EP0368299A1 - Apparatus for checking the relative position of two optical axes - Google Patents

Apparatus for checking the relative position of two optical axes Download PDF

Info

Publication number
EP0368299A1
EP0368299A1 EP89120735A EP89120735A EP0368299A1 EP 0368299 A1 EP0368299 A1 EP 0368299A1 EP 89120735 A EP89120735 A EP 89120735A EP 89120735 A EP89120735 A EP 89120735A EP 0368299 A1 EP0368299 A1 EP 0368299A1
Authority
EP
European Patent Office
Prior art keywords
test
deflection
elements
support tube
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89120735A
Other languages
German (de)
French (fr)
Other versions
EP0368299B1 (en
Inventor
Erwin Ing. Francke (Grad.)
Rudolf Techniker Handke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mannesmann Demag Krauss Maffei GmbH
Original Assignee
Krauss Maffei AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19883838381 external-priority patent/DE3838381A1/en
Application filed by Krauss Maffei AG filed Critical Krauss Maffei AG
Publication of EP0368299A1 publication Critical patent/EP0368299A1/en
Application granted granted Critical
Publication of EP0368299B1 publication Critical patent/EP0368299B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/32Devices for testing or checking
    • F41G3/323Devices for testing or checking for checking the angle between the muzzle axis of the gun and a reference axis, e.g. the axis of the associated sighting device

Definitions

  • the invention relates to a device according to the preamble of claim 1 and to methods for using such a device, as is known from DE-OS 32 05 610.
  • the test device for the parallelism of two optical axes described in DE-OS 32 05 610 comprises two scissors-like optical deflection systems connected in a scissor-like manner, which in each scissor position offset an incident light beam (which is emitted, for example, from a light source adapted in the gun barrel in an axially parallel manner) , so that the emerging light beam (which, for example, falls into a telescopic sight of the weapon system) runs exactly parallel to the weapon barrel axis, regardless of the scissor angle at which the two deflection systems are positioned.
  • the desired parallel offset can thus be achieved by adjusting the scissor angle.
  • Each of the two deflection systems consists of a support tube with entry and exit windows at the ends of the tube jacket. Behind the entrance window of the front deflection system there is a plane mirror inclined by 45 ° with respect to the pipe axis, which is opposite a 45 ° roof prism on the exit window.
  • the 45 ° roof prism has been replaced by a second, 45 ° inclined plane mirror.
  • the light paths between the two plane mirrors or between the plane mirror and the roof prism run through the hollow tube interior. Since the tube lengths or the length of each light path between the plane mirror and the roof prism must be relatively large, in order to achieve the required displacement distances of up to about 1.50 m, for example in anti-tank armored vehicles, the problem arises in practice that even a slight misalignment from plane mirror to plane mirror or from plane mirror to roof prism and vice versa (e.g.
  • a self-test position is provided in the known test device, in which the two deflection systems are rotated relative to one another in such a way that the exit window of the rear deflection system comes to lie over a test window which is arranged opposite the entry window of the front deflection system, as a result of which the emerging light beam is superimposed with the incoming light beam.
  • interference lines appear on an axial view of the front deflection system.
  • the object of the invention is to provide a device of the type mentioned at the outset, which ensures the axis parallelism of the incoming and outgoing light beams, regardless of occurring bending of the support tube, so that measurement errors in all scissor positions and under all temperature conditions can be excluded.
  • test device for checking the axial position between a weapon barrel and a line of sight of the weapon system (adjustment test) is specified in the independent claim 10.
  • test device for checking the synchronism between an elevated weapon barrel and a line of sight of the weapon system moved parallel thereto is specified in the independent claim 11.
  • the invention is based on the consideration of arranging optical deflection elements which are stable in position in each of the two support tubes and of providing triple elements and possibly rhomboid or Z elements as deflection elements.
  • the deflection elements are arranged in such a way that the light entry or light exit surfaces of adjacent deflection elements overlap one another. Even with larger deflections of the support tubes and thus the position of the individual deflection elements relative to one another, the overall deflection remains unaffected due to the stable deflection in each individual deflection element.
  • test device 1 is composed of two longitudinal arms in the form of support tubes 2, 3, which are connected to one another in a scissor-like manner via a joint 4.
  • the total length of the test device 1 can be infinitely adjusted as required via the connecting joint 4, the total length being understood to mean the offset between the incoming and outgoing light beam.
  • An angle scale (not shown) is attached to the joint 4 in order to be able to set the scissor angle between the two support tubes 2, 3 in a defined manner.
  • the deflection optics held in each carrier tube 2, 3 comprises a number of triple elements 5, each of which has three reflection surfaces 6, 7 and 8 which are at right angles to one another.
  • the deflection elements 5 can be made of full glass (triple prisms), surface mirrors (triple mirrors), for example in shape consist of glass tubes (Fig. 9), in which the front end is chamfered and the rear end is chamfered twice (apex 90 °), these inclined surfaces are provided with surface plane mirrors (triple mirror).
  • a rhomboid or Z element 28 can also be provided, as shown in the embodiment according to FIG. 9, which in the case of FIG. 9 consists of a glass tube with two pointed ends, which in turn are provided with surface plane mirrors are.
  • the rhomboid element 28 replaces two triple elements 5 in the carrier tube 2.
  • Each triple element 5 contains a radiation entry region 9 and a radiation exit region 10, the triple elements 5 in the carrier tubes 2, 3 according to FIG. 1 or the triple elements 5 and the rhomboid element 28 in the carrier tube 2 and the triple elements 5 in the carrier tube 3 according to FIG. 9 in each case are arranged in such a way that the beam exit area 10 of an element 5 or 28 is opposite the beam entry area 9 of the downstream (adjacent) element 5, that is to say the areas 9, 10 overlap one another. This overlap requires a corresponding one shown in FIGS. 1 and 9 clearly shown offset of successive elements 5, 28.
  • the connecting joint 4 has a free beam passage, in which, in the case of FIG. 1, a correction element 11 is arranged which has optical wedge disks which can be rotated relative to one another.
  • the front support tube 2 has for attaching the test device 1 e.g. on a weapon (cf. FIG. 12) a clamping joint 31 (FIG. 9) which, like the connecting joint 4, carries an angle scale (not shown).
  • window openings 12a, 12b (support tube 2) and 13 (support tube 3) are provided in the region of the end faces in order to allow the radiation to enter and exit from the support tubes 2, 3.
  • the window openings 12a and 12b lie radially opposite one another, only the window opening 12a being used for the normal operation of the test device 1 (test position according to FIG. 1).
  • the window opening 12b is only in the self-test position of the device 1 according to FIGS. 2 and 9 used, as will be explained in more detail.
  • the parallelism of the incoming and the outgoing beam is checked. This is done in that the carrier tube 2 is folded parallel to the carrier tube 3, so that the beam entering the device 1 (target line 14 'in Fig. 2) and the exit beam superimposed on the incoming beam (target line 14in in Fig. 2nd ) can be observed by an observation device arranged in the emitting radiation source 15.
  • the radiation source 15 is used for the function test, which is also provided for the normal test function of the device 1 (FIG. 1), as shown in FIGS. 12 and 13 will be explained in more detail.
  • FIG. 1 the radiation source 15 is used for the function test, which is also provided for the normal test function of the device 1 (FIG. 1)
  • an autocollimator 150 is used as the radiation source for the self-test, which is arranged in front of a third window opening 12c in the end face of the carrier tube 2.
  • the implementation The self-test in the device 1 according to FIG. 9 is based on FIGS. 10 and 11 explained in detail. In the case of FIG. 2, the self-test is carried out as follows:
  • the first reflection surface 6 at the window opening 12 of the support tube 2 is a semi-transparent mirror, e.g. partially mirrored mirrors in the visible wavelength range.
  • the beam emerging from the radiation source 15 can be returned to the radiation source 15 as a reflected beam (target line 14 ⁇ ) and the parallelism of both beams can be checked.
  • This is done by means of a beam splitter 26 arranged in the radiation source 15 or in the mirror collimator, through which in the eyepiece 27 on the one hand the line mark 19 generated by a line marker carrier 18 of the target line 14 'and on the other hand the line mark 19' of the reflected target line 14 'can be reproduced.
  • a possible deposit of the reflected line mark 19 'from the line mark 19 indicates the inaccuracy of the test device 1, which can be eliminated via the correction element 11.
  • a small auxiliary prism 62 and 81 are arranged on the first mirror surface 6 and on the last mirror surface 8 of the deflection system located in the support tube 2, the auxiliary prism 62 in the beam path of a first measuring beam 152 and the auxiliary prism 81 in the beam path of a second measuring beam 153 of the autocollimator 150.
  • the auxiliary prism 62 sits on one semi-permeable plate 61.
  • the plate 61 covers two circular openings 63, 64 in the reflection surface 6.
  • an adjustable diaphragm 151 is arranged, which covers the measuring beams 152, 153 in the position according to FIG. 10 and in the position according to FIG 11 transmits the measuring beam 152 to the auxiliary prism 61 and the measuring beam 153 via the circular opening 64 to the auxiliary prism 81.
  • an auxiliary beam path 154 is released, which passes the auxiliary prism 62 through the circular opening 64, strikes the reflecting surface 8 next to the auxiliary prism 81 and from there into the deflection system of the rear support tube 3 (which is indicated in Fig. 10 only by the beam path) occurs. From there, the auxiliary beam 154 falls through the window openings 13, 12b (FIG. 9) onto the reflection surface 6 and from there into the autocollimator 150.
  • the adjusting device 30a may be adjusted until the calibration test no longer shows any deviations. This means that only the front deflection system (support tube 2) is calibrated. Subsequently, the rear deflection system (carrier tube 3) is also calibrated to the front deflection system by adjusting the rear deflection system in the "function test" position according to FIG. 10 by means of the adjusting device 30b until the measurement marks have disappeared in accordance with the auxiliary beam path 154.
  • the test device 1 can be used for the adjustment test (FIG. 13) and for the synchronization test (FIG. 12) of the weapon barrels 101, 102 of a weapon system, in the example shown an anti-aircraft armored vehicle.
  • the test device 1 is fastened to the weapon barrel 101 to be tested by means of the clamping joint 31, while the radiation source 15 (collimator) is fastened in the rear region of the weapon barrel 101 or to its pivot bearing 104.
  • the beam emitted by the collimator 15 strikes the light entry window 12a of the carrier tube 4 and is deflected via the device 1 to the target line 14 of the gunner's periscope 22, which is moved synchronously with the weapon 101.
  • the attachment of the collimator 15 in the rear region of the weapon barrel 101 or of the rotary bearing 104 ensures that the collimator 15 remains unaffected by bending of the weapon barrel 101, as can occur due to the weight of the test device which is necessarily positioned further forward.
  • the light beam emitted by collimator 15 accurately reflects the angular position of the weapon. This exact angular position is passed on to the periscope 22 by the test device 1, regardless of its possible change in position due to the bending of the weapon barrel.
  • the device 1 is attached with its clamping joint 31 to a stand 107 and adjusted so far that the light entry window 12a in the beam path of a collimator 15 (FIG. 1) fitted in the weapon barrel 101 and the light exit window 13 in the beam path of the periscope 22.
  • the radiation source or the collimator 15 is adapted in a precise fixation in the mouth of the gun barrel 101 in such a way that the core axis 17 of the gun barrel 101 coincides with the target line 14 generated by the radiation source 15.
  • a line mark carrier 18 Arranged in the radiation source 15 is a line mark carrier 18 (FIG.
  • a line mark 19 representing the adjustment position of the weapon 16 around the eyepiece 20 of the commandant periscope 17 can be represented via the target line 14 entering the beam path of the commander periscope 17.
  • a possible deposit of the line mark 19 from the sighting mark 21 of the commander's periscope 17 thus shows the adjustment deviation to be corrected between the target line of the cannon and the sighting line of the commander's periscope.
  • the adjustment position is checked in the same way with respect to the gunner's periscope 22, the target line 14 being able to be aligned with the beam path of the gunner's periscope by simply pivoting the longitudinal arms 2 and 3 about the axis 4 of the joint 4.
  • the line mark 19 can also be imaged in the thermal imaging device 23.
  • the window opening 13 is in the transmission beam 25 of the laser transmitter 24 and the window opening 12ain Beam path of the radiation source 15 is pivoted, with a radiation-sensitive plate being swiveled in instead of the line mark carrier 18, with which the radiation from the laser transmitter 24 can be made visible.
  • Panels coated with phosphorescent material are particularly suitable for this purpose, since they are reusable.
  • the line mark carrier 18 and the radiation-sensitive plate are arranged so that they can be pivoted into the beam path of the radiation source 15 as required.
  • the light energy of the laser 24 is directed to the radiation source 15 via the test device and there generates an afterglow point on the radiation-sensitive plate.
  • the angular position of this point with respect to a periscope for example the commander's periscope 17, can then be made visible by pivoting the window opening 13 out of the transmission beam 25 of the laser transmitter 24 into the beam path of the commander's periscope 17.
  • a possible deposition of the afterglow point from the sighting mark 21 of the commandant's periscope 17 indicates the adjustment deviation of the laser transmitter 24 to be corrected from the commandant's periscope 17 which has already been adjusted.
  • the collimator 15 is first adjusted to the crosshairs of the periscope 22, e.g. by means of a side and height-adjustable bracket, not shown in FIG. After the pivoting of the test device 1 into the line of sight of the periscope 22, the line mark of the collimator 15 appears in the periscope eyepiece
  • the synchronism check of non-optical target devices requires, as with the adjustment check, a separate telescope which is attached to the elevatable device to be tested.
  • FIG. 3 shows the basic structure of a test device containing optical rhomboid elements 28.
  • a parallel offset of a target line 14 generated by a radiation source 15, for example a mirror collimator fastened in the mouth of a cannon, can thus also be achieved, with which, in the same way as with the embodiment according to FIGS. 1 and 2, the adjustment position and the synchronism of the commander's periscope 17, of the directional protection periscope 22 and other elements can be checked.
  • the rhomboid elements 28 each contain two mutually parallel rhomboid reflection surfaces 29 with which a Z-shaped parallel offset of the target line 14 can be achieved. In contrast to the triple element 5, a rhomboid element 28 is cheaper.
  • the embodiment shown in FIG. 3 consists of only one longitudinal arm, but a two-armed, articulated test device corresponding to the embodiment according to FIG. 1 can also be created when using rhomboid elements.
  • the carrier tubes 2, 3 are each formed from two half-shells, with all elements 5, 28 of the carrier tube 2 and 3 respectively which are attached to a half shell by means of shock-absorbing clamps. These load-bearing half-shells are connected to one another via the joint 4.
  • a coordinate drive 200 can also be used, as shown in FIG. 14, which has horizontally displaceable guides 201, 203, on which vertically movable carriages 202 and 204 are mounted. The ends of the test device 1 are rotatably mounted on the slides 202, 204. Any points in the coordinate plane of the drive 200 can thus be approached with the light entry and exit windows 12a and 13 of the device 1.
  • the drive 200 is preferably designed to be program-controlled so that the axis positions of the viewing devices or weapons of a wide variety of vehicles can be approached with the test device 1 by appropriate preprogramming.
  • Another important advantage of the invention is that by using auxiliary prisms, a functional test of the test device and a possible (subsequent) calibration on the spot is possible, which avoids a time-consuming submission of the test device to the manufacturing plant.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

