EP0377076A2 - Melting trough for metal - Google Patents

Melting trough for metal Download PDF

Info

Publication number
EP0377076A2
EP0377076A2 EP89110772A EP89110772A EP0377076A2 EP 0377076 A2 EP0377076 A2 EP 0377076A2 EP 89110772 A EP89110772 A EP 89110772A EP 89110772 A EP89110772 A EP 89110772A EP 0377076 A2 EP0377076 A2 EP 0377076A2
Authority
EP
European Patent Office
Prior art keywords
melting
melt
trough
pouring
melting trough
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP89110772A
Other languages
German (de)
French (fr)
Other versions
EP0377076A3 (en
Inventor
Wulf Dr. Brämer
Udo Dr. Schusser
Heinz Schneider
Hans Kreutzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kulzer GmbH
Original Assignee
Heraeus Edelmetalle GmbH
Heraeus Kulzer GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Edelmetalle GmbH, Heraeus Kulzer GmbH filed Critical Heraeus Edelmetalle GmbH
Publication of EP0377076A2 publication Critical patent/EP0377076A2/en
Publication of EP0377076A3 publication Critical patent/EP0377076A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/14Charging or discharging liquid or molten material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/02Furnaces of a kind not covered by any preceding group specially designed for laboratory use

Definitions

  • the invention relates to a melting trough for melting metal by means of a flame with a depression which is filled with melt in the operating state, with at least one pouring channel which is not closed during the melting of the metal.
  • the melting trough can be located on the one hand in a crucible which can be placed on a casting mold, on the other hand it is also possible to form this trough itself by means of the investment material in the casting mold.
  • a casting device for a plant for melting and casting metals with a crucible with bottom tapping in which the crucible opening is provided with a pouring part between the crucible bottom and the casting mold; the pouring part is formed in its upper part as an insert dividing the pouring stream in the form of a perforated plate, a perforated crucible or rotating walls and in its lower part is funnel-shaped.
  • One side wall of the crucible is equipped with a temperature measuring device for monitoring the melting process, which, however, does not protrude into the material to be melted.
  • the melting process takes place under vacuum, the crucible, pouring part and auxiliary mold being arranged in a vacuum chamber.
  • the known devices are relatively complex and are intended for larger batches of melting material. Both devices are also not suitable for melting small amounts of metal using a flame, as is desired in the jewelry industry or dental technology.
  • the object of the invention is to provide a melting trough for melting small amounts of metal by means of a flame, with an exact temperature measurement of the material to be melted, which works without delays.
  • the melting trough should be designed in such a way that even small amounts of melting completely enclose the thermal sensor from all sides in order to determine the casting temperature of the respective melt exactly. Furthermore, any reaction or partial reaction of the melt with the material of the melting trough or the protective tube of the thermal sensor should be avoided.
  • the capillary pouring channel prevents the melted material from passing through the pouring channels during the melting process due to the surface tension.
  • the surface tension is then overcome by compressed gas acting on the melt.
  • thermocouple is advantageously used as the thermal sensor.
  • FIGS. 1a, 1b, 1c, 1d, 1e, 1f and 2a, 2b and 2c represent a melting trough attachment for die casting devices made of graphite or ceramic in two mutually perpendicular longitudinal sections and in plan view, the melt entering the casting channel in the vertical direction taking place according to the gravitational force.
  • a melting trough is shown in corresponding longitudinal sections and a plan view, which is formed by the investment material in the casting mold, the protective tube provided for the introduction of the temperature sensor being fixed in its correct position by the investment material.
  • FIGS. 2a, 2b, 2c represent a melting trough for a centrifugal casting installation, in which the pouring channel lies above the level of the melt to be introduced, the melt entering the pouring channel due to the centrifugal force.
  • the melting trough 1 is designed such that the protective tube 3 protruding through an opening 8 in the trough wall immediately above the Openings of the capillary pouring channels 2 is arranged.
  • the distance between the temperature sensor 3 is a maximum of 2 mm from the pouring channel 2 or from the inner wall of the funnel-shaped pouring trough 1.
  • the pouring channel 2 is oriented vertically, so that the gravitational force also comes into effect in addition to the compressed gas atmosphere during the casting process. It is essential for optimally directed solidification of the cast objects that the capillary pouring channels have an extension of between 1 and 20 mm in their longitudinal direction.
  • the diameter of the capillary which is dependent on the surface tension of the melting material, is variable; it is preferably between 0.5 and 1.5 mm.
  • the pouring channels 2 can be designed as bores or in the form of inserted capillary tubes. Below the capillary pouring channels, there is a tubular pouring channel or, depending on the size of the casting object, several tubular pouring channels are connected. Each pouring channel is connected to at least two capillary pouring channels 2.
  • the casting channels belong to the actual casting mold, which in practice is designed as a so-called "lost mold".
  • the exit directions of the pouring channels 2 are symbolically represented by the axes 7. As can be seen from FIG.
  • the inner cross section of the inner cavity of the melting trough extends almost funnel-shaped up to the pouring channel, while the cross section along the bushings of the pouring channel 2 according to FIG. 1b shows a prismatic interior or interior with a complex cross section. In practice, a spherical cross section has proven to be particularly useful.
  • the top view according to FIG. 1c shows, in addition to the outer peripheral edge 4, the truncated cone-shaped filling opening 5 and the actual melting space, which is designed as a depression 6.
  • the protective tube 3 of the thermal sensor protrudes over all openings of the pouring channels 2.
  • the protective tube 3 can be arranged displaceably within the opening 8 of the trough wall, so that the thermal sensor can be pulled out together with its protective jacket after the casting process.
  • FIGS. 1d, 1e, 1f The principle of operation of the device shown in FIGS. 1d, 1e, 1f corresponds to that explained with reference to FIGS. 1a, 1b, 1c Embodiment, although the melting trough 1 together with the capillary pouring channels belong to the investment material of the casting mold, ie the previous two-part embodiment is replaced by a one-part casting mold, which can also be designed as a so-called "lost mold".
  • each of the capillary casting channels 2 is followed by a casting channel 9, which leads to the actual casting mold.
  • the protective tube 6 is firmly inserted into the opening 8, while the actual thermal sensor can be inserted and pulled out again after the casting process.
  • FIG. 1f corresponds to the two-part form shown in FIG. 1c.
  • Figure 2a shows a melting trough 1 'for a centrifugal casting device, wherein the pouring channel 2' is above the 6 'formed as a melt interior and the thermal sensor 3'.
  • the filling opening is designated 5 '.
  • the melting takes place through an open flame.
  • the melting trough arranged on a drive device is set in rotation and the melting material is guided by centrifugal force through the casting channel 2' into the connected casting mold.
  • Figure 2a shows in cross section the melting trough according to the invention, while Figure 2b shows a front view of the melting trough in cross section.
  • the trough-shaped interior 6 'and the conical pouring channel 2' can be seen.
  • the thermosensor 3' coated with a protective tube.
  • the melt material exits using the centrifugal force practically in the radial direction along the axis 7 'through the pouring channel 2'.
  • the actual mold which is designed for example as a lost shape.
  • pressed ceramics in particular alumina with a high proportion of aluminum oxide, has proven to be particularly advantageous as the ceramic material for the melting trough. Since no residues remain, repeated use of the melting trough is possible without any contamination, provided the melting trough is not part of a lost shape according to FIGS. 1d to 1f.
  • Pressed aluminum oxide ceramic has also proven itself as the material of the protective tube for the thermal sensor. However, it is also possible to use other materials, such as graphite.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Control Of Combustion (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

