EP0376805A1 - Controlled directional drilling assembly with a variable geometry stabiliser, and its use - Google Patents

Controlled directional drilling assembly with a variable geometry stabiliser, and its use Download PDF

Info

Publication number
EP0376805A1
EP0376805A1 EP89403564A EP89403564A EP0376805A1 EP 0376805 A1 EP0376805 A1 EP 0376805A1 EP 89403564 A EP89403564 A EP 89403564A EP 89403564 A EP89403564 A EP 89403564A EP 0376805 A1 EP0376805 A1 EP 0376805A1
Authority
EP
European Patent Office
Prior art keywords
stabilizer
variable geometry
drilling
rotation
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89403564A
Other languages
German (de)
French (fr)
Other versions
EP0376805B1 (en
Inventor
Pierre Morin
Christian Bardin
Jean Boulet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0376805A1 publication Critical patent/EP0376805A1/en
Application granted granted Critical
Publication of EP0376805B1 publication Critical patent/EP0376805B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/068Deflecting the direction of boreholes drilled by a down-hole drilling motor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/10Wear protectors; Centralising devices, e.g. stabilisers
    • E21B17/1014Flexible or expansible centering means, e.g. with pistons pressing against the wall of the well
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/067Deflecting the direction of boreholes with means for locking sections of a pipe or of a guide for a shaft in angular relation, e.g. adjustable bent sub

Definitions

  • the present invention relates to a drill string with controlled trajectory.
  • the gasket according to the present invention is intended to be placed at the end of a drill string.
  • This lining makes it possible to control variations in direction and inclination of the borehole in real time. In addition, it makes it possible to control the azimuth, the radius of curvature in a precise manner and to reduce the phenomena of friction and to limit the risks of jamming and this without requiring to raise said lining on the surface.
  • the packing according to the present invention comprises a drilling tool placed at the lower end of said packing, a motor for rotating said tool and at least one stabilizer with variable geometry.
  • the packing according to the invention may include another stabilizer and / or a bent element.
  • the bent element may be at fixed angle or at variable angle.
  • the bent element can be integrated into said motor.
  • bent element means a member which introduces or can introduce locally, if not punctually, a discontinuity in the direction of the axis of the drill string. That is to say that the axis of the drill string is a broken line at the level of the bent element.
  • variable geometry stabilizer may include means adapted to vary the distance between the axis of said lining and the bearing surface of at least one blade of the stabilizer and / or means adapted to vary at least axially the position of the bearing surface of at least one blade of said stabilizer.
  • the lining according to the present invention may comprise at least one
  • the lining according to the present invention may comprise at least one stabilizer integral in rotation with the body of the engine.
  • the stabilizer (s) with variable geometry may be remotely controlled optionally from the surface.
  • the lining according to the present invention may include a stabilizer with variable geometry as well as two other stabilizers placed on either side of said stabilizer with variable geometry.
  • the bent element can be integrated into said motor
  • the present invention relates to the use of one of the fittings described above at the end of a train of rods which can be driven in rotation by drive means located on the surface.
  • the gasket according to the invention will be able to control the azimuth (of the direction of drilling), which may be facilitated by a bent element integrated in the downhole motor, no rotation being applied to the drill string from the surface.
  • the control of the radius of curvature is facilitated by the association of an elbow and a stabilizer.
  • the reference 1 designates the ground surface from which a well 2 is drilled.
  • the reference 3 designates the surface installation as a whole.
  • the drilling equipment 4 comprises a drill string 5 at the end of which a drilling string 6 is fixed.
  • the drill string 6 corresponds to the lower end of the drilling equipment and can be considered as part of the drill string.
  • a drill string generally has a length of a few tens of meters, of which the thirty meters closest to the drilling tool is generally considered to be active as regards the control of the trajectory.
  • the drill string includes a drilling tool 7, a downhole motor 8 and a variable geometry stabilizer 9.
  • the drilling tool 7 can be driven in rotation by the bottom motor 8, or by the drill string 5 which can be driven on the surface by motor means 10, such as a rotary table.
  • variable geometry stabilizer is meant, according to the present invention, that it can be acted upon to vary the geometric configuration of the support points of the blades on the walls of the drilled well, this variation having to be considered for the same position of the lining in the drilled well.
  • Figures 2 to 4 show different types of stabilizers with variable geometry.
  • the reference 11 designates the portion of rod which carries the stabilizer 12.
  • the stabilizer comprises several blades, two of which are shown: blades 13 and 14.
  • the blades can move so as to vary the distance d which separates the axis 15 from the rod portion 11, from the friction surface 16 of the blade 14 or 13.
  • Figure 3 shows a variable geometry stabilizer in which the blades 18 move axially, as shown by the arrows.
  • the dotted lines represent possible positions of the blades 18.
  • Figure 4 shows the case where there is a single blade 17 which moves.
  • This type of stabilizer is often called "off-set".
  • the same effect of decentering the axis 15 is obtained by having several movable blades placed on the same side of an axial plane containing the axis 15, or by making the blades located from the same side of an axial plane containing the axis 15 as the blades located on the other side of this same plane.
  • the blades may have a helical shape, as shown in Figure 5, especially for the central stabilizer.
  • FIG. 5 represents an embodiment different from that of FIG. 1.
  • the reference 19 designates the drilling tool which is fixed to a shaft 20 driven by the motor 21.
  • the reference 22 designates a stabilizer with fixed geometry comprising blades 23 rectilinear and parallel to the axis of the lining 24.
  • the reference 25 designates a variable geometry stabilizer comprising blades 26 whose friction or cutting surfaces 27 are movable.
  • the blades have a helical shape.
  • the reference 28 designates a stabilizer with a fixed geometry with a helical blade 29.
  • the motor 21 can be a "sparrow" type lobe motor, or a turbine supplied with drilling fluid from a passage 30 arranged in the lining, this passage itself being supplied with drilling fluid from the train. of stems which is hollow. After passing through the motor 21 the drilling fluid is directed towards the tool 19 to evacuate the debris.
  • the motor 21 may also be an electric motor supplied for example from the surface via a cable.
  • the stabilizer 25 with variable geometry is surrounded on either side by stabilizers with fixed geometry 22 and 28.
  • This arrangement is advantageous, but in no way limiting.
  • the lining may include several stabilizers with variable geometry.
  • the stabilizer that is to say the one which is closest to the tool 19, this can be placed either on the external body 32 of the motor 33, as is the case in FIG. 6 , or on the shaft 34 for driving the tool 19 in rotation. This is the case in FIG. 7.
  • the stabilizer bears the reference 31.
  • the lining according to the invention may include a bent element with a variable or fixed angle.
  • Figure 8 shows such a packing.
  • This particularly efficient lining includes, with regard to its lower part (approximately 30 first meters): - A drilling tool 35 adapted to the ground to be drilled, such as a rotary cutter tool, with a polycrystalline diamond cutting element or any other synthetic material and capable of withstanding a rotation speed consistent with the use of a downhole motor. It is necessary to choose a drilling tool with a long service life.
  • a downhole motor (here volumetric) 36 whose body forms a bent element or elbow 37 in its lower half and equipped with a stabilizer 38 positioned on the bent part of the motor 36, the elbow 37 will have an angle preferably less than 3 degrees.
  • - a variable diameter stabilizer 39 which can be remotely controlled from the surface.
  • a rod mass 40 comprising measurement means during drilling (MwD) measuring the main directional parameters (Inclination, Azimuth, Tool face) and transmitting them to the surface.
  • MwD measurement means during drilling
  • main directional parameters Inclination, Azimuth, Tool face
  • the lining will then comprise drill collars 42, possibly one or more other stabilizers, heavy rods, a threshing slide, the assembly being connected to the surface by drill rods.
  • variable geometry stabilizer or of a variable angle bent element.
  • FIGS. 9A, 9B and 10 show a particularly advantageous embodiment of a bent element with variable angle.
  • a tubular element has in its upper part a thread 59 allowing the mechanical connection to the drill string and in its lower part a thread 60 on the output shaft 46, in order to screw the tool. drilling 47.
  • the remote control mechanism consists of a shaft 48 which can slide in its upper part in the bore 65 of the body 43 and which can slide in its lower part in the bore 66 of the body 44.
  • This shaft has male grooves 49 meshing in female splines of the body 43, grooves 50 alternately straight (parallel to the axis of the tubular body 43) and oblique (inclined with respect to the axis of the tubular body 43) in which fingers 67 slide sliding along a axis perpendicular to that of the displacement of the shaft 48 and kept in contact with the shaft by springs 68, male splines 51 meshing with female splines of the body 44 only when the shaft 48 is in the high position.
  • the shaft 48 is equipped in its lower part with a bore 52 in front of which is a needle 53 coaxial with the movement of the shaft 48.
  • a return spring 54 maintains the shaft in the high position, the splines 51 meshing in the equivalent female splines of the body 44.
  • the bodies 43 and 44 are free to rotate at the level of the rotating surface 69 coaxial with the axes of the bodies 43 and 44 and composed of rows of cylindrical rollers 70 inserted in their raceways 72 and extractable at through the orifices 74 by dismantling the door 71.
  • a reserve of oil 76 is maintained at the pressure of the drilling fluid by means of an annular free piston 77.
  • the oil lubricates the sliding surfaces of the shaft 48 by way of the passage 78.
  • the shaft 48 is machined so that an axial bore 79 allows the passage of the drilling fluid according to the arrow f.
  • the angle variation mechanism proper comprises a tubular body 45 which is integral in rotation with the tubular body 44 by means of a coupling 56.
  • the tubular body 45 can rotate relative to the tubular body 43 at the level of the rotary bearing 63 comprising rollers 75 and having an axis oblique to the axes of the tubular bodies 43 and 45.
  • FIG. 13 One possible embodiment for coupling 56 is shown in FIG. 13.
  • This type of remote control is based on a threshold value of the flow through the mechanism according to the arrow f.
  • the nozzle 52 will surround the needle 53 which will cause a large decrease in the drilling fluid passage section and therefore a large increase in the pressure difference ⁇ P and therefore a significant increase in the force F ensuring the complete descent of the shaft 48, despite the increase in the return force of the spring 54 due to its compression.
  • the fingers 67 will follow the oblique part of the grooves 50 during the downward stroke of the shaft 48 and will therefore cause the body to rotate tubular 44 relative to the tubular body 43, which is made possible by the fact that the male splines 51 will disengage from the corresponding female splines of the body 44 at the start of the downward travel of the shaft 48.
  • FIG. 13 shows in a developed way parts 97 and 98 which make it possible to transmit the rotation of the tubular body 44 to the tubular body 45 while allowing relative angular movement of these two tubular bodies.
  • the part 97 has housings 99 in which rods 100 cooperate comprising spheres 101.
  • the tubular body integral with the part 97 flexes relative to the tubular body integral with the part 98.
  • variable geometry stabilizer An embodiment of a variable geometry stabilizer is now described.
  • the remote control mechanism of this stabilizer is the same as that described above.
  • FIG. 11 describes the mechanism for varying the position of one or more blades of an integrated stabilizer.
  • Figure 11 can be considered as the lower part of Figure 9A.
  • grooves 92 At the lower end of the body 44 are grooves 92 whose depth differs depending on the angular sector concerned. Apply to the bottom of these grooves pushers 93 on which lean blades 94 straight or helical in shape under the action of leaf return springs 95 positioned under protective covers 96.
  • the pushers 93 will be on a sector of the groove 92 whose depth will be different. This will cause a translation of the blades, either by moving away, or by approaching the axis of the body.
  • FIG. 11 shows on the right side a blade in the "retracted” position and on the left side a blade in the "extended” position.
  • FIG. 12 shows the developed curve of the profile of the bottom of the groove 92. This profile can correspond, for example, to the case of three blades controlled from the same groove.
  • the abscissa represents the radius of the groove bottom as a function of the angle at the center from a reference angular position. Since the three blades are controlled from the same groove and on a lathe, the profile is reproduced identically every 120 degrees. This is why it was only represented on 120 degrees.
  • the finger 93 of a stabilizer blade cooperates with the portion of the groove bottom profile corresponding to the bearing 1A, this blade is in the entered position.
  • a rotation of 40 degrees of the groove causes a modification of the radius of the groove bottom from the position corresponding to the bearing 1A to that corresponding to the bearing 2A and therefore to an intermediate exit position in the blade.
  • Another rotation of 40 degrees leads to an increase in the bottom groove radius corresponding to the bearing 3A and to a maximum output of the blade. Between each landing a ramp X allows a gradual exit of the blade.
  • the ramp Y is a descending ramp which returns the device to the retracted position corresponding to the bearing 4A of the same value as the bearing 1A.
  • the present invention also relates to a method of implementing such a lining, in particular by using the means for driving the entire set of rods in rotation.
  • the radius of curvature of the trajectory of the drilling tool may be modified by variation of the geometry (for example the diameter) of the stabilizer, in addition to the methods currently available (variation of the weight per l tool, variation of the rotation speed etc ).
  • FIG. 14 represents the projection of the trajectory on the vertical plane and FIG. 15 represents the projection of the trajectory on the horizontal plane.
  • Reference 102 designates the substantially vertical phase of drilling. This phase is carried out by turning the entire packing from the drill string.
  • the diameter of the variable geometry stabilizer 39 is preferably equal to the diameter of the upper fixed geometry stabilizer 41.
  • the reference 103 designates the initiation of the deviation from 0 to about 10 degrees which is obtained by an orientation of the elbow 37 in the desired azimuth of the drilling followed by a rotary drive of the tool 35 from the motor of bottom 36, without the entire drill string being driven from the drill string.
  • the radius of curvature of the well can be adjusted by varying the diameter of the variable geometry stabilizer 39. Thus, for example, for an inclination less than 5 degrees, the radius of curvature increases as the diameter of the stabilizer increases. This trend is reversed for larger slopes.
  • Reference 104 designates the phase of angle rise of about 10 degrees to the desired inclination, without intervention on the direction of the well. This phase is achieved by rotating the packing as a whole from the drill string. The radius of curvature is adjusted by the diameter of the variable geometry stabilizer 39.
  • Reference 105 designates an azimuth correction phase which can be carried out with or without angle correction. In the case of Figures 14 and 15, there is no angle correction. This azimuth correction is effected by orienting the bent element in the appropriate direction to achieve the desired orientation correction and driving the tool by the downhole motor, without there being any a drive of the entire packing by the drill string.
  • variable geometry stabilizer 39 makes it possible to control the radius of curvature of the path.
  • the reference 106 designates a drilling phase at constant inclination without controlling the azimuth. This drilling phase can be carried out by rotating the entire drilling string from the drill string.
  • the phase referenced 107 is an azimuth correction phase of the same type as that described above and which bears the reference 105.
  • the phases referenced 108 and 110 are drilling phases at constant inclination without azimuth control. They are of the same type as the phase which bears the reference 106.
  • the phases referenced 109 and 111 are phases for decreasing the angle of inclination.
  • Reference 112 designates the target to be reached by drilling.
  • FIGS. 16 to 18 illustrate the control of the direction of drilling using a packing comprising three stabilizers, a variable geometry stabilizer 113 and two fixed geometry stabilizers located on either side of the variable geometry stabilizer.
  • the inclination of the borehole is assumed to be 30 degrees from the vertical.
  • the reference 114 designates the stabilizer with upper fixed geometry and the reference 115 the stabilizer with lower fixed geometry located near the drilling tool 116.
  • the fixed stabilizer 115 is integral with the body of the engine 117.
  • the intermediate position of the stabilizer blades 113 shown in FIG. 16 corresponds to drilling at a constant inclination angle.
  • the blades of the variable stabilizer 113 are in the maximum entry position. This corresponds to an increase in the angle of inclination and the tool 116 tends to start in the direction of the arrow 120.
  • the azimuth control by a packing such as that shown in Figures 16 to 18 is possible when it includes at least one stabilizer with shift (or off-set stabilizer, whether or not it has variable geometry.
  • Figures 19 to 21 correspond to a lining similar to that of Figures 16 to 18, but which further comprises a bent element 121.
  • the elements identical to Figures 19 to 21 and 16 to 18 bear identical references.
  • the elbow 121 is assumed to be of fixed geometry and has a deflection angle close to 1 degree.
  • the drive of the entire packing by the drill string causes drilling at constant inclination.
  • the elbow element 121 has only a very small influence on the behavior of the lining.
  • the elbow 121 is positioned so as to orient the borehole towards the bottom of the figure in the direction of the arrow 119.
  • This position represented in phantom 122 is qualified by the terms "Low side" by the driller.
  • the angular position of the bent element 121 is generally verified using conventional measurement means positioned in the drill string.
  • the adjustment of this position is obtained by rotation of the drill string by an angle of an appropriate value from the surface.
  • the tool 116 is driven in rotation by the motor 117.
  • variable geometry centralizer 113 amplifies the reduction in the angle of inclination.
  • FIG. 21 represents a bend oriented upwards, generally qualified as "high side” by the driller, as represented by the dashed line 123.
  • the angle of inclination is considered with respect to the vertical direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Stored Programmes (AREA)
  • Drilling And Boring (AREA)