In an apparatus for checking the relative position of at least two optical axes, in order to guarantee the axial parallelism of the incoming and outgoing light beams independently of bends occurring in the carrier tubes for the optical deflection systems, according to the invention the deflection optics of each deflection system is composed of two or more optical deflection elements (5) of inherently stable position. At the same time, adjacent deflection elements are so arranged offset relative to one another that their beam entry and exit regions overlap one another. <IMAGE>

Description

Die Erfindung bezieht sich auf eine Vorrichtung gemäß dem Oberbegriff des Patentanspruchs 1 sowie auf Verfahren zur Verwendung einer derartigen Vorrichtung, wie sie aus der DE-OS 32 05 610 be­kannt ist.The invention relates to a device according to the preamble of claim 1 and to methods for using such a device, as is known from DE-OS 32 05 610.

Die in der DE-OS 32 05 610 beschriebene Prüfvor­richtung für die Achsparallelität zweier optischer Achsen umfaßt zwei scherenförmig über ein mittiges Gelenk verbundene optische Ablenksysteme, welche in jeder Scherenstellung einen einfallenden Licht­strahl (der z.B. von einer im Waffenrohr achsparallel adaptierten Lichtquelle ausgesendet wird) parallel versetzen, so daß der austretende Lichtstrahl (der z.B. in ein Zielfernrohr des Waffensystems einfällt) exakt parallel zur Waffenrohrachse verläuft, unabhängig da­von, unter welchem Scherenwinkel die beiden Ablenk­systeme positioniert sind. Der gewünschte Parallel­versatz läßt sich somit durch Verstellen des Scheren­winkels erzielen. Jedes der beiden Ablenksysteme be­steht aus einem Trägerrohr mit Ein- und Austritts­fenstern an den Enden des Rohrmantels. Hinter dem Ein­trittsfenster des vorderen Ablenksystems ist ein bezüglich der Rohrachse um 45° geneigter Planspiegel angebracht, dem ein 45°-Dachkantprisma am Austrittsfenster gegenüberliegt.The test device for the parallelism of two optical axes described in DE-OS 32 05 610 comprises two scissors-like optical deflection systems connected in a scissor-like manner, which in each scissor position offset an incident light beam (which is emitted, for example, from a light source adapted in the gun barrel in an axially parallel manner) , so that the emerging light beam (which, for example, falls into a telescopic sight of the weapon system) runs exactly parallel to the weapon barrel axis, regardless of the scissor angle at which the two deflection systems are positioned. The desired parallel offset can thus be achieved by adjusting the scissor angle. Each of the two deflection systems consists of a support tube with entry and exit windows at the ends of the tube jacket. Behind the entrance window of the front deflection system there is a plane mirror inclined by 45 ° with respect to the pipe axis, which is opposite a 45 ° roof prism on the exit window.

