EP0389033B1 - X or gamma ray generation apparatus with small cross-section and variable position - Google Patents

X or gamma ray generation apparatus with small cross-section and variable position Download PDF

Info

Publication number
EP0389033B1
EP0389033B1 EP90200571A EP90200571A EP0389033B1 EP 0389033 B1 EP0389033 B1 EP 0389033B1 EP 90200571 A EP90200571 A EP 90200571A EP 90200571 A EP90200571 A EP 90200571A EP 0389033 B1 EP0389033 B1 EP 0389033B1
Authority
EP
European Patent Office
Prior art keywords
diaphragm body
arrangement
diaphragm
slits
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90200571A
Other languages
German (de)
French (fr)
Other versions
EP0389033A3 (en
EP0389033A2 (en
Inventor
Geoffrey Dr. Harding
Petrus Merkelbach
Franciscus L.A.M. Thissen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Patentverwaltung GmbH
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Patentverwaltung GmbH, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Philips Patentverwaltung GmbH
Publication of EP0389033A2 publication Critical patent/EP0389033A2/en
Publication of EP0389033A3 publication Critical patent/EP0389033A3/en
Application granted granted Critical
Publication of EP0389033B1 publication Critical patent/EP0389033B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/04Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers
    • G21K1/043Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers changing time structure of beams by mechanical means, e.g. choppers, spinning filter wheels

Definitions

  • the invention relates to an arrangement for generating an X-ray or gamma ray with a small cross-section and changeable direction, with an X-ray or gamma ray, from the focus of which a beam of rays emanates, and a diaphragm arrangement which blocks a beam from the beam and a rotatable hollow cylindrical first diaphragm body with two circumferentially offset helical slots.
  • the diaphragm body made of a radiation-absorbing material has the shape of a hollow cylinder, which is provided on its circumference with two circumferential, helically arranged slots. If a bundle of parallel rays falls on such a diaphragm body perpendicular to its cylinder axis, there is always a point at which an X-ray beam passes through the two slots. If the diaphragm body is rotated, this point moves along the axis, so that a periodically moving X-ray beam emerges behind the diaphragm body. This periodically moving X-ray beam can be used for medical or industrial examinations.
  • An X-ray beam with a trapezoidal cross-section is defined by the two slits in the diaphragm body.
  • a square or a circular cross section is desired, which means that it is independent of the direction spatial resolution results.
  • the approximation to the square cross-sectional shape is better, the greater the angle at which the two slots intersect.
  • a larger cutting angle could be achieved by using a diaphragm body with a large diameter and a small axial length.
  • a relatively large deflection angle of the X-ray beam is required, which requires a corresponding axial length of the diaphragm body; a large diameter is undesirable in many applications because of the volume involved.
  • the object of the present invention is to design an arrangement of the type mentioned at the outset such that a favorable beam cross section is achieved even with a diaphragm body with a small diameter and a relatively large axial length.
  • slots wind in at least one turn around the diaphragm body and are shaped such that at least one straight line runs through the slots towards the focus, the position of which can be changed by rotating the diaphragm body.
  • the slots in the invention extend over a circumferential angle of at least 360 ° or they have at least one turn (one turn corresponds to a circumferential angle of 360 °.)
  • the projection of the slots on the axis of rotation or symmetry of the hollow cylindrical diaphragm body therefore closes a substantially larger angle with the axis in question so that the blanked-out X-ray beam has a much smaller dimension in the direction of the axis mentioned for a given slot width.
  • a second diaphragm body is arranged in the beam which always only allows one primary beam to pass, and that the second diaphragm body is arranged and designed such that the primary beam always coincides with one of the straight lines.
  • the second diaphragm body has the shape of a hollow cylinder, the axis of which lies in the plane containing the axis of symmetry and the focus and the cross section of which is circular or semicircular, and that in the second diaphragm body a slot or at a semicircular cross section circular cross-section two helical slots offset on the circumference by 180 ° are provided. If the first diaphragm body is driven faster than the second one by a factor of 2n (n an integer), an X-ray beam can be masked out which moves periodically.
  • the diameter of the diaphragm body is no longer negligibly small compared to its distance from the focus. so that an X-ray beam emerges with a greater axial distance from the center of the diaphragm body than it enters it.
  • the slots of the first aperture body have gradients that differ from one another. Here, the X-rays can only enter through one slot and exit through the other slot.
  • the one with the larger pitch is narrower than the other, and that on the side of the first diaphragm body facing away from the focus, a slit diaphragm is provided, the slit-shaped opening in which the focus and the Axis of symmetry of the first diaphragm body is formed.
  • the dimension of the x-ray beam in the direction of the axis of symmetry is determined by the narrower of the two slits and its direction perpendicular thereto is determined by the opening in the slit diaphragm.
  • An x-ray beam 3 extends from the focus 2 located in the housing 1 of an x-ray emitter and passes through the radiation window 4 of the x-ray emitter.
  • a diaphragm arrangement 5 is connected to the housing 1, which shields a beam fan 31 of a few millimeters thick from the X-ray beam 3 in a plane perpendicular to the plane of the drawing in FIG. 1.
  • the diaphragm arrangement 5 faces away from the X-ray emitter 1 End a cylindrical opening 6, in which a first hollow cylindrical diaphragm body 7 is arranged, which surrounds a second diaphragm body 8 arranged concentrically thereto.
  • the common axis of symmetry and axis of rotation of the diaphragm bodies 7 and 8 is in the plane of the beam fan 31, in such a way that the connecting line of the focus 2 with the center of the diaphragm body intersects the axis of symmetry at right angles.
  • the rotatably mounted diaphragm bodies 7 and 8 are driven by a drive arrangement in such a way that the first diaphragm body 7 rotates 6 times faster than the diaphragm body 8.
  • the drive arrangement could for this purpose contain a single motor, which has suitable translations with the diaphragm bodies 7 and 8 would be coupled.
  • a drive device with two stepper motors 9 and 10 is shown, of which the stepper motor 9 coupled to the outer diaphragm body 7 is directly coupled to a stepper pulse generator 11, while the stepper motor acting on the second diaphragm body 8 10 is connected to it via a frequency divider 12 which reduces the step frequency in a ratio of 1: 6.
  • the diaphragm body 7 rotates at six times the speed of the inner diaphragm body.
  • a single x-ray beam 32 is faded out of the beam fan 31 by the diaphragm bodies 7 and 8, the dimensions of which in the vertical direction (perpendicular to the plane of the beam fan 31) are only 0.5 mm wide and perpendicular to the plane of the slot 13 are limited and its dimensions in the axial direction by the design of the Aperture body 7 can be determined.
  • the diaphragm bodies rotate at a constant speed, the x-ray beam 32 changes its point of impact on a plane perpendicular to the plane of the drawing according to a sawtooth-shaped time function.
  • FIG. 2 shows a side plan view of the first diaphragm body 7.
  • the diaphragm body consists of a material of such a strength that the X-rays emanating from the focus 2 are practically completely absorbed thereby, for example from a 1 mm thick tungsten alloy.
  • the diaphragm body can have a length of, for example, 50 mm and a diameter of 12 mm.
  • At least one of the hollow shafts 71 on its end faces is coupled to the drive device explained in more detail with reference to FIG. 1.
  • two helical slits are provided which are offset with respect to one another and circulate in the same direction, each of which has a constant pitch. Both slots have three turns or coils.
  • the slot 73 has a larger pitch (this is the ratio between the axial length of a turn and the circumference of the body 7) than the slot 72.
  • the slot 73 has a width of 0.4 mm, while the slot 72 is considerably wider , for example 2 mm.
  • the axial length of the slot 73 is slightly shorter than the length of the diaphragm body 7; if the slot were just as long, it would cut the panel body into two non-contiguous parts.
  • n 1 or 2 or 4, 5, 6, etc.
  • the first diaphragm body would have to be rotated faster by a factor of 2n than the second diaphragm body 8. If the coils in the diaphragm body 7 had the same sense of rotation have as in the panel body 8, the panel body must be rotated in the same direction; if the direction of rotation is not the same, rotation with the opposite direction of rotation is required.
  • the two slots are offset from one another in such a way that they are offset exactly by 180 ° on the circumference in the center of the diaphragm body, indicated by arrow 70.
  • an x-ray beam can therefore pass through the slits 72 and 73 in the center of the diaphragm body perpendicular to the plane of the drawing - if the focus of the radiation source is exactly in the middle behind the diaphragm body.
  • the slot 72 on the side facing the focus intersects the plane which is formed by the focus and the axis of symmetry or axis of rotation 75.
  • the axial position of these points is indicated by arrows 721 and 723.
  • the three X-rays move to the left or to the right, depending on the direction of rotation, when the diaphragm body is rotated, until the first beam reaches one end of the slot, after which another beam emerges at the other end.
  • the cross section of an X-ray beam 32 emerging from the diaphragm arrangement 5 is determined in the axial direction by the dimensions of the thinner slit and in the plane perpendicular to the fan beam 31 by the opening of the slit diaphragm 13 . It would also be possible to make the slot 72 as narrow as the slot 73, so that the slot diaphragm 13 could even be dispensed with. With finite dimensions of focus 2, however, this would increase the geometric blurring of the x-ray beam and the arrangement would be more sensitive to production variations in the position of focus 2 with respect to the diaphragm body. The arrangement with a wider slot 72 with a smaller pitch and an additional slot diaphragm 13 is therefore preferred.
  • the diaphragm body 7 blocks (at least) as much X-rays as the slits Have turns.
  • only one X-ray beam is desired. This could be achieved if slots with only a single turn were provided, but in this case the slots or their projection would intersect the plane of the fan beam at a much more acute angle, so that the axial dimensions are undesirably essential for the same slot width would be enlarged.
  • a different path is therefore taken: only one of the X-rays that could penetrate the diaphragm body is passed through.
  • the second diaphragm body 8 serves this purpose (FIG. 3).
  • the second diaphragm body 8 is in turn a hollow cylinder which can be made of the same material as the first diaphragm body and which has a shaft coupled to the drive device 9 ... 12 (FIG. 1) on at least one end face.
  • this diaphragm body corresponds to that according to EP-A-74 021, i.e. it is provided with two slots 82 and 83 which are offset from one another on the circumference by 180 °, each of which extends over the same axial length and has the shape of a helix.
  • the two slots 82 and 83 have only half a turn, i.e. they extend on the circumference of the panel body 8 over an arc of only 180 °.
  • the slots 82 and 83 are significantly wider than the narrow slot 73 on the first panel body.
  • the number a of turns of the slots 72, 73 in the first diaphragm body 7, which the X-ray beam passes through in the course of its axial movement, does not necessarily have to be an integer, and the corresponding number b for the second diaphragm body 8 must not be exactly 0.5.
  • this diaphragm body can have a semicircular cross section and can be provided with only a single slot which extends over the length of the diaphragm body and describes an arc of at least approximately 180 °.
  • a hollow cylindrical body with a semicircular cross section can be used, which is provided on its circumference with a plurality of openings offset in the axial and circumferential directions.
  • the X-ray beam then jumps from one opening to the other.
  • the advantage of the embodiment shown in Fig. 3 over the latter also consists in the fact that this diaphragm body has no imbalance.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • X-Ray Techniques (AREA)