Abstract

The present invention relates to a controlled directional drilling assembly (24). This assembly comprises a drilling tool (7,19,35,47,116) driven by a bottom motor (8,21,33,36,55,117), at least one stabiliser (9,12,25,39,92,93,94,95,113) of variable geometry, another stabiliser (22,28,38,41,114,115) and an elbow element (37,64,121). <IMAGE>

Description

La présente invention concerne une garniture de forage à trajectoire contrôlée. La garniture selon la présente invention est destinée à être placée à l'extrêmité d'un train de tiges de forage. Cette garniture permet de maîtriser en temps réel les variations de direction et d'inclinaison du forage. En outre, elle permet de maîtriser l'azimut, le rayon de courbure de façon précise et de réduire les phénomènes de frottement et de limiter les risques de coincement et ceci sans nécessiter de remonter ladite garniture en surface.The present invention relates to a drill string with controlled trajectory. The gasket according to the present invention is intended to be placed at the end of a drill string. This lining makes it possible to control variations in direction and inclination of the borehole in real time. In addition, it makes it possible to control the azimuth, the radius of curvature in a precise manner and to reduce the phenomena of friction and to limit the risks of jamming and this without requiring to raise said lining on the surface.

La garniture selon la présente invention comprend un outil de forage placé à l'extrêmité inférieure de ladite garniture, un moteur d'entraînement en rotation dudit outil ainsi qu'au moins un stabilisateur à géométrie variable .The packing according to the present invention comprises a drilling tool placed at the lower end of said packing, a motor for rotating said tool and at least one stabilizer with variable geometry.

La garniture selon l'invention pourra comporter un autre stabilisateur et/ou un élément coudé.The packing according to the invention may include another stabilizer and / or a bent element.

L'élément coudé pourra être à angle fixe ou à angle variable. L'élément coudé pourra être intégré audit moteur.The bent element may be at fixed angle or at variable angle. The bent element can be integrated into said motor.

Par élément coudé, on entend un organe introduisant ou pouvant introduire localement, si ce n'est ponctuellement, une discontinuité de la direction de l'axe du train de tiges. C'est-à-dire que l'axe de la garniture de forage est une ligne brisée au nieau de l'élément coudé.The term “bent element” means a member which introduces or can introduce locally, if not punctually, a discontinuity in the direction of the axis of the drill string. That is to say that the axis of the drill string is a broken line at the level of the bent element.

Le stabilisateur à géométrie variable pourra comporter des moyens adaptés à faire varier la distance entre l'axe de ladite garniture et la surface d'appui d'au moins une lame du stabilisateur et/ou des moyens adaptés à faire varier au moins axialement la position de la surface d'appui d'au moins une lame dudit stabilisateur.The variable geometry stabilizer may include means adapted to vary the distance between the axis of said lining and the bearing surface of at least one blade of the stabilizer and / or means adapted to vary at least axially the position of the bearing surface of at least one blade of said stabilizer.

La garniture selon la présente invention pourra comporter au moins unThe lining according to the present invention may comprise at least one

La garniture selon la présente invention pourra comporter au moins un stabilisateur solidaire en rotation du corps du moteur.The lining according to the present invention may comprise at least one stabilizer integral in rotation with the body of the engine.

Le ou les stabilisateur(s) à géométrie variable pourront être télécommandés éventuellement depuis la surface.The stabilizer (s) with variable geometry may be remotely controlled optionally from the surface.

La garniture selon la présente invention pourra comporter un stabilisateur à géométrie variable ainsi que deux autres stabilisateurs placés de part et d'autre dudit stabilisateur à géométrie variable. L'élément coudé pourra être intégré audit moteurThe lining according to the present invention may include a stabilizer with variable geometry as well as two other stabilizers placed on either side of said stabilizer with variable geometry. The bent element can be integrated into said motor

La présente invention concerne l'utilisation de l'une des garnitures décrites précédemment à l'extrêmité d'un train de tiges pouvant être entraîné en rotation par des moyens d'entraînement situés en surface.The present invention relates to the use of one of the fittings described above at the end of a train of rods which can be driven in rotation by drive means located on the surface.