Zum Erschmelzen kleiner Metallmengen mittels Flamme dient eine Schmelzmulde (1) aus Keramikmaterial mit einer Senke (6, 6') und wenigstens einem während des Schmelzens nicht verschlossenen Gießkanal (2, 2'). In die im Betriebszustand mit Schmelze gefüllte Senke (6, 6') ragt ein durch eine Öffnung (8, 8') in der Muldenwand geführter Thermosensor (3, 3') mit Schutzmantel, wobei die Öffnung (8, 8') ebenso wie der Thermosensor (3, 3') sich unterhalb des Spiegels der Schmelze befinden.A melting trough (1) made of ceramic material with a depression (6, 6 ') and at least one pouring channel (2, 2') which is not closed during melting serves to melt small amounts of metal by means of a flame. A thermosensor (3, 3 ') with a protective jacket, which extends through an opening (8, 8') in the trough wall, projects into the depression (6, 6 ') filled with melt in the operating state, the opening (8, 8') as well the thermal sensor (3, 3 ') are located below the level of the melt.

Description

Die Erfindung betrifft eine Schmelzmulde für das Erschmelzen von Metall mittels einer Flamme mit einer Senke, die im Betriebszustand mit Schmelze gefüllt ist, mit mindestens einem während des Schmelzens des Metalls nicht verschlossenen Gießkanal.The invention relates to a melting trough for melting metal by means of a flame with a depression which is filled with melt in the operating state, with at least one pouring channel which is not closed during the melting of the metal.

