respect to cylinder scatter.
  • the invention is also based on the object of specifying a method for setting parameters of such a device.
  • the method according to the invention is characterized in that it compensates for variations in the properties of the different cylinders of an internal combustion engine by modifying the known precontrol with individual correction values which are formed from a combination of individual factors and individual summands. It is therefore no longer the case that all the injection devices are actuated with the same injection time, but rather the pilot control time is corrected for each cylinder such that the exhaust gas from all the individual cylinders has essentially the same composition.
  • the method according to the invention is characterized in that it is determined for which cylinder the lambda value measured in the exhaust gas deviates from a predetermined value and then the correction value for this cylinder is changed or its correction values are changed until the predetermined lambda -Value results.
  • the device according to the invention has an individual value memory.
  • a linking device links the common pilot control time with the individual correction values.
  • considerable effort is required in the signal processing of the probe, since such probes are relatively sensitive not only to fluctuations in the exhaust gas composition but also to pressure fluctuations.
  • Nernst type probes are less problematic. The use of such probes is also recommended for the reason that the probe which is often already installed in the vehicle and which is generally a probe of the Nernst type can then be used as a measuring probe.
  • the control device has a pilot control timer 10, an individual value memory 11 and a linking device 12 which outputs corrected pilot control times to injection devices (not shown) in an internal combustion engine 13.
  • the pilot control timer 10 is driven by a signal which is proportional to the rotational speed n and a load-indicating signal which is indicated by QL in FIG. 1, corresponding to a measured air quantity per unit of time.
  • the load signal can also, for. B. be given by the suction pressure or the throttle valve position.
  • conventional pilot control timers often take other variables into account, in particular the motor temperature, which is not important for the following explanations.
  • the linking device 12 links the pilot control times output by the pilot control timer 10 with correction values read from the individual value memory 11, which are determined separately for each injection device of the internal combustion engine 13 in such a way that a control time results for each injection device such that the control time for each cylinder individually by a lambda Lambda values measured in the exhaust gas are essentially the same for all cylinders.
  • FIG. 2 Before going into details of the invention in more detail, it should first be explained with reference to FIG. 2 how cylinder scatter can generally be compensated for.
  • the load size TL is e.g. B. obtained by dividing the air volume QL per unit of time by the speed n and that
  • the result is multiplied by a constant, which adjusts the result of the division so that a time is obtained which is within the usual injection times of a few milliseconds.
  • the load variable tL is therefore a preliminary injection time.
  • one of the cylinders has an injection device which, for. B. delivers 5% less fuel per unit of time than the other injection devices, the factor az for the cylinder z with this injection device is to be selected 5% higher than the individual factors for the other cylinders. Accordingly, an increase in an individual factor by z. B. 5% required if a cylinder is flowed through by 5% more air per unit time than the other cylinders.
  • the values obtained in this way are stored in an individual value memory, which is part of the control device shown in FIG. 3 and is indexed there with 11.1.
  • the control device also has a load size transmitter 10.1 and a linking device 12.1.
  • the load quantity transmitter 10.1 forms the quotient QL / n and also multiplies by a factor such that a load quantity is obtained in the sense of a preliminary injection time, as explained above.
  • This load variable is multiplied multiplicatively by an individual factor a1, a2, a3 or a4 in the linking device 12.1 and a respective individual summation b1, b2, b3 or b4 is added by a respective summing element.
  • individual injection times reach an injection device on each of the cylinders of an internal combustion engine 13.
  • a control device 14 and a test device 15 are present, both of which are indicated by framing with dash-dotted lines.
  • the control device this has a pilot control time memory 10.2, an individual value memory 11.2 and a linking device 12.2. Only individual factors f1, f2, f3 and f4 are stored in the individual value memory 11.2. In order to obtain this, two measurements no longer have to be carried out, as explained above using equations (3) and (4), but one measurement is sufficient, e.g. B. according to equation (3), with the summand or set to zero and a factor fz instead of the factor az.
  • Pre-control times are stored in the pre-control time memory 10.2 in an addressable manner via values of the air quantity QL and the speed n and, under certain circumstances, other (not shown) operating variables in an addressable manner.
  • the linking device 12.2 multiplies a pilot control time common to all cylinders by an individual factor f1, f2, f3 and f4 and passes the individualized control times to the associated injection device in the internal combustion engine 13.
  • f1, f2, f3 and f4 are the pilot control times correctly determined for all operating conditions and none occur due to aging Changes in the scatter of the above-mentioned summands or, it is irrelevant for the accuracy of the correction that the summands in the control device in the control unit 14 are not taken into account separately. It is sufficient to redetermine the individual factors fz from time to time.
  • the control unit 14 according to FIG. 4 has a superimposed control in addition to the precontrol.
  • This is irrelevant to the invention and is only briefly described here, since it represents the usual design of control units.
  • a lambda probe 16 is also arranged in the exhaust gas stream 17 of the internal combustion engine 13.
  • This probe has an actual lambda value that is subtracted from a desired lambda value that is read out from a desired value memory 18 that can be addressed via the operating variables that were mentioned in the description of the pilot control time memory 10.2.
  • the control deviation thus formed is fed to a control device 19 which outputs a correction factor KF with which the pilot control time read out from the pilot control time memory 10.2 is corrected by multiplication in such a way that the control deviation should disappear.
  • Such a control superimposed on the precontrol can not only with the embodiment 4, but together with any control device according to the invention shown in FIG. 1.
  • the test device 15 is used to carry out the measures just mentioned. It is divided into three areas, namely a measurement area 15.1, a test area 15.2 and a programming area 15.3.
  • the measuring range 15.1 has a display device 20 for displaying the lambda value measured in the exhaust gas stream 17. So that this lambda value is no longer passed to the subtractor for forming the control deviation for the control device 19, but instead reaches the display device 20, a changeover switch 21 is present in the control device 14, which switches over to a changeover signal US from the test device 15 .
  • the test area 15.2 has a test factor setting device 22 and a test factor multiplexer 23. Accordingly, the programming area 15.3 has an individual factor setting device 24 and an individual factor multiplexer 25. Each of four output lines of the multiplexers is connected to a register in the individual value memory 11.2, which stores a respective individual factor.
  • the test factor multiplexer 23 is used to give a test factor of 0.8 individually cylinder by cylinder: the register in charge in the individual value memory 11.2. The content of the other registers is set to 1 via the individual factor multiplexer 25. Multiplying a pilot control value by 0.8 leads to a shift of the lambda value in the lean direction. As soon as the register that is assigned to the cylinder that triggered the deviation in the bold direction on the display device 20 is triggered with the factor 0.8, this deviation disappears.
  • the individual factor 1 is again determined for this cylinder. Then the lambda value for this cylinder is measured on the display device, e.g. B. 0.95. Exactly this value is then set as an individual factor in the individual factor setting device 24 via a signal EIF from the outside and the individual factor multiplexer 25 is controlled by a signal NFM in such a way that it determines the factor 0.95 in the individual value memory 11.2 exactly in the door Cylinder responsible register writes. This measure ensures that the cylinder in question no longer deviates from the other cylinders in the bold direction.
  • lambda probe with linear behavior has the advantage that lambda values can be read directly.
  • an accurate display is only guaranteed if signal disturbances, which are caused by pressure fluctuations in the exhaust gas, are compensated for by measurement, which is complex.
  • Previous probes with linear measurement behavior are very sensitive to such pressure fluctuations.
  • a further disadvantage in the use of such probes is that a built-in lambda probe cannot be used directly, since such a sensor is, according to the current state of the art, usually a probe of the Nernst type with jumping behavior between the fat area and the lean area. How the method according to the invention is used using such a probe is explained below, specifically also starting from FIG. 4.
  • the individual factor 0.85 is now set in the individual factor setting device 24 for this cylinder. If the test factor is changed in further steps, this is passed to the associated register in the individual value memory 11.2 multiplied by the set individual factor for the cylinder concerned.
  • test factors for fat and lean only have a predetermined deviation of 1, e.g. B. 2%.
  • test factor could be placed on the line for the correction factor KF instead of on a device which carries out a multiplicative link with the individual factor, which leads to a multiplicative link device anyway.
  • the two described methods are applicable not only to the control device according to FIG. 4, which only stores individual factors fz, but also to the embodiment of the control device according to FIG. 3, which stores individual factors az and individual summands or.
  • the summands or are then set to zero in the individual value memory.
  • test device 15 can be designed as a separate device or it can be accommodated in the housing that houses the control device. In the latter case, the individual values can be set regularly, e.g. B. after a predetermined time after starting the internal combustion engine. However, this does not have any major advantages, since the largest variations are compensated for when setting the final assembly and aging-related effects only occur over longer periods of time.
  • the described method is automated with the successive approximation, it is necessary to monitor, as described, whether a false signal occurs in the bold direction when only lean signals are actually expected and vice versa. If it is now to be observed whether this signal disappears cylinder by cylinder when changing test factors, the signal may be maintained, namely when not only a single cylinder is scattering in the observed misalignment, but when two or more neighboring ones are scattered Cylinders do. If this is determined, the test factors for two adjacent cylinders must be changed together in the manner described, if there is still a signal, for three adjacent cylinders, etc. Instead, it is also possible, in addition to the amplitude, for the duration of the Monitor false signals. If two adjacent cylinders show the incorrect scatter, the signal amplitude is retained when testing, but only half as long as when measuring before the test to determine the scattering cylinder. A cylinder then becomes like the setting identified by hand by observing signal amplitude and signal duration.
  • the individual value memory in all embodiments is most appropriately designed as a PRDM, in particular as an EEPROM. If a procedure for determining individual correction values is then carried out at customer service, the newly determined values can be written into the EEPROM. It is also possible to use a non-volatile RAM, but then a control device which contains a control device of the type described must also contain a test device which makes it possible whenever an initialization process for memory is required automatically determine new individual correction values and write them back into RAM.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Control equipment for controlling the quantity of fuel supplied to the cylinders of an internal combustion engine by an injection device on each cylinder has a pre-control timing unit (10), an individual value store (11) and a logic element (12). The individual value store memorises individual values assigned to the injection devices for the individual cylinders of an internal combustion engine (13). The logic element combines the individual values with a pre-control time supplied by the pre-control timing unit to yield a control time for each injection device such that the lambda values measured by a lambda probe in the exhaust fumes are essentially the same for all cylinders. Good exhaust gas values can be obtained using this control equipment.