Bien entendu la garniture selon l'invention pourra assurer le contrôle de l'azimut (de la direction du forage), ce qui pourra être facilité grâce à un élément coudé intégré dans le moteur de fond aucune rotation n'étant appliquée au train de tiges depuis la surface.Of course, the gasket according to the invention will be able to control the azimuth (of the direction of drilling), which may be facilitated by a bent element integrated in the downhole motor, no rotation being applied to the drill string from the surface.

La maîtrise du rayon de courbure est facilitée par l'association d'un coude et d'un stabilisateur.The control of the radius of curvature is facilitated by the association of an elbow and a stabilizer.

La présente invention sera mieux comprise et ses avantages apparaîtront plus clairement à la description qui suit d'exemples particuliers nullement limitatifs illustrés par les figures ci-annexées, parmi lesquelles

  • - la figure 1 représente un mode de réalisation d'une garniture selon la présente invention,
  • - les figures 2 à 4 montrent différents types de stabilisateurs à géométrie variable,
  • - la figure 5 illustre une garniture comportant trois stabilisateurs dont l'un au moins est à géométrie variable,
  • - les figures 6 et 7 montrent deux variantes de disposition d'un stabilisateur,
  • - la figure 8 illustre un mode de réalisation particulier à trois stabilisateurs et à un élément coudé,
  • - les figures 9A et 9B représentent un mode de réalisation de la présente invention dans lequel on peut faire varier l'angle d'un coude se situant au niveau du joint universel d'un moteur de fond,
  • - la figure 10 représente le dispositif de la figure 9B dans une configuration différente,
  • - la figure 11 représente la partie inférieure d'un deuxième mode de réalisation de la présente invention venant en lieu et place de la figure 9B, dans lequel on peut faire varier la position d'une ou plusieurs lames d'un stabilisateur par rapport à l'axe principal du corps tubulaire extérieur. Cette figure comporte deux demi-coupes représentant deux positions différentes des lames du stabilisateur,
  • - la figure 12 montre une vue développée d'un profil de fond de gorge utilisé dans le dispositif représenté à la figure 11,
  • - la figure 13 illustre un détail d'organe de transmission de couple entre deux éléments tubulaire tout en permettant une flexion entre ces deux éléments, cette figure représente ce détail sous la forme développée,
  • - les figures 14 et 15 représentent la trajectoire d'un forage,
  • - les figures 16 à 18 montrent la manière de contrôler la trajectoire d'un forage dans le cas d'utilisation d'une garniture comportant trois stabilisateurs dont l'un est à géométrie variable, et
  • - les figures 19 à 21 illustrent la même chose dans le cas où la garniture comporte en plus un élément coudé.
The present invention will be better understood and its advantages will appear more clearly on the following description of particular, non-limiting examples illustrated by the appended figures, among which
  • FIG. 1 represents an embodiment of a lining according to the present invention,
  • FIGS. 2 to 4 show different types of stabilizers with variable geometry,
  • FIG. 5 illustrates a packing comprising three stabilizers, at least one of which is of variable geometry,
  • FIGS. 6 and 7 show two alternative arrangements of a stabilizer,
  • FIG. 8 illustrates a particular embodiment with three stabilizers and with a bent element,
  • FIGS. 9A and 9B represent an embodiment of the present invention in which the angle of an elbow which is situated at the level of the universal joint of a downhole motor can be varied,
  • FIG. 10 represents the device of FIG. 9B in a different configuration,
  • - Figure 11 shows the lower part of a second embodiment of the present invention instead of Figure 9B, in which the position of one or more blades of a stabilizer can be varied relative to the main axis of the outer tubular body. This figure includes two half-sections representing two different positions of the stabilizer blades,
  • FIG. 12 shows a developed view of a groove bottom profile used in the device shown in FIG. 11,
  • FIG. 13 illustrates a detail of a torque transmission member between two tubular elements while allowing bending between these two elements, this figure represents this detail in the developed form,
  • FIGS. 14 and 15 represent the trajectory of a borehole,
  • FIGS. 16 to 18 show the way of controlling the trajectory of a borehole when using a lining comprising three stabilizers, one of which is of variable geometry, and
  • - Figures 19 to 21 illustrate the same thing in the case where the lining further comprises a bent element.

Dans le mode de réalisation de la figure 1, la référence 1 désigne la surface du sol à partir de laquelle on réalise le forage d'un puits 2. La référence 3 désigne l'installation de surface dans son ensemble.In the embodiment of FIG. 1, the reference 1 designates the ground surface from which a well 2 is drilled. The reference 3 designates the surface installation as a whole.

L'équipement de forage 4 comporte un train de tiges de forage 5 à l'extrêmité duquel est fixée une garniture de forage 6.The drilling equipment 4 comprises a drill string 5 at the end of which a drilling string 6 is fixed.

La garniture de forage 6 correspond à l'extrêmité inférieure de l'équipement de forage et peut être considérée comme faisant partie du train de tiges de forage.The drill string 6 corresponds to the lower end of the drilling equipment and can be considered as part of the drill string.

Une garniture de forage présente généralement une longueur de quelques dizaines de mètres, dont la trentaine de mètres la plus proche de l'outil de forage est généralement considérée comme active en ce qui concerne le contrôle de la trajectoire.A drill string generally has a length of a few tens of meters, of which the thirty meters closest to the drilling tool is generally considered to be active as regards the control of the trajectory.

Dans le mode de réalisation de la figure 1, la garniture de forage comporte un outil de forage 7, un moteur de fond 8 et un stabilisateur à géométrie variable 9.In the embodiment of FIG. 1, the drill string includes a drilling tool 7, a downhole motor 8 and a variable geometry stabilizer 9.

Dans ce mode de réalisation l'outil de forage 7 peut être entraîné en rotation par le moteur de fond 8, ou par le train de tiges 5 qui peut être entraîné en surface par des moyens moteurs 10, tels qu'une table tournante.In this embodiment, the drilling tool 7 can be driven in rotation by the bottom motor 8, or by the drill string 5 which can be driven on the surface by motor means 10, such as a rotary table.

Par stabilisateur à géométrie variable, on entend, selon la présente invention, que l'on peut agir sur celui-ci pour faire varier la configuration géométrique des points d'appuis des lames sur les parois du puits foré, cette variation devant être considérée pour une même position de la garniture dans le puits foré.By variable geometry stabilizer is meant, according to the present invention, that it can be acted upon to vary the geometric configuration of the support points of the blades on the walls of the drilled well, this variation having to be considered for the same position of the lining in the drilled well.

Sur les figures 2 à 4 on a représenté différents types de stabilisateurs à géométrie variable.Figures 2 to 4 show different types of stabilizers with variable geometry.

La référence 11 désigne la portion de tige qui porte le stabilisateur 12.The reference 11 designates the portion of rod which carries the stabilizer 12.

Sur la figure 2 le stabilisateur comporte plusieurs lames dont deux sont représentées : les lames 13 et 14.In FIG. 2, the stabilizer comprises several blades, two of which are shown: blades 13 and 14.

Dans ce mode de réalisation les lames peuvent se déplacer de manière à faire varier la distance d qui sépare l'axe 15 de la portion de tige 11, de la surface de frottement 16 de la lame 14 ou 13.In this embodiment, the blades can move so as to vary the distance d which separates the axis 15 from the rod portion 11, from the friction surface 16 of the blade 14 or 13.

Sur la figure 2 les flèches représentent le mouvement des lames. Des positions possibles des lames ont été représentées en pointillés.In Figure 2 the arrows represent the movement of the blades. Possible positions of the blades have been shown in dotted lines.

La figure 3 représente un stabilisateur à géométrie variable dans lequel les lames 18 se déplacent axialement, comme représenté par les flèches. Les pointillés représentent des positions possibles des lames 18.Figure 3 shows a variable geometry stabilizer in which the blades 18 move axially, as shown by the arrows. The dotted lines represent possible positions of the blades 18.

La figure 4 représente le cas où il y a une seule lame 17 qui se déplace. Ce type de stabilisateur est souvent qualifié de "off-set". Bien entendu on obtient le même effet de décentrement de l'axe 15 en ayant plusieurs lames mobiles placées d'un même côté d'un plan axial contenant l'axe 15, ou bien en faisant se mouvoir plus amplement les lames se trouvant d'un même côté d'un plan axial contenant l'axe 15 que les lames se trouvant de l'autre côté de ce même plan.Figure 4 shows the case where there is a single blade 17 which moves. This type of stabilizer is often called "off-set". Obviously, the same effect of decentering the axis 15 is obtained by having several movable blades placed on the same side of an axial plane containing the axis 15, or by making the blades located from the same side of an axial plane containing the axis 15 as the blades located on the other side of this same plane.

On ne sortira pas du cadre de la présente invention en utilisant des stabilisateurs à géométrie variable d'autres types que ceux décrits précédemment, notamment en utilisant des lames qui combinent les différents mouvements mentionnés précédemment.It will not depart from the scope of the present invention by using stabilizers with variable geometry of other types than those described above, in particular by using blades which combine the different movements mentioned above.

Bien entendu, les lames pourront avoir une forme hélicoïdale, comme représenté à la figure 5, notamment pour le stabilisateur central.Of course, the blades may have a helical shape, as shown in Figure 5, especially for the central stabilizer.

La figure 5 représente un mode de réalisation différent de celui de la figure 1.FIG. 5 represents an embodiment different from that of FIG. 1.

Dans ce nouveau mode de réalisation la référence 19 désigne l'outil de forage qui est fixé à un arbre 20 entraîné par le moteur 21.In this new embodiment, the reference 19 designates the drilling tool which is fixed to a shaft 20 driven by the motor 21.

La référence 22 désigne un stabilisateur à géométrie fixe comportant des lames 23 rectilignes et parallèles à l'axe de la garniture 24.The reference 22 designates a stabilizer with fixed geometry comprising blades 23 rectilinear and parallel to the axis of the lining 24.

La référence 25 désigne un stabilisateur à géométrie variable comportant des lames 26 dont les surfaces de frottement ou de coupe 27 sont mobiles.The reference 25 designates a variable geometry stabilizer comprising blades 26 whose friction or cutting surfaces 27 are movable.

Dans ce mode de réalisation les lames ont une forme hélicoïdale.In this embodiment the blades have a helical shape.

La référence 28 désigne un stabilisateur à géométrie fixe à lame hélicoïdale 29.The reference 28 designates a stabilizer with a fixed geometry with a helical blade 29.