Die Schmelzmulde kann sich einerseits in einem auf eine Gießform aufsetzbaren Tiegel befinden, andererseits ist es auch möglich, diese Mulde durch die Ein­bettmasse in der Gießform selbst auszubilden.The melting trough can be located on the one hand in a crucible which can be placed on a casting mold, on the other hand it is also possible to form this trough itself by means of the investment material in the casting mold.

Weiterhin ist es möglich, die Schmelzmulde in einer Schleudergießanlage einzu­setzen.It is also possible to use the melting trough in a centrifugal casting machine.

Aus der DE-AS 1 054 735 ist es bekannt, in die Wand eines Schmelzbehälters einen mit einer Schutzvorrichtung versehenen Temperaturfühler fest einzu­setzen, dessen Einführungskanal vollständig unterhalb des Spiegels der Schmelze liegt. Zur sicheren Temperaturerfassung ragt der Temperaturfühler in die Schmelze hinein, wobei er von einer gut wärmeleitenden Schutzhülse umgeben ist.From DE-AS 1 054 735 it is known to firmly insert a temperature sensor provided with a protective device into the wall of a melting tank, the insertion channel of which lies completely below the level of the melt. The temperature sensor protrudes into the melt for reliable temperature detection, and is surrounded by a thermally conductive protective sleeve.

Weiterhin ist aus der DE-PS 1 262 521 eine Gießvorrichtung für eine Anlage zum Schmelzen und Gießen von Metallen mit einem Schmelztiegel mit Bodenabstich bekannt, bei der die Tiegelöffnung mit einem Ausgußteil zwischen Tiegelboden und Gießform versehen ist; das Ausgußteil ist in seinem oberen Teil als ein den Gießstrahl aufteilender Einsatz in Form einer Lochplatte, eines Loch­tiegels oder Drehwände aufweist und in seinem unteren Teil trichterförmig aus­gebildet. Eine Seitenwand des Schmelztiegels ist zur Überwachung des Schmelz­prozesses mit einer Temperaturmeßeinrichtung ausgerüstet, die jedoch nicht in das Schmelzgut hineinragt. Der Schmelzvorgang erfolgt unter Vakuum, wobei Schmelztiegel, Ausgußteil und Hilfsform in einer Vakuumkammer angeordnet sind.Furthermore, from DE-PS 1 262 521 a casting device for a plant for melting and casting metals with a crucible with bottom tapping is known, in which the crucible opening is provided with a pouring part between the crucible bottom and the casting mold; the pouring part is formed in its upper part as an insert dividing the pouring stream in the form of a perforated plate, a perforated crucible or rotating walls and in its lower part is funnel-shaped. One side wall of the crucible is equipped with a temperature measuring device for monitoring the melting process, which, however, does not protrude into the material to be melted. The melting process takes place under vacuum, the crucible, pouring part and auxiliary mold being arranged in a vacuum chamber.

Die bekannten Vorrichtungen sind verhältnismäßig aufwendig und für größere Chargen von Schmelzgut vorgesehen. Auch sind beide Vorrichtungen nicht für das Erschmelzen kleiner Metallmengen mittels Flamme, wie es in der Schmuck­industrie oder Dentaltechnik erwünscht ist, geeignet.The known devices are relatively complex and are intended for larger batches of melting material. Both devices are also not suitable for melting small amounts of metal using a flame, as is desired in the jewelry industry or dental technology.

Die Erfindung stellt sich die Aufgabe, eine Schmelzmulde für das Erschmelzen kleiner Metallmengen mittels Flamme anzugeben, wobei eine exakte, ohne Ver­zögerungen arbeitende Temperaturmessung des Schmelzgutes erfolgen soll. Dabei soll die Schmelzmulde so konzipiert werden, daß auch kleine Schmelzmengen den Thermosensor von allen Seiten vollständig umschließen, um die Gießtemperatur der jeweiligen Schmelze exakt zu bestimmen. Weiterhin soll jede Reaktion bzw. Teilreaktion der Schmelze mit dem Material der Schmelzmulde bzw. dem Schutz­rohr des Thermosensors vermieden werden.The object of the invention is to provide a melting trough for melting small amounts of metal by means of a flame, with an exact temperature measurement of the material to be melted, which works without delays. The melting trough should be designed in such a way that even small amounts of melting completely enclose the thermal sensor from all sides in order to determine the casting temperature of the respective melt exactly. Furthermore, any reaction or partial reaction of the melt with the material of the melting trough or the protective tube of the thermal sensor should be avoided.

Die Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Weitere vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung sind den Unteransprüchen zu entnehmen.The object is achieved by the characterizing features of claim 1. Further advantageous refinements of the subject matter of the invention can be found in the subclaims.