Description

Die Erfindung betrifft ein Verfahren zum Steuern der Kraftstoffmenge, die den Zylindern einer Brennkraftmaschine durch eine Einspritzeinrichtung einem jeden Zylinder zugeführt wird, sowie eine Steuereinrichtgung zur Durchführung dieses Verfahrens.The invention relates to a method for controlling the amount of fuel that is supplied to the cylinders of an internal combustion engine by an injection device to each cylinder, and a control device for carrying out this method.

Stand der TechnikState of the art

Eine bekannte Steuereinrichtung weist einen Vorsteuerzeitgeber auf, der Vorsteuerzeiten abhängig von Drehzahl und angesaugter Luftmenge ausgibt, wobei eine jeweilige.Vorsteuerzeit für alle Einspritzventile gemeinsam gilt. Der Vorsteuerung ist eine auf alle Zylinder gleichmäßig wirkende Lambda-Regelung überlagert.A known control device has a pilot control timer which outputs pilot control times as a function of the speed and the amount of air drawn in, a respective pilot control time being common for all injection valves. The pilot control is superimposed on a lambda control that acts uniformly on all cylinders.

Problematisch bei der bekannten Steuereinrichtung ist, daß Streuungen in Eigenschaften der unerschiedlichen Zylinder nicht berücksichtigt werden, was dazu führen kann, daß ein einzelner Zylinder der Brennkraftmaschine ein an Schadstoffen relativ reiches Abgas liefert. Man bemüht sich bisher, die Zylinderstreuungen gering zu halten, insbesondere dadurch, daß die Brennkraftmaschine so konstruiert wird, daß auf allen Gaslaufwegen sehr ähnliche Verhältnisse herrschen.The problem with the known control device is that variations in the properties of the different cylinders are not taken into account, which can lead to a single cylinder of the internal combustion engine supplying an exhaust gas that is relatively rich in pollutants. So far, efforts have been made to keep the cylinder scatter low, in particular by designing the internal combustion engine in such a way that very similar conditions prevail on all gas flow paths.

Eine Weiterbildung einer solchen Steuereinrichtung wird durch die DE-OS 32 01 372 vorgestellt.A further development of such a control device is presented by DE-OS 32 01 372.

Diese bestimmt eine individuelle für jeden Zylinder effektive Impulszeit zur Kraftstoffzumessung für jeden Zylinder aufgrund von Größen, die für alle Zylinder gleich sind, sowie von multiplikativen Korrekturfaktoren, die für jeden Zylinder spezifisch sind. Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Steuereinrichtung der eingangs genannten Art anzugeben, die ausgleichend in bezug auf Zylinderstreuungen wirkt. Der Erfindung liegt weiterhin die Aufgabe zugrunde, ein Verfahren zum Einstellen von Parametern einer solchen Einrichtung anzugeben.This determines an individual effective pulse time for the fuel metering for each cylinder based on quantities that are the same for all cylinders, as well as multiplicative correction factors that are specific for each cylinder. The invention has for its object to provide a method and a control device of the type mentioned, which has a compensating effect with respect to cylinder scatter. The invention is also based on the object of specifying a method for setting parameters of such a device.

Gelöst wird diese Aufgabe mit den Merkmalen der beiden unabhängigen Ansprüche 1 und 5.This object is achieved with the features of the two independent claims 1 and 5.

Vorteile der ErfindungAdvantages of the invention

Die Erfindung ist für das Verfahren durch die Merkmale von Anspruch 1 und für die Steuereinrichtung durch die Merkmale des ersten Sachanspruchs gegeben. Vorteilhafte Ausgestaltungen und Weiterbildungen sind Gegenstand der Unteransprüche.The invention is given for the method by the features of claim 1 and for the control device by the features of the first claim. Advantageous refinements and developments are the subject of the dependent claims.

Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, daß es Streuungen in den Eigenschaften der unterschiedlichen Zylinder einer Brennkraftmschine dadurch kompensiert, daß es die bekannte Vorsteuerung mit individuellen Korrekturwerten, die aus einer Kombination von Individualfaktoren und Individualsummanden gebildet werden, modifiziert. Es werden also nicht mehr alle Einspritzeinrichtungen mit derselben Einspritzzeit angesteuert, sondern für jeden Zylinder ist die Vorsteuerzeit so korrigiert, daß das Abgas von allen einzelnen Zylindern im wesentlichen dieselbe Zusammensetzung aufweist.The method according to the invention is characterized in that it compensates for variations in the properties of the different cylinders of an internal combustion engine by modifying the known precontrol with individual correction values which are formed from a combination of individual factors and individual summands. It is therefore no longer the case that all the injection devices are actuated with the same injection time, but rather the pilot control time is corrected for each cylinder such that the exhaust gas from all the individual cylinders has essentially the same composition.

Weiterhin zeichnet sich das erfindungsgemäße Verfahren dadurch aus, daß ermittelt wird, für welchen Zylinder der im Abgas gemessene Lambda-Wert von einem vorgegebenen Wert abweicht und dann der Korrekturwert für diesen Zylinder solange verändert wird bzw. dessen Korrekturwerte verändert werden, bis sich der vorgegebene Lambda-Wert ergibt.Furthermore, the method according to the invention is characterized in that it is determined for which cylinder the lambda value measured in the exhaust gas deviates from a predetermined value and then the correction value for this cylinder is changed or its correction values are changed until the predetermined lambda -Value results.

Um die individuellen Korrekturwerte zu speichern, weist die erfindungsgemäße Einrichtung einen Individualwertspeicher auf. Eine Verknüpfungseinrichtung verknüpft die gemeinsame Vorsteuerzeit mit den individuellen Korrekturwerten.In order to store the individual correction values, the device according to the invention has an individual value memory. A linking device links the common pilot control time with the individual correction values.

Wird für die Messung eine Lambda-Sonde verwendet, die vom fetten bis in den mageren Bereich Ohne Sprungverhalten mißt, z. B. eine Sonde vom Pumpstromtyp mit im wesentlichen linearen Verlauf, ist es relativ unproblematisch, Abweichungen von Lambda = 1 festzustellen und auf Lambda = 1 einzustellen. Jedoch ist erheblicher Aufwand in der Signalverarbeitung der Sonde erforderlich, da solche Sonden nicht nur auf Schwankungen der Abgaszusammensetzung sondern auch auf Druckschwankungen relativ empfindlich reagieren. In letzterer Beziehung sind Sonden vom Nernst-Typ weniger problematisch. Das Verwenden solcher Sonden empfiehlt sich auch aus dem Grund, weil dann die im Fahrzeug häufig bereits eingebaute Sonde, die in der Regel eine Sonde vom Nernst-Typ ist, als Meßsonde verwendet werden kann. Beim Verwenden eines solchen Sondentyps wird ein Verfahren durch sukzessive Approximation vorgeschlagen. Die Einspritzzeit wird dabei jeweils so verändert, daß z. B. ein eindeutig mageres Abgas erzielt werden sollie. Ist dies nicht der Fall, zeigt dies eine Abweichung der Eigenschaften des überwachten Zylinders von den Eigenschaften der anderen Zylinder in Richtung einer Fetteinstellung an, und zwar in einem Ausmaß, das entsprechend der vorgenommenen Änderung in der Einspritzzeit zu kompensieren ist. Nach diesem Kompensieren wird eine Änderung zum Erzielen eines fetten Gemisches vorgenommen. Diese wechselseitigen Änderungen werden mit immer kleinerer Amplitude wiederholt, bis eine vorgegebene Mindestamplitude erreicht ist.If a lambda probe is used for the measurement, which measures from the rich to the lean range without jumping behavior, e.g. B. a probe of the pumping current type with a substantially linear profile, it is relatively unproblematic to determine deviations from lambda = 1 and set to lambda = 1. However, considerable effort is required in the signal processing of the probe, since such probes are relatively sensitive not only to fluctuations in the exhaust gas composition but also to pressure fluctuations. In the latter regard, Nernst type probes are less problematic. The use of such probes is also recommended for the reason that the probe which is often already installed in the vehicle and which is generally a probe of the Nernst type can then be used as a measuring probe. When using such a probe type a method by successive approximation is proposed. The injection time is changed so that z. B. a clearly lean exhaust gas should be achieved. If this is not the case, this indicates a deviation of the properties of the monitored cylinder from the properties of the other cylinders in the direction of a rich setting, to an extent that has to be compensated for in accordance with the change made in the injection time. After this compensation, a change is made to achieve a rich mixture. These mutual changes are repeated with an ever smaller amplitude until a predetermined minimum amplitude is reached.

