EP0379657B1 - Verfahren zur Trocknung eines Schlammes - Google Patents

Verfahren zur Trocknung eines Schlammes Download PDF

Info

Publication number
EP0379657B1
EP0379657B1 EP89120565A EP89120565A EP0379657B1 EP 0379657 B1 EP0379657 B1 EP 0379657B1 EP 89120565 A EP89120565 A EP 89120565A EP 89120565 A EP89120565 A EP 89120565A EP 0379657 B1 EP0379657 B1 EP 0379657B1
Authority
EP
European Patent Office
Prior art keywords
sludge
layer
gas
dryer
sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89120565A
Other languages
English (en)
French (fr)
Other versions
EP0379657A1 (de
Inventor
Karl Dipl.-Ing. Keller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sulzer Escher Wyss GmbH
Original Assignee
Sulzer Escher Wyss GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6372936&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0379657(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sulzer Escher Wyss GmbH filed Critical Sulzer Escher Wyss GmbH
Priority to AT89120565T priority Critical patent/ATE67299T1/de
Publication of EP0379657A1 publication Critical patent/EP0379657A1/de
Application granted granted Critical
Publication of EP0379657B1 publication Critical patent/EP0379657B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • F26B3/06Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried
    • F26B3/08Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried so as to loosen them, e.g. to form a fluidised bed
    • F26B3/084Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried so as to loosen them, e.g. to form a fluidised bed with heat exchange taking place in the fluidised bed, e.g. combined direct and indirect heat exchange
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/02Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure
    • F26B21/04Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure partly outside the drying enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • F26B3/06Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried
    • F26B3/08Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried so as to loosen them, e.g. to form a fluidised bed
    • F26B3/088Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried so as to loosen them, e.g. to form a fluidised bed using inert thermally-stabilised particles