Le moteur 21 peut être un moteur à lobes du type "Moineau", ou une turbine alimentée en fluide de forage à partir d'un passage 30 aménagé dans la garniture, ce passage étant lui-même alimenté en fluide de forage à partir du train de tiges qui est creux. Après avoir traversé le moteur 21 le fluide de forage est dirigé vers l'outil 19 pour évacuer les débris.The motor 21 can be a "sparrow" type lobe motor, or a turbine supplied with drilling fluid from a passage 30 arranged in the lining, this passage itself being supplied with drilling fluid from the train. of stems which is hollow. After passing through the motor 21 the drilling fluid is directed towards the tool 19 to evacuate the debris.

Le moteur 21 pourra également être un moteur électrique alimenté par exemple depuis la surface par l'intermédiaire d'un câble.The motor 21 may also be an electric motor supplied for example from the surface via a cable.

Sur la figure 5 le stabilisateur 25 à géométrie variable est entouré de part et d'autre par des stabilisateurs à géométrie fixe 22 et 28. Cette disposition est avantageuse, mais nullement limitative. De même, la garniture pourra comporter plusieurs stabilisateurs à géométrie variable.In FIG. 5, the stabilizer 25 with variable geometry is surrounded on either side by stabilizers with fixed geometry 22 and 28. This arrangement is advantageous, but in no way limiting. Similarly, the lining may include several stabilizers with variable geometry.

Concernant le stabilisateur inférieur, c'est-à-dire celui qui est le plus près de l'outil 19, celui-là pourra être placé soit sur le corps 32 extérieur du moteur 33, comme c'est le cas de la figure 6, soit sur l'arbre 34 d'entraînement en rotation de l'outil 19. C'est le cas de la figure 7. Sur ces deux figures le stabilisateur porte la référence 31.Regarding the lower stabilizer, that is to say the one which is closest to the tool 19, this can be placed either on the external body 32 of the motor 33, as is the case in FIG. 6 , or on the shaft 34 for driving the tool 19 in rotation. This is the case in FIG. 7. In these two figures, the stabilizer bears the reference 31.

La garniture selon l'invention pourra comporter un élément coudé à angle variable ou fixe.The lining according to the invention may include a bent element with a variable or fixed angle.

La figure 8 représente une telle garniture. Cette garniture qui est particulièrement performante comporte, en ce qui concerne sa partie inférieure (environ 30 premiers mètres) :
- un outil de forage 35 adapté aux terrains à forer, tel un outil à molettes, à élément de coupe en diamant polycristallin ou tout autre matériau synthétique et pouvant supporter une vitesse de rotation cohérente avec l'utilisation d'un moteur de fond. Il est nécessaire de choisir un outil de forage dont la durée de vie sera importante.
- un moteur de fond (ici volumétrique) 36 dont le corps forme un élément coudé ou coude 37 dans sa moitié inférieure et équipé d'un stabilisateur 38 positionné sur la partie coudée du moteur 36, le coude 37 aura un angle de préférence inférieur à 3 degrés.
- un stabilisateur à diamètre variable 39 qui pourra être télécommandé depuis la surface.
- une masse tige 40 comportant des moyens de mesure en cours de forage (MwD) mesurant les principaux paramètres directionnels (Inclinaison, Azimut, Face outil) et les transmettant vers la surface.
- un stabilisateur 41 à diamètre constant
- la garniture comprendra ensuite des masses-tiges 42, éventuellement un ou plusieurs autres stabilisateurs, des tiges lourdes, une coulisse de battage, l'ensemble étant relié à la surface par des tiges de forage.
Figure 8 shows such a packing. This particularly efficient lining includes, with regard to its lower part (approximately 30 first meters):
- A drilling tool 35 adapted to the ground to be drilled, such as a rotary cutter tool, with a polycrystalline diamond cutting element or any other synthetic material and capable of withstanding a rotation speed consistent with the use of a downhole motor. It is necessary to choose a drilling tool with a long service life.
- a downhole motor (here volumetric) 36 whose body forms a bent element or elbow 37 in its lower half and equipped with a stabilizer 38 positioned on the bent part of the motor 36, the elbow 37 will have an angle preferably less than 3 degrees.
- a variable diameter stabilizer 39 which can be remotely controlled from the surface.
- a rod mass 40 comprising measurement means during drilling (MwD) measuring the main directional parameters (Inclination, Azimuth, Tool face) and transmitting them to the surface.
- a constant diameter stabilizer 41
- The lining will then comprise drill collars 42, possibly one or more other stabilizers, heavy rods, a threshing slide, the assembly being connected to the surface by drill rods.

Les figures suivantes montrent des exemples de réalisation d'un stabilisateur à géométrie variable, ou d'un élément coudé à angle variable.The following figures show exemplary embodiments of a variable geometry stabilizer, or of a variable angle bent element.

Les figures 9A, 9B et 10 montrent un mode de réalisation particulièrement avantageux d'un élément coudé à angle variable. Selon ce mode de réalisation un élément de forme tubulaire comporte dans sa partie supérieure un filetage 59 permettant la liaison mécanique à la garniture de forage et dans sa partie inférieure un filetage 60 sur l'arbre de sortie 46, afin de visser l'outil de forage 47.FIGS. 9A, 9B and 10 show a particularly advantageous embodiment of a bent element with variable angle. According to this embodiment, a tubular element has in its upper part a thread 59 allowing the mechanical connection to the drill string and in its lower part a thread 60 on the output shaft 46, in order to screw the tool. drilling 47.

Les principales fonctions sont assurées :

  • A. par le moteur de fond 55 représenté sur la figure 9A sous forme d'un moteur volumétrique multilobes de type Moineau, mais pouvant être tout type de moteur de fond (volumétrique ou turbine) couramment utilisé pour la foration terrestre et qui ne feront donc pas l'objet d'une description détaillée.
  • B. par un mécanisme de télécommande 62 ayant pour fonction de capter l'information de changement de position et de provoquer la rotation différentielle du corps tubulaire 44 relativement au corps tubulaire 43.
  • C. par un mécanisme 64 d'entraînement et d'encaissement des efforts axiaux et latéraux reliant le moteur de fond 55 à l'arbre de sortie 46 qui ne sera pas décrit ici car connu de l'homme de métier.
  • D. par un mécanisme de variation de la géométrie 63 basé sur la rotation du corps tubulaire 44. La référence 57 désigne un joint universel. Celui-ci est utile lorsque le moteur est de type Moineau ou/et lorsqu'il est utilisé un élément coudé 63.
The main functions are ensured:
  • A. by the downhole motor 55 shown in FIG. 9A in the form of a multi-lobe volumetric motor of the Sparrow type, but which can be any type of downhole motor (volumetric or turbine) commonly used for land drilling and which therefore will not not the subject of a detailed description.
  • B. by a remote control mechanism 62 having the function of picking up the information of change of position and of causing the differential rotation of the tubular body 44 relative to the tubular body 43.
  • C. by a mechanism 64 for driving and cashing the axial and lateral forces connecting the bottom motor 55 to the output shaft 46 which will not be described here as known to those skilled in the art.
  • D. by a mechanism for varying the geometry 63 based on the rotation of the tubular body 44. The reference 57 designates a universal joint. This is useful when the motor is of the sparrow type and / or when an elbow element 63 is used.

Le mécanisme de télécommande se compose d'un arbre 48 pouvant coulisser dans sa partie supérieure dans l'alésage 65 du corps 43 et pouvant coulisser dans sa partie inférieure dans l'alésage 66 du corps 44. Cet arbre comporte des cannelures mâles 49 engrenant dans des cannelures femelles du corps 43, des rainures 50 alternativement droites (parallèles à l'axe du corps tubulaire 43) et obliques (inclinées par rapport à l'axe du corps tubulaire 43) dans lesquelles viennent s'engager des doigts 67 coulissant suivant un axe perpendiculaire à celui du déplacement de l'arbre 48 et maintenu en contact avec l'arbre par des ressorts 68, des cannelures mâles 51 engrenant avec des cannelures femelles du corps 44 uniquement lorsque l'arbre 48 est en position haute.The remote control mechanism consists of a shaft 48 which can slide in its upper part in the bore 65 of the body 43 and which can slide in its lower part in the bore 66 of the body 44. This shaft has male grooves 49 meshing in female splines of the body 43, grooves 50 alternately straight (parallel to the axis of the tubular body 43) and oblique (inclined with respect to the axis of the tubular body 43) in which fingers 67 slide sliding along a axis perpendicular to that of the displacement of the shaft 48 and kept in contact with the shaft by springs 68, male splines 51 meshing with female splines of the body 44 only when the shaft 48 is in the high position.

L'arbre 48 est équipé dans sa partie basse d'un dusage 52 en face duquel se trouve une aiguille 53 coaxiale au déplacement de l'arbre 48. Un ressort de rappel 54 maintient l'arbre en position haute, les cannelures 51 engrenant dans les cannelures femelles équivalentes du corps 44. Les corps 43 et 44 sont libres en rotation au niveau de la portée tournante 69 coaxiale aux axes des corps 43 et 44 et composée de rangées de galets cylindriques 70 insérés dans leurs chemins de roulement 72 et extractibles à travers les orifices 74 par démontage de la porte 71.The shaft 48 is equipped in its lower part with a bore 52 in front of which is a needle 53 coaxial with the movement of the shaft 48. A return spring 54 maintains the shaft in the high position, the splines 51 meshing in the equivalent female splines of the body 44. The bodies 43 and 44 are free to rotate at the level of the rotating surface 69 coaxial with the axes of the bodies 43 and 44 and composed of rows of cylindrical rollers 70 inserted in their raceways 72 and extractable at through the orifices 74 by dismantling the door 71.

Une réserve d'huile 76 est maintenue à la pression du fluide de forage par l'intermédiaire d'un piston libre annulaire 77. L'huile vient lubrifier les surfaces coulissantes de l'arbre 48 par l'intermédiaire du passage 78.A reserve of oil 76 is maintained at the pressure of the drilling fluid by means of an annular free piston 77. The oil lubricates the sliding surfaces of the shaft 48 by way of the passage 78.

L'arbre 48 est usiné de telle sorte qu'un alésage 79 axial autorise le passage du fluide de forage selon la flêche f.The shaft 48 is machined so that an axial bore 79 allows the passage of the drilling fluid according to the arrow f.