Zeichnungdrawing

Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:

  • Fig. 1 ein Blockdiagramm einer Steuereinrichtung mit einem Individualwertspeicher und einer Verknüpfungseinrichtung;
  • Fig. 2 ein Diagramm zum Erläutern des Zusammenhangs zwischen einer Lastgröße tL und der Einspritzzeit ti;
  • Fig. 3 ein Blockdiagramm einer Steuereinrichtung mit einem Individualwertspeicher, der Individualfaktoren und Individualsummanden speichert, und einer Verknüpfungseinrichtung, die multipliziert und addiert; und
  • Fig. 4 ein Blockdiagramm eines Steuergerätes und eines Testgerätes, wobei das Steuergerät einen Individualwertspeicher mit Individualfaktoren aufweist, die mit Hilfe des Testgerätes veränderbar sind.
Embodiments of the invention are shown in the drawing and explained in more detail in the following description. Show it:
  • 1 shows a block diagram of a control device with an individual value memory and a linking device;
  • 2 is a diagram for explaining the relationship between a load variable tL and the injection time ti;
  • 3 shows a block diagram of a control device with an individual value memory, which stores individual factors and individual summands, and a linking device, which multiplies and adds; and
  • 4 shows a block diagram of a control device and a test device, the control device having an individual value memory with individual factors which can be changed with the aid of the test device.

Beschreibung der AusführungsbeispieleDescription of the embodiments

Die Steuereinrichtung gemäß Fig. 1 weist einen Vorsteuerzeitgeber 10, einen Individualwertspeicher 11 und eine Verknüpfungseinrichtung 12 auf, die korrigierte Vorsteuerzeiten an (nicht dargestellte) Einspritzeinrichtungen in einer Brennkraftmaschine 13 ausgibt. Der Vorsteuerzeitgeber 10 wird mit einem Signal angesteuert, das der Drehzahl n proportional ist und einem lastanzeigenden Signal, das in Fig. 1 mit QL indiziert ist, entsprechend einer gemessenen Luftmenge pro Zeiteinheit. Das Lastsignal kann aber auch z. B. durch den Saugdruck oder die Drosselklappenstellung gegeben sein. Außer diesen Eingangsgrößen berücksichtigen übliche Vorsteuerzeitgeber häufig noch weitere Größen, insbesondere die Motortemperatur, worauf es für die folgenden Erläuterungen jedoch nicht ankommt. Die Verknüpfungseinrichtung 12 verknüpft vom Vorsteuerzeitgeber 10 ausgegebene Vorsteuerzeiten mit aus dem Individualwertspeicher 11 ausgelesenen Korrekturwerten, die für jede Einspritzeinrichtung der Brennkraftmaschine 13 gesondert so bestimmt sind, daß sich für jede Einspritzeinrichtung jeweils eine solche Steuerzeit ergibt, daß die für jeden Zylinder einzeln durch eine Lambda-Sonde im Abgas gemessenen Lambda-Werte für alle Zylinder im wesentlichen gleich sind.The control device according to FIG. 1 has a pilot control timer 10, an individual value memory 11 and a linking device 12 which outputs corrected pilot control times to injection devices (not shown) in an internal combustion engine 13. The pilot control timer 10 is driven by a signal which is proportional to the rotational speed n and a load-indicating signal which is indicated by QL in FIG. 1, corresponding to a measured air quantity per unit of time. The load signal can also, for. B. be given by the suction pressure or the throttle valve position. In addition to these input variables, conventional pilot control timers often take other variables into account, in particular the motor temperature, which is not important for the following explanations. The linking device 12 links the pilot control times output by the pilot control timer 10 with correction values read from the individual value memory 11, which are determined separately for each injection device of the internal combustion engine 13 in such a way that a control time results for each injection device such that the control time for each cylinder individually by a lambda Lambda values measured in the exhaust gas are essentially the same for all cylinders.

Bevor auf Details der Erfindung näher eingegangen wird, sei zunächst anhand von Fig. 2 erläutert, wie Zylinderstreuungen generell ausgeglichen werden können.Before going into details of the invention in more detail, it should first be explained with reference to FIG. 2 how cylinder scatter can generally be compensated for.

In Fig. 2 ist der Zusammenhang zwischen der Einspritzzeit ti für einen einzelnen Zylinder mit einer für alle Zylinder gemeinsamen Lastgröße TL dargestellt. Die Lastgröße TL wird z. B. dadurch gewonnen, daß die Luftmenge QL pro Zeiteinheit durch die Drehzahl n dividiert wird und das2 shows the relationship between the injection time ti for an individual cylinder with a load variable TL common to all cylinders. The load size TL is e.g. B. obtained by dividing the air volume QL per unit of time by the speed n and that

Ergebnis mit einer Konstanten multipliziert wird, die das Ergebnis der Division so einstellt, daß sich eine Zeit ergibt, die im Rahmen üblicher Einspritzzeiten von einigen Millisekunden liegt. Die Lastgröße tL ist somit eine vorläufige Einspritzzeit.The result is multiplied by a constant, which adjusts the result of the division so that a time is obtained which is within the usual injection times of a few milliseconds. The load variable tL is therefore a preliminary injection time.

Damit das Abgas von einem einzelnen Zylinder in allen Betriebszuständen denselben Lambda-Wert, z. B. Lambda = 1 zeigt, muß sich die Einspritzzeit ti proportional mit der Luftmenge QL pro Zeiteinheit und umgekehrt proportional mit der Drehzahl n, also insgesamt proportional mit der Lastgröße tL ändern. Dies ist in Fig. 2 durch die gestrichelte Linie dargestellt. Sie zeigt somit den Zusammenhang: ti = az * tL,

Figure imgb0001
wobei az ein für den Zylinder z geltender Individualfaktor ist. Dieser Faktor ist nur dann Tür alle Zylinder gleich, wenn alle Einspritzeinrichtungen innerhalb derselben Einspritzzeit genau dieselbe Kraftstoffmenge abgeben und wenn alle Zylinder jeweils von der genau gleichen Luftmenge pro Zeiteinheit durchsetzt werden. Weist dagegen einer der Zylinder eine Einspritzeinrichtung auf, die z. B. 5 % weniger Kraftstoff pro Zeiteinheit abgibt als die anderen Einspritzeinrichtungen, ist der Faktor az für den Zylinder z mit dieser Einspritzeinrichtung um 5 % höher zu wählen als die Individualfaktoren für die anderen Zylinder. Entsprechend ist eine Anhebung eines Individualfaktors um z. B. 5 % erforderlich, wenn ein Zylinder von 5 % mehr Luft pro Zeiteinheit durchflossen wird als die anderen Zylinder.So that the exhaust gas from a single cylinder has the same lambda value, e.g. B. Lambda = 1 shows, the injection time ti must change proportionally with the air quantity QL per unit time and inversely proportional with the speed n, that is, proportionately with the load variable tL. This is shown in Fig. 2 by the dashed line. It shows the connection: ti = az * tL,
Figure imgb0001
where az is an individual factor valid for the cylinder z. This factor is only the same for all cylinders if all injectors deliver exactly the same amount of fuel within the same injection time and if all of the cylinders are penetrated by exactly the same amount of air per unit of time. On the other hand, one of the cylinders has an injection device which, for. B. delivers 5% less fuel per unit of time than the other injection devices, the factor az for the cylinder z with this injection device is to be selected 5% higher than the individual factors for the other cylinders. Accordingly, an increase in an individual factor by z. B. 5% required if a cylinder is flowed through by 5% more air per unit time than the other cylinders.

Bei den soeben wiedergegebenen Betrachtungen wurde davon ausgegangen, daß alle Einspritzeinrichtungen über ihre gesamte jeweilige Ansteuerzeit konstant dieselbe Kraftstoffmenge pro Zeiteinheit abgeben. Dies ist in der Praxis jedoch nicht der Fall, da Einspritzeinrichtungen, z. B. Einspritzventile, langsamer öffnen als schließen. Diese Tatsache ist durch eine zusätzliche Zeit, einen Individual-summanden bz zu berücksichtigen. Es ergibt sich damit der folgende Zusammenhang gemäß der ausgezogenen Gerade in Fig. 2: ti = az * tL + bz.