Definitions

  • the invention relates to a method for drying a sludge of the type specified in the preamble of claim 1 (see e.g. DE-A-2245495).
  • All suspensions, sludges, pastes and filter cakes from various dewatering machines can be used for drying.
  • This also includes sewage sludge from municipal or industrial wastewater that comes from sewage treatment plants that are fed with it.
  • sludges are mechanically dewatered. Their further processing, recycling or disposal requires thermal drying. Depending on the degree of dewatering, the pasty sludges contain 40 to 60% water, which impairs handling and the processes for recycling or disposal of the sludge. Thermal drying improves or extends the possibilities for recycling these sludges and / or reduces the amount to be disposed of.
  • a known method uses a direct drum dryer. Depending on the consistency and after pretreatment, the sludge is placed in a rotating drum inclined towards the discharge and migrates to the discharge end by constant rolling in the rotating drum. At the same time, hot air or hot flue gas flows through the drum in countercurrent or cocurrent and absorbs the moisture of the sludge.
  • the system is mechanically and energetically complex, and the moist and polluted exhaust air from the drum dryer requires complex cleaning to limit emissions.
  • Hot air or hot flue gases flow through a layer of sand from the bottom up, which is a Forces fluidization of this sand filling.
  • An inflow floor ensures an even distribution of the inflowing hot gases.
  • Several pumps push the sludge through nozzles directly into the fluidized sand layer. The nozzles are located just above the inflow floor, i.e. in the lower quarter of the sand layer. The sludge releases its moisture to the hot gas flowing through, which has to be cleaned after it has left the dryer.
  • Indirect contact dryers are also known.
  • the sludge is heated indirectly via heating surfaces.
  • these heating surfaces take the form of disks, paddles, rollers, etc.
  • the steam or oil-heated heating surfaces heat the sludge until its moisture evaporates, a ventilator sucks off the vapors and presses them to condense.
  • the sludge is either applied thinly to the heating surfaces and scraped off again, or the heating surfaces are moved or stirred in the product to be dried.
  • the applicant offers a method with an indirect fluidized bed dryer. Overheated vapors flow through a sludge granulate in a circuit from bottom to top in a fluidized bed and thereby fluidize it. An inflow floor with nozzles distributes the gas evenly over the entire dryer surface and ensures balanced fluidization of the granules.
  • Heating surfaces for example heat exchangers, are arranged in this fluidized layer and indirectly transfer the energy required for drying to the granulate.
  • the heating surfaces have different shapes, such as smooth tubes, finned tubes, plates, etc., which are heated with steam or other heat carriers.
  • a granulator creates moist, stable granules by mixing dewatered sludge and part of the already dried sludge.
  • This moist granulate is introduced into the fluidized bed, where its moisture is absorbed by the flowing, overheated vapors.
  • the dried granulate leaves the fluidized bed dryer via an overflow weir or a discharge device. Part of the dried granulate goes back to the granulator, where dewatered sludge is added to the wet granulate.
  • the vapors emerging from the fluidized bed dryer also take fine-grained product particles and dust, which are separated in a cyclone or filter and fed into the granulator. The amount of water evaporated during drying is drawn off as vapors from the circulatory system and condensed or treated thermally.
  • the invention was based on the object of proposing a method of the initially specified type which is more economical than the previously known.
  • a pretreatment of the sludge before drying should not be necessary.
  • the discharge of the dry material from the dryer should be simplified.
  • the energy consumption of the process is to be reduced.
  • the equipment used should be simpler and cheaper, and at the same time largely trouble-free and low-maintenance.
  • the process should be continuously executable.
  • the product should have a high dry matter content and should be easy to manipulate. Environmental pollution should be largely avoided. The environmental impact should be as low as possible.
  • the resulting sludge 1 is a suspension containing organic substances, which is still pumpable with about 40% water and is kept in stock in a silo 12.
  • the drive motor 14 of which can be speed-regulated with a control device 15 the sludge is pumped into a fluidized bed dryer 2 through a line 16, in which a heated sand layer 3 fluidized by means of a gas stream is built up during operation becomes.
  • the sand layer 3 fluidized with a gas stream is heated indirectly by means of stationary heat exchange bodies 5 immersed in the sand layer 3.
  • the pumpable sludge 1 to be dried is introduced under pressure from the pump 13 into the dryer 2 from above onto the sand layer 3 in countercurrent to the fluidizing gas stream.
  • the feed points are provided in the uppermost area of the dryer 2.
  • the fluidized sand entrains the sludge immediately after it emerges from the mouthpieces of a distribution device. During this process, the sludge coagulates and sludge bulbs form which, owing to the fluidization, are distributed in the sand layer 3 and move in floating manner in this.
  • the hot sand and the hot fluidizing gas gradually release the thermal energy to the moist mud tubers, which leads to a steady heating, with water evaporation of the mud tubers, successively layer by layer from the surface to the core.
  • the water vapor is taken up by the gas stream and discharged from the dryer 2 with the exhaust gas stream 6.
  • the fluidized sand constantly rubs against the already dried-up layer of the mud tubers and grinds off the dry mud, its dry substance, as fine dust.
  • This pulverization of the sludge takes place at each sludge tuber until it has completely dried and been ground down to the respective core, until the remaining sludge dry matter has gradually been crushed and has been pulverized in this way.
  • the rising fluidizing gas stream also entrains the pulverized sludge dry matter and the product dust in addition to the water vapor and thus continuously carries the product 4 with the exhaust gas stream 6 out of the dryer 2 as a function of the gas stream speed.
  • the pulverized dry substance 4, ie the sludge dry matter, is continuously separated as a product from the exhaust gas stream 6 in a separation stage, the cyclone 7.
  • a fan 17, downstream of the cyclone 7, sucks off the exhaust gas stream 6 and thus prevents an increase in pressure due to water evaporation and other gas development during the drying process in the dryer 2.
  • the sand in the sand layer 3 and the fluidizing gas stream are heated by means of smooth heat exchange tubes 5, which are arranged horizontally in the provided area of the sand layer 3 in the fluidized state and through which a heat-carrying medium flows.