Bei dem hinteren Ablenkspiegel ist das 45°-Dachkantprisma durch einen zweiten, um 45° geneigten Planspiegel ersetzt. Die Lichtstrecken zwischen den beiden Planspiegeln bzw. zwischen Plan­spiegel und Dachkantprisma verlaufen durch das hohle Rohrinnere. Da die Rohrlängen bzw. die Länge jeder Lichtstrecke zwischen Planspiegel und Dachkantsprisma relativ groß sein müssen, um z.B. bei Flugabwehr-Panzerfahrzeugen die erforderlichen Versatzstrecken von bis zu etwa 1,50m zu erzielen, tritt in der Praxis das Problem auf, daß bereits eine geringe Dejustage von Planspiegel zu Planspiegel bzw. von Planspiegel zu Dachkantprisma und umgekehrt (z.B. durch Ver­biegung des Trägerrohrs infolge ungleichförmiger Temperatur­verteilung, Gewichtsverlagerung der beiden Ablenk­systeme bei unterschiedlichen Scherenwinkeln oder infolge Materialsetzungen) zu Abweichungen in der Achsparallelität von Eintritts- zu Austrittsstrahl und damit zu Meßfehlern führt. Um derartige Abweichungen feststellen zu können, ist bei der bekannten Prüf­vorrichtung eine Selbstprüfstellung vorgesehen, in welcher die beiden Ablenksysteme so zueinander ver­dreht werden, daß das Austrittsfenster des hinteren Ablenksystems über einem gegenüber dem Eintrittsfenster des vorderen Ablenksystems angebrachten Prüffenster zu liegen kommt, wodurch der austretende Lichtstrahl mit dem eintretenden Lichtstrahl überlagert wird. Im Falle richtiger Justage treten an einem axialen Einblick des vorderen Ablenksystems Interferenzlinien auf. Fehlen solche Interferenzlinien, so liegt eine Dejustage unbekannter Größenordnung vor; die Prüfvor­richtung muß in diesem Falle werksseitig völlig neu kalibriert werden. Diese Selbstprüfstellung prüft indessen nur die Achsparallelität in dieser speziellen Scherenstellung beider Ablenksysteme; bei allen anderen Scherenstellungen sind infolge geänderter Gewichtsver­lagerungen und daraus resultierender Verbiegungen der Trägerrohre Dejustierungen möglich, die unerkannt bleiben.In the rear deflecting mirror, the 45 ° roof prism has been replaced by a second, 45 ° inclined plane mirror. The light paths between the two plane mirrors or between the plane mirror and the roof prism run through the hollow tube interior. Since the tube lengths or the length of each light path between the plane mirror and the roof prism must be relatively large, in order to achieve the required displacement distances of up to about 1.50 m, for example in anti-tank armored vehicles, the problem arises in practice that even a slight misalignment from plane mirror to plane mirror or from plane mirror to roof prism and vice versa (e.g. due to bending of the support tube due to non-uniform temperature distribution, weight shifting of the two deflection systems with different scissor angles or due to material settlements) to deviations in the axis parallelism from the entrance to the exit beam and thus to measurement errors. In order to be able to determine such deviations, a self-test position is provided in the known test device, in which the two deflection systems are rotated relative to one another in such a way that the exit window of the rear deflection system comes to lie over a test window which is arranged opposite the entry window of the front deflection system, as a result of which the emerging light beam is superimposed with the incoming light beam. In the case of correct adjustment, interference lines appear on an axial view of the front deflection system. If such interference lines are missing, there is a misalignment of unknown magnitude; In this case, the test device must be completely re-calibrated at the factory. This self-check position only checks the axis parallelism in this particular one Scissors position of both deflection systems; In all other scissor positions, misalignments are possible due to changes in weight shifts and the resulting bending of the support tubes, which remain undetected.

Die Aufgabe der Erfindung besteht demgegenüber darin, eine Vorrichtung der eingangs erwähnten Art zu schaffen, welche unabhängig von auftretenden Träger­rohrverbiegungen die Achsparallelität der ein- und austretenden Lichtstrahlen gewährleistet, so daß Meßfehler in allen Scherenstellungen und unter allen Temperatur-Bedingungen ausgeschlossen werden können.In contrast, the object of the invention is to provide a device of the type mentioned at the outset, which ensures the axis parallelism of the incoming and outgoing light beams, regardless of occurring bending of the support tube, so that measurement errors in all scissor positions and under all temperature conditions can be excluded.

Diese Aufgabe wird erfindungsgemäß durch die kenn­zeichnenden Merkmale des Patentanspruchs 1 gelöst.This object is achieved by the characterizing features of claim 1.

Vorteilhafte Weiterbildungen und Ausgestaltungen der erfindungsgemäßen Prüfvorrichtung ergeben sich aus den Unteransprüchen 2 bis 9.Advantageous further developments and refinements of the test device according to the invention result from subclaims 2 to 9.

Die Verwendung der erfindungsgemäßen Prüfvorrichtung zum Überprufen der Achslage zwischen einem Waffenrohr und einer Sichtlinie des Waffensystems (Justierprüfung) ist in dem nebengeordneten Patentanspruch 10 angegeben.The use of the test device according to the invention for checking the axial position between a weapon barrel and a line of sight of the weapon system (adjustment test) is specified in the independent claim 10.

Die Verwendung der erfindungsgemäßen Prüfvorrichtung zum Überprüfen des Gleichlaufs zwischen einem elevier­ten Waffenrohr und einer parallel dazu bewegten Sicht­linie des Waffensystems ist in dem nebengeordneten Patentanspruch 11 angegeben.The use of the test device according to the invention for checking the synchronism between an elevated weapon barrel and a line of sight of the weapon system moved parallel thereto is specified in the independent claim 11.

Die Erfindung beruht auf der Überlegung, in jedem der beiden Trägerrohre in sich lagestabile optische Ablenkelemente anzuordnen und als Ablenkelemente Tripelelemente und ggfs. Rhomboid- bzw. Z-Elemente vorzusehen. Die Anordnung der Ablenkelemente erfolgt derart, daß die Lichtseintritts- bzw. Lichtsaustritts­flächen benachbarter Ablenkelemente sich gegenseitig überlappen. Selbst bei größeren Verbiegungen der Trägerrohre und damit der Lage der einzelnen Ablenk­elemente zueinander bleibt infolge der in sich lage­stabilen Ablenkung in jedem einzelnen Ablenkelement die Gesamtablenkung unbeeinflußt.The invention is based on the consideration of arranging optical deflection elements which are stable in position in each of the two support tubes and of providing triple elements and possibly rhomboid or Z elements as deflection elements. The deflection elements are arranged in such a way that the light entry or light exit surfaces of adjacent deflection elements overlap one another. Even with larger deflections of the support tubes and thus the position of the individual deflection elements relative to one another, the overall deflection remains unaffected due to the stable deflection in each individual deflection element.

Die Erfindung wird an Hand von Ausführungsbeispielen in den Zeichnungen näher erläutert. Es zeigt:

  • Fig. 1 eine schematische Schnittdarstellung eines Ausführungsbeispiels einer Prüfvorrichtung in Prüfstellung;
  • Fig. 2 eine schematische Darstellung der Prüf­vorrichtung nach Fig. 1 in Selbstprüfstellung;
  • Fig. 3 eine schematische Darstellung des Grundprinzips der Lichtablenkung mittels hintereinander an­geordneter Rhomboid- bzw. Z-Elemente und eines abschließenden Tripelelementes;
  • Fig. 4 eine schematische Darstellung eines Tripel­elementes bzw. Tripelprismas in Blickrichtung "A" gemäß Fig. 5;
  • Fig. 5 eine schematische Darstellung eines Tripel­prismas in Blickrichtung "B" gemäß Fig. 6;
  • Fig. 6 eine schematische Darstellung eines Tripel­prismas in Blickrichtung "C" gemäß Fig. 7;
  • Fig. 7 eine schematische Darstellung eines Tripel­prismas in Blickrichtung "A" gemäß Fig. 5;
  • Fig. 8 eine schematische Darstellung eines aus drei hintereinander angeordneten Tripel­prismen bestehenden Ablenksystems, wobei die Tripelprismen aufgrund Verbiegungen des Trägerrohrs aus ihrer gegenseitigen Normallage verschoben sind;
  • Fig. 9 eine schematische Darstellung eines weiteren Ausführungsbeispiels einer Prüfvorrichtung in Selbstprüfstellung;
  • Fig. 10 eine schematische Darstellung eines ver­größerten Details der Prüfvorrichtung nach Fig. 9 in dessen Betriebsstellung "Funktions­test";
  • Fig. 11 eine schematische Darstellung ähnlich wie in Fig. 10 für die Betriebsstellung "Kalibrier­test";
  • Fig. 12 eine perspektivische Darstellung für die Verwendung der Prüfvorrichtung für die Gleich­ laufprüfung der rechten Waffe eines Flugabwehr-­Panzerfahrzeugs;
  • Fig. 13 eine perspektivische Darstellung für die Verwendung der Prüfvorrichtung zur Justierung der rechten Waffe eines Flugabwehr-Panzerfahrzeugs, und
  • Fig. 14 eine schematische Darstellung eines Koordinaten­antriebs für die Prüfvorrichtung bei der Justierung der Waffe(n) eines Waffensystems.
The invention is explained in more detail with reference to exemplary embodiments in the drawings. It shows:
  • Figure 1 is a schematic sectional view of an embodiment of a test device in the test position.
  • FIG. 2 shows a schematic illustration of the test device according to FIG. 1 in the self-test position;
  • 3 shows a schematic illustration of the basic principle of light deflection by means of rhomboid or Z elements arranged one behind the other and a final triple element;
  • FIG. 4 shows a schematic illustration of a triple element or triple prism in viewing direction "A" according to FIG. 5;
  • FIG. 5 shows a schematic illustration of a triple prism in viewing direction "B" according to FIG. 6;
  • FIG. 6 shows a schematic illustration of a triple prism in viewing direction "C" according to FIG. 7;
  • FIG. 7 shows a schematic illustration of a triple prism in viewing direction "A" according to FIG. 5;
  • 8 shows a schematic representation of a deflection system consisting of three triple prisms arranged one behind the other, the triple prisms being displaced from their mutual normal position due to bending of the carrier tube;
  • 9 shows a schematic illustration of a further exemplary embodiment of a test device in the self-test position;
  • FIG. 10 shows a schematic illustration of an enlarged detail of the testing device according to FIG. 9 in its operating position "function test";
  • FIG. 11 shows a schematic illustration similar to that in FIG. 10 for the “calibration test” operating position;
  • Fig. 12 is a perspective view of the use of the test device for the same running test of the right weapon of an anti-aircraft armored vehicle;
  • 13 is a perspective view of the use of the test device for adjusting the right weapon of an anti-aircraft armored vehicle, and
  • 14 shows a schematic illustration of a coordinate drive for the test device when adjusting the weapon (s) of a weapon system.