Figure imgb0002
In the considerations just reproduced, it was assumed that all the injection devices emit the same amount of fuel per unit of time over their entire respective control time. In practice, however, this is not the case, since injection devices, e.g. B. Injectors open more slowly than close. This fact must be taken into account by an additional time to add an individual summand. This results in the following relationship according to the straight line in FIG. 2: ti = az * tL + or.
Figure imgb0002

Diese für jeden Zylinder z geltende Gleichung enthält zwei Unbekannte, nämlich den Individualfaktor az und den Individualsummanden bz. Um diese Individualwerte bestimmen zu können, müssen die Werte ti und tL für zwei Punkte der Funktionsgeraden bestimmt werden, nämlich für einen unteren und einen oberen Punkt, im vorliegenden Fall vorzugsweise für Leerlauf und für Vollast. Es ergeben sich die folgenden zwei Gleichungen: tiu = az * tLu + bz

Figure imgb0003
tio = az * tLo + bz
Figure imgb0004
Durch Abziehen der Gleichung (1) von der Gleichung (2) und Auswerten nach az ergibt sich: az = (tio - tiu)/(tLu - tLo)
Figure imgb0005
Aus den Gleichungen (1) und (3) ergibt sich sodann für den Individualsummanden bz: bz = tiu - tLu * (tio - tiu)/(tLu - tLo)
Figure imgb0006
This equation valid for each cylinder z contains two unknowns, namely the individual factor az and the individual summand or. In order to be able to determine these individual values, the values ti and tL must be determined for two points of the function line, namely for a lower and an upper point, in the present case preferably for idling and for full load. The following two equations result: tiu = az * tLu + or
Figure imgb0003
tio = az * tLo + or
Figure imgb0004
Subtracting equation (1) from equation (2) and evaluating it to az yields: az = (tio - tiu) / (tLu - tLo)
Figure imgb0005
From equations (1) and (3), the individual summands or: bz = tiu - tLu * (tio - tiu) / (tLu - tLo)
Figure imgb0006

Die so gewonnenen Werte werden in einem Individualwertspeicher abgespeichert, der Teil der in Fig. 3 dargestellten Steuereinrichtung ist und dort mit 11.1 indiziert ist. Die Steuereinrichtung verfügt außerdem über einen Lastgrössengeber 10.1 und eine Verknüpfungseinrichtung 12.1. Der Lastgrößengeber 10.1 bildet den Quotienten QL/n und multipliziert auch mit einem Faktor so, daß eine Lastgröße im Sinne einer vorläufigen Einspritzzeit gewonnen wird, wie oben erläutert. Diese Lastgröße wird in der Verknüpfungseinrichtung 12.1 multiplikativ mit jeweils einem Individualfaktor a1, a2, a3 bzw. a4 multipliziert und durch ein jeweiliges Summierglied wird ein jeweiliger Individualsummand b1, b2, b3 bzw. b4 addiert. Dadurch gelangen individuelle Einspritzzeiten an jeweils eine Einspritzeinrichtung an jedem der Zylinder einer Brennkraftmasshine 13.The values obtained in this way are stored in an individual value memory, which is part of the control device shown in FIG. 3 and is indexed there with 11.1. The control device also has a load size transmitter 10.1 and a linking device 12.1. The load quantity transmitter 10.1 forms the quotient QL / n and also multiplies by a factor such that a load quantity is obtained in the sense of a preliminary injection time, as explained above. This load variable is multiplied multiplicatively by an individual factor a1, a2, a3 or a4 in the linking device 12.1 and a respective individual summation b1, b2, b3 or b4 is added by a respective summing element. As a result, individual injection times reach an injection device on each of the cylinders of an internal combustion engine 13.

Ein einfacherer Aufbau eines Individualwertspeichers und einer Verknüpfungseirichtung ergibt sich dann, wenn darauf verzichtet wird, alterrungsbedingte Streuungen im beschriebenen Summanden zu berücksichtigen. Es ergibt sich dann ein Aufbau, wie er Teil des Blockdiagramms von Fig. 4 ist.A simpler structure of an individual value memory and a linking device is obtained if it is dispensed with taking age-related scatter into account in the summand described. The result is a structure as part of the block diagram of FIG. 4.

Im Blockdiagramm gemäß Fig. 4 sind ein Steuergerät 14 und ein Testgerät 15 vorhanden, die beide durch Umrahmung mit strichpunktierten Linien angedeutet sind. Es interessiert zunächst nur das Steuergerät 14. Dieses weist als Steuereinrichtung einen Vorsteuerzeitspeicher 10.2, einen Individualwertspeicher 11.2 und eine Verknüpfungseinrichtung 12.2 auf. Im Individualwertspeicher 11.2 sind lediglich Individualfaktoren f1, f2, f3 und f4 gespeichert. Um diese zu gewinnen, müssen nicht mehr zwei Messungen durchgeführt werden, wie oben anhand der Gleichungen (3) und (4) erläutert, sondern es genügt eine Messung, z. B. die gemäß Gleichung (3), wobei der Summand bz auf null gesetzt ist und statt des Faktors az ein Faktor fz steht.In the block diagram according to FIG. 4, a control device 14 and a test device 15 are present, both of which are indicated by framing with dash-dotted lines. Initially, only the control device 14 is interested. As the control device, this has a pilot control time memory 10.2, an individual value memory 11.2 and a linking device 12.2. Only individual factors f1, f2, f3 and f4 are stored in the individual value memory 11.2. In order to obtain this, two measurements no longer have to be carried out, as explained above using equations (3) and (4), but one measurement is sufficient, e.g. B. according to equation (3), with the summand or set to zero and a factor fz instead of the factor az.

Im Vorsteuerzeitspeicher 10.2 sind Vorsteuerzeiten adressierbar über Werte der Luftmenge QL und der Drehzahl n und unter Umständen weiterer (nicht dargestellter) Betriebsgrößen adressierbar abgelegt. Die Verknüpfungseinrichtung 12.2 multipliziert eine für alle Zylinder gemeinsame Vorsteuerzeit jeweils mit einem Individualfaktor f1, f2, f3 bzw. f4 und gibt die dadurch individualisierten Ansteuerzeiten an die jeweils zugehörige Einspritzeinrichtung in der Brennkraftmaschine 13. Sind die Vorsteuerzeiten für alle Betriebsbedingungen richtig bestimmt und treten alterungsbedingt keine Änderungen in den Streuungen der oben erwähnten Summanden bz auf, ist es für die Genauigkeit der Korrektur unerheblich, daß die Summanden in der Steuereinrichtung im Steuergerät 14 nicht gesondert berücksichtigt werden. Es genügt, von Zeit zu Zeit die Individualfaktoren fz neu zu bestimmen.Pre-control times are stored in the pre-control time memory 10.2 in an addressable manner via values of the air quantity QL and the speed n and, under certain circumstances, other (not shown) operating variables in an addressable manner. The linking device 12.2 multiplies a pilot control time common to all cylinders by an individual factor f1, f2, f3 and f4 and passes the individualized control times to the associated injection device in the internal combustion engine 13. Are the pilot control times correctly determined for all operating conditions and none occur due to aging Changes in the scatter of the above-mentioned summands or, it is irrelevant for the accuracy of the correction that the summands in the control device in the control unit 14 are not taken into account separately. It is sufficient to redetermine the individual factors fz from time to time.

Das Steuergerät 14 gemäß Fig. 4 weist außer der Vorsteuerung noch eine überlagerte Regelung auf. Diese ist für die Erfindung unerheblich und wird hier nur kurz beschrieben, da sie die übliche Ausgestaltung von Steuergeräten darstellt. Es ist nämlich noch eine Lambda-Sonde 16 im Abgasstrom 17 der Brennkraftmaschine 13 angeordnet. Diese Sonde weist einen Lambda-Istwert auf, der von einem Lambda-Sollwert abgezogen wird, der aus einem Sollwertspeicher 18 ausgelesen wird, der über die Betriebsgrößen adressierbar ist, die bei der Beschreibung des Vorsteuerzeitspeichers 10.2 erwähnt wurden. Die so gebildete Regelabweichung wird einer Regeleinrichtung 19 zugeführt, die einen Korrekturfaktor KF ausgibt, mit dem die aus dem Vorsteuerzeitspeicher 10.2 ausgelesene Vorsteuerzeit durch Multiplikation so korrigiert wird, daß die Regelabweichung verschwinden sollte. Eine solche der Vorsteuerung überlagerte Regelung kann nicht nur mit der Ausführungsform einer Steuereinrichtung gemäß Fig. 4 verwendet werden, sondern zusammen mit jeder beliebigen erfindungsgemäßen Steuereinrichtung gemäß Fig. 1.The control unit 14 according to FIG. 4 has a superimposed control in addition to the precontrol. This is irrelevant to the invention and is only briefly described here, since it represents the usual design of control units. Namely, a lambda probe 16 is also arranged in the exhaust gas stream 17 of the internal combustion engine 13. This probe has an actual lambda value that is subtracted from a desired lambda value that is read out from a desired value memory 18 that can be addressed via the operating variables that were mentioned in the description of the pilot control time memory 10.2. The control deviation thus formed is fed to a control device 19 which outputs a correction factor KF with which the pilot control time read out from the pilot control time memory 10.2 is corrected by multiplication in such a way that the control deviation should disappear. Such a control superimposed on the precontrol can not only with the embodiment 4, but together with any control device according to the invention shown in FIG. 1.

Weiter oben wurde erwähnt, daß der in Fig. 2 dargestellte Zusammenhang nur dann gilt, wenn im gesamten lastbereich ein bestimmter lambda-Wert konstant gehalten wird. Im folgenden wird ausgehend von Fig. 4 beschrieben, wie das Einstellen des lambda-Wertes und das Festlegen der Individualwerte vorgenommen werden kann.It was mentioned above that the relationship shown in FIG. 2 only applies if a specific lambda value is kept constant in the entire load range. Starting from FIG. 4, the following describes how the lambda value can be set and the individual values can be set.