  • flue gases 8 are the heat-carrying medium, which are generated in a combustion chamber 9 when fossil fuels 10 are burned.
  • necessary air is led through a line 18.
  • At least some of the flue gases are sucked off by a fan 19 after flowing through the heat exchange tubes 5 and led into the combustion chamber 9 with recovery of their residual heat and thus recirculated.
  • the excess part of the flue gases is removed from the circuit via a line 20 and discharged through a silencer 21.
  • the exhaust gas stream 6, from which the product 4 has been separated, is continuously recirculated to fluidize the sand layer 3, the fluidized bed in the dryer 2.
  • the gas still contains all of the water vapor newly generated in the dryer and the other gases developed there. This additional volume of gas must be withdrawn from the gas cycle system in order to keep the pressure in the gas cycle system constant.
  • the gas volume reduced to the amount of gas required for the fluidization of the layer 3 in the fluidized bed dryer 2 is passed through a fan 22, distribution box 37 and inflow base 38 of the dryer 2, which closes the gas circuit.
  • the excess gas quantity is reduced by condensing the condensable excess gas, primarily the excess water vapor in a condenser 11, into which the entire exhaust gas flow is led through a line 23.
  • the condensation takes place by spraying the gas with cooling water, for which a line 24 is provided.
  • the water with the condensate is recirculated via a pump 25 and possibly a cooler 26, an excess being drawn off via a line 27. If there is still an excess volume after the condenser 11 in the circulatory system, a corresponding one becomes Gas amount withdrawn from the circulatory system by opening a valve 28 via a line 29. Water vapor and the gases released during drying remain in the circuit.
  • the gas circuit used for fluidization becomes ever poorer in free oxygen, so that finally the process in and after the dryer 2 takes place in a non-reactive atmosphere, thereby eliminating the risk of burning or explosion.
  • the product dust present in the cyclone 7 has about 90% TS.
  • the pulverized sludge dry mass 4 obtained after the discharge apparatus 30 is fed to a mixer 31, where part of the sludge 1 from the silo 12 is added to the product dust via a speed-controllable pump 32 and a line 33, whereby a desired final moisture content of the product is set becomes.
  • a line 34 leads from the mixer 31 to the cyclone 7, through which the gases produced in the mixer 31 are drawn off.
  • the mixer 31 is provided with a granulator, where the product having the desired moisture content is processed into granules.
  • the end product processed in this way is loaded by means of a transport device 35.
  • a line 36 is also connected to this and, if necessary, serves to empty the dryer 2.
  • the process is suitable for drying a wide variety of suspensions, slurries, pastes and filter cakes from a wide variety of dewatering devices.
  • the process for drying municipal and / or industrial sewage sludge was described here.
  • the sludges no longer have to be structured or granulated before being introduced into the fluidized bed. Since the sand grinds the dried sludge into dust and the dust is discharged with the exhaust gas stream, no complicated discharge mechanism from the dryer is necessary. The recirculation of product for granulation can also be omitted.
  • the fluid bed dryer works in a chemically non-reactive atmosphere, which consists of slightly overheated vapors and the gases contained in the sludge without free oxygen.
  • the sand fluidized in the dryer is an absolutely inert material in the drying process, which does not react chemically with the sludge, moisture or the recycle gas. This prevents inflammation due to overheating in the dryer.
  • the energy for drying the material is indirectly transferred to the material or to the fluidized sand.
  • the heating medium does not come into direct contact with the material or the sand.
  • the evaporated moisture accumulates as water vapor and can be disposed of as such by simple condensation using the waste heat.
  • the horizontal smooth-tube heat exchangers in the fluidized layer carry out an extremely intensive energy exchange with a high specific heat output.
  • An optimal grain distribution of the sand which is selected according to the material to be dried, allows a relatively lower gas velocity and higher heat output than in a fluid bed dryer with a product granulate layer. This reduces the electrical energy required to drive the fans.
  • the fluidized sand layer constantly cleans the immersed heating surfaces during operation, so that their loss of performance due to contamination is excluded.
  • the horizontal smooth tube heating surfaces are stationary and therefore static heat exchangers. They can not only be heated with steam or liquid heat carriers, but also allow heating with hot gases such as air or flue gases.
  • the hot flue gases can be generated as waste heat or from a combustion chamber with direct firing.
  • the dryer Due to the inert sand layer, the dryer remains absolutely insensitive to temperature fluctuations or overheating.
  • the layer of sand also allows rapid heating and enables the system to be started up immediately at nominal output. When the system is switched off, forced reheating for the inert sand filling is absolutely harmless.
  • the dust-like dust product can be adjusted to a desired moisture content of 50% to 90% DM according to a further use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Drying Of Solid Materials (AREA)
  • Treatment Of Sludge (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Burglar Alarm Systems (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Trocknung eines Schlammes der im Oberbegriff des Patentanspruches 1 angegebenen Art (vgl. z.B. DE-A-2245495).
  • Zur Trocknung können sämtliche Suspensionen, Schlämme, Pasten und Filterkuchen aus verschiedensten Entwässerungsmaschinen anfallen. Dazu gehören auch Klärschlämme aus kommunalem oder industriellem Abwasser, die aus damit beschickten Kläranlagen stammen.
  • Diese Schlämme werden mechanisch entwässert. Ihre Weiterverarbeitung, Verwertung oder Entsorgung setzt eine thermische Trocknung voraus. Die pastösen Schlämme enthalten je nach Entwässerungsgrad 40 bis 60% Wasser, was die Hantierbarkeit und die Verfahren zur Verwertung oder Entsorgung der Schlämme beeinträchtigt. Die thermische Trocknung verbessert oder erweitert die Möglichkeiten zur Verwertung dieser Schlämme und/oder reduziert die anfallende zu entsorgende Menge.
  • Ein bekanntes Verfahren benutzt einen direkten Trommeltrockner. Der Schlamm wird je nach Konsistenz gegebenenfalls nach Vorbehandlung in eine rotierende, zum Austrag hin geneigte Trommel aufgegeben und wandert durch ständiges Abrollen in der sich drehenden Trommel zum Austragsende. Gleichzeitig durchströmt heiße Luft oder heißes Rauchgas die Trommel im Gegen- oder Gleichstrom und nimmt dabei die Feuchtigkeit des Schlammes auf. Die Anlage ist mechanisch und energetisch aufwendig, und die feuchte und belastete Abluft aus dem Trommeltrockner bedarf einer aufwendigen Reinigung zur Emissionsbegrenzung.
