EP0366883B1 - Method and device for carrying out the process for absorbing the vibrations of the compartments of fast moving lifts - Google Patents

Method and device for carrying out the process for absorbing the vibrations of the compartments of fast moving lifts Download PDF

Info

Publication number
EP0366883B1
EP0366883B1 EP89114779A EP89114779A EP0366883B1 EP 0366883 B1 EP0366883 B1 EP 0366883B1 EP 89114779 A EP89114779 A EP 89114779A EP 89114779 A EP89114779 A EP 89114779A EP 0366883 B1 EP0366883 B1 EP 0366883B1
Authority
EP
European Patent Office
Prior art keywords
cage body
carrier frame
horizontal
compartment
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89114779A
Other languages
German (de)
French (fr)
Other versions
EP0366883A1 (en
Inventor
Aimé Michel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Priority to AT89114779T priority Critical patent/ATE88679T1/en
Publication of EP0366883A1 publication Critical patent/EP0366883A1/en
Application granted granted Critical
Publication of EP0366883B1 publication Critical patent/EP0366883B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/3476Load weighing or car passenger counting devices
    • B66B1/3484Load weighing or car passenger counting devices using load cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/02Cages, i.e. cars
    • B66B11/026Attenuation system for shocks, vibrations, imbalance, e.g. passengers on the same side
    • B66B11/0293Suspension locking or inhibiting means to avoid movement when car is stopped at a floor