Die in Fig. 1 dargestellte Ausführungsform einer erfindungs­gemäßen Prüfvorrichtung 1 setzt sich aus zwei Längsarmen in Form von Trägerrohren 2, 3 zusammen, welche über ein Gelenk 4 scherenförmig miteinander verbunden sind. Über das Ver­bindungsgelenk 4 läßt sich die Gesamtlänge der Prüfvorrichtung 1 je nach Bedarf stufenlos verstellen, wobei unter Gesamt­länge der Versatz zwischen ein- und austretendem Lichtstrahl verstanden wird. An dem Gelenk 4 ist eine nicht dargestellte Winkelskala angebracht, um den Scherenwinkel zwischen den beiden Trägerrohren 2, 3 definiert einstellen zu können.The embodiment of a test device 1 according to the invention shown in FIG. 1 is composed of two longitudinal arms in the form of support tubes 2, 3, which are connected to one another in a scissor-like manner via a joint 4. The total length of the test device 1 can be infinitely adjusted as required via the connecting joint 4, the total length being understood to mean the offset between the incoming and outgoing light beam. An angle scale (not shown) is attached to the joint 4 in order to be able to set the scissor angle between the two support tubes 2, 3 in a defined manner.

Die in jedem Trägerrohr 2, 3 gehalterte Ablenkoptik umfaßt eine Anzahl von Tripelelementen 5, von denen jedes Tripel­element drei im rechten Winkel zueinander stehende Reflexions­flächen 6, 7 und 8 aufweist. Die Ablenkelemente 5 können aus Vollglas (Tripelprismen), Oberflächenspiegeln (Tripelspigel), z.B. in Form von Glasrohren bestehen (Fig. 9), bei denen das vordere Ende einfach abgeschrägt und das hintere Ende zweifach (Scheitel 90°) abgeschrägt ist, wobei diese Schrägflächen mit Oberflächen-­Planspiegeln versehen sind (Tripelspiegel). Anstelle eines Tripelelementes 5 kann auch, wie die Ausführungsform nach Fig. 9 zeigt, ein Rhomboid- oder Z- Element 28 vorgesehen werden, welches im Falle von Fig. 9 aus einem Glasrohr mit zwei ange­spitzten Enden besteht, die wiederum mit Oberflächen-Plan­spiegeln versehen sind. Wie der Vergleich der Fign. 1 und 9 zeigt, ersetzt das Rhomboid-Element 28 zwei Tripelelemente 5 im Trägerrohr 2.The deflection optics held in each carrier tube 2, 3 comprises a number of triple elements 5, each of which has three reflection surfaces 6, 7 and 8 which are at right angles to one another. The deflection elements 5 can be made of full glass (triple prisms), surface mirrors (triple mirrors), for example in shape consist of glass tubes (Fig. 9), in which the front end is chamfered and the rear end is chamfered twice (apex 90 °), these inclined surfaces are provided with surface plane mirrors (triple mirror). Instead of a triple element 5, a rhomboid or Z element 28 can also be provided, as shown in the embodiment according to FIG. 9, which in the case of FIG. 9 consists of a glass tube with two pointed ends, which in turn are provided with surface plane mirrors are. As the comparison of FIGS. 1 and 9 shows, the rhomboid element 28 replaces two triple elements 5 in the carrier tube 2.

Die geometrische Formgebung der Tripelelemente 5 ist im Genaueren anhand der Fign. 4 bis 7 beschrieben. Jedes Tripelelement 5 enthält einen Strahleneintrittsbereich 9 und einen Strahlenaustrittsbereich 10, wobei die Tripelelemente 5 in den Trägerrohren 2, 3 gemäß Fig. 1 bzw. die Tripelelemente 5 und das Rhomboidelement 28 im Trägerrohr 2 und die Tripel­elemente 5 im Trägerrohr 3 gemäß Fig. 9 jeweils so zueinander angeordnet sind, daß dem Strahlenaustrittsbereich 10 eines Elementes 5 bzw. 28 der Strahleneintrittsbereich 9 des nach­geordneten (benachbarten) Elementes 5 gegenüber liegt, sich also die Bereiche 9, 10 gegenseitig überlappen. Diese Über­lappung bedingt einen entsprechenden, in den Fign. 1 und 9 deutlich dargestellten Versatz aufeinanderfolgender Elemente 5, 28.The geometrical shape of the triple elements 5 is shown in more detail on the basis of FIGS. 4 to 7 described. Each triple element 5 contains a radiation entry region 9 and a radiation exit region 10, the triple elements 5 in the carrier tubes 2, 3 according to FIG. 1 or the triple elements 5 and the rhomboid element 28 in the carrier tube 2 and the triple elements 5 in the carrier tube 3 according to FIG. 9 in each case are arranged in such a way that the beam exit area 10 of an element 5 or 28 is opposite the beam entry area 9 of the downstream (adjacent) element 5, that is to say the areas 9, 10 overlap one another. This overlap requires a corresponding one shown in FIGS. 1 and 9 clearly shown offset of successive elements 5, 28.

Das Verbindungsgelenk 4 weist einen freien Strahlendurchgang auf, in welchem im Falle von Fig. 1 ein Korrekturelement 11 ange­ordnet ist, welches gegeneinander verdrehbare optische Keil­scheiben aufweist.The connecting joint 4 has a free beam passage, in which, in the case of FIG. 1, a correction element 11 is arranged which has optical wedge disks which can be rotated relative to one another.

Das vordere Trägerrohr 2 weist zur Befestigung der Prüfvor­richtung 1 z.B. an einer Waffe (vgl. Fig. 12) ein Aufspann­gelenk 31 (Fig. 9) auf, welches ebenso wie das Verbindungs­gelenk 4 eine nicht gezeigte Winkelskala trägt.The front support tube 2 has for attaching the test device 1 e.g. on a weapon (cf. FIG. 12) a clamping joint 31 (FIG. 9) which, like the connecting joint 4, carries an angle scale (not shown).

Im Mantel der Trägerrohre 2, 3 sind im Bereich der Stirnseiten Fensteröffnungen 12a, 12b (Trägerrohr 2) und 13 (Trägerrohr 3) angebracht, um den Strahleneintritt bzw. -austritt in bzw. aus den Trägerrohren 2, 3 zu gestatten. Dabei liegen sich die Fenster­öffnungen 12a und 12b radial gegenüber, wobei für den Normal­betrieb der Prüfvorrichtung 1 (Prüfstellung gemäß Fig. 1) nur die Fensteröffnung 12a benutzt wird. Die Fensteröffnung 12b wird nur in der Selbstprüfstellung der Vorrichtung 1 gemäß Fign. 2 und 9 benutzt, wie noch näher erläutert werden soll.In the jacket of the support tubes 2, 3, window openings 12a, 12b (support tube 2) and 13 (support tube 3) are provided in the region of the end faces in order to allow the radiation to enter and exit from the support tubes 2, 3. The window openings 12a and 12b lie radially opposite one another, only the window opening 12a being used for the normal operation of the test device 1 (test position according to FIG. 1). The window opening 12b is only in the self-test position of the device 1 according to FIGS. 2 and 9 used, as will be explained in more detail.

In der Selbstprüfstellung der Vorrichtung 1 (Fign. 2 und 9) wird eine Überprüfung der Parallelität des eintretenden und des austretenden Strahls durchgeführt. Dies erfolgt dadurch, daß das Trägerrohr 2 parallel zum Trägerrohr 3 geklappt wird, so daß der in die Vorrichtung 1 eintretende Strahl (Ziellinie 14′ in Fig. 2) als auch der sich dem eintretenden Strahl überlagernde Austritts­strahl (Ziellinie 14˝ in Fig. 2) von einer in der emittierenden Strahlenquelle 15 angeordneten Beobachtungsvorrichtung beobach­tet werden kann. Im Falle der Ausführungsform nach Fign. 1 und 2 wird für den Funktionstest die Strahlenquelle 15 benutzt, welche auch für die normale Prüffunktion der Vorrichtung 1 (Fig. 1) vor­gesehen wird, wie anhand der Fign. 12 und 13 noch näher dar­gelegt werden soll. Im Falle der Ausführungsform nach Fig. 9 wird als Strahlenquelle für den Selbsttest ein Autokollimator 150 benutzt, welcher vor einer dritten Fensteröffnung 12c in der Stirnseite des Trägerrohrs 2 angeordnet wird. Die Durchführung des Selbsttests bei der Vorrichtung 1 nach Fig. 9 wird anhand der Fign. 10 und 11 im einzelnen erläutert. Im Falle der Fig. 2 erfolgt der Selbsttest wie folgt:In the self-test position of the device 1 (FIGS. 2 and 9), the parallelism of the incoming and the outgoing beam is checked. This is done in that the carrier tube 2 is folded parallel to the carrier tube 3, so that the beam entering the device 1 (target line 14 'in Fig. 2) and the exit beam superimposed on the incoming beam (target line 14in in Fig. 2nd ) can be observed by an observation device arranged in the emitting radiation source 15. In the case of the embodiment according to FIGS. 1 and 2, the radiation source 15 is used for the function test, which is also provided for the normal test function of the device 1 (FIG. 1), as shown in FIGS. 12 and 13 will be explained in more detail. In the case of the embodiment according to FIG. 9, an autocollimator 150 is used as the radiation source for the self-test, which is arranged in front of a third window opening 12c in the end face of the carrier tube 2. The implementation The self-test in the device 1 according to FIG. 9 is based on FIGS. 10 and 11 explained in detail. In the case of FIG. 2, the self-test is carried out as follows:

Die erste Reflexionsfläche 6 an der Fensteröffnung 12 des Trägerrohrs 2 ist als halbdurchlässiger Spiegel , z.B. im sichtbaren Wellenlängenbereich teilverspiegelter Spiegel, ausgeführt. Dadurch kann der aus der Strahlenquelle 15 aus­tretende Strahl (Ziellinie 14′) wieder in die Strahlenquelle 15 als reflektierter Strahl (Ziellinie 14˝) zurückgeführt und die Parallelität beider Strahlen überprüft werden. Dies ge­schieht mittels eines in der Strahlenquelle 15 bzw. im Spiegelkollimator angeordneten Strahlenteilers 26, durch den im Okular 27 zum einen die von einem Strichmarkenträger 18 er­zeugte Strichmarke 19 der Ziellinie 14′ und zum anderen die Strichmarke 19′ der reflektierten Ziellinie 14˝ abbildbar sind. Eine eventuelle Ablage der reflektierten Strichmarke 19′ von der Strichmarke 19 zeigt die Ungenauigkeit der Prüfvor­richtung 1 an, welche über das Korrekturelement 11 beseitigt werden kann.The first reflection surface 6 at the window opening 12 of the support tube 2 is a semi-transparent mirror, e.g. partially mirrored mirrors in the visible wavelength range. As a result, the beam emerging from the radiation source 15 (target line 14 ') can be returned to the radiation source 15 as a reflected beam (target line 14˝) and the parallelism of both beams can be checked. This is done by means of a beam splitter 26 arranged in the radiation source 15 or in the mirror collimator, through which in the eyepiece 27 on the one hand the line mark 19 generated by a line marker carrier 18 of the target line 14 'and on the other hand the line mark 19' of the reflected target line 14 'can be reproduced. A possible deposit of the reflected line mark 19 'from the line mark 19 indicates the inaccuracy of the test device 1, which can be eliminated via the correction element 11.