  • Andere bekannte Vorrichtungen sind direkte Sandwirbelschichttrockner. Heiße Luft oder heiße Rauchgase durchströmen eine Sandschicht von unten nach oben, was eine Fluidisierung dieser Sandfüllung erzwingt. Ein Anströmboden sorgt für eine gleichmäßige Verteilung der einströmenden heißen Gase. Mehrere Pumpen drücken den Schlamm über Düsen direkt in die fluidisierte Sandschicht. Die Düsen sind knapp über dem Anströmboden, also im unteren Viertel der Sandschicht angeordnet. Der Schlamm gibt seine Feuchtigkeit an das durchströmende heiße Gas ab, welches nach dem Austritt aus dem Trockner gereinigt werden muß.
  • Des weiteren sind indirekte Kontakttrockner bekannt. Bei diesen erfolgt die Erhitzung des Schlammes indirekt über Heizflächen. Je nach Trocknerbauart haben diese Heizflächen die Form von Scheiben, Paddeln, Walzen u.ä. Die dampf- oder ölbeheizten Heizflächen erwärmen den Schlamm, bis schließlich seine Feuchtigkeit verdampft, ein Ventilator die entstehenden Brüden absaugt und zur Kondensation drückt. Die Schlämme werden entweder auf die Heizflächen dünn aufgetragen und wieder abgeschabt, oder die Heizflächen werden bewegt, bzw. rühren im zu trocknenden Produkt.
  • Die Anmelderin bietet ein Verfahren an mit einem indirekten Wirbelschichttrockner. Ein Schlammgranulat wird mit überhitzten Brüden im Kreislauf von unten nach oben in einem Fließbett durchströmt und dabei fluidisiert. Ein Anströmboden mit Düsen verteilt das Gas gleichmäßig auf die ganze Trocknerfläche und gewährleistet eine ausgeglichene Fluidisierung des Granulates. In dieser fluidisierten Schicht sind Heizflächen, z.B. Wärmetauscher, angeordnet, die indirekt die zur Trocknung erforderliche Energie an das Granulat übertragen. Die Heizflächen haben unterschiedliche Formen, wie Glattrohre, Rippenrohre, Platten usw., die mit Dampf oder anderen Wärmeträgern beheizt werden. Ein Granulator erzeugt durch Vermischen von entwässertem Schlamm und einem Teil des bereits getrockneten Schlammes ein feuchtes, stabiles Granulat. Dieses feuchte Granulat wird in die Wirbelschicht eingetragen, wo seine Feuchtigkeit von den durchströmenden, überhitzten Brüden aufgenommen wird. Das getrocknete Granulat verläßt den Wirbelschichttrockner über ein Überlaufwehr oder über einen Austragsapparat. Ein Teil des getrockneten Granulats geht zurück zum Granulator, wo entwässerter Schlamm zu dem feuchten Granulat zugesetzt wird. Die aus dem Wirbelschichttrockner austretenden Brüden nehmen auch feinkörnige Produktpartikel und Staub mit, welche in einem Zyklon oder Filter abgeschieden und in den Granulator eingegeben werden. Die bei der Trocknung verdampfte Wassermenge wird als Brüden aus dem Kreislaufsystem abgezogen und kondensiert oder thermisch behandelt.
  • Der Erfindung lag die Aufgabe zugrunde, ein Verfahren der anfangs angegebenen Art vorzuschlagen, das gegenüber den bisher bekannten wirtschaftlicher ist. Eine Vorbehandlung des Schlammes vor der Trocknung soll sich erübrigen. Das Austragen des Trockengutes aus dem Trockner soll vereinfacht werden. Der Energieaufwand des Verfahrens soll herabgesetzt werden. Eine eingesetzte Apparatur soll einfacher und billiger und dabei weitgehend störungsfrei und wartungsarm sein. Das Verfahren soll kontinuierlich ausführbar sein. Das Produkt soll einen hohen Trockensubstanzanteil aufweisen und sich leicht manipulieren lassen. Eine Umweltbelastung soll weitgehend vermieden werden. Die Belastung der Umgebung soll so gering wie möglich sein.
  • Diese Aufgabe ist erfindungsgemäß durch Maßnahmen, die in dem kennzeichnenden Teil des Patentanspruchs 1 angegeben sind, erfüllt.
  • In den Unteransprüchen sind die kennzeichnenden Merkmale einiger vorteilhafter Ausführungsbeispiele des Verfahrens angegeben.
  • Im weiteren werden der Erfindungsgegenstand und seine Vorteile näher beschrieben und erklärt. Die Beschreibung bezieht sich auf eine Zeichnung, in der die einzige Figur als Beispiel ein Fließschema einer Anlage zur Durchführung der erfindungsgemäßen Trocknung eines entwässerten Klärschlammes aus einer kommunalen Kläranlage zeigt.
  • Der anfallende Schlamm 1 ist nach einer Entwässerung eine organische Substanzen enthaltende Suspension, die noch mit etwa 40% Wasser in pumpfähigem Zustand ist und in einem Silo 12 im Vorrat gehalten wird. Mittels einer Pumpe 13, deren Antriebsmotor 14 mit einer Steuervorrichtung 15 drehzahlregulierbar ist, wird der Schlamm in einen Fließbett-Trockner 2 durch eine Leitung 16 gepumpt, in welchem beim Betrieb eine erhitzte, mittels eines Gasstroms fluidisierte Sandschicht 3 aufgebaut wird.
  • Die mit einem Gasstrom fluidisierte Sandschicht 3 wird indirekt mittels in der Sandschicht 3 eingetauchter, ortsfester Wärmetauschkörper 5 erhitzt. Der pumpfähige zu trocknende Schlamm 1 wird unter Druck aus der Pumpe 13 in den Trockner 2 von oben auf die Sandschicht 3 im Gegenstrom zu dem fluidisierenden Gasstrom eingetragen. Die Aufgabestellen sind im obersten Bereich des Trockners 2 vorgesehen. Der fluidisierte Sand reißt den Schlamm sofort nach dessen Austritt aus den Mundstücken einer Verteilvorrichtung mit. Bei diesem Vorgang koaguliert der Schlamm, und es bilden sich Schlammknollen, die sich aufgrund der Fluidisierung in der Sandschicht 3 verteilen und sich in dieser schwebend bewegen. Der heiße Sand und das heiße Fluidisierungsgas geben sukzessive die Wärmeenergie an die feuchten Schlammknollen ab, was zu einer stetigen Erwärmung unter Wasserverdampfung der Schlammknollen sukzessive Schicht für Schicht von der Oberfläche bis zum Kern führt. Der Wasserdampf wird von dem Gasstrom aufgenommen und mit dem Abgasstrom 6 aus dem Trockner 2 abgeführt. Gleichzeitig reibt der fluidisierte Sand ständig an der bereits abgetrockneten Lage der Schlammknollen und schleift den trockenen Schlamm, seine Trockensubstanz, als feinen Staub ab. Dieses Pulverisieren des Schlammes läuft an jeder Schlammknolle bis zur vollständigen Trocknung und Abschleifen zum jeweiligen Kern ab, bis sich sukzessive und schließlich die verbleibende Schlammtrockenmasse zerrieben hat und auf diese Weise pulverisiert wurde. Der aufsteigende fluidisierende Gasstrom reißt neben dem Wasserdampf auch die pulverisierte Schlammtrockenmasse, den Produktstaub mit und trägt so kontinuierlich das Produkt 4 mit dem Abgasstrom 6 aus dem Trockner 2 in Abhängigkeit von der Gasstromgeschwindigkeit heraus.
  • Die pulverisierte Trockensubstanz 4, die Schlammtrockenmasse also, wird kontinuierlich als Produkt aus dem Abgasstrom 6 in einer Abtrennungsstufe, dem Zyklon 7 abgetrennt. Ein Ventilator 17, in Stromrichtung hinter dem Zyklon 7 saugt den Abgasstrom 6 ab und verhindert damit einen Druckanstieg infolge der Wasserverdampfung und sonstiger Gasentwicklung bei dem Trocknungsvorgang in dem Trockner 2.