Definitions

  • the present invention relates to a method and a device for carrying out the method for vibration absorption in high-speed elevators of a car body with low friction in a support frame, by means of which the horizontal drift of the car body is made possible and influenced.
  • a system is known from US Pat. No. 4,660,682, in which the lower part of the cabin is horizontally movably supported in all directions on roller or slide guides and the upper part is held in a central position between the supporting frame and the cabin by means of damping elements.
  • the horizontal deflection of the lower part of the cabin takes place against spring forces that center the cabin.
  • a mechanical stop centering is provided, which consists of the actuating cylinder and levers.
  • the intervention of the mechanical centering device can transmit noise and impacts to the cabin.
  • the deflection of the lower part of the cabin corresponds to a pendulum movement, which means that every point on the underside of the cabin moves on a circular line around the center of rotation of the top of the cabin. This in turn means that in particular the outer points on the underside of the cabin have to make a corresponding vertical movement.
  • this gives undesirable effects, such as unilateral lifting or canting.
  • the centering springs still transmit shocks to the cabin body and its range of motion is relatively limited.
  • the present invention has for its object to provide a method and an apparatus with which all horizontal bumps, unnoticed by the elevator passengers, are absorbed only by the support frame during travel and with which, despite a small air gap, large deflections of the support frame relative to the car body are possible.
  • FIG. 1 shows an elevator car 13 with a car body 1 in a support frame 12, which has side plates 4, a lower yoke 2 and an upper yoke 3.
  • the cabin body 1 rests on three oil slide cushion units 5 and is actuated by actuating cylinders 6, which on the one hand are rotatably attached to the lower yoke 2 and on the other hand engage at three points on the underside of the cabin body 1, in different horizontal directions Positions brought.
  • actuating cylinders 6 which on the one hand are rotatably attached to the lower yoke 2 and on the other hand engage at three points on the underside of the cabin body 1, in different horizontal directions Positions brought.
  • Position transmitter 9 are shown between the car body 1 and side plates 4.
  • a mechanical fixing unit 10 is also located laterally between the cabin body 1 and the side plate 4.
  • a hydraulic unit 7 with a control block 7.1 and an electrical control unit 8 are accommodated.
  • the geometrical arrangement of the oil slide cushion units 5 and the actuating cylinder 6 can be seen from FIG.
  • the oil slide cushion units 5 are arranged in a triangular shape with three pieces, the lower side with two oil slide cushion units 5 being the entrance side of the cabin.
  • the three actuating cylinders 6 are arranged in a triangle for the purpose of mastering all positioning directions.
  • FIG. 3 shows the interaction of the functional units 1 to 10 shown in FIG. 1 plus an elevator control, designated 11, which supplies the primary control signals.
  • a motor 7.3 drives a hydraulic pump 7.2 with a constant displacement and a current direction.
  • An outgoing pressure line 7.5 feeds the functional units oil slide cushion units 5, actuating cylinders 6 and mechanical fixing units 10.
  • the control block 7.1 shown in FIG. 1 is broken down here into the control valves and orifices functionally assigned to the individual functional units.
  • 6.9 is a 4/3-way valve
  • 6.5 is a 2/2-way valve
  • 10.6 is a 4/2-way valve
  • 6.8 is an electrically controlled orifice
  • 10.9 is a fixed orifice.
  • the two 4/3-way valves 6.9 each have an actuating magnet 6.10 and an actuating magnet 6.11.
  • the valve positions shown show the stable return springs, not shown generated rest position in the de-energized state.
  • the two 2/2-way valves 6.5 each have a return spring 6.7 and an actuating magnet 6.6
  • the 4/2-way valve 10.6 has a return spring 10.8 and an actuating magnet 10.7.
  • the actuating magnets 6.10, 6.11, 6.6 and 10.7 and the electrically controlled orifices 6.8 are each connected to an electrical control line 7.8.
  • 7.7 is an electrical feed line for the motor 7.3.
  • a return line 7.6 leads drain and / or return oil from the functional groups back into a tank 7.4.
  • the actuating cylinders 6 are designed as double-acting hydraulic cylinders and consist of a cylinder housing 6.1 provided with two connection openings, which is connected with a joint 6.4 to the lower yoke 2 and a piston 6.2 with a piston rod 6.3, which in turn is connected in an articulated manner to the cabin body 1 .
  • the third actuating cylinder 6 is not shown in order to simplify the hydraulic diagram.
  • the outlet sides of the 4/3-way valves 6.9 are connected to the two connection openings on the cylinder housings 6.1 by two oil lines 6.12 and 6.13.
  • a cross connection 6.14 between the two oil lines leads via an electrically controlled orifice 6.8 and a 2/2-way valve 6.5.
  • a signal line 9.6 is connected to the position transmitters 9, which represent the respective horizontal position of the cabin body 1.
  • the oil slide cushion unit 5 consists of a horizontal slide plate 5.1 provided with a vertical edge, a slide shoe 5.2 and a dust protection membrane 5.3.
  • An oil cushion zone is designated with 5.6, an oil inlet opening with 5.4 and an oil outlet opening with 5.5.