Der kapillare Gießkkanal verhindert während des Schmelzvorganges aufgrund der Oberflächenspannung einen Durchtritt des erschmolzenen Materials durch die Gießkanäle. Die Oberflächenspannung wird anschließend durch auf die Schmelze einwirkendes Druckgas überwunden.The capillary pouring channel prevents the melted material from passing through the pouring channels during the melting process due to the surface tension. The surface tension is then overcome by compressed gas acting on the melt.

Als besonders vorteilhaft erweist sich der Einsatz von gepreßtem Oxidkeramik­material für die Schmelzmulde, wobei keinerlei Reaktionen zwischen Schmelzgut und Schmelzmulde während des Erhitzens mittels Flamme zu beobachten sind. Das gleiche trifft auch für den in einem Keramikschutzrohr befindlichen Thermo­sensor zu. Somit ist eine wiederholte Verwendbarkeit von Schmelzmulde und Thermosensor gegeben, wobei keinerlei Verunreinigungen aufgrund vorange­gangener Schmelzvorgänge zu befürchten sind. Da der Thermosensor mit seiner Meßspitze in die Schmelze eintaucht, ist eine exakte Erfassung der Schmelz­temperatur möglich. Als Thermosensor wird vorteilhafterweise ein Thermoelement eingesetzt.The use of pressed oxide ceramic material for the melting trough proves to be particularly advantageous, with no reactions between the melting material and the melting trough being observed during the heating by means of a flame. The same applies to the thermal sensor located in a ceramic protective tube. This means that the melting trough and thermal sensor can be used repeatedly, with no contamination due to previous melting processes being to be feared. Since the thermal sensor dips into the melt with its measuring tip, an exact detection of the melting temperature is possible. A thermocouple is advantageously used as the thermal sensor.

Im folgenden ist der Gegenstand der Erfindung anhand der Figuren 1a, 1b, 1c, 1d, 1e, 1f sowie 2a, 2b und 2c näher erläutert. Die Figuren 1a, 1b, 1c stellen einen Schmelzmuldenaufsatz für Druckgießgeräte aus Graphit oder Keramik in zwei zueinander senkrechten Längsschnitten sowie in Draufsicht dar, wobei der Eintritt der Schmelze in den Gießkanal in vertikaler Richtung entsprechend der Gravitationskraft erfolgt. In den Figuren 1d, 1e, 1f ist in entsprechenden Längsschnitten sowie einer Draufsicht eine Schmelzmulde dargestellt, die durch die Einbettmasse in der Gießform gebildet wird, wobei das für die Einführung des Temperatursensors vorgesehene Schutzrohr durch die Einbettmasse in seiner korrekten Position fixiert ist. Die Figuren 2a, 2b, 2c stellen eine Schmelz­mulde für eine Schleudergießanlage dar, bei der der Gießkanal oberhalb des Spiegels der einzubringenden Schmelze liegt, wobei die Schmelze in den Gieß­kanal aufgrund der Fliehkraft eintritt.The subject matter of the invention is explained in more detail below with reference to FIGS. 1a, 1b, 1c, 1d, 1e, 1f and 2a, 2b and 2c. Figures 1a, 1b, 1c represent a melting trough attachment for die casting devices made of graphite or ceramic in two mutually perpendicular longitudinal sections and in plan view, the melt entering the casting channel in the vertical direction taking place according to the gravitational force. In FIGS. 1d, 1e, 1f, a melting trough is shown in corresponding longitudinal sections and a plan view, which is formed by the investment material in the casting mold, the protective tube provided for the introduction of the temperature sensor being fixed in its correct position by the investment material. FIGS. 2a, 2b, 2c represent a melting trough for a centrifugal casting installation, in which the pouring channel lies above the level of the melt to be introduced, the melt entering the pouring channel due to the centrifugal force.