Le mécanisme de variation d'angle à proprement parler comporte un corps tubulaire 45 qui est solidaire en rotation du corps tubulaire 44 par l'intermédiaire d'un accouplement 56. Le corps tubulaire 45 peut tourner par rapport au corps tubulaire 43 au niveau de la portée tournante 63 comprenant des galets 75 et ayant un axe oblique par rapport aux axes des corps tubulaires 43 et 45.The angle variation mechanism proper comprises a tubular body 45 which is integral in rotation with the tubular body 44 by means of a coupling 56. The tubular body 45 can rotate relative to the tubular body 43 at the level of the rotary bearing 63 comprising rollers 75 and having an axis oblique to the axes of the tubular bodies 43 and 45.

Un mode de réalisation envisageable pour l'accouplement 56 est représenté sur la figure 13.One possible embodiment for coupling 56 is shown in FIG. 13.

Le fonctionnement du mécanisme de télécommande est décrit ci-après. Ce type de télécommande se fonde sur une valeur-seuil du débit traversant le mécanisme suivant la flêche f.The operation of the remote control mechanism is described below. This type of remote control is based on a threshold value of the flow through the mechanism according to the arrow f.

Quand un débit Q traverse l'arbre 48 il se produit une différence de pression Δ P entre la partie amont 82 et la partie aval 83 de l'arbre 6. Cette différence de pression augmente quand le débit Q augmente en suivant une loi de variation du type Δ P = kQn, k étant une constante et n compris entre 1,5 et 2,0 en fonction des caractéristiques du fluide de forage. Cette différence de pression Δ P s'applique sur la section S de l'arbre 48 et crée une force F tendant à déplacer par translation l'arbre 48 vers le bas en comprimant le ressort de rappel 54. Pour une valeur-seuil du débit cette force F deviendra suffisamment importante pour vaincre la force de rappel du ressort et provoquera une légère translation de l'arbre. Du fait de cette translation la duse 52 viendra entourer l'aiguille 53 qui provoquera une forte diminution de la section de passage du fluide de forage et donc une forte augmentation de la différence de pression Δ P et donc une augmentation importante de la force F assurant la descente complète de l'arbre 48, malgré l'augmentation de la force de rappel du ressort 54 dûe à sa compression.When a flow Q crosses the shaft 48 there is a pressure difference Δ P between the upstream part 82 and the downstream part 83 of the shaft 6. This pressure difference increases when the flow Q increases by following a law of variation of the type Δ P = kQ n , k being a constant and n ranging between 1.5 and 2.0 depending on the characteristics of the drilling fluid. This pressure difference Δ P is applied to the section S of the shaft 48 and creates a force F tending to translate the shaft 48 downwards by compressing the return spring 54. For a flow threshold value this force F will become large enough to overcome the return force of the spring and cause a slight translation of the shaft. Due to this translation the nozzle 52 will surround the needle 53 which will cause a large decrease in the drilling fluid passage section and therefore a large increase in the pressure difference Δ P and therefore a significant increase in the force F ensuring the complete descent of the shaft 48, despite the increase in the return force of the spring 54 due to its compression.

De par la forme de l'usinage des gorges 50 décrite dans le brevet FR-2.432.079, les doigts 67 vont suivre la partie oblique des gorges 50 lors de la course descendante de l'arbre 48 et vont donc provoquer la rotation du corps tubulaire 44 par rapport au corps tubulaire 43, ce qui est rendu possible par le fait que les cannelures mâles 51 vont se désengager des cannelures femelles correspondantes du corps 44 au début de la course descendante de l'arbre 48.Due to the shape of the machining of the grooves 50 described in patent FR-2,432,079, the fingers 67 will follow the oblique part of the grooves 50 during the downward stroke of the shaft 48 and will therefore cause the body to rotate tubular 44 relative to the tubular body 43, which is made possible by the fact that the male splines 51 will disengage from the corresponding female splines of the body 44 at the start of the downward travel of the shaft 48.

L'arbre étant arrivé en butée basse, le fait de couper le débit va permettre au ressort de rappel 54 de pousser l'arbre 48 vers le haut. Les doigts 67 suivront pendant cette course ascendante les parties rectilignes des gorges 50. En fin de course les cannelures 51 vont s'enclencher de nouveau afin de solidariser en rotation les corps tubulaires 43 et 44.The shaft having arrived at the bottom stop, the fact of cutting the flow will allow the return spring 54 to push the shaft 48 upwards. The fingers 67 will follow, during this upward stroke, the straight parts of the grooves 50. At the end of the race, the grooves 51 will engage again in order to secure in rotation the tubular bodies 43 and 44.

La figure 13 représente de manière développée des pièces 97 et 98 qui permettent de transmettre la rotation du corps tubulaire 44 au corps tubulaire 45 tout en permettant un mouvement angulaire relatif de ces deux corps tubulaires.FIG. 13 shows in a developed way parts 97 and 98 which make it possible to transmit the rotation of the tubular body 44 to the tubular body 45 while allowing relative angular movement of these two tubular bodies.

La pièce 97 comporte des logements 99 dans lesquels viennent coopérer des tiges 100 comportant des sphères 101. Ainsi bien que corps tubulaire solidaire de la pièce 97 fléchisse relativement au corps tubulaire solidaire de la pièce 98. Il y a entraînement en rotation d'un corps tubulaire par l'autre. Ainsi ces deux pièces ont le même rôle qu'un joint de cardan creux.The part 97 has housings 99 in which rods 100 cooperate comprising spheres 101. As well as the tubular body integral with the part 97 flexes relative to the tubular body integral with the part 98. There is a rotation drive of a body tubular by the other. Thus these two parts have the same role as a hollow universal joint.

La variation de l'angle est obtenue par la rotation du corps tubulaire 44 relativement au corps tubulaire 43 qui provoque par l'intermédiaire du mécanisme d'entraînement 56 la rotation du corps tubulaire 45 par rapport à ce même corps tubulaire 43. Cette rotation se faisant autour d'un axe oblique par rapport aux deux axes des corps 43 et 45 va provoquer une modification de l'angle que forment les axes des corps 43 et 45. Cette variation d'angle est détaillée dans le brevet FR-2.432.079. La figure 10 montre la même partie du dispositif que celle représentée à la figure 9B, mais dans une position géométriquement différente.The variation of the angle is obtained by the rotation of the tubular body 44 relative to the tubular body 43 which causes, through the drive mechanism 56, the rotation of the tubular body 45 relative to this same tubular body 43. This rotation is doing around an oblique axis with respect to the two axes of the bodies 43 and 45 will cause a modification of the angle formed by the axes of the bodies 43 and 45. This variation of angle is detailed in patent FR-2,432,079 . Figure 10 shows the same part of the device as that shown in Figure 9B, but in a geometrically different position.

Il est décrit maintenant un mode de réalisation d'un stabilisateur à géométrie variable. Le mécanisme de télécommande de ce stabilisateur est le même que celui décrit précédemment.An embodiment of a variable geometry stabilizer is now described. The remote control mechanism of this stabilizer is the same as that described above.

La figure 11 décrit le mécanisme de variation de position d'une ou plusieurs lames d'un stabilisateur intégré. La figure 11 peut être considérée comme étant la partie inférieure de la figure 9A.FIG. 11 describes the mechanism for varying the position of one or more blades of an integrated stabilizer. Figure 11 can be considered as the lower part of Figure 9A.

A l'extrêmité inférieure du corps 44 sont usinées des gorges 92 dont la profondeur diffère en fonction du secteur angulaire concerné. Viennent s'appliquer au fond de ces gorges des poussoirs 93 sur lesquels s'appuient des lames 94 droites ou de forme hélicoïdale sous l'effet de ressorts de rappel à lames 95 positionnés sous des capots de protection 96.At the lower end of the body 44 are grooves 92 whose depth differs depending on the angular sector concerned. Apply to the bottom of these grooves pushers 93 on which lean blades 94 straight or helical in shape under the action of leaf return springs 95 positioned under protective covers 96.

Le fonctionnement du mécanisme de variation de position d'une ou de plusieurs lames est indiqué ci-dessous.The operation of the position variation mechanism of one or more blades is shown below.

Lors de la rotation du corps tubulaire 44 par rapport au corps tubulaire 43 provoquée par le déplacement de l'arbre 48, les poussoirs 93 vont se trouver sur un secteur de la gorge 92 dont la profondeur sera différente. Cela provoquera une translation des lames, soit en s'éloignant, soit en se rapprochant de l'axe du corps.During the rotation of the tubular body 44 relative to the tubular body 43 caused by the displacement of the shaft 48, the pushers 93 will be on a sector of the groove 92 whose depth will be different. This will cause a translation of the blades, either by moving away, or by approaching the axis of the body.

La figure 11 montre du côté droit une lame en position "rentrée" et du côté gauche une lame en position "sortie". Plusieurs positions intermédiaires sont envisageables, selon le pas de rotation angulaire du mécanisme télécommandé de rotation.FIG. 11 shows on the right side a blade in the "retracted" position and on the left side a blade in the "extended" position. Several intermediate positions are possible, depending on the angular rotation pitch of the remote-controlled rotation mechanism.

La figure 12 montre la courbe développée du profil du fond de la gorge 92. Ce profil peut correspondre, par exemple, au cas de trois lames commandées à partir d'une même gorge.FIG. 12 shows the developed curve of the profile of the bottom of the groove 92. This profile can correspond, for example, to the case of three blades controlled from the same groove.

L'abscisse représente le rayon du fond de gorge en fonction de l'angle au centre à partir d'une position angulaire de référence. Etant donné que l'on commande les trois lames à partir d'une même gorge et sur un tour, le profil se reproduit à l'identique tous les 120 degrés. C'est pour cela qu'il n'a été représenté que sur 120 degrés. Lorsque le doigt 93 d'une lame du stabilisateur coopère avec la portion du profil de fond de gorge correspondant au palier 1A, cette lame est en position entrée. Une rotation de 40 degrés de la gorge entraîne une modification du rayon de fond de gorge de la position correspondant au palier 1A à celle correspondant au palier 2A et donc à une position intermédiaire de sortie dans la lame. Une autre rotation de 40 degrés entraîne une augmentation du rayon de fond de gorge correspondant au palier 3A et à une sortie maximum de la lame. Entre chaque palier une rampe X permet une sortie progressive de la lame.The abscissa represents the radius of the groove bottom as a function of the angle at the center from a reference angular position. Since the three blades are controlled from the same groove and on a lathe, the profile is reproduced identically every 120 degrees. This is why it was only represented on 120 degrees. When the finger 93 of a stabilizer blade cooperates with the portion of the groove bottom profile corresponding to the bearing 1A, this blade is in the entered position. A rotation of 40 degrees of the groove causes a modification of the radius of the groove bottom from the position corresponding to the bearing 1A to that corresponding to the bearing 2A and therefore to an intermediate exit position in the blade. Another rotation of 40 degrees leads to an increase in the bottom groove radius corresponding to the bearing 3A and to a maximum output of the blade. Between each landing a ramp X allows a gradual exit of the blade.