  • Slide shoes 5.2 are attached to the underside of the cabin body 1.
  • the mechanical fixing units 10 each consist of a cylinder housing 10.10, which is attached to the side plate 4, a compression spring 10.1, a piston 10.2 and one its lower end, for example, a conical piston rod 10.3, which in turn dips into a suitable opening 10.5 of a tab 10.4 fastened to the cabin body 1.
  • FIG. 5 shows a side view of one of the two position transmitters 9.
  • a transmitter part 9.1 connected to the car body 1 sends a light beam 9.2 through a space 9.6 to a light sensor plate 9.3 which is attached to the side plate 4 of the support frame 12.
  • FIG. 6 shows the light sensor plate 9.3 in one embodiment.
  • the sensor surface is divided into five circular rings K1 to K5 and these in turn into the eight circular segments KS1 to KS8.
  • a light spot LF generated by the light beam 9.2 has a diameter of, for example, twice the size of the spaces between the circular rings K1 to K8 or between the circular segments KS1 to KS8.
  • Two marked position points are called PS for stop position and PF for travel position.
  • the individual sensor segments are designated 9.7.
  • FIGS. 7 and 8 show typical functional sequences, the course of which can be read directly from the functional blocks. The operations contained therein are explained in more detail below.
  • the device for carrying out the method shown in the figures and described above works as follows:
  • the device generally works according to the known principle of the friction-free horizontal movement of loads on oil, water, magnetic or air cushions.
  • the cabin body 1 is supported on three oil slide cushion units 5, which are arranged in a triangular shape on a horizontal plane. Three support points are advantageously chosen in order to support all Oil slide cushion units 5 to obtain the same high oil cushion zones 5.6.
  • the oil cushion is created when the hydraulic pump 7.2 pumps with constant displacement through the opening 5.4 pressure oil into the oil cushion zone 5.6 between the sliding plate 5.1 and the slide shoe 5.2.
  • Volume regulators (not shown) in the feed lines to the inlet openings 5.4 ensure that the oil cushions in all three oil slide cushion units 5 take place simultaneously and uniformly.
  • the functional units 5, 6, 7, 9 and 10 shown in FIG. 4 are controlled by the electrical control unit 8, which in turn receives and processes signals from the elevator control 11 and the position transmitters 9.
  • the essential elements of the electrical control unit 8 are a computer system with corresponding control and regulator programs and an interface group for signal and data input / output as well as amplifier stages for controlling the solenoid coils of the valves and contactors.
  • the elevator control 11 supplies the signals travel command, deceleration command and actual speed value.
  • the electrical control unit 8 supplies status signals of the device to the elevator control 11.
  • These status signals contain the information car body 1 mechanically fixed / not fixed, oil cushion / no oil cushion and that of the exact current position of the car body 1. The latter is dependent on the two one side of the cabin body 1 attached position signaling 9 signals.
  • the horizontal position of each side of the cabin body 1 is transmitted to the light sensor plate 9.3 with a light beam 9.2.
  • the projected light spot LF illuminates partial areas of one or more or a maximum of four sensor segments 9.7.
  • the partially illuminated sensor segments 9.7 give corresponding active electrical signals to the electrical control unit 8.
  • the address of a segment 9.7 can be, for example, K3 / KS3 and thus announces that that sensor segment 9.7 of the circular ring K3 is meant in the circular segment KS3.
  • the sensor segments 9.7 are arranged in matrix form.
  • the PF position is in the center and further out, for example between K3 and K4 or between KS4 and KS5 the Stop PS position. These two position points are local setpoints and correspond to the two operating states of the elevator: travel and standstill.
  • the driving position PF is assumed while driving, whereby the cabin body 1 is spaced a few centimeters from the door-side shaft fittings and thus has the necessary scope to absorb the horizontal bumps.
  • the active displacement of the car body 1 into certain horizontal positions takes place by means of the diagonally arranged actuating cylinders 6.
  • the first operating mode is called forced positioning.
  • the control valves 6.5 in the cross-connections 6.14 remain in the closed position shown in FIG. 4, and the movements of the pistons 6.2 inevitably take place in accordance with the respective position of the control valve 6.9 and the volume flow size in the individual feed lines.
  • the cabin body 1 is only horizontally displaced when it is floating or when the oil pads are present in the oil slide pad units 5.
  • the second operating mode is called slip positioning.
  • the control valves 6.5 are opened, and depending on the position of the electrically controlled orifices 6.8, when the actuating cylinders 6 are actuated, a corresponding parallel current is produced in the cross-connections 6.14, which reduces the actuating force of the actuating cylinders to the required extent.
  • the slip positioning has the task of keeping the floating car body 1 in position PF while driving against horizontal drift forces with minimal actuating force. Horizontal impacts are conducted by the quasi free-running pistons into the open parallel oil flow circuits of the cross-connections 6.14 and are no longer noticeable within the cabin body because only a relative movement of the support frame 12 to the cabin body 1 takes place.