Description

Die Erfindung betrifft eine Anordnung zur Erzeugung eines Röntgen- oder Gammastrahls mit geringem Querschnitt und veränderbarer Richtung, mit einem Röntgen- oder Gammastrahler, von dessen Fokus ein Strahlenbündel ausgeht, und einer Blendenanordnung, die aus dem Strahlenbündel einen Strahl ausblendet und einen drehbaren hohlzylinderförmigen ersten Blendenkörper mit zwei auf dem Umfang gegeneinander versetzten schraubenlinienförmigen Schlitzen umfaßt.The invention relates to an arrangement for generating an X-ray or gamma ray with a small cross-section and changeable direction, with an X-ray or gamma ray, from the focus of which a beam of rays emanates, and a diaphragm arrangement which blocks a beam from the beam and a rotatable hollow cylindrical first diaphragm body with two circumferentially offset helical slots.

Anordnungen dieser Art sind aus der EP-A-74 021 für medizinische Anwendungen und aus der DE-A-34 43 095 für industrielle Anwendungen im wesentlichen bekannt. Der Blendenkörper aus einem strahlenabsorbierenden Material hat dabei die Form eines Hohlzylinders, der auf seinem Umfang mit zwei gegeneinander versetzten schraubenlinienförmig umlaufenden Schlitzen versehen ist. Wenn auf einen solchen Blendenkörper senkrecht zu dessen Zylinderachse ein Bündel paralleler Strahlen fällt, dann gibt es stets einen Punkt, in dem ein Röntgenstrahl die beiden Schlitze passiert. Wird der Blendenkörper gedreht, dann wandert dieser Punkt auf der Achse entlang, so daß hinter dem Blendenkörper ein periodisch bewegter Röntgenstrahl austritt. Dieser periodisch bewegte Röntgenstrahl kann für medizinische oder industrielle Untersuchungen benutzt werden.Arrangements of this type are essentially known from EP-A-74 021 for medical applications and from DE-A-34 43 095 for industrial applications. The diaphragm body made of a radiation-absorbing material has the shape of a hollow cylinder, which is provided on its circumference with two circumferential, helically arranged slots. If a bundle of parallel rays falls on such a diaphragm body perpendicular to its cylinder axis, there is always a point at which an X-ray beam passes through the two slots. If the diaphragm body is rotated, this point moves along the axis, so that a periodically moving X-ray beam emerges behind the diaphragm body. This periodically moving X-ray beam can be used for medical or industrial examinations.