Gemäß Figur 1a ist die Schmelzmulde 1 so ausgestaltet, daß das durch eine Öffnung 8 in der Muldenwand ragende Schutzrohr 3 unmittelbar oberhalb der Öffnungen der kapillaren Gießkanäle 2 angeordnet ist. Auf diese Weise ist eine exakte und verzögerungsfreie Temperaturmessung des Schmelzgutes möglich. Der Abstand des Temperatursensors 3 beträgt maximal 2 mm vom Gießkanal 2 bzw. von der Innenwand der trichterförmig ausgestalteten Gießmulde 1. Der Gießkanal 2 ist vertikal ausgerichtet, so daß beim Gießvorgang neben der Druckgas­atmosphäre auch die Gravitationskraft zur Wirkung gelangt. Dabei ist es für eine optimale gerichtete Erstarrung der Gußobjekte wesentlich, daß die kapillaren Gießkanäle in ihrer Längsrichtung eine Ausdehnung zwischen 1 und 20 mm aufweisen. Der von der Oberflächenspannung des Schmelzgutes abhängige Durchmesser der Kapillare ist variabel, er liegt vorzugsweise zwischen 0,5 und 1,5 mm. Die Gießkanäle 2 können als Bohrungen oder in Form von eingesetzten Kapillarröhrchen ausgeführt sein. Unterhalb der kapillaren Gießkanäle schließt sich ein rohrförmiger Gußkanal bzw. schließen sich je nach Größe des Gußob­jektes mehrere rohrförmige Gußkanäle an. Jeder Gußkanal ist mit wenigstens zwei kapillaren Gießkanälen 2 verbunden. Die Gußkanäle gehören zur eigent­lichen Gußform, die in der Praxis als sogenannte "verlorene Form" ausgeführt ist. Die Austrittsrichtungen der Gießkanäle 2 sind symbolisch durch die Achsen 7 dargestellt. Wie anhand der Figur 1a erkennbar ist, verläuft der innere Querschnitt des inneren Hohlraumes der Schmelzmulde bis zu dem Gieß­kanal nahezu trichterförmig, während der Querschnitt entlang der Durch­führungen des Gießkanals 2 gemäß Figur 1b einen prismatischen Innenraum bzw. Innenraum mit komplexförmigem Querschnitt erkennen läßt. In der Praxis hat sich ein sphärischer Querschnitt als besonders zweckmäßig erwiesen. Die Drauf­sicht gemäß Figur 1c zeigt neben dem äußeren umlaufenden Rand 4 die kegel­stumpfartig ausgebildete Einfüllöffnung 5 sowie den eigentlichen Schmelzraum,, der als Senke 6 ausgebildet ist. Das Schutzrohr 3 des Thermosensors ragt über sämtliche Öffnungen der Gießkanäle 2. Das Schutzrohr 3 kann innerhalb der Öffnung 8 der Muldenwand verschiebbar angeordnet sein, so daß der Thermosensor nach dem Gießvorgang zusammen mit seinem Schutzmantel herausgezogen werden kann.According to Figure 1a, the melting trough 1 is designed such that the protective tube 3 protruding through an opening 8 in the trough wall immediately above the Openings of the capillary pouring channels 2 is arranged. In this way, an exact and instantaneous temperature measurement of the melting material is possible. The distance between the temperature sensor 3 is a maximum of 2 mm from the pouring channel 2 or from the inner wall of the funnel-shaped pouring trough 1. The pouring channel 2 is oriented vertically, so that the gravitational force also comes into effect in addition to the compressed gas atmosphere during the casting process. It is essential for optimally directed solidification of the cast objects that the capillary pouring channels have an extension of between 1 and 20 mm in their longitudinal direction. The diameter of the capillary, which is dependent on the surface tension of the melting material, is variable; it is preferably between 0.5 and 1.5 mm. The pouring channels 2 can be designed as bores or in the form of inserted capillary tubes. Below the capillary pouring channels, there is a tubular pouring channel or, depending on the size of the casting object, several tubular pouring channels are connected. Each pouring channel is connected to at least two capillary pouring channels 2. The casting channels belong to the actual casting mold, which in practice is designed as a so-called "lost mold". The exit directions of the pouring channels 2 are symbolically represented by the axes 7. As can be seen from FIG. 1a, the inner cross section of the inner cavity of the melting trough extends almost funnel-shaped up to the pouring channel, while the cross section along the bushings of the pouring channel 2 according to FIG. 1b shows a prismatic interior or interior with a complex cross section. In practice, a spherical cross section has proven to be particularly useful. The top view according to FIG. 1c shows, in addition to the outer peripheral edge 4, the truncated cone-shaped filling opening 5 and the actual melting space, which is designed as a depression 6. The protective tube 3 of the thermal sensor protrudes over all openings of the pouring channels 2. The protective tube 3 can be arranged displaceably within the opening 8 of the trough wall, so that the thermal sensor can be pulled out together with its protective jacket after the casting process.