  • the pistons 6.2 have non-contact baffle seals and the piston rod bushings on the cylinder housings 6.1 are also provided with non-contact baffle seals and a linear roller bearing. If a permanent displacement of the horizontal position is signaled after horizontal impacts, the position is corrected to the position points PF with a slightly increased actuating force. The The size of the actuating force depends on the respective opening widths of the electrically controlled orifices 6.8. Regardless of the operating mode, the direction of adjustment results from the position of the control valves 6.9.
  • the required manipulated variable, actuating force, actuating direction and actuating speed must be calculated from the combined signals from the position transmitter 9 in the electrical control unit 8.
  • the actuating force magnitude and the actuating speed have, for example, a progressive characteristic which is dependent on the radial deviation from the point PF. This is intended to prevent the vertical edge of the sliding plate 5.1 from being touched by the sliding foot 5.2 once each time there are repeated impacts displacing the supporting frame 12 in the same direction.
  • the actuating force when entering a floor is increased in a quadratic manner depending on the driving speed in order to control the position point PS in this phase and to gradually switch to the inevitable operating mode.
  • the inevitable operating mode is used for the concrete positioning and the stable holding of the still floating car body 1 in position PS when entering a floor or immediately before the mechanical fixing of the car body 1 in the support frame 12.
  • the latter is done by the mechanical fixing units 10 and takes place before the mechanical Coupling the cabin with the landing door instead.
  • the control valve 10.6 is brought into that position shown in FIG. 4 by switching off the actuating magnet 10.7.
  • the compression spring 10.1 can now push the piston 10.3 down and the displaced oil flows through the orifice 10.9 and the return line 7.6 into the tank 7.6.
  • the conical ends of the piston rods 10.3 dip into the openings 10.5 of the tabs 10.4 on the cabin body 1 and hold it immovably in the position determined thereby.
  • FIGS. 7 and 8 The chronological sequence of the individual functions described above during normal elevator travel is shown in FIGS. 7 and 8.
  • the method and the device available for exercising it begin to work at the moment when there is an active travel command from the elevator control 11 when the door is closed and locked (FIG. 7).
  • Due to the running hydraulic pump 7.2 the cabin body 1 is lifted to the floating level by the oil cushion that is created, the pistons 10.3 of the mechanical fixing unit 10 are pushed up, which removes the mechanical fixation of the cabin body 1 in the support frame 12, and the actuating cylinder 6 inevitably positions the cabin body 1 to the position points PF.
  • the actuating cylinders 6 When these position points PF are reached - the cabin has now started to move - the actuating cylinders 6 are switched to the slip positioning operating mode.
  • the transition from the "forced positioning" mode to the "slip positioning” mode is smooth and begins before the position points PF are reached. While driving, the device works as already described.
  • the next phase begins with the arrival of the deceleration command (FIG. 8), which results in a deceleration until the elevator comes to a standstill.
  • the positioning force of the actuating cylinders 6 increases quadratically with the decrease in speed, which means a gradual transition from the slip positioning to the inevitable positioning. For example, 2 meters in front of the target floor the displacement of the car body 1 to the position points PS made. This shift must be completed, for example, 1 meter in front of the target floor, because now, before the doors are coupled, the car body 1 must be firmly placed on the base and mechanically fixed, which is done by stopping the hydraulic pump 7.2.
  • the positions PS are now maintained until the next trip.
  • the position PS must be taken as late as possible in order to get the car body 1 as close as possible to the shaft wall and thus to reduce the air gap.
  • the supply lines from the pressure line 7.5 to the individual functional units contain, in a further developed form, pressure and quantity-regulating elements and / or check valves, which have not yet been shown, in order to optimize the controlled functions.
  • separate hydraulic pumps 7.2 are provided with adapted characteristics for the individual functional units. It is also possible to carry out the method with a pneumatic device or to use different media, oil and air with the devices required for the individual functional units. Likewise, a method and a device with magnetic cushions from mutually repelling electro and / or permanent magnets is possible according to the principle of magnetic levitation trains. It offers for the horizontal displacement of the cabin body 1 of the linear motor.
  • the electrical control of the hydraulic device according to FIG. 4 can also be carried out by means of an electrical-hydraulic-fluidic analogy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Structural Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Civil Engineering (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)
  • Body Structure For Vehicles (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