La rampe Y est une rampe descendante qui ramène le dispositif à la position rentrée correspondant au palier 4A de même valeur que le palier 1A.The ramp Y is a descending ramp which returns the device to the retracted position corresponding to the bearing 4A of the same value as the bearing 1A.

La présente invention concerne également une méthode de mise en oeuvre d'une telle garniture notamment en utilisant les moyens d'entraînement en rotation de l'ensemble du train de tiges.The present invention also relates to a method of implementing such a lining, in particular by using the means for driving the entire set of rods in rotation.

Une application de cette méthode est décrite ci-après, elle fait référence à la garniture de la figure 8.An application of this method is described below, it refers to the trim of Figure 8.

Cette garniture est particulièrement bien adaptée pour forer une section d'un puits, cette section forée comprenant :

  • 1. une phase verticale ;
  • 2. une amorce de déviation dans un azimut donné de 0 degré à 10 degrés, par exemple, en suivant une trajectoire précise ;
  • 3. une phase de montée en angle en suivant une trajectoire (rayon de courbure) donnée, par exemple 10 à 30 degrés, 40 degrés, voire 50 degrés etc..
  • 4. une correction éventuelle d'azimut, pendant ou après la troisième phase.
  • 5. forage d'une partie à angle constant
  • 6. correction d'angle et/un azimut.
This lining is particularly well suited for drilling a section of a well, this drilled section comprising:
  • 1. a vertical phase;
  • 2. a start of deviation in a given azimuth from 0 degrees to 10 degrees, for example, following a precise trajectory;
  • 3. an angle-up phase following a given trajectory (radius of curvature), for example 10 to 30 degrees, 40 degrees, even 50 degrees, etc.
  • 4. a possible azimuth correction, during or after the third phase.
  • 5. drilling a part at constant angle
  • 6. angle correction and / an azimuth.

Cela est rendu possible par la combinaison du moteur de fond coudé et du stabilisateur à diamètre variable.This is made possible by the combination of the angled bottom motor and the variable diameter stabilizer.

Cette combinaison est parfaitement exploitée en alternant les périodes de forage avec rotation de la garniture de forage depuis la surface avec les périodes de forage directionnel où la garniture est maintenue dans une position (tool face) donnée. Lors de ces deux types de période, le rayon de courbure de la trajectoire de l'outil de forage pourra être modifié par variation de la géométrie (par exemple le diamètre) du stabilisateur, en plus des méthodes actuellement disponibles (variation du poids à l'outil, variation de la vitesse de rotation etc....).This combination is perfectly exploited by alternating the drilling periods with rotation of the drill string from the surface with the directional drilling periods where the string is held in a given position (tool face). During these two types of period, the radius of curvature of the trajectory of the drilling tool may be modified by variation of the geometry (for example the diameter) of the stabilizer, in addition to the methods currently available (variation of the weight per l tool, variation of the rotation speed etc ...).

La figure 14 représente la projection de la trajectoire sur le plan vertical et la figure 15 représente la projection de la trajectoire sur le plan horizontal.FIG. 14 represents the projection of the trajectory on the vertical plane and FIG. 15 represents the projection of the trajectory on the horizontal plane.

La référence 102 désigne la phase sensiblement verticale du forage. Cette phase est effectuée en tournant l'ensemble de la garniture à partir du train de tiges. Le diamètre du stabilisateur à géométrie variable 39 est de préférence égal au diamètre du stabilisateur à géométrie fixe supérieur 41.Reference 102 designates the substantially vertical phase of drilling. This phase is carried out by turning the entire packing from the drill string. The diameter of the variable geometry stabilizer 39 is preferably equal to the diameter of the upper fixed geometry stabilizer 41.

La référence 103 désigne l'amorce de la déviation de 0 à 10 degrés environ qui s'obtient par une orientation du coude 37 dans l'azimut souhaité du forage suivie d'un entraînement en rotation de l'outil 35 à partir du moteur de fond 36, sans qu'il y ait entraînement de l'ensemble de la garniture de forage à partir du train de tiges. Le rayon de courbure du puits peut être règlé par la variation du diamètre du stabilisateur à géométrie variable 39. Ainsi, par exemple, pour une inclinaison inférieure à 5 degrés, le rayon de courbure augmente lorsque le diamètre du stabilisateur augmente. Cette tendance s'inverse pour des inclinaisons plus importantes.The reference 103 designates the initiation of the deviation from 0 to about 10 degrees which is obtained by an orientation of the elbow 37 in the desired azimuth of the drilling followed by a rotary drive of the tool 35 from the motor of bottom 36, without the entire drill string being driven from the drill string. The radius of curvature of the well can be adjusted by varying the diameter of the variable geometry stabilizer 39. Thus, for example, for an inclination less than 5 degrees, the radius of curvature increases as the diameter of the stabilizer increases. This trend is reversed for larger slopes.

La référence 104 désigne la phase de montée en angle de 10 degrés environ jusqu'à l'inclinaison souhaitée, sans intervention sur la direction du puits. Cette phase s'obtient en faisant tourner la garniture dans son ensemble à partir du train de tiges. Le rayon de courbure est ajusté par le diamètre du stabilisateur à géométrie variable 39.Reference 104 designates the phase of angle rise of about 10 degrees to the desired inclination, without intervention on the direction of the well. This phase is achieved by rotating the packing as a whole from the drill string. The radius of curvature is adjusted by the diameter of the variable geometry stabilizer 39.

La référence 105 désigne une phase de correction de l'azimut qui peut s'effectuer avec ou sans correction d'angle. Dans le cas des figures 14 et 15, il n'y a pas de correction d'angle. Cette correction d'azimut s'effectue par l'orientation de l'élément coudé dans la direction appropriée pour aboutir à la correction d'orientation souhaitée et l'entraînement de l'outil par le moteur de fond, sans qu'il y ait un entraînement de l'ensemble de la garniture par le train de tiges.Reference 105 designates an azimuth correction phase which can be carried out with or without angle correction. In the case of Figures 14 and 15, there is no angle correction. This azimuth correction is effected by orienting the bent element in the appropriate direction to achieve the desired orientation correction and driving the tool by the downhole motor, without there being any a drive of the entire packing by the drill string.

Le choix du diamètre du stabilisateur à géométrie variable 39 permet de contrôler le rayon de courbure de la trajectoire.The choice of the diameter of the variable geometry stabilizer 39 makes it possible to control the radius of curvature of the path.

la référence 106 désigne une phase de forage à inclinaison constante sans contrôle de l'azimut. Cette phase de forage peut être réalisée par un entraînement en rotation de l'ensemble de la garniture de forage à partir du train de tiges.the reference 106 designates a drilling phase at constant inclination without controlling the azimuth. This drilling phase can be carried out by rotating the entire drilling string from the drill string.

La phase référencée 107 est une phase de correction d'azimut du même type que celle décrite précédemment et qui porte la référence 105.The phase referenced 107 is an azimuth correction phase of the same type as that described above and which bears the reference 105.

Les phases référencées 108 et 110 sont des phases de forage à inclinaison constante sans contrôle de l'azimut. Elles sont du même type que la phase qui porte la référence 106.The phases referenced 108 and 110 are drilling phases at constant inclination without azimuth control. They are of the same type as the phase which bears the reference 106.

Les phases référencées 109 et 111 sont des phases de diminution de l'angle d'inclinaison.The phases referenced 109 and 111 are phases for decreasing the angle of inclination.

Les phases décrites précédemment se suivent dans le temps dans l'ordre des numéros des références qui leur sont affectés, allant de 102 à 111.The phases described above are followed in time in the order of the reference numbers assigned to them, ranging from 102 to 111.

La référence 112 désigne la cible à atteindre par le forage.Reference 112 designates the target to be reached by drilling.

Bien entendu, pour d'autres applications la succession des différentes phases et leur type pourront varier en fonction de conditions rencontrées en cours de forage et des objectifs à atteindre.Of course, for other applications the succession of the different phases and their type may vary depending on conditions encountered during drilling and the objectives to be achieved.

Les figures 16 à 18 illustrent le contrôle de la direction du forage à l'aide d'une garniture comportant trois stabilisateurs, un stabilisateur à géométrie variable 113 et deux stabilisateurs à géométrie fixe situés de part et d'autre du stabilisateur à géométrie variable.FIGS. 16 to 18 illustrate the control of the direction of drilling using a packing comprising three stabilizers, a variable geometry stabilizer 113 and two fixed geometry stabilizers located on either side of the variable geometry stabilizer.

L'inclinaison du forage est supposée être à 30 degrés par rapport à la verticale. La référence 114 désigne le stabilisateur à géométrie fixe supérieur et la référence 115 le stabilisateur à géométrie fixe inférieur situé près de l'outil de forage 116. Dans cet exemple le stabilisateur fixe 115 est solidaire du corps du moteur 117.The inclination of the borehole is assumed to be 30 degrees from the vertical. The reference 114 designates the stabilizer with upper fixed geometry and the reference 115 the stabilizer with lower fixed geometry located near the drilling tool 116. In this example the fixed stabilizer 115 is integral with the body of the engine 117.

La position intermédiaire des lames du stabilisateur 113 représentée à la figure 16 correspond à un forage à angle d'inclinaison constant.The intermediate position of the stabilizer blades 113 shown in FIG. 16 corresponds to drilling at a constant inclination angle.

La position des lames 118 du stabilisateur 113 représentée à la figure 17 correspond à une sortie maximale de celles-ci : ceci entraîne une diminution de l'inclinaison. L'outil 116 a tendance à forer dans le sens de la flèche 119.The position of the blades 118 of the stabilizer 113 shown in Figure 17 corresponds to a maximum output thereof: this results in a decrease in the inclination. Tool 116 tends to drill in the direction of arrow 119.

Sur la figure 18 les lames du stabilisateur variable 113 sont en position entrée maximale. Ceci correspond à une augmentation de l'angle d'inclinaison et l'outil 116 a tendance à partir dans le sens de la flèche 120.In FIG. 18, the blades of the variable stabilizer 113 are in the maximum entry position. This corresponds to an increase in the angle of inclination and the tool 116 tends to start in the direction of the arrow 120.