Die in den Figuren 1d, 1e, 1f dargestellte Vorrichtung entspricht in Ihrer prinzipiellen Arbeitsweise dem anhand der Figuren 1a, 1b, 1c erläuterten Ausführungsbeispiel, wobei allerdings auch die Schmelzmulde 1 zusammen mit den kapillaren Gießkanälen zur Einbettmasse der Gußform gehören, d. h. die bis­herige zweiteilige Ausführungsform wird durch eine einteilige Gußform ersetzt, die ebenfalls als sogenannte "verlorene Form" ausgeführt sein kann. Ent­sprechend den beiden Längsschniten in Figur 1d und 1e schließt sich an die kapillaren Gießkanäle 2 jeweils ein Gußkanal 9 an, der zur eigentlichen Guß­form führt.The principle of operation of the device shown in FIGS. 1d, 1e, 1f corresponds to that explained with reference to FIGS. 1a, 1b, 1c Embodiment, although the melting trough 1 together with the capillary pouring channels belong to the investment material of the casting mold, ie the previous two-part embodiment is replaced by a one-part casting mold, which can also be designed as a so-called "lost mold". Corresponding to the two longitudinal sections in FIGS. 1d and 1e, each of the capillary casting channels 2 is followed by a casting channel 9, which leads to the actual casting mold.

Das Schutzrohr 6 ist in die Öffnung 8 fest eingefügt, während der eigentliche Thermosensor eingeschoben und nach dem Gießvorgang wieder herausgezogen werden kann.The protective tube 6 is firmly inserted into the opening 8, while the actual thermal sensor can be inserted and pulled out again after the casting process.

Die Draufsicht gemäß Figur 1f entspricht dabei der in Figur 1c dargestellten zweiteiligen Form.The top view according to FIG. 1f corresponds to the two-part form shown in FIG. 1c.

Figur 2a zeigt eine Schmelzmulde 1′ für eine Schleudergießvorrichtung, wobei sich der Gießkanal 2′ oberhalb des als Senke 6′ ausgebildeten Schmelzinnen­raumes und des Thermosensors 3′ befindet. Die Einfüllöffnung ist mit 5′ bezeichnet. Die Erschmelzung findet auch in diesem Falle durch eine offene Flamme statt. Nach Erreichen der mittels Thermosensor 3′ ermittelten Gieß­temperatur wird die auf einer Antriebsvorrichtung angeordnete Schmelzmulde in Rotation versetzt und das Schmelzgut mittels Fliehkraft durch den Gießkanal 2′ in die angeschlossene Gießform geleitet. Figur 2a zeigt im Querschnitt die erfindungsgemäße Schmelzmulde, während Figur 2b eine Vorderansicht der Schmelzmulde im Querschnitt zeigt. In der Draufsicht gemäß Figur 2c ist der muldenförmige Innenraum 6′ sowie der konisch verlaufende Gießkanal 2′ erkenn­bar. Oberhalb der Vertiefung 6′ befindet sich der mit Schutzrohr umhüllte Thermosensor 3′. Das Schmelzgut tritt unter Anwendung der Fliehkraft praktisch in radialer Richtung entlang der Achse 7′ durch den Gießkanal 2′ aus. An den Gießkanal 2′ schließt sich in Richtung der Achse 7′ die eigentliche Gußform an, die beispielsweise als verlorene Form ausgebildet ist.Figure 2a shows a melting trough 1 'for a centrifugal casting device, wherein the pouring channel 2' is above the 6 'formed as a melt interior and the thermal sensor 3'. The filling opening is designated 5 '. In this case, too, the melting takes place through an open flame. After reaching the casting temperature determined by means of the thermal sensor 3 ', the melting trough arranged on a drive device is set in rotation and the melting material is guided by centrifugal force through the casting channel 2' into the connected casting mold. Figure 2a shows in cross section the melting trough according to the invention, while Figure 2b shows a front view of the melting trough in cross section. In the plan view according to Figure 2c, the trough-shaped interior 6 'and the conical pouring channel 2' can be seen. Above the recess 6 'is the thermosensor 3' coated with a protective tube. The melt material exits using the centrifugal force practically in the radial direction along the axis 7 'through the pouring channel 2'. At the pouring channel 2 'follows in the direction of the axis 7', the actual mold, which is designed for example as a lost shape.

Als besonders vorteilhaft hat sich der Einsatz von gepreßter Keramik, ins­besondere von Tonerde mit hohen Anteil an Aluminiumumoxid als Keramikmaterial für die Schmelzmulde erwiesen. Da keinerlei Restbestände übrigbleiben, ist eine wiederholte Verwendung der Schmelzmulde ohne irgendwelche Verunreini­gungen möglich, sofern die Schmelzmulde nicht Bestandteil einer verlorenen Form gemäß Figur 1d bis 1f ist. Als Material des Schutzrohres für den Thermo­sensor hat sich ebenfalls gepreßte Aluminiumoxidkeramik bewährt. Es ist jedoch auch möglich, andere Materialien, wie beispielsweise Graphit, einzusetzen.The use of pressed ceramics, in particular alumina with a high proportion of aluminum oxide, has proven to be particularly advantageous as the ceramic material for the melting trough. Since no residues remain, repeated use of the melting trough is possible without any contamination, provided the melting trough is not part of a lost shape according to FIGS. 1d to 1f. Pressed aluminum oxide ceramic has also proven itself as the material of the protective tube for the thermal sensor. However, it is also possible to use other materials, such as graphite.