Zum Vornehmen der soeben genannten Maßnahmen dient das Testgerät 15 gemäß Fig. 4. Dieses ist in drei Bereiche unterteilt, nämlich einen Meßbereich 15.1, einen Testbereich 15.2 und einen Programmierbereich 15.3. Der Meßbereich 15.1 verfügt über eine Anzeigeeinrichtung 20 zum Anzeigen des im Abgasstrom 17 gemessenen lambda-Wertes. Damit dieser lambda-Wert nicht mehr an das Subtrahierglied zum Bilden der Regelabweichung für die Regeleinrichtung 19 gegeben wird, sondern an die Anzeigeeinrichtung 20 gelangt, ist im Steuergerät 14 ein Umschalter 21 vorhanden, der auf ein Umschaltsignal US vom Testgerät 15 her ein entsprechendes Umschalten vornimmt. Zugleich wird das Ausgangssignal von der Regeleinrichtung 19 unterbrochen und stattdessen ein konstanter Korrekturfaktor KF = 1 für das Multiplizieren mit Vorsteuerzeiten ausgegeben.The test device 15 according to FIG. 4 is used to carry out the measures just mentioned. It is divided into three areas, namely a measurement area 15.1, a test area 15.2 and a programming area 15.3. The measuring range 15.1 has a display device 20 for displaying the lambda value measured in the exhaust gas stream 17. So that this lambda value is no longer passed to the subtractor for forming the control deviation for the control device 19, but instead reaches the display device 20, a changeover switch 21 is present in the control device 14, which switches over to a changeover signal US from the test device 15 . At the same time, the output signal is interrupted by the control device 19 and instead a constant correction factor KF = 1 is output for the multiplication by pilot control times.

Der Testbereich 15.2 verfügt über eine Testfaktor-Einstelleinrichtung 22 und einen Testfaktor-Multiplexer 23. Entsprechend weist der Programmierbereich 15.3 eine Individualfaktor-Einstelleinrichtung 24 und einen Individualfaktor-Multiplexer 25 auf. Jede von vier Ausgangsleitungen der Multiplexer ist jeweils mit einem Register im Individualwertspeicher 11.2 verbunden, das einen jeweiligen Individualfaktor speichert.The test area 15.2 has a test factor setting device 22 and a test factor multiplexer 23. Accordingly, the programming area 15.3 has an individual factor setting device 24 and an individual factor multiplexer 25. Each of four output lines of the multiplexers is connected to a register in the individual value memory 11.2, which stores a respective individual factor.

Es wird davon ausgegangen, daß das Messen des Lambda-Wertes mit einer Lambda-Sonde mit linearem Ausgangssignal erfolgt und daß alle Einstellvorgänge von Hand erfolgen.It is assumed that the lambda value is measured with a lambda probe with a linear output signal and that all adjustment processes are carried out by hand.

Zunächst werden alle Individualfaktoren f1, f2, f3 und f4 im Individualwertspeicher 11.2 über den Individualfaktor-Multiplexer 25 auf den Anfangswert 1 gesetzt. Dann wird auf der Anzeigeeinrichtung 20 beobachtet, ob ein Abweichen von Lambda = 1 auftritt. Ist ein solches Abweichen z. B. in Richtung fett vorhanden, wie in Fig. 4 dargestellt, wird über den Testfaktor-Multiplexer 23 ein Testfaktor von 0,8 einzeln Zylinder für Zylinder au: das zuständige Register im Individualwertspeicher 11.2 gegeben. Der Inhalt der anderen Register wird jeweils über den Individualfaktor-Multiplexer 25 auf 1 gesetzt. Das Multiplizieren eines Vorsteuerwertes mit dem Wert 0,8 führt zu einem Verschieben des Lambda-Wertes in Richtung mager. Sobald dasjenige Register mit dem Faktor 0,8 angesteuert wird, das demjenigen Zylinder zugeordnet ist, der die Abweichung in Richtung fett auf der Anzeigeeinrichtung 20 auslöste, verschwindet diese Abweichung.First, all individual factors f1, f2, f3 and f4 in the individual value memory 11.2 are set to the initial value 1 via the individual factor multiplexer 25. It is then observed on the display device 20 whether a deviation from lambda = 1 occurs. Is such a deviation z. For example, in the bold direction, as shown in FIG. 4, the test factor multiplexer 23 is used to give a test factor of 0.8 individually cylinder by cylinder: the register in charge in the individual value memory 11.2. The content of the other registers is set to 1 via the individual factor multiplexer 25. Multiplying a pilot control value by 0.8 leads to a shift of the lambda value in the lean direction. As soon as the register that is assigned to the cylinder that triggered the deviation in the bold direction on the display device 20 is triggered with the factor 0.8, this deviation disappears.

Nachdem so ein abweichender Zylinder festgelegt ist, wird auch für diesen wieder der Individualfaktor 1 festgelegt. Dann wird auf der Anzeigeeinrichtung der Lambda-Wert für diesen Zylinder aemessen, z. B. 0,95. Genau dieser Wert wird dann als Individualfaktor in der Individualfaktor-Einstelleinrichtung 24 über ein Signal EIF von außen eingestellt und der Individualfaktor-Multiplexer 25 wird durch ein Signal NFM so angesteuert, daß er den Faktor 0,95 im Individualwertspeicher 11.2 genau in das Tür den ermittelten Zylinder zuständige Register schreibt. Durch diese Maßnahme ist gewährleistet, daß der betreffende Zylinder nicht mehr in Richtung fett gegenüber den anderen Zylindern abweicht.After such a deviating cylinder has been determined, the individual factor 1 is again determined for this cylinder. Then the lambda value for this cylinder is measured on the display device, e.g. B. 0.95. Exactly this value is then set as an individual factor in the individual factor setting device 24 via a signal EIF from the outside and the individual factor multiplexer 25 is controlled by a signal NFM in such a way that it determines the factor 0.95 in the individual value memory 11.2 exactly in the door Cylinder responsible register writes. This measure ensures that the cylinder in question no longer deviates from the other cylinders in the bold direction.

Das Verwenden einer Lambda-Sonde mit linearem Verhalten hat den Vorteil, daß Lambda-Werte direkt abgelesen werden können. Eine genaue Anzeige ist jedoch nur dann gewährleistet, wenn Signalstörungen, die durch Druckschwankungen im Abgas hervorgerufen sind, meßtechnisch ausgeglichen werden, was aufwendig ist. Auf solche Druckschwankungen reagieren bisherige Sonden mit linearem Meßverhalten sehr empfindlich. Ein weiterer Nachteil in der Verwendung solcher Sonden besteht darin, daß nicht unmittelbar eine eingebaute Lambda-Sonde verwendet werden kann, da eine solche nach dem heutigen Stand der Technik üblicherweise eine Sonde vom Nernst-Typ mit Sprungverhalten zwischen dem Fettbereich und dem Magerbereich ist. Wie unter Verwendung einer solchen Sonde erfindungsgemäß verfahren wird, wird im folgenden erläutert, und zwar ebenfalls ausgehend von Fig. 4.The use of a lambda probe with linear behavior has the advantage that lambda values can be read directly. However, an accurate display is only guaranteed if signal disturbances, which are caused by pressure fluctuations in the exhaust gas, are compensated for by measurement, which is complex. Previous probes with linear measurement behavior are very sensitive to such pressure fluctuations. A further disadvantage in the use of such probes is that a built-in lambda probe cannot be used directly, since such a sensor is, according to the current state of the art, usually a probe of the Nernst type with jumping behavior between the fat area and the lean area. How the method according to the invention is used using such a probe is explained below, specifically also starting from FIG. 4.

Zunächst werden wiederum alle Individualfaktoren über den Individualfaktor-Multiplexer 25 im Individualwertspeicher 11.2 auf 1 gesetzt. Dann wird über den Testfaktor-Multiplexer 23 ein gemeinsamer Testfaktor von 0,8 ausgegeben, der zu einem Magersignal für alle Zylinder führen sollte. Ist dies der Fall, wird ein Testfaktor von 1,2 ausgegeben. Die Folge sollte ein Fettsignal für alle Zylinder sein. Ist auch dies der Fall, wird der Testfaktor auf 0,85 geändert. Zeigt nun ein Zylinder ein Fettsignal, bedeutet dies, daß dieser Zylinder um 15 % im Vergleich zu den anderen Zylindern in Richtung fett läuft. Welches der Zylinder ist, der das Signal auslöst, wird dadurch ermittelt, daß der Reihe nach jeder Zylinder mit dem Testfaktor 0,8 versorgt wird, während die anderen Zylinder nach wie vor den Faktor 0,85 erhalten. Verschwindet das Fettsignal, ist dies das Zeichen dafür, daß gerade derjenige Zylinder angesteuert wurde, der das Signal auslöste.First of all, all individual factors are again set to 1 via the individual factor multiplexer 25 in the individual value memory 11.2. Then a common test factor of 0.8 is output via the test factor multiplexer 23, which should lead to a lean signal for all cylinders. If this is the case, a test factor of 1.2 is output. The result should be a fat signal for all cylinders. If this is also the case, the test factor is changed to 0.85. If a cylinder now shows a rich signal, this means that this cylinder runs in the rich direction by 15% compared to the other cylinders. Which cylinder is the one that triggers the signal is determined by supplying each cylinder with the test factor 0.8 in sequence, while the other cylinders are still given the factor 0.85. If the fat signal disappears, this is a sign that the cylinder that triggered the signal has just been activated.