Für die Selbstprüfung der Ausführungsform nach Fign. 9 sind, wie aus den Fign. 10 und 11 ersichtlich ist, an der ersten Spiegelfläche 6 und an der letzten Spiegelfläche 8 des im Trägerrohr 2 befindlichen Ablenksystems jeweils ein kleines Hilfsprisma 62 bzw. 81 angeordnet, wobei das Hilfsprisma 62 im Strahlengang eines ersten Meßstrahls 152 und das Hilfs­prisma 81 im Strahlengang eines zweiten Meßstrahls 153 des Autokollimators 150 liegt. Das Hilfsprisma 62 sitzt auf einer halbdurchlässigen Platte 61. Die Platte 61 überdeckt dabei zwei Kreisöffnungen 63, 64 in der Reflexionsfläche 6. Vor dem Autokollimator 150 ist eine verstellbare Blende 151 angeordnet, welche in der Stellung gemäß Fig. 10 die Meßstrahlen 152, 153 abdeckt und in der Stellung gemäß Fig. 11 den Meßstrahl 152 zum Hilfsprisma 61 und den Meßstrahl 153 über die Kreisöffnung 64 zu dem Hilfsprisma 81 durchläßt. In der ersten Stellung der Blende 151 gemäß Fig. 10 wird ein Hilfsstrahlengang 154 freigegeben, welcher an dem Hilfsprisma 62 vorbei durch die Kreisöffnung 64 hindu chtritt, neben dem Hilfsprisma 81 auf die Reflexions­fläche 8 auftrifft und von dort in das Ablenksystem des hinteren Trägerrohrs 3 (das in Fig. 10 nur durch den Strahlengang ange­deutet ist) eintritt. Von dort fällt der Hilfsstrahl 154 über die Fensteröffnungen 13, 12b (Fig. 9) auf die Reflexionsfläche 6 und von dort in den Autokollimator 150.For the self-test of the embodiment according to FIGS. 9, as shown in FIGS. 10 and 11 can be seen, a small auxiliary prism 62 and 81 are arranged on the first mirror surface 6 and on the last mirror surface 8 of the deflection system located in the support tube 2, the auxiliary prism 62 in the beam path of a first measuring beam 152 and the auxiliary prism 81 in the beam path of a second measuring beam 153 of the autocollimator 150. The auxiliary prism 62 sits on one semi-permeable plate 61. The plate 61 covers two circular openings 63, 64 in the reflection surface 6. In front of the autocollimator 150, an adjustable diaphragm 151 is arranged, which covers the measuring beams 152, 153 in the position according to FIG. 10 and in the position according to FIG 11 transmits the measuring beam 152 to the auxiliary prism 61 and the measuring beam 153 via the circular opening 64 to the auxiliary prism 81. In the first position of the diaphragm 151 according to FIG. 10, an auxiliary beam path 154 is released, which passes the auxiliary prism 62 through the circular opening 64, strikes the reflecting surface 8 next to the auxiliary prism 81 and from there into the deflection system of the rear support tube 3 ( which is indicated in Fig. 10 only by the beam path) occurs. From there, the auxiliary beam 154 falls through the window openings 13, 12b (FIG. 9) onto the reflection surface 6 and from there into the autocollimator 150.

In der Stellung gemäß Fig. 10 erfolgt - ebenso wie gemäß Fig. 2 - ein Funktionstest beider Ablenksysteme in den Trägerrohren 2, 3. Ebenso wie in Verbindung mit der Funktionstestbeschreibung von Fig. 2 kann auch im Falle von Fig. 10 eine Nicht-Parallelität durch eine entsprechende Ablage zwischen einer ausgesendeten und einer empfangenen Strichmarke erkannt werden. Eine er­kannte Ungenauigkeit der Prüfvorrichtung 1 wird - anders als im Falle von Fig. 2 - bei der Ausführungsform nach Fig. 9 dadurch beseitigt, daß zuerst mittels der Justiervorrichtung 30a (Fig. 9) das vordere Ablenksystem (Trägerrohr 2) kalibriert wird. Hierzu wird der in Fig. 11 veranschaulichte Kalibrier­test durchgeführt, bei welchem die Deckungsgleichheit der von den Hilfsprismen 62, 81 reflektierten Meßmarken des Autokolli­mators 150 überprüft wird. Um die Parallelität der Reflexions­flachen 6 und 8 zu überprüfen, genügt es nicht, nur die Reflexionen an den teilverspiegelten Hypothenusenflächen der Hilfsprismen 62, 81 zu überprüfen, sondern es müssen auch die Reflexionen an den Dachkanten der Hilfsprismen 62, 81 überprüft werden, um eine eventuelle Verkantung der Reflexionsflächen 6, 8 gegen­einander zu erfassen. Die Justiervorrichtung 30a wird gegebenenfalls so lange verstellt, bis der Kalibriertest keine Abweichungen mehr zeigt. Damit ist nur das vordere Ablenksystem (Trägerrohr 2) kalibriert. Anschließend wird auch das hintere Ablenksystem (Trägerrohr 3) auf das vordere Ablenksystem kalibriert, indem in der Stellung "Funktionstest" gemäß Fig. 10 mittels der Justiervorrichtung 30b das hintere Ablenksystem solange verstellt wird, bis die Ablage der Meßmarken entsprechend dem Hilfsstrahlengang 154 verschwindet.10 - just as in FIG. 2 - a function test of both deflection systems is carried out in the support tubes 2, 3. Just as in connection with the function test description of FIG. 2, non-parallelism can also occur in the case of FIG. 10 can be recognized by a corresponding filing between a transmitted and a received mark. A detected inaccuracy of the test device 1 - unlike in the case of FIG. 2 - is eliminated in the embodiment according to FIG. 9 by first calibrating the front deflection system (carrier tube 2) by means of the adjusting device 30a (FIG. 9). For this purpose, the calibration test illustrated in FIG. 11 is carried out, in which the congruence of the measurement marks of the autocollimator 150 reflected by the auxiliary prisms 62, 81 is checked. To check the parallelism of the reflection surfaces 6 and 8, it is not enough, only the reflections on the partially mirrored hypotenuse surfaces of the auxiliary prisms 62, 81, but also the reflections on the roof edges of the auxiliary prisms 62, 81 must be checked in order to detect a possible tilting of the reflection surfaces 6, 8 against one another. The adjusting device 30a may be adjusted until the calibration test no longer shows any deviations. This means that only the front deflection system (support tube 2) is calibrated. Subsequently, the rear deflection system (carrier tube 3) is also calibrated to the front deflection system by adjusting the rear deflection system in the "function test" position according to FIG. 10 by means of the adjusting device 30b until the measurement marks have disappeared in accordance with the auxiliary beam path 154.

Wie anhand der Figuren 12 und 13 erläutert ist, kann die Prüf­vorrichtung 1 zur Justierprüfung (Fig. 13) und zur Gleichlauf­prüfung (Fig. 12) der Waffenrohre 101, 102 eines Waffensystems, im dargestellten Beispielsfall eines Flugabwehr-Panzerfahrzeugs, verwendet werden. Im Falle der Gleichlaufprüfung nach Fig. 12 wird die Prüfvorrichtung 1 mittels des Aufspanngelenks 31 an dem zu prüfenden Waffenrohr 101 befestigt, während die Strahlenquelle 15 (Kollimator) im hinteren Bereich des Waffen­rohrs 101 oder an dessen Drehlagerung 104 befestigt wird. Der vom Kollimator 15 ausgesendete Strahl trifft auf das Lichtein­trittsfenster 12a des Trägerrohrs 4 und wird über die Vorrichtung 1 zur Ziellinie 14 des Richtschützenperiskops 22 abgelenkt, welche synchron zu der Waffe 101 bewegt wird. Durch die Anbringung des Kollimators 15 im hinteren Bereich des Waffenrohrs 101 bzw. der Drehlagerung 104 ist gewährleistet, daß der Kollimator 15 von Verbiegungen des Waffenrohrs 101, wie sie durch das Gewicht der notwendigerweise weiter vorne gelagerten Prüfvorrichtung auftreten können, unbeeinflußt bleibt. Dies hat zur weiteren Folge, daß der von Kollimator 15 ausgesendete Lichtstrahl die Winkel­stellung der Waffe exakt wiedergibt. Diese exakte Winkelstellung wird von der Prüfvorrichtung 1 unabhängig von seiner eventuellen Lageänderung infolge Waffenrohrverbiegung exakt in das Periskop 22 weitergeleitet.As explained with reference to FIGS. 12 and 13, the test device 1 can be used for the adjustment test (FIG. 13) and for the synchronization test (FIG. 12) of the weapon barrels 101, 102 of a weapon system, in the example shown an anti-aircraft armored vehicle. In the case of the synchronism test according to FIG. 12, the test device 1 is fastened to the weapon barrel 101 to be tested by means of the clamping joint 31, while the radiation source 15 (collimator) is fastened in the rear region of the weapon barrel 101 or to its pivot bearing 104. The beam emitted by the collimator 15 strikes the light entry window 12a of the carrier tube 4 and is deflected via the device 1 to the target line 14 of the gunner's periscope 22, which is moved synchronously with the weapon 101. The attachment of the collimator 15 in the rear region of the weapon barrel 101 or of the rotary bearing 104 ensures that the collimator 15 remains unaffected by bending of the weapon barrel 101, as can occur due to the weight of the test device which is necessarily positioned further forward. As a result, that the light beam emitted by collimator 15 accurately reflects the angular position of the weapon. This exact angular position is passed on to the periscope 22 by the test device 1, regardless of its possible change in position due to the bending of the weapon barrel.