Le contrôle de l'azimut par une garniture telle celle représentée aux figures 16 à 18 est possible lorsqu'elle comporte au moins un stabilisateur à décentrement (ou stabilisateur off-set, qu'il soit ou non à géométrie variable.The azimuth control by a packing such as that shown in Figures 16 to 18 is possible when it includes at least one stabilizer with shift (or off-set stabilizer, whether or not it has variable geometry.

Les figures 19 à 21 correspondent à une garniture similaire à celle des figures 16 à 18, mais qui de plus comporte un élément coudé 121. Les éléments identiques aux figures 19 à 21 et 16 à 18 portent des références identiques.Figures 19 to 21 correspond to a lining similar to that of Figures 16 to 18, but which further comprises a bent element 121. The elements identical to Figures 19 to 21 and 16 to 18 bear identical references.

Dans cet exemple le coude 121 est supposé être à géométrie fixe et possède un angle de déviation voisin de 1 degré.In this example, the elbow 121 is assumed to be of fixed geometry and has a deflection angle close to 1 degree.

Dans la position intermédiaire des lames du stabilisateur 113, l'entraînement de l'ensemble de la garniture par le train de tiges (non représenté) provoque un forage à inclinaison constante. Dans ce mode de fonctionnement l'élément coudé 121 n'a qu'une très faible influence sur le comportement de la garniture. Sur la figure 20 le coude 121 est positionné de manière à orienter le forage vers le bas de la figure dans le sens de la flèche 119. Cette position représentée en trait mixte 122 est qualifiée par les termes de "Low side" par le foreur.In the intermediate position of the blades of the stabilizer 113, the drive of the entire packing by the drill string (not shown) causes drilling at constant inclination. In this operating mode the elbow element 121 has only a very small influence on the behavior of the lining. In FIG. 20 the elbow 121 is positioned so as to orient the borehole towards the bottom of the figure in the direction of the arrow 119. This position represented in phantom 122 is qualified by the terms "Low side" by the driller.

La vérification de la position angulaire de l'élément coudé 121 se fait généralement à l'aide de moyens de mesure classiques positionnés dans la garniture de forage. Le règlage de cette position est obtenu par rotation du train de tiges d'un angle d'une valeur approprié depuis la surface.The angular position of the bent element 121 is generally verified using conventional measurement means positioned in the drill string. The adjustment of this position is obtained by rotation of the drill string by an angle of an appropriate value from the surface.

Dans ce mode de fonctionnement l'entraînement en rotation de l'outil 116 se fait par le moteur 117.In this operating mode, the tool 116 is driven in rotation by the motor 117.

Sur la figure 20 le centreur à géométrie variable 113 amplifie la diminution de l'angle d'inclinaison.In FIG. 20, the variable geometry centralizer 113 amplifies the reduction in the angle of inclination.

La figure 21 représente un coude orienté vers le haut position généralement qualifiée de "high side" par le foreur, comme représenté par le trait mixte 123.FIG. 21 represents a bend oriented upwards, generally qualified as "high side" by the driller, as represented by the dashed line 123.

Dans ce mode de réglage l'angle d'inclinaison du forage augmente.In this setting mode the angle of inclination of the drilling increases.

Le contrôle et le maintien de la position du coude 121 se fait de la même manière qu'expliqué précédemment.The control and maintenance of the position of the elbow 121 is done in the same manner as explained above.

Dans la présente demande l'angle d'inclinaison est considéré par rapport à la direction verticale.In the present application the angle of inclination is considered with respect to the vertical direction.

Claims (12)

1. Garniture pour forage à trajectoire contrôlée comprenant un outil de forage, placé à l'extrêmité de ladite garniture, un moteur d'entraînement en rotation dudit outil, caractérisée en ce qu'elle comporte au moins un stabilisateur (9 ; 12 ; 25 ; 39 ; 92 ; 93 ; 94 ; 95 ; 113) à géométrie variable solidaire de ladite garniture, un autre stabilisateur (22 ; 28 ; 38 ; 41 ; 114 ; 115), et un élément coudé (37 ; 64 ; 121).1. A fitting for controlled path drilling comprising a drilling tool, placed at the end of said fitting, a motor for rotating said tool, characterized in that it comprises at least one stabilizer (9; 12; 25 ; 39; 92; 93; 94; 95; 113) with variable geometry integral with said lining, another stabilizer (22; 28; 38; 41; 114; 115), and a bent element (37; 64; 121). 2. Garniture selon la revendication 1, caractérisée en ce que ledit élément coudé est à angle fixe (37 ; 121).2. A fitting according to claim 1, characterized in that said bent element is at a fixed angle (37; 121). 3. Garniture selon la revendication 1, caractérisée en ce que ledit élément coudé est à angle variable (64).3. A fitting according to claim 1, characterized in that said bent element is at variable angle (64). 4. Garniture selon l'une des revendications 1 à 3, caractérisée en ce que ledit élément coudé (64) est intégré audit moteur (55).4. Trim according to one of claims 1 to 3, characterized in that said bent element (64) is integrated to said motor (55). 5. Garniture selon l'une des revendications précédentes, caractérisée en ce que ledit stabilisateur à géométrie variable comporte des moyens adaptés à faire varier la distance entre l'axe de ladite garniture et la surface d'appui d'au moins une lame du stabilisateur (figs 2, 4 et 11).5. A fitting according to one of the preceding claims, characterized in that said variable geometry stabilizer comprises means adapted to vary the distance between the axis of said fitting and the bearing surface of at least one blade of the stabilizer (figs 2, 4 and 11). 6. Garniture selon l'une des revendications précédentes, caractérisée en ce que ledit stabilisateur à géométrie variable comporte des moyens adaptés à faire varier, au moins axialement la position de la surface d'appui d'au moins une lame dudit stabilisateur (fig. 3).6. A fitting according to one of the preceding claims, characterized in that said stabilizer with variable geometry comprises means adapted to vary, at least axially the position of the bearing surface of at least one blade of said stabilizer (fig. 3). 7. Garniture selon l'une des revendications précédentes, caractérisée en ce qu'il comporte un stabilisateur qui est solidaire en rotation dudit outil (fig. 7).7. Trim according to one of the preceding claims, characterized in that it comprises a stabilizer which is integral in rotation with said tool (fig. 7). 8. Garniture selon l'une des revendications précédentes, caractérisée en ce qu'elle comporte au moins un stabilisateur solidaire en rotation du corps du moteur (fig. 6).8. Packing according to one of the preceding claims, characterized in that it comprises at least one stabilizer integral in rotation of the motor body (fig. 6). 9. Garniture selon l'une des revendications précédentes, caractérisée en ce que ledit stabilisateur à géométrie variable est télécommandé éventuellement depuis la surface (figs 9A et 11).9. Trim according to one of the preceding claims, characterized in that said stabilizer with variable geometry is optionally remote-controlled from the surface (figs 9A and 11). 10. Garniture selon l'une des revendications précédentes, caractérisée en qu'elle comporte un stabilisateur à géométrie variable, ainsi que deux autres stabilisateurs placés de part et d'autre dudit stabilisateur à géométrie variable (figs 5, 8).10. Trim according to one of the preceding claims, characterized in that it comprises a stabilizer with variable geometry, as well as two other stabilizers placed on either side of said stabilizer with variable geometry (figs 5, 8). 11. Garniture selon la revendications 10, caractérisée en ce qu'il comporte un élément coudé intégré audit moteur (figs 9A, 9B et 10).11. Trim according to claim 10, characterized in that it comprises a bent element integrated into said motor (figs 9A, 9B and 10). 12. Utilisation de la garniture selon l'une des revendications précédentes à l'extrêmité d'un train de tiges pouvant être entraîné en rotation par des moyens d'entraînement de surface.12. Use of the packing according to one of the preceding claims at the end of a drill string which can be driven in rotation by surface drive means.
EP89403564A 1988-12-30 1989-12-19 Controlled directional drilling assembly with a variable geometry stabiliser, and its use Expired - Lifetime EP0376805B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8817597A FR2641315B1 (en) 1988-12-30 1988-12-30 DRILLING LINING WITH CONTROLLED PATHWAY COMPRISING A VARIABLE GEOMETRIC STABILIZER AND USE OF SAID LINING
FR8817597 1988-12-30

Publications (2)

Publication Number Publication Date
EP0376805A1 true EP0376805A1 (en) 1990-07-04
EP0376805B1 EP0376805B1 (en) 1994-10-05

Family

ID=9373720

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89403564A Expired - Lifetime EP0376805B1 (en) 1988-12-30 1989-12-19 Controlled directional drilling assembly with a variable geometry stabiliser, and its use

Country Status (5)

Country Link
US (1) US5316093A (en)
EP (1) EP0376805B1 (en)
CA (1) CA2006939C (en)
FR (1) FR2641315B1 (en)
NO (1) NO300787B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0594420A1 (en) * 1992-10-23 1994-04-27 Halliburton Company Adjustable stabilizer for drill string
EP0594418A1 (en) * 1992-10-23 1994-04-27 Halliburton Company Automatic downhole drilling system
EP0594419A1 (en) * 1992-10-23 1994-04-27 Halliburton Company Adjustable blade stabilizer for drilling system