Durch die beiden Schlitze im Blendenkörper wird ein Röntgenstrahl mit trapezförmigem Querschnitt definiert. Erwünscht ist jedoch ein quadratischer bzw. ein kreisförmiger Querschnitt, wodurch sich ein richtungsunabhängiges räumliches Auflösungsvermögen ergibt. Bei gleicher Breite der beiden Schlitze ist die Annäherung an die quadratische Querschnittsform um so besser, je größer der Winkel ist, unter dem die beiden Schlitze einander schneiden. Ein größerer Schnittwinkel könnte durch Verwendung eines Blendenkörpers mit großem Durchmesser und kleiner axialer Länge erreicht werden. Für viele Anwendungen ist jedoch ein relativ großer Ablenkwinkel des Röntgenstrahls erforderlich, was eine entsprechende axiale Länge des Blendenkörpers voraussetzt; ein großer Durchmesser ist bei vielen Anwendungen wegen des damit verbundenen Bauvolumens unerwünscht.An X-ray beam with a trapezoidal cross-section is defined by the two slits in the diaphragm body. However, a square or a circular cross section is desired, which means that it is independent of the direction spatial resolution results. With the same width of the two slots, the approximation to the square cross-sectional shape is better, the greater the angle at which the two slots intersect. A larger cutting angle could be achieved by using a diaphragm body with a large diameter and a small axial length. For many applications, however, a relatively large deflection angle of the X-ray beam is required, which requires a corresponding axial length of the diaphragm body; a large diameter is undesirable in many applications because of the volume involved.

Aufgabe der vorliegenden Erfindung ist es, eine Anordnung der eingangs genannten Art so auszugestalten, daß auch bei einem Blendenkörper mit geringem Durchmesser und relativ großer axialer Länge ein günstiger Strahlquerschnitt erreicht wird.The object of the present invention is to design an arrangement of the type mentioned at the outset such that a favorable beam cross section is achieved even with a diaphragm body with a small diameter and a relatively large axial length.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Schlitze sich in mindestens je einer Windung um den Blendenkörper winden und so geformt sind, daß durch die Schlitze hindurch zum Fokus hin mindestens eine Gerade verläuft, deren Lage durch Drehung des Blendenkörpers änderbar ist.This object is achieved in that the slots wind in at least one turn around the diaphragm body and are shaped such that at least one straight line runs through the slots towards the focus, the position of which can be changed by rotating the diaphragm body.

Während also beim Stand der Technik die beiden Schlitze sich über einen Umfangswinkel von 180° erstrecken bzw. nur eine halbe Windung aufweisen, erstrecken sich die Schlitze bei der Erfindung über einen Umfangswinkel von wenigstens 360° bzw. sie weisen wenigstens eine Windung auf (eine Windung entspricht einem Umfangswinkel von 360°.) Die Projektion der Schlitze auf die Dreh- bzw. Symmetrieachse der hohlzylinderförmigen Blendenkörper schließt mit der betreffenden Achse daher einen wesentlich größeren Winkel ein, so daß der ausgeblendete Röntgenstrahl bei vorgegebener Schlitzbreite in Richtung der genannten Achse wesentlich kleinere Abmessungen hat.Thus, while in the prior art the two slots extend over a circumferential angle of 180 ° or have only half a turn, the slots in the invention extend over a circumferential angle of at least 360 ° or they have at least one turn (one turn corresponds to a circumferential angle of 360 °.) The projection of the slots on the axis of rotation or symmetry of the hollow cylindrical diaphragm body therefore closes a substantially larger angle with the axis in question so that the blanked-out X-ray beam has a much smaller dimension in the direction of the axis mentioned for a given slot width.

Mit der erfindungsgemäßen Anordnung werden so viele Röntgenstrahlen erzeugt wie Geraden vorhanden sind, die durch die Schlitze hindurch auf den Fokus treffen. Bei vielen Anwendungen, beispielsweise bei solchen, bei denen die von dem Röntgenstrahl erzeugte Streustrahlung gemessen werden soll, will man jedoch nur mit einem einzigen Röntgenstrahl arbeiten. In Ausgestaltung der Erfindung ist daher vorgesehen, daß ein zweiter Blendenkörper im Strahlenbündel angeordnet ist, der stets nur einen Primärstrahl durchläßt, und daß der zweite Blendenkörper so angeordnet und ausgestaltet ist, daß der Primärstrahl stets mit einer der Geraden zusammenfällt.With the arrangement according to the invention, as many X-rays are generated as there are straight lines that meet the focus through the slits. However, in many applications, for example those in which the scattered radiation generated by the X-ray beam is to be measured, one only wants to work with a single X-ray beam. In an embodiment of the invention it is therefore provided that a second diaphragm body is arranged in the beam which always only allows one primary beam to pass, and that the second diaphragm body is arranged and designed such that the primary beam always coincides with one of the straight lines.

In einer bevorzugten Ausgestaltung ist vorgesehen, daß der zweite Blendenkörper die Form eines Hohlzylinders hat, dessen Achse in der die Symmetrieachse und den Fokus enthaltenden Ebene liegt und dessen Querschnitt kreisförmig oder halbkreisförmig ist, und daß im zweiten Blendenkörper bei halbkreisförmigem Querschnitt ein Schlitz bzw. bei kreisförmigem Querschnitt zwei auf dem Umfang um 180° gegeneinander versetzte schraubenlinienförmige Schlitze vorgesehen sind. Wenn dabei der erste Blendenkörper um einen Faktor 2n (n eine ganze Zahl) schneller angetrieben wird als der zweite, kann ein Röntgenstrahl ausgeblendet werden, der sich periodisch bewegt.In a preferred embodiment it is provided that the second diaphragm body has the shape of a hollow cylinder, the axis of which lies in the plane containing the axis of symmetry and the focus and the cross section of which is circular or semicircular, and that in the second diaphragm body a slot or at a semicircular cross section circular cross-section two helical slots offset on the circumference by 180 ° are provided. If the first diaphragm body is driven faster than the second one by a factor of 2n (n an integer), an X-ray beam can be masked out which moves periodically.

Wenn die Blendenanordnung zusammen mit dem Röntgen- oder Gammastrahler eine räumlich kompakte Einheit bilden soll, ist der Durchmesser des Blendenkörpers gegenüber dessen Abstand von dem Fokus nicht mehr vernachlässigbar klein, so daß ein Röntgenstrahl mit größerem axialen Abstand von der Mitte des Blendenkörpers austritt als er in diesen eintritt. Um diesen geometrischen Verhältnissen zu genügen, sieht eine Weiterbildung der Erfindung vor, daß die Schlitze des ersten Blendeköprers voneinander abweichende Steigungen haben. Hierbei können die Röntgenstrahlen stets nur durch den einen Schlitz ein- und durch den anderen Schlitz austreten. In weiterer Ausgestaltung ist dabei vorgesehen, daß von den Schlitzen im ersten Blendenkörper derjenige mit der größeren Steigung schmaler ist als der andere und daß auf der vom Fokus abgewandten Seite des ersten Blendenkörpers eine Schlitzblende vorgesehen ist, deren schlitzförmige Öffnung in der durch den Fokus und die Symmetrieachse des ersten Blendenkörpers gebildeten Ebene liegt. Bei dieser Ausgestaltung wird die Abmessung des Röntgenstrahls in Richtung der Symmetrieachse durch den schmaleren der beiden Schlitze bestimmt und seine dazu senkrechte Richtung durch die Öffnung in der Schlitzblende.If the diaphragm arrangement is to form a spatially compact unit together with the X-ray or gamma emitter, the diameter of the diaphragm body is no longer negligibly small compared to its distance from the focus. so that an X-ray beam emerges with a greater axial distance from the center of the diaphragm body than it enters it. In order to meet these geometric conditions, a further development of the invention provides that the slots of the first aperture body have gradients that differ from one another. Here, the X-rays can only enter through one slot and exit through the other slot. In a further embodiment, it is provided that of the slots in the first diaphragm body, the one with the larger pitch is narrower than the other, and that on the side of the first diaphragm body facing away from the focus, a slit diaphragm is provided, the slit-shaped opening in which the focus and the Axis of symmetry of the first diaphragm body is formed. In this embodiment, the dimension of the x-ray beam in the direction of the axis of symmetry is determined by the narrower of the two slits and its direction perpendicular thereto is determined by the opening in the slit diaphragm.