Für diesen Zylinder wird nun der Individualfaktor 0,85 in der Individualfaktor-Einstelleinrichtung 24 eingestellt. Wird in weiteren Schritten der Testfaktor jeweils geändert, wird dieser für den betreffenden Zylinder multipliziert mit dem eingestellten Individualfaktor an das zugehörige Register im Individualwertspeicher 11.2 gegeben.The individual factor 0.85 is now set in the individual factor setting device 24 for this cylinder. If the test factor is changed in further steps, this is passed to the associated register in the individual value memory 11.2 multiplied by the set individual factor for the cylinder concerned.

Die beschriebenen Schritte werden so lange wiederholt, bis die Testfaktoren für fett und mager nur noch eine vorgegebene Abweichung von 1 aufweisen, z. B. 2 %.The steps described are repeated until the test factors for fat and lean only have a predetermined deviation of 1, e.g. B. 2%.

Es wird darauf hingewiesen, daß der Testfaktor statt auf eine Einrichtung, die eine multiplikative Verknüpfung mit dem Individualfaktor vornimmt, auch auf die Leitung für den Korrekturfaktor KF gelegt werden könnte, die ohnehin zu einer multiplikativ wirkenden Verknüpfungseinrichtung führt.It is pointed out that the test factor could be placed on the line for the correction factor KF instead of on a device which carries out a multiplicative link with the individual factor, which leads to a multiplicative link device anyway.

Die beiden beschriebenen Verfahren sind nicht nur auf die Steuereinrichtung gemäß Fig. 4 anwendbar, die lediglich Individualfaktoren fz speichert, sondern auch auf die Ausführungsform der Steuereinrichtung gemäß Fig. 3, die Individualfaktoren az und Individualsummanden bz speichert. Es werden dann im Individualwertspeicher die Summanden bz auf null gesetzt. Durch Verändern der Faktoren wird Lambda = 1 eingestellt und es werden die zugehörigen Werte von Lastsignal und Einspritzzeit gemessen. Dies erfolgt für eine untere und eine obere Lastgröße gemäß den Gleichungen (3) und (4), woraufhin das Berechnen eines jeweiligen Individualfaktors az und eines Individualsummanden bz erfolgen kann.The two described methods are applicable not only to the control device according to FIG. 4, which only stores individual factors fz, but also to the embodiment of the control device according to FIG. 3, which stores individual factors az and individual summands or. The summands or are then set to zero in the individual value memory. By changing the factors, lambda = 1 is set and the associated values of load signal and injection time are measured. This is done for a lower and an upper load size according to equations (3) and (4), whereupon the calculation of a respective individual factor az and an individual sum or can be carried out.

Die Verfahren wurden bisher zur Ausführung von Hand beschrieben. Aus den Verfahrensabläufen ergibt sich jedoch, daß diese problemlos automatisiert werden können. Sie können dann schnell und sicher ausgeführt werden, z. B. bei der Endmontage an einem Band einer Motorenfertigung oder während eines Kundendienstes. Das Testgerät 15 kann dabei als gesondertes Gerät ausgebildet sein oder es kann im Gehäuse, das das Steuergerät beherbergt, mit untergebracht sein. Im letzteren Fall kann das Einstellen der Individualwerte regelmäßig erfolgen, z. B. jeweils nach einer vorgegebenen Zeit nach dem Starten der Brennkraftmaschine. Dies bringt jedoch keine allzu großen Vorteile mit sich, da mit dem Einstellen bei der Endmontage die größten Streuungen ausgeglichen werden und alterungsbedingte nur über größere Zeiträume auftreten.The methods have so far been described for manual execution. From the procedures, however, it follows that that these can be automated easily. They can then be executed quickly and safely, e.g. B. in the final assembly on a belt of an engine production or during customer service. The test device 15 can be designed as a separate device or it can be accommodated in the housing that houses the control device. In the latter case, the individual values can be set regularly, e.g. B. after a predetermined time after starting the internal combustion engine. However, this does not have any major advantages, since the largest variations are compensated for when setting the final assembly and aging-related effects only occur over longer periods of time.

Wird das beschriebene Verfahren mit der sukzessiven Approximation automatisiert, ist, wie beschrieben, zu überwachen, ob ein Fehlsignal in Richtung fett auftritt, wenn eigentlich nur Magersignale erwartet werden und umgekehrt. Soll nun beobachtet werden, ob dieses Signal beim Ändern von Testfaktoren Zylinder für Zylinder verschwindet, kann es vorkommen, daß das Signal aufrechterhalten bleibt, nämlich dann, wenn nicht nur ein einzelner Zylinder in der beobachteten Fehlrichtung streut, sondern wenn dies zwei oder noch mehr benachbarte Zylinder tun. Wird derartiges festgestellt, müssen die Testfaktoren für zwei benachbarte Zylinder jeweils gemeinsam in der beschriebenen Weise geändert werden, falls auch dann noch ein Signal bleibt, für drei benachbarte Zylinder, usw. Stattdessen ist es auch möglich, außer der Amplitude auch noch die zeitliche Dauer des Fehlsignales zu überwachen. Zeigen zwei benachbarte Zylinder die Fehlstreuung, bleibt zwar die Signalamplitude beim Durchtesten erhalten, jedoch nur noch halb so lange wie bei der Messung vor dem Test zum Feststellen des streuenden Zylinders. Ein Zylinder wird dann, wie beim Einstellen von Hand durch Beobachten von Signalamplitude und Signaldauer identifiziert.If the described method is automated with the successive approximation, it is necessary to monitor, as described, whether a false signal occurs in the bold direction when only lean signals are actually expected and vice versa. If it is now to be observed whether this signal disappears cylinder by cylinder when changing test factors, the signal may be maintained, namely when not only a single cylinder is scattering in the observed misalignment, but when two or more neighboring ones are scattered Cylinders do. If this is determined, the test factors for two adjacent cylinders must be changed together in the manner described, if there is still a signal, for three adjacent cylinders, etc. Instead, it is also possible, in addition to the amplitude, for the duration of the Monitor false signals. If two adjacent cylinders show the incorrect scatter, the signal amplitude is retained when testing, but only half as long as when measuring before the test to determine the scattering cylinder. A cylinder then becomes like the setting identified by hand by observing signal amplitude and signal duration.

Wie erläutert, ist es möglich, Individualwerte so zu bestimmen, daß sich für jede Einspritzeinrichtung jeweils eine solche Steuerzeit ergibt, daß die für jeden Zylinder einzeln durch eine Lambda-Sonde im Abgas gemessenen Lambda-Werte für alle Zylinder im wesentlichen gleich sind. Werden diese Werte im Individualwertspeicher einer Steuereinrichtung abgelegt und durch eine Verknüpfungseinrichtung mit einer gemeinsamen Vorsteuerzeit verknüpft, liefern alle Zylinder im wesentlichen ein Abgas mit demselben Lambda-Wert. Dadurch ist es möglich, den Schadstoffanteil für alle Zylinder gleichmäßig zu verringern. Es ist dann nicht mehr erforderlich, wie bisher, daß einige Zylinder etwas zu fett und die anderen etwas zu mager laufen müssen, nur um einen zufriedenstellenden Mittelwert zu erhalten.As explained, it is possible to determine individual values in such a way that a control time results for each injection device such that the lambda values measured individually for each cylinder in the exhaust gas by a lambda probe are essentially the same for all cylinders. If these values are stored in the individual value memory of a control device and linked to a common pilot control time by a linking device, all cylinders essentially deliver an exhaust gas with the same lambda value. This makes it possible to reduce the pollutant content for all cylinders evenly. It is then no longer necessary, as before, that some cylinders have to run a little too rich and the others a little too lean, only to obtain a satisfactory mean.

Es wird darauf hingewiesen, daß der Wert der Summanden bz von der Spannung abhängt, mit der Einspritzeinrichtungen angesteuert werden. Wird hierfür eine nicht geregelte Spannung verwende:, die somit schwanken kann, ist jeder Summand bz zu Korrigieren, was am zweckmäßigsten durch Multiplikation mit einer Größe erfolgt, die proportional zur Ansteuerspannung für die Einspritzeinrichtungen ist.It is pointed out that the value of the summands or depends on the voltage with which the injection devices are controlled. If an unregulated voltage is used for this, which can therefore fluctuate, each add or correct is to be corrected, which is most conveniently done by multiplying by a quantity which is proportional to the control voltage for the injection devices.