  • Das Erhitzen des Sandes in der Sandschicht 3 und des fluidisierenden Gasstromes erfolgt mittels glatter, horizontal in vorgesehenem Bereich der Sandschicht 3 im fluidisierten Zustand im Trockner 2 angeordneter Wärmetauschrohre 5, die von einem wärmetragenden Medium durchströmt werden. In diesem Beispiel sind Rauchgase 8 das wärmetragende Medium, die in einer Brennkammer 9 bei Verbrennung fossiler Brennstoffe 10 erzeugt werden. Notwendige Luft wird dazu durch eine Leitung 18 geführt. Mindestens ein Teil der Rauchgase wird nach dem Durchströmen der Wärmetauschrohre 5 über einen Ventilator 19 abgesaugt und in die Brennkammer 9 unter Rückgewinnung ihrer Restwärme geführt und so rezirkuliert. Der überschüssige Teil der Rauchgase wird über eine Leitung 20 dem Kreislauf entnommen und durch einen Schalldämpfer 21 abgeführt.
  • Der Abgasstrom 6, von dem das Produkt 4 abgetrennt worden ist, wird kontinuierlich zum Fluidisieren der Sandschicht 3, des Fließbettes im Trockner 2, rezirkuliert. Nach dem Zyklon 7 enthält das Gas noch den gesamten im Trockner neu entstandenen Wasserdampf und die sonstigen sich dort entwickelten Gase. Dieses zusätzliche Gasvolumen muß aus dem Gaskreislaufsystem abgezogen werden, um den Druck in dem Gaskreislaufsystem konstant zu halten. Das auf für die Fluidisierung der Schicht 3 im Fließbett-Trockner 2 erforderliche Gasmenge reduzierte Gasvolumen wird über einen Ventilator 22, Verteilkasten 37 und Anströmboden 38 des Trockners 2 geführt, womit der Gaskreislauf schließt.
  • Das Reduzieren der überschüssigen Gasmenge erfolgt in dem gezeigten Beispiel durch Kondensieren des kondensierbaren Gasüberschusses, vornehmlich des überschüssigen Wasserdampfes in einem Kondensator 11, in den der gesamte Abgasstrom durch eine Leitung 23 geführt wird. Hier erfolgt die Kondensation durch Besprühen des Gases mit Kühlwasser, wofür eine Leitung 24 vorgesehen ist. Das Wasser mit dem Kondensat wird über eine Pumpe 25 und gegebenenfalls über einen Kühler 26 rezirkuliert, wobei ein Überschuß über eine Leitung 27 abgezogen wird. Falls nach dem Kondensator 11 in dem Kreislaufsystem noch ein Überschußvolumen vorliegt, wird eine entsprechende Gasmenge aus dem Kreislaufsystem durch Öffnen eines Ventils 28 über eine Leitung 29 abgezogen. In dem Kreislauf verbleiben Wasserdampf und die beim Trocknen frei werdenden Gase. Bei dem Kreislaufsystem wird so der zum Fluidisieren benutzte Gaskreislauf immer ärmer an freiem Sauerstoff, so daß schließlich der Vorgang im und nach dem Trockner 2 in nicht reaktionsfähiger Atmosphäre erfolgt, wodurch Brenn- oder Explosionsgefahren eliminiert werden.
  • Der in dem Zyklon 7 vorhandene Produktstaub weist ca. 90% TS auf. Die nach dem Austragapparat 30 erhaltene, pulverisierte Schlammtrockenmasse 4 wird zu einem Mischer 31 geführt, wo ein Teil des Schlammes 1 aus dem Silo 12 über eine drehzahl-regelbare Pumpe 32 und eine Leitung 33 dem Produktstaub zugegeben wird, womit eine gewünschte Endfeuchtigkeit des Produktes eingestellt wird. Aus dem Mischer 31 führt zu dem Zyklon 7 eine Leitung 34, durch welche die im Mischer 31 entstandenen Gase abgezogen werden. Der Mischer 31 ist mit einem Granulator versehen, wo das die gewünschte Feuchtigkeit aufweisende Produkt zu einem Granulat verarbeitet wird. Auf diese Weise verarbeitetes Endprodukt wird mittels einer Transportvorrichtung 35 verladen. An diese ist auch eine Leitung 36 angeschlossen, die, wenn nötig, zur Entleerung des Trockners 2 dient.
  • In dem Fließschema sind an einigen Stellen verschiedene Druck- bzw. Temperaturmess- und Steuervorrichtungen normkonform dargestellt, die zur Kontrolle und zum Steuern des Verfahrens angewendet werden. Als bekannt und üblich brauchen sie nicht eigens beschrieben zu werden. Mit ihrer Hilfe läßt sich der Betrieb der Anlage mindestens weitgehend automatisieren.
  • Das Verfahren eignet sich zur Trocknung von verschiedensten Suspensionen, Schlämmen, Pasten und Filterkuchen aus verschiedensten Entwässerungsvorrichtungen. Beschrieben wurde hier das Verfahren zur Trocknung von kommunalen und/oder industriellen Klärschlämmen.
  • Vorteile des erfindungsgemäßen Verfahrens sind folgende:
  • Die Schlämme müssen nicht mehr vor dem Eintrag in die Wirbelschicht strukturiert bzw. granuliert werden. Da der Sand die getrockneten Schlämme zu Staub zerreibt und der Staub mit dem Abgasstrom ausgetragen wird, ist kein komplizierter Austragsmechanismus aus dem Trockner notwendig. Auch die Rezirkulation von Produkt zur Granulierung kann entfallen.
  • Der Fließbett-Trockner arbeitet in einer chemisch nicht reaktionsfähigen Atmosphäre, welche aus leicht überhitzten Brüden und aus den in den Schlämmen enthaltenen Gasen ohne freien Sauerstoff besteht.
  • Der im Trockner fluidisierte Sand ist im Trocknungsverfahren ein absolut inertes Material, welches nicht mit dem Schlamm, der Feuchtigkeit oder dem Kreislaufgas chemisch reagiert. Dadurch sind im Trockner Entzündungen durch Überhitzung ausgeschlossen.
  • Die Energie zur Trocknung des Materials wird indirekt an das Material bzw. an den fluidisierten Sand übertragen. Dadurch kommt das Heizmedium nicht in direkten Kontakt mit dem Material, bzw. dem Sand. Durch diese indirekte Beheizung fällt die verdampfte Feuchtigkeit als Wasserdampf an und kann als solcher durch einfache Kondensation unter Ausnutzung der Abwärme entsorgt werden.
  • An den horizontalen Glattrohr-Wärmetauschern in der fluidisierten Schicht erfolgt ein äußerst intensiver Energieaustausch mit hoher spezifischen Wärmeleistung. Eine optimale Kornverteilung des Sandes, welche entsprechend dem zu trocknenden Material gewählt wird, erlaubt eine relativ geringere Gasgeschwindigkeit und höhere Wärmeleistung als in einem Fließbett-Trockner mit Produktgranulatschicht. Dadurch verringert sich der elektrische Energiebedarf für den Antrieb der Ventilatoren.
  • Die fluidisierte Sandschicht reinigt während des Betriebs ständig die eingetauchten Heizflächen, so daß ihre Leistungsabnahme durch Verschmutzung ausgeschlossen ist.
  • Die horizontalen Glattrohr-Heizflächen sind ortsfest und damit statische Wärmetauscher. Sie können nicht nur mit Dampf oder flüssigen Wärmeträgern beheizt werden, sondern erlauben eine Beheizung mit heißen Gasen wie Luft oder Rauchgase. Die heißen Rauchgase können als Abwärme oder aus einer Brennkammer mit direkter Feuerung anfallen. Anstelle der bisher bei indirekt beheizten Fließbettapparaten üblichen zwei Wärmeübergängen, vom Rauchgas zum Wärmeträgermedium und vom Wärmeträgermedium zum Produkt, ist hier nur ein Wärmeübergang vom Rauchgas zum Produkt erforderlich. Dadurch erhöht sich der verfügbare Temperaturgradient bzw. erniedrigt sich die Rauchgasaustrittstemperatur und damit die Energieverluste. Es entfällt so auch der bisherige Aufwand für die zweifachen Wärmetauschflächen.
  • Durch die inerte Sandschicht bleibt der Trockner absolut unempfindlich bei Temperaturschwankungen bzw. Überhitzungen. Die Sandschicht erlaubt auch eine rasche Aufheizung und ermöglicht das Anfahren der Anlage sofort mit Nennleistung. Auch beim Abstellen der Anlage ist ein zwangsweises Nachheizen für die inerte Sandfüllung absolut unbedenklich.
  • Das staubförmige Staubprodukt läßt sich entsprechend einer weiteren Verwendung auf einen gewünschten Feuchtigkeitsgehalt von 50% bis 90% TS einstellen.