Die Erfindung wird nachstehend anhand der Zeichnung näher erläutert. Es zeigen

  • Fig. 1 eine erfindungsgemäße Anordnung,
  • Fig. 2 den ersten Blendenkörper und
  • Fig. 3 den zweiten Blendenkörper.
The invention is explained below with reference to the drawing. Show it
  • 1 shows an arrangement according to the invention,
  • Fig. 2 shows the first diaphragm body and
  • Fig. 3 shows the second diaphragm body.

Von dem im Gehäuse 1 eines Röntgenstrahlers befindlichen Fokus 2 geht ein Röntgenstrahlenbündel 3 aus und durchsetzt das Strahlenfenster 4 des Röntgenstrahlers. Mit dem Gehäuse 1 ist eine Blendenanordnung 5 verbunden, die von dem Röntgenstrahlenbündel 3 in einer zur Zeichenebene der Fig. 1 senkrechten Ebene einen Strahlenfächer 31 von wenigen Millimetern Dicke ausblendet. Die Blendenanordnung 5 weist an ihrem vom Röntgenstrahler 1 abgewandten Ende eine zylinderförmige Öffnung 6 auf, in der ein erster hohlzylindrischer Blendenkörper 7 angeordnet ist, der einen zweiten dazu konzentrisch angeordneten Blendenkörper 8 umschließt. Die gemeinsame Symmetrie- und Drehachse der Blendenkörper 7 und 8 befindet sich in der Ebene des Strahlenfächers 31, und zwar so, daß die Verbindungslinie des Fokus 2 mit der Mitte des Blendenkörpers die Symmetrieachse rechtwinklig schneidet.An x-ray beam 3 extends from the focus 2 located in the housing 1 of an x-ray emitter and passes through the radiation window 4 of the x-ray emitter. A diaphragm arrangement 5 is connected to the housing 1, which shields a beam fan 31 of a few millimeters thick from the X-ray beam 3 in a plane perpendicular to the plane of the drawing in FIG. 1. The diaphragm arrangement 5 faces away from the X-ray emitter 1 End a cylindrical opening 6, in which a first hollow cylindrical diaphragm body 7 is arranged, which surrounds a second diaphragm body 8 arranged concentrically thereto. The common axis of symmetry and axis of rotation of the diaphragm bodies 7 and 8 is in the plane of the beam fan 31, in such a way that the connecting line of the focus 2 with the center of the diaphragm body intersects the axis of symmetry at right angles.

Die drehbar gelagerten Blendenkörper 7 und 8 werden von einer Antriebsanordnung so angetrieben, daß der erste Blendenkörper 7 sich um den Faktor 6 schneller dreht als der Blendenkörper 8. Die Antriebsanordnung könnte zu diesem Zweck einen einzigen Motor enthalten, der über geeignet ausgelegte Übersetzungen mit den Blendenkörpern 7 und 8 gekoppelt wäre. Statt dessen ist in Fig. 1 - der Einfachheit halber - eine Antriebseinrichtung mit zwei Schrittmotoren 9 und 10 dargestellt, von denen der mit dem äußeren Blendenkörper 7 gekoppelte Schrittmotor 9 direkt mit einem Schrittimpulsgeber 11 gekoppelt ist, während der auf den zweiten Blendenkörper 8 einwirkende Schrittmotor 10 damit über einen Frequenzteiler 12 verbunden ist, der die Schrittfrequenz im Verhältnis 1:6 untersetzt. Infolgedessen rotiert der Blendenkörper 7 mit der sechsfachen Drehzahl wie der innere Blendenkörper.The rotatably mounted diaphragm bodies 7 and 8 are driven by a drive arrangement in such a way that the first diaphragm body 7 rotates 6 times faster than the diaphragm body 8. The drive arrangement could for this purpose contain a single motor, which has suitable translations with the diaphragm bodies 7 and 8 would be coupled. Instead, in Fig. 1 - for the sake of simplicity - a drive device with two stepper motors 9 and 10 is shown, of which the stepper motor 9 coupled to the outer diaphragm body 7 is directly coupled to a stepper pulse generator 11, while the stepper motor acting on the second diaphragm body 8 10 is connected to it via a frequency divider 12 which reduces the step frequency in a ratio of 1: 6. As a result, the diaphragm body 7 rotates at six times the speed of the inner diaphragm body.

Wie noch in Verbindung mit den Fig. 2 und 3 erläutert, wird durch die Blendenkörper 7 und 8 aus dem Strahlenfächer 31 ein einziger Röntgenstrahl 32 ausgeblendet, dessen Abmessungen in vertikaler Richtung (senkrecht zur Ebene des Strahlenfächers 31) durch einen nur 0,5 mm breiten und senkrecht zur Zeichenebene verlaufenden Schlitz 13 begrenzt werden und dessen Abmessungen in Achsrichtung durch die Gestaltung des Blendenkörpers 7 bestimmt werden. Wenn die Blendenkörper mit konstanter Drehzahl rotieren, dann ändert der Röntgenstrahl 32 seinen Auftreffpunkt auf einer zur Zeichenebene senkrechten Ebene nach einer sägezahnförmigen Zeitfunktion.As explained in connection with FIGS. 2 and 3, a single x-ray beam 32 is faded out of the beam fan 31 by the diaphragm bodies 7 and 8, the dimensions of which in the vertical direction (perpendicular to the plane of the beam fan 31) are only 0.5 mm wide and perpendicular to the plane of the slot 13 are limited and its dimensions in the axial direction by the design of the Aperture body 7 can be determined. When the diaphragm bodies rotate at a constant speed, the x-ray beam 32 changes its point of impact on a plane perpendicular to the plane of the drawing according to a sawtooth-shaped time function.

Fig. 2 zeigt eine seitliche Draufsicht auf den ersten Blendenkörper 7. Der Blendenkörper besteht aus einem Material von solcher Stärke, daß die vom Fokus 2 ausgehende Röntgenstrahlung dadurch praktisch vollständig absorbiert wird, beispielsweise aus einer 1 mm starken Wolframlegierung. Der Blendenkörper kann eine Länge von beispielsweise 50 mm und einen Durchmesser von 12 mm haben. Mindestens eine der Hohlwellen 71 an seinen Stirnflächen ist mit der anhand von Fig. 1 näher erläuterten Antriebseinrichtung gekoppelt.FIG. 2 shows a side plan view of the first diaphragm body 7. The diaphragm body consists of a material of such a strength that the X-rays emanating from the focus 2 are practically completely absorbed thereby, for example from a 1 mm thick tungsten alloy. The diaphragm body can have a length of, for example, 50 mm and a diameter of 12 mm. At least one of the hollow shafts 71 on its end faces is coupled to the drive device explained in more detail with reference to FIG. 1.