The invention relates to a method and a device for carrying out the process for absorbing the vibrations of the compartments (1) of fast moving lifts by low-friction horizontal bearing of the compartment (1) in the support frame (12). The compartment (1) is mounted on the lower yoke (2) of the support frame (12) on, for example, three floating oil cushion units (5) and are held in a floating position during travel. In this case, only the support frame (12) executes the horizontal impact movements generated by the guide rails whereas the compartment (1) remains still as a result of its mass inertia and the friction- free mounting. Operating cylinders (6) displace the floating compartment (1) into various positions: into a position more remote from the door-side shaft wall during travel for the purpose of increasing the sphere of movement and into a position nearer to the shaft wall when arriving at a floor destination, a mechanical fastening of the compartment (1) in the support frame (12) taking place prior to the mechanical door coupling. <IMAGE>

Description

Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zur Durchführung des Verfahrens für die Schwingungsabsorbierung bei schnelllaufenden Aufzügen eines, in einem Tragrahmen reibungsarm gelagerten Kabinenkörpers, durch welche die horizontale Drift des Kabinenkörpers ermöglicht und beeinflusst wird.The present invention relates to a method and a device for carrying out the method for vibration absorption in high-speed elevators of a car body with low friction in a support frame, by means of which the horizontal drift of the car body is made possible and influenced.

Die hohen Ansprüche an den Fahrkomfort bei schnellaufenden Aufzügen können von der Antriebsseite her mit den heutigen Mitteln und Verfahren sehr gut erfüllt werden. Hingegen kann die mit vertretbarem Aufwand erreichbare Montagegenauigkeit bei den Führungsschienen für Aufzüge im Geschwindigkeitsbereich von beispielsweise 5 bis 10 m/s die dieser Aufzugsklasse entsprechenden Fahrkomfortansprüche nicht mehr erfüllen. Die Fahrkomfortbeeinträchtigung manifestiert sich dabei durch unangenehme horizontale Stösse bei kleinsten örtlichen Abweichungen von der Vertikalen bei den Führungsschienen und deren Verbindungsstellen. Dazu kommt, dass sich die erwähnte mechanisch bedingte Störung des Fahrkomforts im Quadrat zur gefahrenen Geschwindigkeit grösser bemerkbar macht.The high demands on driving comfort with high-speed elevators can be met very well from the drive side with today's means and methods. On the other hand, the mounting accuracy of the guide rails for elevators in the speed range of 5 to 10 m / s, which can be achieved with reasonable effort, can no longer meet the driving comfort requirements corresponding to this elevator class. The impairment of driving comfort manifests itself in the form of unpleasant horizontal impacts with the smallest local deviations from the vertical in the guide rails and their connecting points. In addition, the above-mentioned mechanically caused disruption of driving comfort is more noticeable in relation to the speed traveled.

Es ist allgemein bekannt, zur Lösung dieses Problems vibrationsdämpfende Elemente verschiedenster Art und an verschiedenen Stellen zwischen Kabinenkörper und Tragrahmen vorzusehen. Bei dieser Art der Schwingungsdämpfung ist ein Kompromiss zwischen weicher und harter Dämpfung einzugehen, wobei harte Dämpfung den Fahrkomfort schmälert und die weiche Dämpfung zuviel Querauslenkung des Kabinenkörpers mit entsprechenden Folgen verursachen kann.It is generally known to provide vibration-damping elements of various types and at different locations between the car body and the support frame to solve this problem. With this type of vibration damping, a compromise has to be made between soft and hard damping, whereby hard damping reduces driving comfort and the soft damping can cause too much transverse deflection of the cabin body with corresponding consequences.

Mit der US-Patentschrift Nr. 4,660,682 ist ein System bekannt geworden, bei welchem der untere Teil der Kabine horizontal in allen Richtungen auf Rollen- oder Gleitführungen beweglich gelagert ist und der obere Teil mittels Dämpfungselementen zwischen Tragrahmen und Kabine in einer Mittellage gehalten wird. Die horizontale Auslenkung des Kabinenunterteiles erfolgt gegen, die Kabine zentrierende, Federkräfte. Zusätzlich zur Feder-Zentrierung ist eine mechanische Anschlagzentrierung vorgesehen, welche aus Betätigungszylinder und Hebeln besteht.A system is known from US Pat. No. 4,660,682, in which the lower part of the cabin is horizontally movably supported in all directions on roller or slide guides and the upper part is held in a central position between the supporting frame and the cabin by means of damping elements. The horizontal deflection of the lower part of the cabin takes place against spring forces that center the cabin. In addition to the spring centering, a mechanical stop centering is provided, which consists of the actuating cylinder and levers.