Claims (7)

1. Schmelzmulde für das Erschmelzen von Metall mittels einer Flamme mit einer Senke, die im Betriebszustand mit Schmelze gefüllt ist, mit mindestens einem während des Schmelzens des Metalls nicht verschlossenen Gießkanal, dadurch gekennzeichnet, daß in die Senke (6, 6′) ein mit Schutzmantel ver­sehener Thermosensor (3, 3′) durch eine Öffnung (8, 8′) in einer Wand der Mulde hineinragt, wobei sowohl die Öffnung (8, 8′) als auch der Thermo­sensor (3, 3′) unterhalb des Spiegels der einzubringenden Schmelze liegen.1. melting trough for melting metal by means of a flame with a sink, which is filled with melt in the operating state, with at least one not sealed during the melting of the metal pouring channel, characterized in that in the sink (6, 6 ') with a Protective jacket provided thermal sensor (3, 3 ') protrudes through an opening (8, 8') in a wall of the trough, both the opening (8, 8 ') and the thermal sensor (3, 3') below the level of the to be introduced Melt lie. 2. Schmelzmulde nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß wenigstens ein Gießkanal (2) unterhalb des Spiegels der einzubringenden Schmelze liegt, wobei die Schmelze durch Kapillarwirkung in der Senke gehalten wird.2. The melting trough according to one of claims 1 to 3, characterized in that at least one pouring channel (2) lies below the level of the melt to be introduced, the melt being held in the sink by capillary action. 3. Schmelzmulde nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß wenig­stens zwei Gießkanäle (2) vorgesehen sind, die in einen Gußkanal (9) einer Gußform münden.3. melting trough according to claim 1 or 2, characterized in that at least two pouring channels (2) are provided which open into a casting channel (9) of a mold. 4. Schmelzmulde nach Anspruch 3, dadurch gekennzeichnet, daß die Schmelz­mulde (1) auf die Gußform aufsetzbar ist.4. melting trough according to claim 3, characterized in that the melting trough (1) can be placed on the mold. 5. Schmelzmulde nach Anspruch 3, dadurch gekennzeichnet, daß sie als Teil der Gußform durch die Einbettmasse ausgebildet ist.5. melting trough according to claim 3, characterized in that it is formed as part of the mold by the investment. 6. Schmelzmulde nach Anspruch 1, dadurch gekennzeichnet, daß der Gießkanal (2′) oberhalb des Spiegels der einzubringenden Schmelze liegt.6. melting trough according to claim 1, characterized in that the pouring channel (2 ') is above the level of the melt to be introduced. 7. Schmelzmulde nach Anspruch 6, dadurch gekennzeichnet, daß die Schmelze mittels Fliehkraft in den Gießkanal (2′) einführbar ist.7. melting trough according to claim 6, characterized in that the melt can be introduced by centrifugal force into the pouring channel (2 ').
EP19890110772 1988-11-09 1989-06-14 Melting trough for metal Withdrawn EP0377076A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3837960A DE3837960C2 (en) 1988-11-09 1988-11-09 Melting trough for melting metal
DE3837960 1988-11-09

Publications (2)

Publication Number Publication Date
EP0377076A2 true EP0377076A2 (en) 1990-07-11
EP0377076A3 EP0377076A3 (en) 1990-11-22

Family

ID=6366783

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19890110772 Withdrawn EP0377076A3 (en) 1988-11-09 1989-06-14 Melting trough for metal

Country Status (5)

Country Link
US (1) US4934664A (en)
EP (1) EP0377076A3 (en)
JP (1) JPH0718659B2 (en)
DE (1) DE3837960C2 (en)
DK (1) DK556389A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3919920A1 (en) * 1989-06-19 1991-01-03 Leybold Ag DEVICE FOR MEASURING THE TEMPERATURE OF A METAL OR METAL ALLOY MELT
DE10136584A1 (en) * 2001-07-28 2003-02-13 Zubler Geraetebau Method for production of pressed ceramics for use in dental technology whereby to improve the final product, the temperature inside a muffle mold is measured to ensure ceramic pressing is carried out at the optimum temperature