Auf dem Blendenkörper sind zwei gegeneinander versetzte, mit dem gleichen Umlaufsinn umlaufende schraubenlinienförmige Schlitze vorgesehen, die jeweils eine konstante Steigung haben. Beide Schlitze haben je drei Windungen bzw. Wendeln. Der Schlitz 73 hat jedoch eine größere Steigung (das ist das Verhältnis zwischen der axialen Länge einer Windung und dem Umfang des Körpers 7) als der Schlitz 72. Der Schlitz 73 hat eine Breite von 0,4 mm, während der Schlitz 72 wesentlich breiter ist, beispielsweise 2 mm. Die axiale Länge des Schlitzes 73 ist geringfügig kürzer als die Länge des Blendenkörpers 7; wäre der Schlitz genauso lang, dann würde er den Blendenkörper in zwei nicht zusammenhängende Teile zerschneiden. Anstelle von drei Windungen können die beiden Schlitze auch n Windungen (n = 1 oder 2 bzw. 4, 5, 6 usw.) aufweisen. In diesem Fall müßte der erste Blendenkörper um den Faktor 2n schneller gedreht werden als der zweite Blendenkörper 8. Wenn die Wendeln im Blendenkörper 7 den gleichen Umlaufsinn haben wie im Blendenkörper 8, müssen die Blendenkörper mit gleichem Drehsinn gedreht werden; bei ungleichem Umlaufsinn ist eine Drehung mit entgegengesetztem Drehsinn erforderlich.On the diaphragm body, two helical slits are provided which are offset with respect to one another and circulate in the same direction, each of which has a constant pitch. Both slots have three turns or coils. However, the slot 73 has a larger pitch (this is the ratio between the axial length of a turn and the circumference of the body 7) than the slot 72. The slot 73 has a width of 0.4 mm, while the slot 72 is considerably wider , for example 2 mm. The axial length of the slot 73 is slightly shorter than the length of the diaphragm body 7; if the slot were just as long, it would cut the panel body into two non-contiguous parts. Instead of three turns, the two slots can also have n turns (n = 1 or 2 or 4, 5, 6, etc.). In this case, the first diaphragm body would have to be rotated faster by a factor of 2n than the second diaphragm body 8. If the coils in the diaphragm body 7 had the same sense of rotation have as in the panel body 8, the panel body must be rotated in the same direction; if the direction of rotation is not the same, rotation with the opposite direction of rotation is required.

Die beiden Schlitze sind so gegeneinander versetzt angeordnet, daß sie in der durch den Pfeil 70 angedeuteten Mitte des Blendenkörpers genau um 180° auf dem Umfang versetzt sind. In der in Fig. 2 dargestellten Stellung des Blendenkörpers kann daher ein Röntgenstrahl die Schlitze 72 und 73 in der Mitte des Blendenkörpers senkrecht zur Zeichenebene durchsetzen - wenn sich der Fokus der Strahlenquelle genau in der Mitte hinter dem Blendenkörper befindet. In dieser Stellung des Blendenkörpers gibt es noch zwei weitere Stellen, an der auf der dem Fokus zugewandten Seite der Schlitz 72 die Ebene schneidet, welche durch den Fokus und die Symmetrie- bzw. Drehachse 75 gebildet wird. Die axiale Lage dieser Stellen ist durch die Pfeile 721 und 723 angedeutet. Ebenso gibt es zwei Stellen die durch die Pfeile 731 und 733 angedeutet sind, an denen der Schlitz 73 auf der vom Fokus abgewandten Seite diese Ebene schneidet.The two slots are offset from one another in such a way that they are offset exactly by 180 ° on the circumference in the center of the diaphragm body, indicated by arrow 70. In the position of the diaphragm body shown in FIG. 2, an x-ray beam can therefore pass through the slits 72 and 73 in the center of the diaphragm body perpendicular to the plane of the drawing - if the focus of the radiation source is exactly in the middle behind the diaphragm body. In this position of the diaphragm body, there are two further places where the slot 72 on the side facing the focus intersects the plane which is formed by the focus and the axis of symmetry or axis of rotation 75. The axial position of these points is indicated by arrows 721 and 723. There are also two locations indicated by arrows 731 and 733, at which the slot 73 intersects this plane on the side away from the focus.

Wenn der Abstand des Fokus von der ihm zugewandeten Mantellinie des Blendenkörpers sich zu dem Abstand des Fokus von der ihm abgewandten Mantellinie genauso verhält, wie sich die axialen Längen einer Windung der Schlitze 72 und 73 zueinander verhalten, dann passiert zusätzlich ein weiterer Röntgenstrahl bei 721 den Schlitz 72 und bei 731 den Schlitz 73. Ebenso passiert bei 723 und 733 ein Röntgenstrahl die Schlitze 72 und 73. Diese drei Röntgenstrahlen definieren eine Ebene, die naturgemäß mit der Ebene des Strahlenfächers 31 zusammenfällt.If the distance of the focus from the face line of the diaphragm body facing it, to the distance of the focus from the face line facing away from it, behaves in exactly the same way as the axial lengths of a turn of the slots 72 and 73 behave with respect to one another, then an additional X-ray beam passes through the 721 den Slot 72 and slot 731 at 731. Likewise, at 723 and 733, an X-ray beam passes through slots 72 and 73. These three X-ray beams define a plane which naturally coincides with the plane of the fan beam 31.

In diesem Fall bewegen sich die drei Röntgenstrahlen beim Drehen des Blendenkörpers je nach Drehrichtung nach links oder nach rechts, bis der erste Strahl das eine Ende des Schlitzes erreicht, wonach am anderen Ende ein weiterer Strahl auftaucht.In this case, the three X-rays move to the left or to the right, depending on the direction of rotation, when the diaphragm body is rotated, until the first beam reaches one end of the slot, after which another beam emerges at the other end.

Aus dem vorhergehenden wird deutlich, daß die Unterschiede in der Steigung der Schlitze bzw. in der axialen Länge ihrer Windungen durch den Abstand des Fokus vom Blendenkörper 7 und vom Durchmesser des Blendenkörpers bestimmt sind. Je kleiner das Verhältnis dieser beiden Größen ist, desto unterschiedlicher sind die Längen bzw. Steigungen. Ist der Strahler im Vergleich zum Durchmesser hingegen sehr weit vom Blendenkörper entfernt, dann sind die Längen und die Steigungen der beiden Schlitze nahezu gleich.From the foregoing it is clear that the differences in the pitch of the slots or in the axial length of their turns are determined by the distance of the focus from the diaphragm body 7 and by the diameter of the diaphragm body. The smaller the ratio of these two sizes, the more different the lengths or slopes. If, on the other hand, the radiator is very far from the diaphragm body compared to the diameter, the lengths and the slopes of the two slots are almost the same.