Im Falle der Justiervorrichtung nach Fig. 13 wird die Vorrichtung 1 mit ihrem Aufspanngelenk 31 an einem Stativ 107 befestigt und so weit verstellt, daß das Lichteintrittsfenster 12a im Strahlengang eines im Waffenrohr 101 angebrachten Kollimators 15 (Fig. 1) und das Lichtaustrittsfenster 13 im Strahlengang des Periskops 22 liegen. Wie Fig. 1 zeigt, ist die Strahlenquelle bzw. der Kolli­mator 15 in präziser Fixierung in der Mündung des Waffenrohrs 101 derart adaptiert, daß die Seelenachse 17 des Waffenrohrs 101 mit der von der Strahlenquelle 15 erzeugten Ziellinie 14 zusammenfällt. In der Strahlenquelle 15 ist ein Strichmarkenträger 18 (Fig. 2) angeord­net, mittels dem über die in den Strahlengang des Kommandantenperiskops 17 eintretende Ziellinie 14 eine die Justierstellung der Waffe 16 repräsentierende Strichmarke 19 um Okular 20 des Kommandantenperiskops 17 darstellbar ist. Eine eventuelle Ablage der Strichmarke 19 von der Visiermarkierung 21 des Kommandantenperiskops 17 zeigt somit die zu korrigierende Justierabweichung zwischen der Ziellinie der Kanone und der Visierlinie des Kommandantenperiskops an.In the case of the adjusting device according to FIG. 13, the device 1 is attached with its clamping joint 31 to a stand 107 and adjusted so far that the light entry window 12a in the beam path of a collimator 15 (FIG. 1) fitted in the weapon barrel 101 and the light exit window 13 in the beam path of the periscope 22. As shown in FIG. 1, the radiation source or the collimator 15 is adapted in a precise fixation in the mouth of the gun barrel 101 in such a way that the core axis 17 of the gun barrel 101 coincides with the target line 14 generated by the radiation source 15. Arranged in the radiation source 15 is a line mark carrier 18 (FIG. 2), by means of which a line mark 19 representing the adjustment position of the weapon 16 around the eyepiece 20 of the commandant periscope 17 can be represented via the target line 14 entering the beam path of the commander periscope 17. A possible deposit of the line mark 19 from the sighting mark 21 of the commander's periscope 17 thus shows the adjustment deviation to be corrected between the target line of the cannon and the sighting line of the commander's periscope.

In gleicher Weise erfolgt die Überprüfung der Justierstellung in bezug auf das Richtschützenperiskop 22, wobei die Ziellinie 14 durch einfaches Verschwenken der Längsarme 2 und 3 um die Achse 4 des Gelenks 4 auf den Strahlengang des Richtschützenperiskops ausgerichtet werden kann.The adjustment position is checked in the same way with respect to the gunner's periscope 22, the target line 14 being able to be aligned with the beam path of the gunner's periscope by simply pivoting the longitudinal arms 2 and 3 about the axis 4 of the joint 4.

Aufgrund der Verwendung eines Spiegelkollimators als Strahlenquelle 15 kann neben dem sichtbaren Wellenlängenbereich auch im Infrarot-Wellen­längenbereich z.B. 10µ- Bereich ermittiert werden, wodurch die Strich­marke 19 auch im Wärmebildgerät 23 abbildbar ist.Due to the use of a mirror collimator as the radiation source 15, in addition to the visible wavelength range, also in the infrared wavelength range e.g. 10μ range can be determined, whereby the line mark 19 can also be imaged in the thermal imaging device 23.

Zur Überprüfung des Lasersenders 24 wird die Fensteröffnung 13 in den Sendestrahl 25 des Lasersenders 24 und die Fensteröffnung 12ain den Strahlengang der Strahlenquelle 15 geschwenkt, wobei anstelle des Strichmarkenträgers 18 eine strahlungsempfindliche Platte eingeschwenkt wird, mit der die Strahlung des Lasersenders 24 sichtbar gemacht werden kann. Besonders sind hierfür mit phosphoreszierendem Material beschich­tete Platten geeignet, da sie wiederverwendbar sind. Der Strichmarken­träger 18 und die strahlungempfindliche Platte sind dabei so angeord­net, daß sie je nach Bedarf in den Strahlengang der Strahlenquelle 15 eingeschwenkt werden können. Die Lichtenergie des Lasers 24 wird über die Prüfvorrichtung zur Strahlenquelle 15 gelenkt und erzeugt dort auf der strahlungsempfindlichen Platte einen nachleuchtenden Punkt. Die Winkellage dieses Punktes zu einem Periskop, beispielsweise dem Komman­dantenperiskop 17,kann anschließend sichtbar gemacht werden, indem die Fensteröffnung 13 aus dem Sendestrahl 25 des Lasersenders 24 in den Strahlengang des Kommandantenperiskops 17 geschwenkt wird. Eine eventu­elle Ablage des nachleuchtenden Punktes von der Visiermarkierung 21 des Kommandantenperiskops 17 zeigt die zu korrigierende Justierabweichung des Lasersenders 24 von dem vorher bereits justierten Kommandantenperis­kops 17 an.To check the laser transmitter 24, the window opening 13 is in the transmission beam 25 of the laser transmitter 24 and the window opening 12ain Beam path of the radiation source 15 is pivoted, with a radiation-sensitive plate being swiveled in instead of the line mark carrier 18, with which the radiation from the laser transmitter 24 can be made visible. Panels coated with phosphorescent material are particularly suitable for this purpose, since they are reusable. The line mark carrier 18 and the radiation-sensitive plate are arranged so that they can be pivoted into the beam path of the radiation source 15 as required. The light energy of the laser 24 is directed to the radiation source 15 via the test device and there generates an afterglow point on the radiation-sensitive plate. The angular position of this point with respect to a periscope, for example the commander's periscope 17, can then be made visible by pivoting the window opening 13 out of the transmission beam 25 of the laser transmitter 24 into the beam path of the commander's periscope 17. A possible deposition of the afterglow point from the sighting mark 21 of the commandant's periscope 17 indicates the adjustment deviation of the laser transmitter 24 to be corrected from the commandant's periscope 17 which has already been adjusted.

Bei der Gleichlaufprüfung (Fig. 12) wird zunächst der Kollimator 15 zum Fadenkreuz des Periskops 22 einjustiert, z.B. mittels einer in Fig. 12 nicht gezeigten seiten- und höhenrichtbaren Halterung. Dabei erscheint nach dem Schwenken der Prüfvorrichtung 1 in die Sichtlinie des Periskops 22 die Strichmarke des Kollimators 15 im Periskop-OkularIn the synchronism test (Fig. 12), the collimator 15 is first adjusted to the crosshairs of the periscope 22, e.g. by means of a side and height-adjustable bracket, not shown in FIG. After the pivoting of the test device 1 into the line of sight of the periscope 22, the line mark of the collimator 15 appears in the periscope eyepiece

Nach dem Justieren des Kollimators 15 auf das Fadenkreuz des Periskops 22 kann die eigentliche Gleichlaufprüfung durchgeführt werden:After the collimator 15 has been adjusted to the crosshairs of the periscope 22, the actual synchronization test can be carried out:

Einstellen des gewünschten Elevationswinkels, ggf. Nachführen der Prüfvorrichtung und Ablesen der Abweichung in Seite und Höhe anhand der Strichmarke.Setting the desired elevation angle, if necessary tracking the test device and reading the deviation in side and height using the line mark.

Die Gleichlaufprüfung von nichtoptischen Zielgeräten erfordert wie bei der Justierüberprüfung ein separates Fernrohr welches am zu prüfenden elevierbaren Gerät angebracht wird.The synchronism check of non-optical target devices requires, as with the adjustment check, a separate telescope which is attached to the elevatable device to be tested.

In Fig. 3 ist der prinzipielle Aufbau einer optische Rhomboidelemente 28 enthaltenden Prüfvorrichtung dargestellt. Damit ist ebenfalls ein Parallelversatz einer von einer Strahlenquelle 15, beispielsweise einem in der Mündung einer Kanone befestigten Spiegelkollimator, erzeugten Ziellinie 14 erreichbar, womit in gleicher Weise wie mit der Ausfüh­rungsform nach den Fig. 1 und 2 die Justierstellung und der Gleichlauf des Kommandantenperiskops 17, des Richtschutzperiskops 22 und weiterer Elemente überprüfbar ist.3 shows the basic structure of a test device containing optical rhomboid elements 28. A parallel offset of a target line 14 generated by a radiation source 15, for example a mirror collimator fastened in the mouth of a cannon, can thus also be achieved, with which, in the same way as with the embodiment according to FIGS. 1 and 2, the adjustment position and the synchronism of the commander's periscope 17, of the directional protection periscope 22 and other elements can be checked.

Die Rhomboidelemente 28 enthalten jeweils zwei zueinander parallele Rhomboid-Reflexionsflächen 29 mit denen ein Z-förmiger Parallelversatz der Ziellinie 14 erreichbar ist. Im Gegensatz zu dem Tripelelement 5 ist ein Rhomboidelement 28 billiger. Die in Fig. 3 gezeigte Ausführungsform besteht nur aus einem Längsarm, doch kann auch bei Vervendung von Rhomboidelementen eine zweiarmige, gelenkige Prüfvorrichtung entspre­chend der Ausführungsform nach Fig. 1 geschaffen werden.The rhomboid elements 28 each contain two mutually parallel rhomboid reflection surfaces 29 with which a Z-shaped parallel offset of the target line 14 can be achieved. In contrast to the triple element 5, a rhomboid element 28 is cheaper. The embodiment shown in FIG. 3 consists of only one longitudinal arm, but a two-armed, articulated test device corresponding to the embodiment according to FIG. 1 can also be created when using rhomboid elements.