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1054735B (en) * 1956-12-19 1959-04-09 Heraeus Gmbh W C Temperature sensor built into a melting vessel with a protective device
DE1262521B (en) * 1960-09-19 1968-03-07 Kind & Co Fa Device for melting and casting metals under vacuum or low protective gas pressure
DE3011098A1 (en) * 1980-03-22 1981-10-01 BEGO Bremer Goldschlägerei Wilh. Herbst GmbH & Co, 2800 Bremen Precision casting, esp. of metal dental prostheses - where vacuum is suddenly applied to mould cavity so dense castings with fine surface detail are obtd.
DD262490A1 (en) * 1987-05-22 1988-11-30 Freiberg Bergakademie DEVICE FOR DETERMINING PARAMETERS FOR ASSESSING THE METALLURGICAL QUALITY OF CAST MELTS

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2357943A1 (en) * 1970-04-24 1975-05-28 Degussa Centrifugal casting machine for dentistry - having crucible mounted in casting box
FR2357891A1 (en) * 1976-07-09 1978-02-03 Pechiney Aluminium THERMAL ANALYSIS CRUCIBLE FOR ALUMINUM ALLOYS
US4747583A (en) * 1985-09-26 1988-05-31 Gordon Eliott B Apparatus for melting metal particles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1054735B (en) * 1956-12-19 1959-04-09 Heraeus Gmbh W C Temperature sensor built into a melting vessel with a protective device
DE1262521B (en) * 1960-09-19 1968-03-07 Kind & Co Fa Device for melting and casting metals under vacuum or low protective gas pressure
DE3011098A1 (en) * 1980-03-22 1981-10-01 BEGO Bremer Goldschlägerei Wilh. Herbst GmbH & Co, 2800 Bremen Precision casting, esp. of metal dental prostheses - where vacuum is suddenly applied to mould cavity so dense castings with fine surface detail are obtd.
DD262490A1 (en) * 1987-05-22 1988-11-30 Freiberg Bergakademie DEVICE FOR DETERMINING PARAMETERS FOR ASSESSING THE METALLURGICAL QUALITY OF CAST MELTS

Also Published As

Publication number Publication date
EP0377076A3 (en) 1990-11-22
DK556389D0 (en) 1989-11-08
US4934664A (en) 1990-06-19
DK556389A (en) 1990-05-10
DE3837960A1 (en) 1990-05-10
JPH02130388A (en) 1990-05-18
JPH0718659B2 (en) 1995-03-06
DE3837960C2 (en) 1994-09-01

Similar Documents

Publication Publication Date Title
DE1573161C3 (en) Temperature sensor for melt pools
DE1966923U (en) DEVICE FOR THERMAL DIFFERENTIAL MICROANALYSIS.
DE1773407B2 (en) TEMPERATURE PROBE COMBINED WITH A SAMPLING DEVICE FOR MELTING METALS
EP0461306A1 (en) Induction smelting furnace
DE2443855A1 (en) DEVICE FOR INDICATING THE PHASE CHANGE OF A METAL
DE2730813C3 (en) Device for thermal analysis of molten metal
EP0377076A2 (en) Melting trough for metal
DE3402818C2 (en) Device for taking immersion samples from iron melts
WO2000073765A1 (en) Device for removing slag samples
EP0337982A1 (en) Refractory gas permeable bubbling plug
DE2212575B2 (en) METHOD AND DEVICE FOR THE PRODUCTION OF CAST IRON WITH BALL GRAPHITE
DE1758681A1 (en) Device and method for casting metals
EP0463229B1 (en) Process for making directionally solidified castings
DE2821352C2 (en) Method for predetermining the metallographic structure of a casting and device for carrying out the method
DE102008031390A1 (en) Probe for taking slag samples
EP1034420B1 (en) Device for removing slag samples
DE2254488A1 (en) IMPROVEMENTS IN DEVICES FOR TAKING SAMPLE FROM A LIQUID METAL BATH
DE8707781U1 (en) Device for determining the carbon content and temperature of a liquid metal
AT396658B (en) METHOD FOR PRODUCING CASTING PIECES FROM CAST IRON WITH BALL OR VERMICULAR GRAPHITE IN A VERTICAL OR HORIZONTAL DIVIDED MOLD
DE2063754A1 (en) Shaped bodies and methods for measuring temperatures
DE1055764B (en) Device for casting metal bodies, in particular metal plates
DE3337011T1 (en) Casting mold for casting objects with a small thickness made of metal or an alloy with a low melting point and method for coating the effective surface of this casting mold
DE1945141A1 (en) Continuous metal casting machine
DE860248C (en) Process for the production of glass bodies with a tubular glass part
DE2355216C3 (en) Fireproof and air-cooled guide tube for temperature sensors in metallurgical furnaces

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890623

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

RHK1 Main classification (correction)

Ipc: F27B 14/10

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HERAEUS KULZER GMBH

17Q First examination report despatched

Effective date: 19920629

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19921105