Aus dem vorherstehenden ergibt sich weiter, daß der Querschnitt eines aus der Blendenanordnung 5 (vgl. Fig. 1) austretenden Röntgenstrahls 32 in axialer Richtung durch die Abmessungen des dünneren Schlitzes und in der zum Strahlenfächer 31 senkrechten Ebene durch die Öffnung der Schlitzblende 13 bestimmt sind. Es wäre auch möglich, den Schlitz 72 genauso schmal zu machen, wie den Schlitz 73, so daß auf die Schlitzblende 13 sogar verzichtet werden könnte. Bei endlichen Abmessungen des Fokus 2 würde sich dadurch aber die geometrische Unschärfe des Röntgenstrahls vergrößern und die Anordnung wäre empfindlicher gegen Fertigungsstreuungen der Lage des Fokus 2 in bezug auf den Blendenkörper. Deshalb ist die Anordnung mit einem breiteren Schlitz 72 mit kleinerer Steigung und einer zusätzlichen Schlitzblende 13 zu bevorzugen.From the above it also follows that the cross section of an X-ray beam 32 emerging from the diaphragm arrangement 5 (see FIG. 1) is determined in the axial direction by the dimensions of the thinner slit and in the plane perpendicular to the fan beam 31 by the opening of the slit diaphragm 13 . It would also be possible to make the slot 72 as narrow as the slot 73, so that the slot diaphragm 13 could even be dispensed with. With finite dimensions of focus 2, however, this would increase the geometric blurring of the x-ray beam and the arrangement would be more sensitive to production variations in the position of focus 2 with respect to the diaphragm body. The arrangement with a wider slot 72 with a smaller pitch and an additional slot diaphragm 13 is therefore preferred.

Wie bereits erwähnt, blendet der Blendenkörper 7 (zumindest) soviel Röntgenstrahlen aus, wie die Schlitze Windungen haben. In der Regel ist aber nur ein Röntgenstrahl erwünscht. Dies ließe sich zwar erreichen, wenn Schlitze mit nur einer einzigen Windung vorgesehen wären, doch würden in diesem Fall die Schlitze bzw. deren Projektion die Ebene des Strahlenfächers unter einem wesentlich spitzeren Winkel schneiden, so daß bei gleicher Schlitzbreite die axialen Abmessungen in unerwünschter Weise wesentlich vergrößert würden. Bei dem Ausführungsbeispiel nach den Fig. 1 bis 3 wird daher ein anderer Weg beschritten: Es wird von den Röntgenstrahlen, die den Blendenkörper durchsetzen könnten, nur ein einziger durchgelassen.As already mentioned, the diaphragm body 7 blocks (at least) as much X-rays as the slits Have turns. As a rule, however, only one X-ray beam is desired. This could be achieved if slots with only a single turn were provided, but in this case the slots or their projection would intersect the plane of the fan beam at a much more acute angle, so that the axial dimensions are undesirably essential for the same slot width would be enlarged. In the exemplary embodiment according to FIGS. 1 to 3, a different path is therefore taken: only one of the X-rays that could penetrate the diaphragm body is passed through.

Diesem Zweck dient der zweite Blendenkörper 8 (Fig. 3). Der zweite Blendenkörper 8 ist wiederum ein Hohlzylinder, der aus dem gleichen Material bestehen kann wie der erste Blendenkörper und der an mindestens einer Stirnseite eine mit der Antriebseinrichtung 9...12 (Fig. 1) gekoppelte Welle aufweist. Im übrigen entspricht dieser Blendenkörper demjenigen nach der EP-A-74 021, d.h. er ist mit zwei auf dem Umfang um 180° gegeneinander versetzten Schlitzen 82 und 83 versehen, von denen sich jeder über die gleiche axiale Länge erstreckt und die Form einer Schraubenlinie hat. Jedoch weisen die beiden Schlitze 82 und 83 nur eine halbe Windung auf, d.h. sie erstrecken sich auf dem Umfang des Blendenkörpers 8 über einen Bogen von nur je 180°. Die Schlitze 82 und 83 sind wesentlich breiter als der schmale Schlitz 73 auf dem ersten Blendenkörper.The second diaphragm body 8 serves this purpose (FIG. 3). The second diaphragm body 8 is in turn a hollow cylinder which can be made of the same material as the first diaphragm body and which has a shaft coupled to the drive device 9 ... 12 (FIG. 1) on at least one end face. Otherwise, this diaphragm body corresponds to that according to EP-A-74 021, i.e. it is provided with two slots 82 and 83 which are offset from one another on the circumference by 180 °, each of which extends over the same axial length and has the shape of a helix. However, the two slots 82 and 83 have only half a turn, i.e. they extend on the circumference of the panel body 8 over an arc of only 180 °. The slots 82 and 83 are significantly wider than the narrow slot 73 on the first panel body.

Bei geeigneter Lage der beiden Blendenkörper zueinander werden von den drei Röntgenstrahlen, die den ersten Blendenkörper passieren könnten, zwei absorbiert, beispielsweise die beiden äußeren, und nur der mittlere durchgelassen. Wenn der zweite Blendenkörper mit einem Sechstel der Drehzahl des ersten Blendenkörpers gedreht wird, verschiebt sich dieser Röntgenstrahl in beiden Blendenkörpern mit der gleichen Geschwindigkeit, so daß stets nur dieser eine Röntgenstrahl durchgelassen wird.If the two diaphragm bodies are in a suitable position relative to one another, two of the three X-rays that could pass through the first diaphragm body are absorbed, for example the two outer ones, and only the middle one is transmitted. When the second orifice body rotated at one-sixth the speed of the first orifice body this X-ray beam moves in both diaphragm bodies at the same speed, so that only this one X-ray beam is always transmitted.

Die Zahl a der Windungen der Schlitze 72, 73 im ersten Blendenkörper 7, die der Röntgenstrahl im Laufe seiner axialen Bewegung durchsetzt, muß nicht unbedingt ganzzahlig sein, und ebensowenig muß die entsprechende Zahl b für den zweiten Blendenkörper 8 genau gleich 0,5 sein. Jedoch muß für das Verhältnis die Bedingung a/b = 2n gelten, wobei n eine ganze Zahl (größer als 0) ist. Nur dann ergibt sich bei konstanter Drehazhl eine periodische Bewegung des Röntgenstrahls. Wenn a nicht ganzzahlig und/oder b kleiner ist als 0,5, gibt es im Laufe der periodischen Bewegung mehr oder weniger lange Intervalle, in denen der Röntgenstrahl unterdrückt ist.The number a of turns of the slots 72, 73 in the first diaphragm body 7, which the X-ray beam passes through in the course of its axial movement, does not necessarily have to be an integer, and the corresponding number b for the second diaphragm body 8 must not be exactly 0.5. However, the condition a / b = 2n must apply to the ratio, where n is an integer (greater than 0). Only then will there be a periodic movement of the X-ray beam at constant speed. If a is not an integer and / or b is less than 0.5, there are more or less long intervals in the course of the periodic movement in which the X-ray beam is suppressed.