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2670824B1 (en) * 1990-12-21 1997-01-24 Inst Francais Du Petrole DEVICE FOR THE REMOTE OPERATION OF EQUIPMENT COMPRISING A HARD / NEEDLE SYSTEM AND ITS APPLICATION TO A DRILLING LINING.
GB9222298D0 (en) * 1992-10-23 1992-12-09 Stirling Design Int Directional drilling tool
FR2699222B1 (en) * 1992-12-14 1995-02-24 Inst Francais Du Petrole Device and method for remote actuation of equipment comprising timing means - Application to a drilling rig.
US5485889A (en) * 1994-07-25 1996-01-23 Sidekick Tools Inc. Steering drill bit while drilling a bore hole
US5727641A (en) * 1994-11-01 1998-03-17 Schlumberger Technology Corporation Articulated directional drilling motor assembly
US5542482A (en) * 1994-11-01 1996-08-06 Schlumberger Technology Corporation Articulated directional drilling motor assembly
US5520256A (en) * 1994-11-01 1996-05-28 Schlumberger Technology Corporation Articulated directional drilling motor assembly
US5738178A (en) * 1995-11-17 1998-04-14 Baker Hughes Incorporated Method and apparatus for navigational drilling with a downhole motor employing independent drill string and bottomhole assembly rotary orientation and rotation
US5669457A (en) * 1996-01-02 1997-09-23 Dailey Petroleum Services Corp. Drill string orienting tool
GB9610382D0 (en) * 1996-05-17 1996-07-24 Anderson Charles A Drilling apparatus
CA2183033A1 (en) * 1996-08-09 1998-02-10 Canadian Fracmaster Ltd. Orienting tool for coiled tubing drilling
US5947214A (en) 1997-03-21 1999-09-07 Baker Hughes Incorporated BIT torque limiting device
US6078891A (en) 1997-11-24 2000-06-20 Riordan; John Method and system for collecting and processing marketing data
US6092610A (en) * 1998-02-05 2000-07-25 Schlumberger Technology Corporation Actively controlled rotary steerable system and method for drilling wells
US6158529A (en) * 1998-12-11 2000-12-12 Schlumberger Technology Corporation Rotary steerable well drilling system utilizing sliding sleeve
US6109372A (en) * 1999-03-15 2000-08-29 Schlumberger Technology Corporation Rotary steerable well drilling system utilizing hydraulic servo-loop
CA2359073A1 (en) 1999-11-10 2001-05-17 Schlumberger Holdings Limited Control method for use with a steerable drilling system
GB0101633D0 (en) * 2001-01-23 2001-03-07 Andergauge Ltd Drilling apparatus
US6554083B1 (en) * 2001-12-05 2003-04-29 Scott Kerstetter Adjustable bent housing sub for a mud motor
US20030127252A1 (en) * 2001-12-19 2003-07-10 Geoff Downton Motor Driven Hybrid Rotary Steerable System
GB2418456B (en) * 2003-06-23 2007-02-21 Schlumberger Holdings Inner and outer motor with eccentric stabilizser
US7360609B1 (en) * 2005-05-05 2008-04-22 Falgout Sr Thomas E Directional drilling apparatus
NO333280B1 (en) * 2009-05-06 2013-04-29 Norwegian Hard Rock Drilling As Control device for rock drill.
GB2476463B (en) 2009-12-22 2012-05-30 Schlumberger Holdings System and Method for Torque Stabilization of a drilling system
EP2341211A1 (en) * 2009-12-30 2011-07-06 Welltec A/S Downhole guiding tool
US9500031B2 (en) 2012-11-12 2016-11-22 Aps Technology, Inc. Rotary steerable drilling apparatus

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2500267A (en) * 1945-03-26 1950-03-14 John A Zublin Apparatus for drilling deflecting well bores
US2890859A (en) * 1957-02-25 1959-06-16 Eastware Oil Well Survey Compa Turbine well drilling apparatus
FR1247454A (en) * 1959-10-22 1960-12-02 Device for guiding a drilling tool
US3156310A (en) * 1959-12-07 1964-11-10 Eastman Oil Well Survey Co Stabilized knuckle joint
US3888319A (en) * 1973-11-26 1975-06-10 Continental Oil Co Control system for a drilling apparatus
US4040495A (en) * 1975-12-22 1977-08-09 Smith International, Inc. Drilling apparatus
FR2369412A1 (en) * 1976-11-02 1978-05-26 Alsthom Atlantique Target boring along inclined vertical axis - using elbow and guides above cutter and below stabiliser
US4108256A (en) * 1977-05-12 1978-08-22 Continental Oil Company Sliding stabilizer assembly
US4185704A (en) * 1978-05-03 1980-01-29 Maurer Engineering Inc. Directional drilling apparatus
FR2432079A1 (en) * 1978-07-24 1980-02-22 Inst Francais Du Petrole Crank connector for adjustment of drilling path - comprises interconnected tubes having variable relative angular positioning
FR2445431A1 (en) * 1978-12-29 1980-07-25 Inst Francais Du Petrole Boring column extension with stabiliser stages - having remotely-controlled projectable blades for guiding cutter in preselected direction
DE3423465C1 (en) * 1984-06-26 1985-05-02 Norton Christensen, Inc., Salt Lake City, Utah Devices for alternative straight or directional drilling in underground rock formations
DE3403239C1 (en) * 1984-01-31 1985-06-27 Christensen, Inc., Salt Lake City, Utah Devices for optional straight or directional drilling in underground rock formations
EP0287155A2 (en) * 1987-04-13 1988-10-19 Shell Internationale Researchmaatschappij B.V. Assembly for directional drilling of boreholes

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3561549A (en) * 1968-06-07 1971-02-09 Smith Ind International Inc Slant drilling tools for oil wells
CH630700A5 (en) * 1978-07-24 1982-06-30 Inst Francais Du Petrole VARIABLE ANGLE ELBOW CONNECTION FOR DIRECTED DRILLING.
US4739842A (en) * 1984-05-12 1988-04-26 Eastman Christensen Company Apparatus for optional straight or directional drilling underground formations
FR2585760B1 (en) * 1985-07-30 1987-09-25 Alsthom DEVIATOR FOR DRILLING, DRILLING COLUMN FOR DEVIATION DRILLING AND METHOD FOR DRILLING WELL WITH DEVIATIONS
GB8529651D0 (en) * 1985-12-02 1986-01-08 Drilex Ltd Directional drilling
ES2022895B3 (en) * 1986-07-03 1991-12-16 Charles Abernethy Anderson DRILLING STABILIZERS.
US4813497A (en) * 1986-10-15 1989-03-21 Wenzel Kenneth H Adjustable bent sub
US4697651A (en) * 1986-12-22 1987-10-06 Mobil Oil Corporation Method of drilling deviated wellbores
FR2612985B1 (en) * 1987-03-27 1989-07-28 Smf Int METHOD AND DEVICE FOR ADJUSTING THE TRAJECTORY OF A DRILLING TOOL FIXED AT THE END OF A ROD TRAIN
WO1988010355A1 (en) * 1987-06-16 1988-12-29 Preussag Aktiengesellschaft Device for guiding a drilling tool and/or pipe string
US4817740A (en) * 1987-08-07 1989-04-04 Baker Hughes Incorporated Apparatus for directional drilling of subterranean wells

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2500267A (en) * 1945-03-26 1950-03-14 John A Zublin Apparatus for drilling deflecting well bores
US2890859A (en) * 1957-02-25 1959-06-16 Eastware Oil Well Survey Compa Turbine well drilling apparatus
FR1247454A (en) * 1959-10-22 1960-12-02 Device for guiding a drilling tool
US3156310A (en) * 1959-12-07 1964-11-10 Eastman Oil Well Survey Co Stabilized knuckle joint
US3888319A (en) * 1973-11-26 1975-06-10 Continental Oil Co Control system for a drilling apparatus
US4040495A (en) * 1975-12-22 1977-08-09 Smith International, Inc. Drilling apparatus
FR2369412A1 (en) * 1976-11-02 1978-05-26 Alsthom Atlantique Target boring along inclined vertical axis - using elbow and guides above cutter and below stabiliser
US4108256A (en) * 1977-05-12 1978-08-22 Continental Oil Company Sliding stabilizer assembly
US4185704A (en) * 1978-05-03 1980-01-29 Maurer Engineering Inc. Directional drilling apparatus
FR2432079A1 (en) * 1978-07-24 1980-02-22 Inst Francais Du Petrole Crank connector for adjustment of drilling path - comprises interconnected tubes having variable relative angular positioning
FR2445431A1 (en) * 1978-12-29 1980-07-25 Inst Francais Du Petrole Boring column extension with stabiliser stages - having remotely-controlled projectable blades for guiding cutter in preselected direction
DE3403239C1 (en) * 1984-01-31 1985-06-27 Christensen, Inc., Salt Lake City, Utah Devices for optional straight or directional drilling in underground rock formations
DE3423465C1 (en) * 1984-06-26 1985-05-02 Norton Christensen, Inc., Salt Lake City, Utah Devices for alternative straight or directional drilling in underground rock formations
EP0287155A2 (en) * 1987-04-13 1988-10-19 Shell Internationale Researchmaatschappij B.V. Assembly for directional drilling of boreholes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0594420A1 (en) * 1992-10-23 1994-04-27 Halliburton Company Adjustable stabilizer for drill string
EP0594418A1 (en) * 1992-10-23 1994-04-27 Halliburton Company Automatic downhole drilling system
EP0594419A1 (en) * 1992-10-23 1994-04-27 Halliburton Company Adjustable blade stabilizer for drilling system

Also Published As

Publication number Publication date
NO300787B1 (en) 1997-07-21
NO895302L (en) 1990-07-02
CA2006939A1 (en) 1990-06-30
NO895302D0 (en) 1989-12-28
FR2641315A1 (en) 1990-07-06
US5316093A (en) 1994-05-31
FR2641315B1 (en) 1996-05-24
CA2006939C (en) 2000-06-27
EP0376805B1 (en) 1994-10-05

Similar Documents

Publication Publication Date Title
EP0376805B1 (en) Controlled directional drilling assembly with a variable geometry stabiliser, and its use
EP0380893B1 (en) Drilling assembly with an actuator, a motor and control means
EP0377373B1 (en) Controlled directional drilling assembly with a variable-angle elbow element, and its use
EP0376811B1 (en) Remote actuator with a nozzle-needle system
CA2647397C (en) Device for steering drilling tools
EP0201398B1 (en) Composition for oriented drilling
EP1870600B1 (en) Bearing for the trunnion of a turbomachine stator vane with variable setting, corresponding stator vane and turbomachine
EP0190529B1 (en) Remotely controlled flow-responsive actuating device, in particular for actuating a stabilizer in a drill string
BE1012545A3 (en) Widener borehole.
CA2276851C (en) Device and method to control the path of a drill hole
EP0212316B1 (en) Drill string for deflection drilling, method of using such a string and deflecting device used in this string
FR2843418A1 (en) DEVICE FOR STABILIZING A ROTARY DRILL ROD TRAIN WITH REDUCED FRICTION
EP0517874A1 (en) Device comprising two elements hinged in a plane, used in drilling equipment.
FR2649154A1 (en) ELBOW MOTOR HOUSING FOR CURVILINE DRILLING
FR2580720A1 (en) System for drilling a well by vibration
CA2384281C (en) Method and device for rotary well drilling
FR2579662A1 (en) Drilling device with controlled trajectory
FR3096072A1 (en) Turbomachine comprising a variable viscance shaft bearing damper
EP0546135A1 (en) Device for adjusting the path azimuth of a rotary drilling tool.
EP4382722A1 (en) Device for guiding the rotation of a drilling tool and associated method
EP2807328A1 (en) Uncoupling device for connecting a drilling tool to the end of a drilling column and a drilling system comprising such an uncoupling device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): GB IT NL

17Q First examination report despatched

Effective date: 19920320

ITF It: translation for a ep patent filed

Owner name: MARIETTI E GISLON S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): GB IT NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19941026

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031124

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20031223

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041219

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051219