Der Individualwertspeicher bei allen Ausführungsformen ist am zweckmäßigsten als PRDM ausgebildet, insbesondere als EEPROM. Wird dann bei einem Kundendienst ein Verfahren zum Bestimmen individueller Korrekturwerte ausgeführt, können die neu ermittelten Werte in den EEPROM eingeschrieben werden. Es ist auch möglich, einen nicht flüchtigen RAM zu verwenden, jedoch muß dann ein Steuergerät, das eine Steuereinrichtung der beschriebenen Art beinhaltet, auch eine Testeinrichtung enthalten, die es ermöglicht, immer dann, wenn ein Initialisierungsprozeß für Speicher erforderlich wurde, automatisch neue individuelle Korrekturwerte zu bestimmen und diese wieder in den RAM einzuschreiben.The individual value memory in all embodiments is most appropriately designed as a PRDM, in particular as an EEPROM. If a procedure for determining individual correction values is then carried out at customer service, the newly determined values can be written into the EEPROM. It is also possible to use a non-volatile RAM, but then a control device which contains a control device of the type described must also contain a test device which makes it possible whenever an initialization process for memory is required automatically determine new individual correction values and write them back into RAM.

Alle beschriebenen Speicher und Einrichtungen sind vorteilhafterweise durch Teile und Funktionen eines Mikrorechners gegeben, wie er heute vielfach in der Motorelektronik verwendet wird.All of the memories and devices described are advantageously provided by parts and functions of a microcomputer, as is often used today in motor electronics.

Claims (8)

1. Method for controlling the quantity of fuel which is supplied to individual cylinders of an internal combustion engine by means of an injection device and which is effected by the correction of pre-control times, which are common to all cylinders and which depend on speed of rotation and quantity of air taken in, by means of individual correction values dependent on actual lambda values, characterised in that
a) the individual correction values are formed from a combination of individual factors az and individual summands bz,
b) the individual factors az and the individual summands bz are determined by the following steps:
b1) after a lower value tLu of a load variable, which is obtained from the quantity of air taken in and the speed of rotation, has occurred, in the case of a deviation of the value measured by the lambda probe from a predetermined lamdda (sic) value, the cylinder is determined for which the air/fuel ratio deviates from the predetermined lambda value and the desired lambda value is set by changing the individual factors az,
b2) the value of the injection time tiu belonging to the desired lambda value at tLu and possibly corrected is determined,
b3) after an upper value tLo of the load variable has occurred, the desired lambda value is set by changing the individual factors in the case of a deviation of the value measured by the lambda probe from a predetermined value,
b4) the value of the injection time tio belonging to the desired lambda value tLo and possibly corrected is determined,
b5) the individual factor az and the individual summand bz are calculated for a particular cylinder from the equations tiu = az x tLu + bz tio = az x tLo + bz, and stored, and
b6) after the value tLu of the load variable has occurred again, the calculated values for az and bz are again checked and, if necessary, corrected.
2. Method according to Claim 1, characterised in that the cylinder for which the air/fuel mixture deviates from a predetermined lambda value is determined by the steps that
- the associated injection time for ail cylinders is individually varied one by one in the direction acting in opposition to the deviation observed, and
- it is noted at which cylinder the injection time has just been varied when a reduction in the deviation or even reversal of the deviation in the opposite direction occurs.
3. Method according to one of Claims 1 or 2, characterised in that, when a lambda probe is used which measures from the rich to the lean range without step characteristics, the individual factors are varied in such a manner that a lambda value of as accurately as possible one is achieved by means of the steps below:
- measuring the lambda value and
- multiplying the individual factor on the basis of which the lambda measurement is taken, by the lambda value measured.
4. Method according to one of Claims 1 or 2, characterised in that, when a lambda probe is used which exhibits step characteristics on transition from the rich to the lean range, the individual factors are varied in such a manner that a lambda value of as accurately as possible one is achieved, by means of the steps below:
a) A test factor TF having such a magnitude that a strong lean lambda value should occur, for example TF = 0.8, is superimposed on the individual factor for the cylinder z for obtaining an injection time for the injection arrangement at the cylinder z,
a1) if this is so, passing to step b,
a2) if this is not so, the individual factor is multiplied by the test factor for obtaining a now applicable individual factor and the method is continued as follows:
b) A test factor TF of such a magnitude that a strong rich lambda value should occur, for example TF = 1.2, is multiplicatively superimposed on the individual factor,
b1) if this is so, passing to step c,
b2) if this is not so, the individual factor is multiplied by the test factor for obtaining a now applicable individual factor, and the method is continued as follows:
c) The magnitude of the test factor for the next lean step is varied compared with the magnitude of the test factor in the preceding lean step, in such a manner that it is closer to one,
c1) if the test factor TF now applicable is greater than or equal to a lean limit value, for example TF = 0.98, passing to step d,
c2) if the test factor now applicable is smaller than the lean limit value, terminating the method,
d) The test factor is multiplicatively superimposed on the individual factor, which should result in a lean lambda value,
d1) if this is so, passing to step e,
d2) if this is not so, the individual factor is multiplied by the test factor for obtaining a now applicable individual factor and the method is continued as follows:
e) The magnitude of the test factor for the next rich step is varied compared with the magnitude of the test factor in the preceding rich step in such a manner that it is closer to one,
e1) if the new test factor TF is less than or equal to a rich limit value, passing to step f,
e2) if the new test factor is greater, that is to say closer to one than the rich limit value, terminating the method,
f) The test factor is multiplicatively superimposed on the individual factor, as a result of which a rich lambda value should occur,
f1) if this is so, passing to step c,
f2) if this is not so, the individual factor is multiplied by the test factor for obtaining a now applicable individual factor and the method is continued at step c.
5. Device for carrying out the method according to Claim 1 to Claim 4, comprising an injection device which supplies the desired quantity of fuel to each cylinder of an internal combustion engine, and comprising a precontrol timer (precontrol time store 10), which outputs precontrol times (TL) in dependence on speed of rotation and quantity of air taken in, the respective precontrol time applying jointly to all injection valves, an individual-value store (11) which stores individual correction values for all cylinders, and a logic device (12) which logically combines the common precontrol time with the individual correction values dependent on actual lambda values, characterised in that means are provided which
- set a lower value tLu of the load variable (10),
- determine a deviation of the value measured by the lambda probe (16) from a predetermined lambda value (19) and determine a cylinder, for which the air/fuel ratio deviates from the predetermined lambda value (25),
- set the desired lambda value (24) by changing the individual factor az,
- determines (sic) the value of the injection time tiu belonging to the lower load variable tLu at the desired lambda value,
- set an upper value tLo of the load variable (10) and set the desired lambda value (24) by changing the individual factor in the case of a deviation of the value measured by the lambda probe from a predetermined lambda value,
- determine the value of the injection time tio belonging to the upper load variable tLo at the desired lamba (sic) value,
- determine the individual factors az and individual summands bz (15) in accordance with tiu = az x tLu +bz and tio = az x tLo +bz and store these (11),
- again check and, if necessary, correct the calculated values for az and bz after the lower value tLu of the load variable has been set again.
6. Device according to Claim 5, characterised by
- a regulating device (19) which outputs an actuating signal which is superimposed on the precontrol times, and
- a switch-over device (21) for switching between regulating operation and setting operation, the actuating signal being switched off in setting operation and a method for determining the individual correction values being carried out.
7. Control device according to one of Claims 5 or 6, characterised in that the precontrol timer is a precontrol-time store (10.2) which stores precontrol times for lambda values = 1, addressable via values of addressing operating variables which include the speed of rotation and an operating variable which indicates the quantity of air taken in,
- the individual-value store (11.2) stores an individual factor fz for each cylinder z, the logic device (12.2) multiplies the respective precontrol time for each injection valve, which is common to all injection valves, by the individual factor allocated to the associated cylinder.
8. Device according to one of Claims 5 or 6, characterised in that the precontrol timer is a load variable transmitter (10.1) which outputs a load variable (QL/n) which is proportional to the quotient of quantity of air per unit time divided by revolutions per units time,
- the individual-value store (11.1) stores an individual factor az and an individual summand bz for each cylinder (z) and
- the logic device (12.1) multiplies the respective load variable for each injection device, which is common to all injection devices, by the individual factor az allocated to the associated cylinder and adds the associated individual summand bz.
EP89900183A 1988-01-07 1988-12-09 Control equipment for an internal combustion engine and process for adjusting the parameters for the equipment Expired - Lifetime EP0394306B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3800176A DE3800176A1 (en) 1988-01-07 1988-01-07 CONTROL DEVICE FOR AN INTERNAL COMBUSTION ENGINE AND METHOD FOR SETTING PARAMETERS OF THE DEVICE
DE3800176 1988-01-07

Publications (2)

Publication Number Publication Date
EP0394306A1 EP0394306A1 (en) 1990-10-31
EP0394306B1 true EP0394306B1 (en) 1992-04-01

Family

ID=6344869

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89900183A Expired - Lifetime EP0394306B1 (en) 1988-01-07 1988-12-09 Control equipment for an internal combustion engine and process for adjusting the parameters for the equipment

Country Status (6)