Das Eingreifen der mechanischen Zentriereinrichtung kann Geräusche und Schläge auf die Kabine übertragen. Das Auslenken des Kabinenunterteiles entspricht einer Pendelbewegung, was bedeutet, dass sich jeder Punkt auf der Kabinenunterseite auf einer Kreislinie um das Drehzentrum Kabinenoberseite bewegt. Dies wiederum hat zur Folge, dass insbesondere die äusseren Punkte der Kabinenunterseite eine entsprechende Vertikalbewegung machen müssen. Das ergibt, angesichts der in vertikaler Richtung starren Lagerung bei Gleit- oder Rollenlagerung, unerwünschte Effekte, wie z.B. einseitiges Abheben oder Verkanten. Bei der beschriebenen Art der Kabinenlagerung ist zudem die Integration einer Lastmessung schwierig. Die zentrierenden Federn übertragen immer noch Stösse auf den Kabinenkörper und dessen Bewegungsspielraum ist relativ beschränkt.The intervention of the mechanical centering device can transmit noise and impacts to the cabin. The deflection of the lower part of the cabin corresponds to a pendulum movement, which means that every point on the underside of the cabin moves on a circular line around the center of rotation of the top of the cabin. This in turn means that in particular the outer points on the underside of the cabin have to make a corresponding vertical movement. In view of the rigid storage in the vertical direction in the case of sliding or roller bearings, this gives undesirable effects, such as unilateral lifting or canting. With the described type of cabin storage, the integration of a load measurement is also difficult. The centering springs still transmit shocks to the cabin body and its range of motion is relatively limited.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zu schaffen, womit alle horizontalen Stösse, von den Aufzugspassagieren unbemerkt, nur vom Tragrahmen während der Fahrt aufgefangen werden und womit trotz kleinem Antrittsluftspalt grosse Auslenkungen des Tragrahmens relativ zum Kabinenkörper möglich sind.The present invention has for its object to provide a method and an apparatus with which all horizontal bumps, unnoticed by the elevator passengers, are absorbed only by the support frame during travel and with which, despite a small air gap, large deflections of the support frame relative to the car body are possible.

Diese Aufgabe wird durch die im ersten und im sechsten Anspruch gekennzeichnete Erfindung gelöst.This object is achieved by the invention characterized in the first and in the sixth claims.

Die durch die Erfindung erreichten Vorteile sind im wesentlichen darin zu sehen, dass eine reibungsfreie Horizontallagerung des Kabinenkörpers im Tragrahmen eine Uebertragung horizontaler Stösse auf diesen unmöglich macht, dass grosse relative Auslenkmöglichkeiten des Kabinenkörpers das System für sehr hohe Fahrgeschwindigkeiten tauglich machen und dass beim Einfahren in ein Zielstockwerk durch geeignete Massnahme eine präzise und zuverlässige Schachttürkupplung garantiert wird.The advantages achieved by the invention are essentially to be seen in the fact that a friction-free horizontal mounting of the cabin body in the supporting frame makes it impossible to transmit horizontal impacts thereon, that large relative possibilities of deflecting the cabin body make the system suitable for very high driving speeds and that when entering a vehicle Target floor guarantees a precise and reliable landing door coupling through suitable measures.

In den Zeichnungen ist ein Ausführungsbeispiel des Erfindungsgegenstandes dargestellt und es zeigen:

Fig. 1
eine Gesamtansicht,
Fig. 2
eine Draufsicht,
Fig. 3
die Funktionsblöcke,
Fig. 4
das hydraulische System,
Fig. 5
den Positionsgeber,
Fig. 6
eine Sensorplatte,
Fig. 7
ein erster Funktionsablauf und
Fig. 8
ein zweiter Funktionsablauf.
An exemplary embodiment of the subject matter of the invention is shown in the drawings, in which:
Fig. 1
an overall view,
Fig. 2
a top view,
Fig. 3
the function blocks,
Fig. 4
the hydraulic system,
Fig. 5
the position transmitter,
Fig. 6
a sensor plate,
Fig. 7
a first functional sequence and
Fig. 8
a second functional sequence.