Claims (9)

1. Verfahren zur Trocknung eines nach Entwässerung einer Suspension anfallenden, organische Substanzen enthaltenden Schlammes (1) in einem Fließbett-Trockner (2) mit einer erhitzten, mittels eines Gasstroms fluidisierten Sandschicht (3) zum Gewinnen der Trockensubstanz (4) des Schlammes (1) als Produkt, gekennzeichnet
durch indirektes Erhitzen der Sandschicht (3) mittels in der Schicht (3) eingetauchter, ortsfester Wärmetauschkörper (5),
durch kontinuierliches Eintragen des Schlammes (1) in pumpfähigem Zustand unter Druck in den Trockner (2) von oben auf die Schicht (3) im Gegenstrom zu dem fluidisierenden Gasstrom zum Koagulieren des Schlammes zu Schlammknollen in der erhitzten fluidisierten Schicht (3),
durch sukzessive Trocknung der Schlammknollen in der Schicht (3) bei Abgabe ihrer Feuchtigkeit an den fluidisierenden Gasstrom und bei sukzessivem Abreiben der bereits abgetrockneten Lagen der Schlammknollen durch den fluidisierten Sand der Schicht (3) zum Pulverisieren der Trockensubstanz (4) des Schlammes,
durch kontinuierliches Austragen der pulverisierten Trockensubstanz (4) aus der Schicht (3) mit dem Abgasstrom (6) aus dem Trockner (2),
und durch kontinuierliches Abtrennen (7) der pulverisierten Trockensubstanz (4) als Produkt von dem Abgasstrom (6).
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Erhitzen der Sandschicht (3) mittels glatter, horizontal im Trockner (1) angeordneter Wärmetauschrohre (5) erfolgt, die von einem wärmetragenden Medium durchströmt werden.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß als wärmetragendes Medium Rauchgase (8) aus einer Brennkammer (9) verwendet werden, in der fossile Brennstoffe (10) verbrannt werden.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß mindestens ein Teil der Rauchgase nach Durchströmen der Wärmetauschrohre (5) zurück in die Brennkammer (9) zur Rückgewinnung ihrer Restwärme geführt und rezirkuliert wird.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Abgasstrom (6) nach der Abtrennung (7) der pulverisierten Trockensubstanz (4) zum Fluidisieren der Schicht (3) zurückgeführt wird, wobei das Volumen der Abgase um das überschüssige, während der Trocknung im Trockner (2) entstandene Gasvolumen auf das für das Fluidisieren im Trockner (2) einzusetzende Volumen reduziert wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Reduktion des Abgasvolumens durch Kondensieren der kondensierbaren Komponenten im Abgas, vornehmlich des Volumens des bei der Trocknung zusätzlich entstandenen Wasserdampfes erfolgt, wobei die nichtkondensierbaren Gaskomponenten in dem Kreislauf bleiben, womit eine chemisch nicht reaktionsfähige Gasmischung aus Wasserdampf und den anderen bei der Trocknung frei werdenden Gaskomponenten entsteht, was eine Oxidation des Schlammes bei der Trocknung verhindert.
7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Trockensubstanzstaub (4), welcher nach der Abtrennung (7) ca. 70% Trockensubstanz aufweisen kann, durch Zumischen eines Teiles des anfallenden Schlammes (1) zu einer Mischung gewünschter Feuchtigkeit aufbereitet wird.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Mischung gewünschter Feuchtigkeit zu einem Granulat verarbeitet wird.
9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der zu trockenende Schlamm (1) ein Klärschlamm aus kommunalem bzw. industriellem Abwasser ist.
EP89120565A 1989-01-27 1989-11-07 Verfahren zur Trocknung eines Schlammes Expired - Lifetime EP0379657B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89120565T ATE67299T1 (de) 1989-01-27 1989-11-07 Verfahren zur trocknung eines schlammes.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3902446 1989-01-27
DE3902446A DE3902446C1 (de) 1989-01-27 1989-01-27