Die Fig. 4 bis 7 zeigen in Vollinien ein Tripelelement 5 mit den Re­flexionsflächen 6, 7 und 8 und dem Strahleneingangsbereich 9 und dem Strahlenausgangsbereich 10.4 to 7 show in solid lines a triple element 5 with the reflection surfaces 6, 7 and 8 and the radiation input region 9 and the radiation output region 10.

Um eine einfache Montage der Elemente 5, 28 in den Trägerrohren 2, 3 zu ermöglichen, sind, wie Fig. 9 zeigt, die Trägerrohre 2, 3 aus je­weils zwei Halbschalen gebildet, wobei sämliche Elemente 5, 28 des Trägerrohrs 2 bzw. 3 an der einen Halbschale mittels schockgedämpfter Schellen befestigt sind. Diese tragenden Halbschalen sind über das Gelenk 4 miteinander verbunden.In order to enable simple assembly of the elements 5, 28 in the carrier tubes 2, 3, as shown in FIG. 9, the carrier tubes 2, 3 are each formed from two half-shells, with all elements 5, 28 of the carrier tube 2 and 3 respectively which are attached to a half shell by means of shock-absorbing clamps. These load-bearing half-shells are connected to one another via the joint 4.

Zur exakten Einstellung der Prüfvorrichtung 1 kann auch, wie in Fig. 14 gezeigt ist, ein Koordinatenantrieb 200 verwendet werden, welcher horizontal verschiebbare Führungen 201, 203 aufweist, auf denen vertikal verfahrbare Schlitten 202 bzw. 204 gelagert sind. Die Enden der Prüfvorrichtung 1 sind an den Schlitten 202, 204 drehbar gelagert. Damit lassen sich beliebige Punkte in der Koordinatenebene des Antriebs 200 mit den Licht­eintritts- und -austrittsfenstern 12a bzw. 13 der Vorrichtung 1 anfahrten. Der Antrieb 200 ist vorzugsweise programmgesteuert ausgebildet, so daß durch entsprechende Vorprogrammierung die Achslagen der Sichtgeräte bzw. Waffen von verschiedensten Fahrzeugen mit der Prüfvorrichtung 1 anfahrbar sind.For the exact setting of the test device 1, a coordinate drive 200 can also be used, as shown in FIG. 14, which has horizontally displaceable guides 201, 203, on which vertically movable carriages 202 and 204 are mounted. The ends of the test device 1 are rotatably mounted on the slides 202, 204. Any points in the coordinate plane of the drive 200 can thus be approached with the light entry and exit windows 12a and 13 of the device 1. The drive 200 is preferably designed to be program-controlled so that the axis positions of the viewing devices or weapons of a wide variety of vehicles can be approached with the test device 1 by appropriate preprogramming.

Die durch die Erfindung erzielte Lösung der Aufgabe ist anhand der Fig. 8 veranschaulicht. Wie hieraus hervorgeht, sind die Ablenkelemente 5 eines Trägerrohrs infolge einer Verbiegung des Trägerrohrs aus ihrer gegenseitigen Normallage verschoben worden, ohne daß dies Folgen für den Parallelversatz von eintretendem zu austretendem Lichtstrahl hat. Wesentlich ist jedoch, daß jedes einzelne Ablenkelement 5 in sich lagestabil ist.The solution to the object achieved by the invention is illustrated with reference to FIG. 8. As can be seen from this, the deflection elements 5 of a carrier tube have been displaced from their mutual normal position as a result of a bending of the carrier tube, without this having consequences for the parallel offset of the incoming light beam to be exited. It is essential, however, that each individual deflection element 5 is inherently stable.

Ein weiterer wesentlicher Vorteil der Erfindung besteht darin, daß durch die Verwendung von Hilfsprismen ein Funktionstest der Prüfvorrichtung und eine eventuelle (anschließende) Kali­brierung an Ort und Stelle möglich ist, was eine zeitraubende Einsendung der Prüfvorrichtung in das Herstellerwerk vermeidet.Another important advantage of the invention is that by using auxiliary prisms, a functional test of the test device and a possible (subsequent) calibration on the spot is possible, which avoids a time-consuming submission of the test device to the manufacturing plant.

Claims (10)

1. Vorrichtung zum Überprüfen der Achslage (Parallel- und Punktjustierung) zumindest zweier optischer Achsen, insbesondere der Sicht- und Ziellinien eines Waffensystems, mit zwei scherenförmig mit­einander verbundenen optischen Ablenksystemen, welche einen einfallenden Lichtstrahl in jeder Scherenstellung parallel versetzen und jeweils ein Trägerrohr für die Halterung der Ablenkoptik aufweisen, dadurch gekennzeich­net, daß die Ablenkoptik jedes der beiden Ab­lenksysteme (Trägerrohre 2, 3) mindestens zwei in sich lagestabile, optische Ablenkelemente (5, 28) in Form von Tripelelementen (5) mit jeweils drei rechtwinklig zueinander verlaufenden Reflexions­flächen (6, 7, 8) und gegebenenfalls Rhomboidele­menten (28) mit jeweils zwei parallel zueinander verlaufenden Reflexionsflächen (29) umfaßt, wobei benachbarte Tripelelemente (5) bzw. Rhomboidelemente (28) derart versetzt zueinander angeordnet sind, daß sich ihre Strahleneintritts- und -austrittsbereiche (9, 10) überlappen.1.Device for checking the axis position (parallel and point adjustment) of at least two optical axes, in particular the sight and target lines of a weapon system, with two scissor-like optical deflection systems, which offset an incident light beam in each scissor position and each have a support tube for the Have a holder for the deflecting optics, characterized in that the deflecting optics of each of the two deflecting systems (support tubes 2, 3) have at least two optical deflection elements (5, 28) which are stable in position and are in the form of triple elements (5), each with three reflecting surfaces (6) running at right angles to one another , 7, 8) and optionally rhomboid elements (28) each with two mutually parallel reflection surfaces (29), adjacent triple elements (5) or rhomboid elements (28) being arranged offset to one another in such a way that their radiation entry and exit areas ( 9, 10) overlap. 2. Vorrichtung nach Anspruch 1, dadurch gekenn­zeichnet, daß die Ablenkelemente (5, 28) aus Oberflächenspiegeln oder aus Vollglas bestehen.2. Device according to claim 1, characterized in that the deflecting elements (5, 28) consist of surface mirrors or of full glass. 3. Vorrichtung nach Anspruch 1, dadurch gekenn­zeichnet, daß die Ablenkelemente (5, 28) aus endseitig ein- beziehungsweise zweifach abge­schrägten Glasrohren bestehen, wobei die Schräg­flächen der Glasrohre mit Oberflächen-Planspiegeln versehen sind.3. Apparatus according to claim 1, characterized in that the deflecting elements (5, 28) consist of single or double beveled glass tubes at the ends, the inclined surfaces of the glass tubes being provided with surface plane mirrors. 4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Trägerrohr (2, 3) jedes Ablenksystems aus zwei Halbschalen (2a, 2b; 3a, 3b) besteht und alle Ablenkelemente (5, 28) des Trägerrohrs (2, 3) an der einen Halbschale (2a, 3a) schockgedämpft befestigt sind.4. Device according to one of claims 1 to 3, characterized in that the support tube (2, 3) of each deflection system consists of two half-shells (2a, 2b; 3a, 3b) and all deflection elements (5, 28) of the support tube (2, 3) on which a half-shell (2a, 3a) is fastened in a shock-absorbing manner. 5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß an einem Aufspann­gelenk (31) des vorderen Trägerrohrs (2) und an dem Verbindungsgelenk (4) der Trägerrohre (2, 3) jeweils eine Winkelskala angebracht ist.5. Device according to one of claims 1 to 4, characterized in that an angle scale is attached to a clamping joint (31) of the front support tube (2) and on the connecting joint (4) of the support tubes (2, 3). 6. Vorrichtung nach einem der Ansprüche 1 bis 5, wobei das vordere Trägerrohr (2) rechtwinklig zu seinem Lichteintrittsfenster (12a) ein weiteres, für Selbstprüfzwecke vorgesehenes Lichteintritts­fenster (12c) aufweist, dadurch gekenn­zeichnet, daß an der ersten (6) und letzten (8) Spiegelfläche des vorderen Ablenk­ systems (Trägerrohr 2) jeweils ein kleines Hilfs­prisma (62 bzw. 81) angeordnet ist, derart, daß die Hilfsprismen (62, 81) das Meßlicht (152, 153) eines am weiteren Lichteintrittsfenster (12c) an­gebrachten Autokollimators (150) längs unter­schiedlicher Achslagen reflektieren (Fig. 11).6. Device according to one of claims 1 to 5, wherein the front support tube (2) at right angles to its light entry window (12a) has a further light entry window (12c) provided for self-testing purposes, characterized in that on the first (6) and last ( 8) Mirror surface of the front deflection systems (support tube 2) a small auxiliary prism (62 or 81) is arranged in such a way that the auxiliary prisms (62, 81) the measuring light (152, 153) of an autocollimator (150) attached to the further light entry window (12c) along different axis positions reflect (Fig. 11). 7. Vorrichtung nach Anspruch 6, dadurch gekennzeich­net, daß vor dem Autokollimator (150) eine verstell­bare Blende (151) angeordnet ist, welche in einer ersten Stellung (Funktionstest; Fig. 10) das Meß­licht (152, 153) zu den Hilfsprismen (62, 81) ab­deckt und einen Hilfsstrahlengang (154) freiläßt, welcher einer Funktionsprüfung beider Ablenk­systeme (Trägerrohre 2, 3) dient, und welche in einer zweiten Stellung (Kalibriertest; Fig. 11) das Meßlicht (152, 153) zu den Hilfsprismen (62, 81) freigibt und den Hilfsstrahlengang (154) abdeckt, daß ferner eine Spiegelfläche des vorderen Ablenksystems (Trägerrohr 2) in ihrer Lage justier­bar ist (Justiervorrichtung 30a; Fig. 9), falls im Autokollimator (150) die von den Hilfsprismen (62, 81) durch Reflexion erzeugten Abbildungen nicht deckungsgleich sind, und daß eine Spiegel­fläche des hinteren Ablenksystems (Trägerrohr 3) in ihrer Lage justierbar ist (Justiervorrichtung 30b; Fig. 9), falls eine Meßmarke mit ihrer vom Hilfsstrahlengang (154) erzeugten Abbildung im Autokollimator (150) nicht deckungsgleich ist.7. The device according to claim 6, characterized in that an adjustable diaphragm (151) is arranged in front of the autocollimator (150), which in a first position (function test; Fig. 10), the measuring light (152, 153) to the auxiliary prisms (62 , 81) and leaves an auxiliary beam path (154) free, which serves for a functional test of both deflection systems (support tubes 2, 3), and which in a second position (calibration test; Fig. 11) the measuring light (152, 153) to the auxiliary prisms (62 , 81) and covers the auxiliary beam path (154), that a mirror surface of the front deflection system (support tube 2) can also be adjusted in its position (adjusting device 30a; FIG. 9), if in the autocollimator (150) that of the auxiliary prisms (62, 81) images generated by reflection are not congruent, and that a mirror surface of the rear deflection system (support tube 3) is adjustable in its position (adjusting device 30b; Fig. 9), if a measuring mark with its from the auxiliary beam ng (154) generated image in the autocollimator (150) is not congruent. 8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Trägerrohre (2, 3) an ihren Enden an getrennten Schlitten­führungen (202, 204) eines Koordinatenantriebs (200) angebracht sind, wobei die Schlitten­führungen (202, 204) in vorprogrammierte Stellungen verfahrbar sind (Fig. 14).8. Device according to one of claims 1 to 7, characterized in that the carrier tubes (2, 3) are attached at their ends to separate slide guides (202, 204) of a coordinate drive (200), the slide guides (202, 204) in preprogrammed positions can be moved (Fig. 14). 9. Verfahren zum Überprüfen der Achslage zwischen einem Waffenrohr und einer Ziellinie eines Waffensystems (Justierprüfung; Fig.13) mit Hilfe der Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß in das Waffenrohr (101) achsparallel ein Kolli­mator (Strahlenquelle 15) adaptiert wird und daß das Lichteintrittsfenster (12a) der Prüfvorrich­tung (1) vor dem Kollimator in dessen Strahlen­gang und das Lichtaustrittsfenster (13) der Prüfvorrichtung (1) in der Achse der Ziellinie (14) gegebenenfalls unter Verwendung eines Stativs (107) oder des Koordinatenantriebs (200) positioniert werden.9. A method for checking the axial position between a weapon barrel and a target line of a weapon system (adjustment test; Fig. 13) with the aid of the device according to one of claims 1 to 8, characterized in that a collimator (radiation source 15 ) is adapted and that the light entry window (12a) of the test device (1) in front of the collimator in its beam path and the light exit window (13) of the test device (1) in the axis of the target line (14), optionally using a tripod (107) or the Coordinate drive (200) are positioned. 10.Verfahren zum Überprüfen des Gleichlaufs zwischen einem elevierten Waffenrohr und einer parallel dazu bewegten Ziellinie eines Waffensystems (Gleichlaufprüfung; Fig. 12) mit Hilfe der Vor­richtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß im hinteren Bereich des Waffenrohrs (101) oder an dessen Lagerung (104) ein Kollimator (Strahlen­ quelle 15) justierbar angebracht wird, und daß die Vorrichtung (1) im Abstand zu dem Kolli­mator an dem Waffenrohr (101) befestigt wird, derart, daß das Lichteintrittsfenster (12a) im Strahlengang des Kollimators (15) und das Lichtaustrittsfenster (13) in der Achse der Ziellinie (14) positioniert sind.10. A method for checking the synchronism between an elevated weapon barrel and a target line of a weapon system moved parallel thereto (synchronism test; FIG. 12) with the aid of the device according to one of claims 1 to 7, characterized in that in the rear region of the weapon barrel (101) or a collimator (rays source 15) is adjustably attached, and that the device (1) at a distance from the collimator is attached to the weapon barrel (101) such that the light entry window (12a) in the beam path of the collimator (15) and the light exit window (13) in the axis of the finish line (14) are positioned.
EP19890120735 1988-11-11 1989-11-09 Apparatus for checking the relative position of two optical axes Expired - Lifetime EP0368299B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3838381 1988-11-11
DE19883838381 DE3838381A1 (en) 1987-11-12 1988-11-11 Device and method for checking the axis position of two optical axes