Country Link
US (1) US5020502A (en)
EP (1) EP0394306B1 (en)
JP (1) JP2719019B2 (en)
KR (1) KR0147062B1 (en)
DE (2) DE3800176A1 (en)
WO (1) WO1989006310A1 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3925877C2 (en) * 1989-08-04 1998-10-08 Bosch Gmbh Robert Method and device for controlling the fuel metering in a diesel internal combustion engine
JPH0711256B2 (en) * 1989-09-06 1995-02-08 本田技研工業株式会社 Control device for internal combustion engine
DE3929746A1 (en) * 1989-09-07 1991-03-14 Bosch Gmbh Robert METHOD AND DEVICE FOR CONTROLLING AND REGULATING A SELF-IGNITIONING INTERNAL COMBUSTION ENGINE
DE4228053A1 (en) * 1991-09-30 1993-04-01 Siemens Ag Controlling and matching characteristic curves of cylinders of four stroke IC engine - using control programme to modify conditions for individual cylinders and generate overall performance programme for microprocessor providing electronic control
DE4319677C2 (en) * 1993-06-14 2002-08-01 Bosch Gmbh Robert Method and device for regulating the smooth running of an internal combustion engine
JP3226720B2 (en) * 1994-06-24 2001-11-05 三信工業株式会社 Combustion control device for two-cycle engine
DE19527218B4 (en) * 1994-12-23 2004-03-18 Robert Bosch Gmbh Method and device for regulating the smooth running of an internal combustion engine
CN1082617C (en) * 1994-12-30 2002-04-10 本田技研工业株式会社 Fuel injection control device for IC engine
JP3422393B2 (en) * 1995-02-24 2003-06-30 本田技研工業株式会社 Air-fuel ratio control device for internal combustion engine
US5623913A (en) * 1995-02-27 1997-04-29 Honda Giken Kogyo Kabushiki Kaisha Fuel injection control apparatus
JP3499319B2 (en) * 1995-03-03 2004-02-23 ヤマハマリン株式会社 Engine fuel injector
IT1284681B1 (en) * 1996-07-17 1998-05-21 Fiat Ricerche CALIBRATION PROCEDURE FOR AN INJECTION SYSTEM FITTED WITH INJECTORS.
JP3729295B2 (en) * 1996-08-29 2005-12-21 本田技研工業株式会社 Air-fuel ratio control device for internal combustion engine
DE19653521B4 (en) * 1996-12-20 2006-01-19 Bayerische Motoren Werke Ag Electronic control of a multi-cylinder, in particular spark-ignited internal combustion engine
DE19700711C2 (en) * 1997-01-10 1999-05-12 Siemens Ag Method for compensating for the systematic error in injection devices for an internal combustion engine
JPH11351046A (en) * 1998-06-10 1999-12-21 Honda Motor Co Ltd Fuel injection control device for multiple cylinder internal combustion engine
GB2343967A (en) * 1998-11-21 2000-05-24 Lucas Industries Ltd Deriving fuel supply control algorithms for each engine cylinder to maintain balanced air/fuel ratio
DE19909474A1 (en) 1999-03-04 2000-09-07 Siemens Ag Operating method for a spark-ignited, multi-cylinder internal combustion engine working with direct fuel injection
DE10011690C2 (en) * 2000-03-10 2002-02-07 Siemens Ag Cylinder equalization procedure
JP2001349243A (en) * 2000-06-07 2001-12-21 Isuzu Motors Ltd Fuel injection control device of engine
DE10133555A1 (en) * 2001-07-11 2003-01-30 Bosch Gmbh Robert Process for cylinder-specific adjustment of the injection quantity in internal combustion engines
DE10304242B3 (en) * 2003-02-03 2004-04-29 Siemens Ag Determining combustion parameter in second cylinder of multi-cylinder internal combustion engine involves estimating parameter from lambda probe signal if no significant roughness between combustions
DE10333994B4 (en) * 2003-07-25 2015-04-30 Robert Bosch Gmbh Method for operating an internal combustion engine
DE10339251B4 (en) * 2003-08-26 2015-06-25 Robert Bosch Gmbh Method for operating an internal combustion engine
DE10358988B3 (en) * 2003-12-16 2005-05-04 Siemens Ag Fuel injection control for multi-cylinder IC engine using comparison of estimated fuel/air ratio with actual fuel air ratio for correcting injected fuel mass for each engine cylinder for individual lambda regulation
DE102006033869B3 (en) 2006-07-21 2008-01-31 Siemens Ag Method and device for diagnosing the cylinder-selective unequal distribution of a fuel-air mixture, which is supplied to the cylinders of an internal combustion engine
DE102006039378B4 (en) * 2006-08-22 2012-01-05 Bayerische Motoren Werke Aktiengesellschaft Method for operating an Otto internal combustion engine
DE102007020964A1 (en) 2007-05-04 2008-11-06 Robert Bosch Gmbh Method for the cylinder equalization of an internal combustion engine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH613059A5 (en) * 1975-06-30 1979-08-31 Hoechst Ag Method for producing a flat-bed printing forme
US4125650A (en) * 1977-08-08 1978-11-14 International Business Machines Corporation Resist image hardening process
JPS57122144A (en) * 1981-01-20 1982-07-29 Nissan Motor Co Ltd Air fuel ratio feedback control unit
JPS5825540A (en) * 1981-08-10 1983-02-15 Nippon Denso Co Ltd Air-to-fuel ratio control method
JPS58105143A (en) * 1981-12-17 1983-06-22 Kanto Kagaku Kk Positive type photoresist composition
US4703430A (en) * 1983-11-21 1987-10-27 Hitachi, Ltd. Method controlling air-fuel ratio
DE3439927A1 (en) * 1984-06-30 1986-01-09 Bosch Gmbh Robert METHOD AND DEVICE FOR ADAPTIVE INTERFERENCE SIGNALING IN REGULATORS
FR2567962B1 (en) * 1984-07-23 1989-05-26 Renault ADAPTIVE METHOD FOR REGULATING THE INJECTION OF AN INJECTION ENGINE
US4939658A (en) * 1984-09-03 1990-07-03 Hitachi, Ltd. Control method for a fuel injection engine
JPS61118535A (en) * 1984-11-14 1986-06-05 Nippon Soken Inc Air-fuel ratio controller for internal-combustion engine
JP2947353B2 (en) * 1986-04-30 1999-09-13 本田技研工業株式会社 Air-fuel ratio control method for internal combustion engine
JPH01216047A (en) * 1988-02-24 1989-08-30 Hitachi Ltd Method and device of controlling air-fuel ratio for engine
US4869222A (en) * 1988-07-15 1989-09-26 Ford Motor Company Control system and method for controlling actual fuel delivered by individual fuel injectors
US4962741A (en) * 1989-07-14 1990-10-16 Ford Motor Company Individual cylinder air/fuel ratio feedback control system

Also Published As

Publication number Publication date
DE3800176A1 (en) 1989-07-20
US5020502A (en) 1991-06-04
KR900700739A (en) 1990-08-16
JP2719019B2 (en) 1998-02-25
EP0394306A1 (en) 1990-10-31
KR0147062B1 (en) 1998-08-17
JPH03502224A (en) 1991-05-23
WO1989006310A1 (en) 1989-07-13
DE3869783D1 (en) 1992-05-07

Similar Documents

Publication Publication Date Title
EP0394306B1 (en) Control equipment for an internal combustion engine and process for adjusting the parameters for the equipment
DE3486373T2 (en) Vehicle engine control system with the ability to convey the operating state of the engine and to select the appropriate operating scheme.
DE3036107C3 (en) Control device for a fuel metering system
EP0416270B1 (en) Method and apparatus to control and regulate an engine with self-ignition
DE4039876B4 (en) Device for controlling the air-fuel ratio for an engine
DE69218538T2 (en) Control system for internal combustion engines
EP0210177B1 (en) Method for modifying the operation parameters of internal combustion machines
DE19945618A1 (en) Control method for fuel injection system in internal combustion engine by storing drive period at which change in signal occurs as minimum drive period
DE3914536C2 (en) Method and device for diagnosing actuators in the regulation and / or control of operating parameters in connection with the idle control and the tank ventilation in internal combustion engines
DE2941977A1 (en) DEVICE FOR OPTIMIZING THE OPERATING CHARACTERISTICS OF AN INTERNAL COMBUSTION ENGINE
DE4446107C2 (en) Method and device for regulating the air / fuel mixture in an internal combustion engine of motor vehicles
DE3835766C2 (en) Method for calculating the fuel injection quantity for an internal combustion engine
DE3422384C2 (en)
DE4024212C2 (en) Process for the constant lambda control of an internal combustion engine with a catalyst
DE4134522A1 (en) DEVICE AND METHOD FOR ELECTRONIC FUEL INJECTION CONTROL FOR COMBUSTION ENGINE
EP2550443B1 (en) Method and apparatus for adapting adaptation values for actuating injection valves in an engine system having a plurality of injection types
EP0757168B1 (en) Method and apparatus for controlling an internal combustion engine
DE19612453A1 (en) IC engine cylinder fuel mass flow determination method
DE10133555A1 (en) Process for cylinder-specific adjustment of the injection quantity in internal combustion engines
DE3743315A1 (en) EVALUATION DEVICE FOR THE MEASURING SIGNAL OF A LAMB PROBE
DE3729336A1 (en) DEVICE FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE
DE3832270C2 (en)
EP0407406A1 (en) Learning control process and device for internal combustion engines.
DE19653521B4 (en) Electronic control of a multi-cylinder, in particular spark-ignited internal combustion engine
DE3723251A1 (en) METHOD FOR CONTROLLING FUEL INJECTION IN MOTOR VEHICLE ENGINES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900531

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19910118

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3869783

Country of ref document: DE

Date of ref document: 19920507

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030127

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031120

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20031223

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041209

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051209