Publications (2)

Publication Number Publication Date
EP0379657A1 EP0379657A1 (de) 1990-08-01
EP0379657B1 true EP0379657B1 (de) 1991-09-11

Family

ID=6372936

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89120565A Expired - Lifetime EP0379657B1 (de) 1989-01-27 1989-11-07 Verfahren zur Trocknung eines Schlammes

Country Status (10)

Country Link
US (1) US4970803A (de)
EP (1) EP0379657B1 (de)
JP (1) JPH02237700A (de)
AT (1) ATE67299T1 (de)
CA (1) CA2006507C (de)
DE (1) DE3902446C1 (de)
DK (1) DK21590A (de)
ES (1) ES2024707B3 (de)
FI (1) FI895755A0 (de)
NO (1) NO894789L (de)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0393179B1 (de) * 1988-10-18 1992-07-22 Saarberg-Interplan, Gesellschaft für Rohstoff-, Energie- und Ingenieurtechnik mbH Verfahren zur erzeugung elektrischer energie und/oder heiz- und prozesswärme
DE4019242A1 (de) * 1990-06-15 1991-12-19 Petz Michael Dipl Ing Verfahren zur trocknung durch aenderung der beladungskapazitaet von luft o. dgl. (peflow-verfahren)
DE4028397C1 (de) * 1990-09-07 1992-02-27 Deutsche Babcock Anlagen Ag, 4200 Oberhausen, De
JP3160651B2 (ja) * 1991-10-14 2001-04-25 月島機械株式会社 含水汚泥の乾燥方法及び装置
US5361708A (en) * 1993-02-09 1994-11-08 Barnes Alva D Apparatus and method for pasteurizing and drying sludge
DE19512563C2 (de) * 1995-04-04 1997-05-28 Deutag Ag Verfahren zur Verwertung von Schlämmen und wasserhaltigen Rückständen mit hohem Anteil organischer Substanzen
DE19522164A1 (de) * 1995-06-19 1997-01-02 Sep Tech Studien Verfahren und Vorrichtung zur kontinuierlichen Trocknung von Protein enthaltendem Schlamm
AT406671B (de) * 1996-11-22 2000-07-25 Andritz Patentverwaltung Verfahren zur trocknung von schlamm, insbesondere klärschlamm
AT406672B (de) * 1998-02-26 2000-07-25 Andritz Patentverwaltung Verfahren und anlage zur mechanischen und thermischen entwässerung von schlämmen
AU3338101A (en) * 2000-04-09 2001-10-11 Maschinenfabrik J. Dieffenbacher Gmbh & Co. Method and plant to reduce the water contents bound in the capillaries of fibrous cells
US6405664B1 (en) 2001-04-23 2002-06-18 N-Viro International Corporation Processes and systems for using biomineral by-products as a fuel and for NOx removal at coal burning power plants
US6883444B2 (en) * 2001-04-23 2005-04-26 N-Viro International Corporation Processes and systems for using biomineral by-products as a fuel and for NOx removal at coal burning power plants
US6752848B2 (en) 2001-08-08 2004-06-22 N-Viro International Corporation Method for disinfecting and stabilizing organic wastes with mineral by-products
US6752849B2 (en) 2001-08-08 2004-06-22 N-Viro International Corporation Method for disinfecting and stabilizing organic wastes with mineral by-products
ITRM20010625A1 (it) * 2001-10-19 2003-04-21 Francis Bacon S R L Processo per essiccare morchie.
US6666154B2 (en) * 2002-04-12 2003-12-23 N-Viro International Corporation Methods for controlling ignitability of organic waste with mineral by-products
DE10323774A1 (de) * 2003-05-26 2004-12-16 Khd Humboldt Wedag Ag Verfahren und Anlage zur thermischen Trocknung eines nass vermahlenen Zementrohmehls
US20060243648A1 (en) * 2005-04-27 2006-11-02 Shain Martin J Systems and Methods for Utilization of Waste Heat for Sludge Treatment and Energy Generation
US7513061B2 (en) * 2006-05-26 2009-04-07 Dai-Ichi High Frequency Co., Ltd. Sludge dehydrating processor for converting sludge including organic substance into resources of low water content
US7669348B2 (en) * 2006-10-10 2010-03-02 Rdp Company Apparatus, method and system for treating sewage sludge
AT504996B1 (de) * 2007-03-02 2009-03-15 Andritz Tech & Asset Man Gmbh Verfahren und vorrichtung zur trocknung von kristallinen carbonsäuren
ES2649288T3 (es) * 2007-04-04 2018-01-11 Markus Lehmann Procedimiento para secar un material húmedo
US7637031B2 (en) * 2007-06-26 2009-12-29 Gm Global Technology Operations, Inc. Evaporator core drying system
JP4979538B2 (ja) * 2007-10-16 2012-07-18 株式会社神戸製鋼所 間接加熱乾燥装置、被乾燥物の間接加熱乾燥方法、ならびに固形燃料の製造方法および製造装置
IL204790A (en) * 2010-03-28 2014-07-31 Airgreen Ltd A method for processing and drying waste in a continuous circular process
CN102167488B (zh) * 2011-01-21 2012-11-21 上海伏波环保设备有限公司 非接触式烟气余热污泥干化***
DE102011087264B4 (de) 2011-11-29 2023-01-19 Zf Friedrichshafen Ag Druckregelventilvorrichtung
JP6271274B2 (ja) * 2014-02-04 2018-01-31 株式会社大川原製作所 汚泥乾燥機における乾燥汚泥水分調整機構
CN112919772B (zh) * 2021-02-01 2022-10-21 武汉中科固废资源产业技术研究院有限公司 污泥热改性干化***