Anstelle des in Fig. 3 dargestellten Blendenkörpers können auch andere hohlzylindrische und mit dem Blendenkörper 7 mitrotierende Blendenkörper vorgesehen sein, wie im einzelnen in der deutschen Patentanmeldung P 38 29 688 beschrieben. Beispielsweise kann dieser Blendenkörper einen halbkreisförmigen Querschnitt haben und mit nur einem einzigen Schlitz versehen sein, der sich über die Länge des Blendenkörpers erstreckt und einen Bogen von zumindest annähernd 180° beschreibt. Ebenso kann ein hohlzylindrischer Körper mit halbkreisförmigem Querschnitt verwendet werden, der auf seinem Umfang mit mehreren in axialer und in Umfangsrichtung gegeneinander versetzten Öffnungen vorgesehen sein. Allerdings springt bei der letztgenannten Ausführungsform der Röntgenstrahl dann von der einen Öffnung zu der anderen. Der Vorteil der in Fig. 3 dargestellten Ausführungsform gegenüber den letztgenannten besteht auch darin, daß dieser Blendenkörper keine Unwucht aufweist.Instead of the diaphragm body shown in FIG. 3, other hollow cylindrical diaphragm bodies which also rotate with the diaphragm body 7 can be provided, as described in detail in German Patent Application P 38 29 688. For example, this diaphragm body can have a semicircular cross section and can be provided with only a single slot which extends over the length of the diaphragm body and describes an arc of at least approximately 180 °. Likewise, a hollow cylindrical body with a semicircular cross section can be used, which is provided on its circumference with a plurality of openings offset in the axial and circumferential directions. However, in the latter embodiment, the X-ray beam then jumps from one opening to the other. The advantage of the embodiment shown in Fig. 3 over the latter also consists in the fact that this diaphragm body has no imbalance.

Claims (12)

  1. An arrangement for generating an X-ray or gamma beam (32) of small cross-section and variable direction, comprising an X-ray or gamma source (1) from the focus (2) of which a bundle of rays (3) emerges, and a diaphragm arrangement (5) which forms a beam from the bundle of rays and comprises a hollow-cylindrical first diaphragm body (7) which is rotatable about its axis of symmetry (75) and has two mutually offset helical slits (72, 73) on its circumference, characterized in that each of the slits (72, 73) extends around the diaphragm body in at least one turn and is shaped so that at least one straight line extends through the slits towards the focus (2), the position of said line being variable by rotation of the diaphragm body.
  2. An arrangement as claimed in Claim 1, characterized in that each slit (72, 73) comprises an integral number of turns.
  3. An arrangement as claimed in Claim 1 or 2, characterized in that a second diaphragm body (8) which always transmits only one primary beam is arranged in the bundle of rays (3), the second diaphragm body being arranged and designed so that the primary beam always coincides with one of the straight lines.
  4. An arrangement as claimed in Claim 3, characterized in that the second diaphragm body (8) is shaped as a hollow cylinder whose axis is situated in the plane containing the axis of symmetry (75) and the focus and whose cross-section is circular or semicircular, the second diaphragm body (8) being provided with one slit in the case of a semicircular cross-section or with two 180° offset helical slits (82, 83) on the circumference in the case of a circular cross-section.
  5. An arrangement as claimed in Claim 4, characterized in that the slit or slits (82, 83) on the circumference of the second diaphragm body describe an angle of 180°.
  6. An arrangement as claimed in Claim 4 or 5, characterized in that there is provided a drive device (9...12) which drives the first diaphragm body (7) at 2n times the angular velocity in comparison with the second diaphragm body (8).
  7. An arrangement as claimed in Claim 6, characterized in that the circumferential angle described by a slit (72, 73) on the first diaphragm body (7) is greater by a factor of 2n than at circumferential angle described by a slit (82, 83) on the second diaphragm body (8).
  8. An arrangement as claimed in Claim 4, characterized in that the two diaphragm bodies (7, 8) are arranged concentrically to one another and that one body encloses the other, the slits (82, 83) of the second diaphragm body (8) being wider than at least one of the slits (73) in the first diaphragm body (7).
  9. An arrangement as claimed in Claim 8, characterized in that the first diaphragm body encloses the second diaphragm body.
  10. An arrangement as claimed in one of Claims 1 to 9, characterized in that the slits (72, 73) of the first diaphragm body (7) have pitches which differ from one another.
  11. An arrangement as claimed in Claim 10, characterized in that, of the slits in the first diaphragm body (7) the one with the greater pitch (73) is narrower than the other one (72).
  12. An arrangement as claimed in one of Claims 1 to 11, characterized in that there is provided a slit diaphragm (13) whose slit coincides with the axis of rotation or symmetry (75) of the first diaphragm body (7) and which determines the dimensions of the beam formed in the direction perpendicular to its longitudinal direction.
EP90200571A 1989-03-18 1990-03-12 X or gamma ray generation apparatus with small cross-section and variable position Expired - Lifetime EP0389033B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3908966 1989-03-18
DE3908966A DE3908966A1 (en) 1989-03-18 1989-03-18 ARRANGEMENT FOR GENERATING A X-RAY OR Gamma RAY WITH A SMALL SECTION AND CHANGEABLE LOCATION

Publications (3)

Publication Number Publication Date
EP0389033A2 EP0389033A2 (en) 1990-09-26
EP0389033A3 EP0389033A3 (en) 1991-07-31
EP0389033B1 true EP0389033B1 (en) 1994-10-26

Family

ID=6376681

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90200571A Expired - Lifetime EP0389033B1 (en) 1989-03-18 1990-03-12 X or gamma ray generation apparatus with small cross-section and variable position

Country Status (4)