Publications (2)

Publication Number Publication Date
EP0368299A1 true EP0368299A1 (en) 1990-05-16
EP0368299B1 EP0368299B1 (en) 1994-01-19

Family

ID=6367029

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19890120735 Expired - Lifetime EP0368299B1 (en) 1988-11-11 1989-11-09 Apparatus for checking the relative position of two optical axes

Country Status (1)

Country Link
EP (1) EP0368299B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19647152A1 (en) * 1996-11-14 1998-05-28 Sick Ag Laser distance determination device
CN114545645A (en) * 2022-02-28 2022-05-27 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) Periscopic integrated optical path assembling and adjusting method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE216854C (en) * 1908-04-04
DE3205610A1 (en) * 1982-02-17 1983-08-25 Berthold 5401 Buchholz Hajen Optical equipment for testing parallelism and synchronisation
EP0189001A1 (en) * 1984-11-16 1986-07-30 Wild Heerbrugg Ag. Method and apparatus for the adjustment of the axis of a gun barrel
EP0315892A1 (en) * 1987-11-12 1989-05-17 Krauss-Maffei Aktiengesellschaft Test device for checking the bore sight and the parallelism between weapon and sighting means of a fighting vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE216854C (en) * 1908-04-04
DE3205610A1 (en) * 1982-02-17 1983-08-25 Berthold 5401 Buchholz Hajen Optical equipment for testing parallelism and synchronisation
EP0189001A1 (en) * 1984-11-16 1986-07-30 Wild Heerbrugg Ag. Method and apparatus for the adjustment of the axis of a gun barrel
EP0315892A1 (en) * 1987-11-12 1989-05-17 Krauss-Maffei Aktiengesellschaft Test device for checking the bore sight and the parallelism between weapon and sighting means of a fighting vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19647152A1 (en) * 1996-11-14 1998-05-28 Sick Ag Laser distance determination device
US5991011A (en) * 1996-11-14 1999-11-23 Sick Ag Laser distance finding apparatus
CN114545645A (en) * 2022-02-28 2022-05-27 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) Periscopic integrated optical path assembling and adjusting method
CN114545645B (en) * 2022-02-28 2023-09-26 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) Periscope type integrated optical circuit assembling and adjusting method

Also Published As

Publication number Publication date
EP0368299B1 (en) 1994-01-19

Similar Documents

Publication Publication Date Title
DE2710904C2 (en)
WO2009094979A2 (en) Optical system for projecting an ir or uv test signal with an optical orientation of the projection axis in the visible spectral region
DE2016797A1 (en) Device for, in particular, continuous control and / or display of the curvatures of the barrel of a firearm
DE102011015779B4 (en) Directed energy radiators
DE2536878C3 (en) Electro-optical retro-reflective locating device, in particular laser rangefinder, with adjustment aid
DE2414382C2 (en) Optical collimating alignment arrangement
DE102015016274B4 (en) Optical system and method for adjusting a signal beam
DE3044554A1 (en) METHOD AND ARRANGEMENT FOR CHECKING THE MATCHING OF SIGHTING AND TARGET LINES
DE3707023C2 (en)
DE2951108C2 (en) Method and device for checking the synchronization of the line of sight of a periscope with elements that can be aimed at target points
DE3838381C2 (en)
DE3428990A1 (en) DEVICE FOR HARMONIZING THE OPTICAL AXES OF A VISOR
EP0368299B1 (en) Apparatus for checking the relative position of two optical axes
DE3214604C2 (en)
EP0315892B1 (en) Test device for checking the bore sight and the parallelism between weapon and sighting means of a fighting vehicle
DE3205610A1 (en) Optical equipment for testing parallelism and synchronisation
DE3838357C2 (en)
DE3246805C2 (en) Adjustment device for the fire control system of a combat vehicle
DE3942922C2 (en)
DE2817237B2 (en) Panoramic periscope with laser rangefinder
DE102015205788A1 (en) System for adjusting the sightlines of a combat vehicle and method therefor
DE2224324C2 (en) Sighting device with a telescope for observing a target
DE3930912A1 (en) Parallelism testing appts. for two axes - has automatic collimator and beam splitter testing position of three mirror planes
DE2321059C3 (en) Device for checking the alignment of the sight lines of a telescopic sight and an infrared goniometer
DE413403C (en) Correction device for baseline rangefinder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH GB LI NL SE

17P Request for examination filed

Effective date: 19900908

17Q First examination report despatched

Effective date: 19921021

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH GB LI NL SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940124

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 89120735.9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19971023

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19971125

Year of fee payment: 9

Ref country code: BE

Payment date: 19971125

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981130

BERE Be: lapsed

Owner name: KRAUSS-MAFFEI A.G.

Effective date: 19981130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19981109

EUG Se: european patent has lapsed

Ref document number: 89120735.9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: KRAUSS-MAFFEI AKTIENGESELLSCHAFT TRANSFER- KRAUSS-

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20031117

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20031121

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050601