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2360235A1 (de) * 1973-12-04 1975-10-23 Hoechst Ag Verfahren zur trocknung von abwasserschlamm
US4159682A (en) * 1977-12-01 1979-07-03 Dorr-Oliver Incorporated Fluid bed combustion with predrying of moist feed using bed sand
US4300291A (en) * 1979-03-13 1981-11-17 Salem Corporation Methods and apparatus for heating particulate material
CH641133A5 (de) * 1979-05-28 1984-02-15 Escher Wyss Ag Verfahren zum verarbeiten von klaerschlamm.
CH644683A5 (de) * 1979-05-28 1984-08-15 Escher Wyss Ag Verfahren zur thermischen behandlung einer materialschicht.
DE2929486C2 (de) * 1979-07-20 1986-08-07 Hitachi Metals, Ltd., Tokio/Tokyo Verfahren zum Entwässern von Schlamm
US4276835A (en) * 1979-10-04 1981-07-07 Von Roll Ag method for processing sewage sludge
CA1146813A (en) * 1980-06-30 1983-05-24 456577 Ontario Limited Apparatus and method for treating sewage sludge
DE3047060C2 (de) * 1980-12-13 1985-03-07 Bergwerksverband Gmbh, 4300 Essen Verfahren und Vorrichtung zum Trocknen und Verbrennen von Schlamm
US4507127A (en) * 1981-12-21 1985-03-26 Nippon Furnace Kogyo Co., Ltd. System for recovering resources from sludge
US4628833A (en) * 1983-04-11 1986-12-16 The Garrett Corporation Fluid bed hog fuel dryer
FI79753C (fi) * 1986-01-31 1990-02-12 Valtion Teknillinen Foerfarande foer torkning av pulverformigt, kornigt, spaonformigt eller motsvarande material.
US4787323A (en) * 1987-08-12 1988-11-29 Atlantic Richfield Company Treating sludges and soil materials contaminated with hydrocarbons

Also Published As

Publication number Publication date
EP0379657A1 (de) 1990-08-01
ATE67299T1 (de) 1991-09-15
DE3902446C1 (de) 1990-07-05
CA2006507A1 (en) 1990-07-27
CA2006507C (en) 1994-02-08
FI895755A0 (fi) 1989-12-01
DK21590A (da) 1990-07-30
DK21590D0 (da) 1990-01-26
US4970803A (en) 1990-11-20
ES2024707B3 (es) 1992-03-01
JPH02237700A (ja) 1990-09-20
NO894789L (no) 1990-07-30
NO894789D0 (no) 1989-11-30

Similar Documents

Publication Publication Date Title
EP0379657B1 (de) Verfahren zur Trocknung eines Schlammes
EP0457203B1 (de) Verfahren zum emissionsfreien Trocknen einer Substanz in einer Trocknungstrommel
EP0423400B1 (de) Entsorgungseinrichtung
DE2943528C2 (de) Verfahren zum Trocknen eines fliessfähigen, wasserhaltigen, feuchten Abwasserschlammes
DE2851609A1 (de) Verfahren und anlage zur verbrennung von feuchten verbrennbaren beschickungen
US4153411A (en) Rotary sludge drying system with sand recycle
JPH06234000A (ja) 汚水沈殿物を乾燥する方法とこの方法を実施するための装置
EP0716264B1 (de) Verfahren zur Verbrennung von Klärschlamm und Anlage zur Durchführung des Verfahrens
EP0373577B1 (de) Verfahren zur Aufbereitung von Klärschlämmen und/oder Industrieschlämmen mit organischen Anteilen mittels des Konversionsverfahrens
EP0883778B1 (de) Verfahren zur verbrennung von klärschlamm und anlage zur durchführung des verfahrens
DE3047060C2 (de) Verfahren und Vorrichtung zum Trocknen und Verbrennen von Schlamm
DE4309283A1 (de) Vorrichtung zur Abfallaufbereitung
WO2003050046A1 (de) Verfahren und vorrichtung zur trocknung von schlamm, insbesondere von abwasserschlamm
EP0571722B1 (de) Verfahren und anlagentechnische Schaltung zur Trocknung und Verbrennung von Abfallstoffen
EP3747847B1 (de) Quecksilberabscheidung bei der herstellung von zementklinker
EP0781741A1 (de) Verfahren zur Verarbeitung von Schlamm
DE4407536A1 (de) Verfahren und Vorrichtung zur Vermeidung von Brandgefahren bei der Entfeuchtung von Schlämmen
EP3491312B1 (de) Kontakttrockner
DE19501736C1 (de) Verfahren zur Verbrennung von Klärschlamm und Anlage zur Durchführung des Verfahrens
DE10224173A1 (de) Verfahren und Vorrichtung zur Sterilisation und Nachtrocknung von Produkten nach einer Kurzzeittrocknung
DE4431564A1 (de) Verfahren und anlagentechnische Schaltung zur Trocknung und Verbrennung von Klärschlamm
DE19542301B4 (de) Verfahren und Einrichtung zum Trocknen von schlammartigem Trockengut, insbesondere Klärschlamm
EP0526458B1 (de) Verfahren und anlage zum verwerten von klärschlamm
DE3824916A1 (de) Wirbelbettreaktor zur herstellung von aktivkohle
DE4240063C2 (de) Verfahren zur thermischen Behandlung von Substanzen in einem Drehrohrofen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19891107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19910225

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 67299

Country of ref document: AT

Date of ref document: 19910915

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19911130

Ref country code: CH

Effective date: 19911130

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2024707

Country of ref document: ES

Kind code of ref document: B3

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: METALLGESELLSCHAFT AG, FRANKFURT/M

Effective date: 19920327

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

NLR1 Nl: opposition has been filed with the epo

Opponent name: METALLGESELLSCHAFT AG.

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26 Opposition filed

Opponent name: BERGWERKSVERBAND GMBH

Effective date: 19920611

Opponent name: METALLGESELLSCHAFT AG, FRANKFURT/M

Effective date: 19920327

NLR1 Nl: opposition has been filed with the epo

Opponent name: BERGWERKSVERBAND GMBH.

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19940603

NLR2 Nl: decision of opposition
EAL Se: european patent in force in sweden

Ref document number: 89120565.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19990907

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990930

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19991027

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19991103

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19991104

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19991124

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19991130

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001107

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20001129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001130

BERE Be: lapsed

Owner name: SULZER-ESCHER WYSS G.M.B.H.

Effective date: 20001130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20001107

EUG Se: european patent has lapsed

Ref document number: 89120565.0

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010731

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20011214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051107