Country Link
US (1) US5038370A (en)
EP (1) EP0389033B1 (en)
JP (1) JP2940556B2 (en)
DE (2) DE3908966A1 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212718A (en) * 1991-08-06 1993-05-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Gamma ray collimator
US5493596A (en) * 1993-11-03 1996-02-20 Annis; Martin High-energy X-ray inspection system
SE9401300L (en) * 1994-04-18 1995-10-19 Bgc Dev Ab Rotating cylinder collimator for collimation of ionizing, electromagnetic radiation
EP1135700B1 (en) 1998-11-30 2005-03-02 American Science & Engineering, Inc. Fan and pencil beams from a common source for x-ray inspection
US6272206B1 (en) * 1999-11-03 2001-08-07 Perkinelmer Detection Systems, Inc. Rotatable cylinder dual beam modulator
DE60222768T2 (en) * 2001-04-03 2008-07-17 Koninklijke Philips Electronics N.V. CT Scanner
US7963695B2 (en) 2002-07-23 2011-06-21 Rapiscan Systems, Inc. Rotatable boom cargo scanning system
DE102005048519A1 (en) * 2005-10-06 2007-04-19 BAM Bundesanstalt für Materialforschung und -prüfung Focused aperture
US8995619B2 (en) 2010-03-14 2015-03-31 Rapiscan Systems, Inc. Personnel screening system
US8638904B2 (en) 2010-03-14 2014-01-28 Rapiscan Systems, Inc. Personnel screening system
US8576982B2 (en) 2008-02-01 2013-11-05 Rapiscan Systems, Inc. Personnel screening system
US9310323B2 (en) 2009-05-16 2016-04-12 Rapiscan Systems, Inc. Systems and methods for high-Z threat alarm resolution
ITTO20090946A1 (en) 2009-12-01 2011-06-02 Varian Spa METHOD TO IMPROVE THERMAL EXCHANGE EFFICIENCY BETWEEN A METAL BODY AND A TUBE IN WHICH A HEAT EXCHANGE FLUID FLOWS.
CN103558240B (en) * 2009-12-30 2016-03-09 同方威视技术股份有限公司 A kind of scanister of imaging beam and method
PL2548207T3 (en) 2010-03-14 2020-07-13 Rapiscan Systems, Inc. Beam forming apparatus
CN102565110B (en) * 2010-12-31 2015-04-01 同方威视技术股份有限公司 Device and method for scanning ray bundles for backscatter imaging
US8908831B2 (en) 2011-02-08 2014-12-09 Rapiscan Systems, Inc. Covert surveillance using multi-modality sensing
CA3078087C (en) 2011-06-14 2021-11-02 Rapiscan Systems, Inc. Covert surveillance using multi-modality sensing
WO2014008275A1 (en) * 2012-07-05 2014-01-09 American Science And Engineering, Inc. Variable angle collimator
US9557427B2 (en) 2014-01-08 2017-01-31 Rapiscan Systems, Inc. Thin gap chamber neutron detectors
US11280898B2 (en) 2014-03-07 2022-03-22 Rapiscan Systems, Inc. Radar-based baggage and parcel inspection systems
MX361149B (en) 2014-03-07 2018-11-28 Rapiscan Systems Inc Ultra wide band detectors.
EP3944260B1 (en) 2014-05-22 2024-05-08 Australian Nuclear Science And Technology Organisation Proton, neutron, electron or electromagnetic radiation imaging
BR112017011068A2 (en) 2014-11-25 2018-07-10 Rapiscan Systems, Inc. smart security management system
GB2549891B (en) 2015-01-20 2021-09-08 American Science & Eng Inc Dynamically adjustable focal spot
CN105987920B (en) * 2015-02-11 2019-10-08 北京君和信达科技有限公司 A kind of flying spot forms device and design method
US10082473B2 (en) 2015-07-07 2018-09-25 General Electric Company X-ray filtration
CN110824573A (en) 2015-09-10 2020-02-21 美国科学及工程股份有限公司 Backscatter characterization using inter-row adaptive electromagnetic x-ray scanning
CN109791811A (en) 2016-09-30 2019-05-21 美国科学及工程股份有限公司 X-ray source for the imaging of 2D scanning light beam
US10748740B2 (en) * 2018-08-21 2020-08-18 Fei Company X-ray and particle shield for improved vacuum conductivity
US10948614B2 (en) 2018-11-01 2021-03-16 H3D, Inc. Imaging system with one or more mask units and corresponding method of recording radiation
US11193898B1 (en) 2020-06-01 2021-12-07 American Science And Engineering, Inc. Systems and methods for controlling image contrast in an X-ray system
US11972920B2 (en) 2021-11-23 2024-04-30 Fei Company Vacuum compatible X-ray shield

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE194743C (en) *
US3766387A (en) * 1972-07-11 1973-10-16 Us Navy Nondestructive test device using radiation to detect flaws in materials
US3832564A (en) * 1973-01-31 1974-08-27 Us Navy Radiation absorber and intensity collimator unit
US3894234A (en) * 1974-01-28 1975-07-08 Us Navy Radial scanner
DE3120567A1 (en) * 1981-05-23 1983-01-20 Philips Patentverwaltung Gmbh, 2000 Hamburg SCREEN BEAM EXAMINATION ARRANGEMENT
DE3135421A1 (en) * 1981-09-07 1983-03-24 Siemens AG, 1000 Berlin und 8000 München X-RAY EXAMINATION DEVICE
DE3443095A1 (en) * 1984-11-27 1986-05-28 Philips Patentverwaltung Gmbh, 2000 Hamburg ARRANGEMENT FOR EXAMINING A BODY WITH GAMMA OR X-RAY RADIATION
GB2170980B (en) * 1985-02-07 1988-05-25 Steve Webb Ct scanner and detector therefor
DE3829688A1 (en) * 1988-09-01 1990-03-15 Philips Patentverwaltung ARRANGEMENT FOR GENERATING A X-RAY OR GAMMA RAY WITH A SMALL SECTION AND CHANGING DIRECTION

Also Published As

Publication number Publication date
DE3908966A1 (en) 1990-09-20
DE59007543D1 (en) 1994-12-01
JPH02275400A (en) 1990-11-09
JP2940556B2 (en) 1999-08-25
EP0389033A3 (en) 1991-07-31
EP0389033A2 (en) 1990-09-26
US5038370A (en) 1991-08-06

Similar Documents

Publication Publication Date Title
EP0389033B1 (en) X or gamma ray generation apparatus with small cross-section and variable position
EP0357146A2 (en) Arrangement for generating an X-ray or gamma-ray with a small sectional area and variable direction
DE4122273C2 (en) Device for transversely cutting a moving strip
DE3126285C2 (en)
DE2744808C2 (en) X-ray source with an X-ray tube with a rotating anode and a cathode arrangement with a focusing electrode for masking out a rectangular focal spot
DE2621565C3 (en) Indexing gear
EP0714037A2 (en) Arrangement for the measurement of the momentum transfer spectrum of elastically scattered X-ray quanta
DE3827511C2 (en)
EP0254104A1 (en) Shock-wave generator for producing an acoustic shock-wave pulse
DE102006007058A1 (en) Computer tomography system for cardio-computer tomography, has gantry for fastening two focus/detector systems that are rotatable about system axle, where focus/detector systems are eccentrically arranged to system axle and coupled together
DE815052C (en) Antenna arrangement
EP0593961A1 (en) Optical beam splitter especially for a laser beam
DE19956585A1 (en) Computer tomography procedure
DE3217226A1 (en) Device for changing and blending the intensity distribution of a power-laser radiation beam
DE19831027A1 (en) Effect disc rotation system
DE1660487C3 (en) Device for the production of a split fiber material with a net-like structure
DE10154539C1 (en) Radiation shield for an x-ray machine and x-ray machine
DE2722276A1 (en) TUNED MAGNETRON
DE2533347C3 (en) Magnetic reflector
DE4120905A1 (en) Laser beam focusing and deflection appts. for workpiece processing - has rotor-mounted deflection mirror of cone segment form, concave collecting mirror and focusing mirror for line or point focusing
EP0536683B1 (en) Apparatus for guiding a laser beam
DE2913769C2 (en)
DE2440810C3 (en) Method of operating a mixer
DE886164C (en) Antenna system with swiveling directional characteristic
DE1095955B (en) Device for generating X-ray images

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19920131

17Q First examination report despatched

Effective date: 19931214

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19941026

REF Corresponds to:

Ref document number: 59007543

Country of ref document: DE

Date of ref document: 19941201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950126

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950106

ET Fr: translation filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990205

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990208

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990215

Year of fee payment: 10

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000312

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010103