Die Figur 1 zeigt eine Aufzugskabine 13 mit einem Kabinenkörper 1 in einem Tragrahmen 12, welcher Seitenschilder 4, ein unteres Joch 2 und ein oberes Joch 3 aufweist. Der Kabinenkörper 1 ruht auf drei Oelgleitkisseneinheiten 5 und wird von Betätigungszylindern 6, welche einerseits am unteren Joch 2 drehbar befestigt sind und anderseits an drei Punkten an der Unterseite des Kabinenkörpers 1 angreifen, in verschiedene horizontale Positionen gebracht. In der Figur 1 sind zwei der drei Betätigungszylinder 6 dargestellt. Positionsgeber 9 sind zwischen Kabinenkörper 1 und Seitenschilder 4 dargestellt. Je eine mechanische Fixiereinheit 10 befindet sich ebenfalls seitlich zwischen Kabinenkörper 1 und Seitenschild 4. Im Bereich des unteren Joches 2 ist ein Hydraulikaggregat 7 mit einem Steuerblock 7.1 sowie eine elektrische Steuereinheit 8 untergebracht.FIG. 1 shows an elevator car 13 with a car body 1 in a support frame 12, which has side plates 4, a lower yoke 2 and an upper yoke 3. The cabin body 1 rests on three oil slide cushion units 5 and is actuated by actuating cylinders 6, which on the one hand are rotatably attached to the lower yoke 2 and on the other hand engage at three points on the underside of the cabin body 1, in different horizontal directions Positions brought. In Figure 1, two of the three actuating cylinders 6 are shown. Position transmitter 9 are shown between the car body 1 and side plates 4. A mechanical fixing unit 10 is also located laterally between the cabin body 1 and the side plate 4. In the area of the lower yoke 2, a hydraulic unit 7 with a control block 7.1 and an electrical control unit 8 are accommodated.

Aus der Fig. 2 ist die geometrische Anordnung der Oelgleitkisseneinheiten 5 und der Betätigungszylinder 6 ersichtlich. Die Oelgleitkisseneinheiten 5 sind mit drei Stück in Dreiecksform angeordnet, wobei die untere Seite mit zwei Oelgleitkisseneinheiten 5 die Eingangsseite der Kabine ist. Die drei Betätigungszylinder 6 sind, zwecks Beherrschung aller Positionierrichtungen, im Dreieck angeordnet.The geometrical arrangement of the oil slide cushion units 5 and the actuating cylinder 6 can be seen from FIG. The oil slide cushion units 5 are arranged in a triangular shape with three pieces, the lower side with two oil slide cushion units 5 being the entrance side of the cabin. The three actuating cylinders 6 are arranged in a triangle for the purpose of mastering all positioning directions.

Das in Fig. 3 dargestellte Blockschaltbild zeigt das Zusammenwirken der in Fig. 1 aufgeführten Funktionseinheiten 1 bis 10 plus eine mit 11 bezeichnete Aufzugssteuerung, welche die primären Steuersignale liefert.The block diagram shown in FIG. 3 shows the interaction of the functional units 1 to 10 shown in FIG. 1 plus an elevator control, designated 11, which supplies the primary control signals.

In der Figur 4 wird das ganze Hydrauliksystem mit den wesentlichen Einzelheiten erläutert. Ein Motor 7.3 treibt eine Hydropumpe 7.2 mit konstantem Verdrängungsvolumen und einer Stromrichtung an. Eine abgehende Druckleitung 7.5 speist die Funktionseinheiten Oelgleitkisseneinheiten 5, Betätigungszylinder 6 und mechanische Fixiereinheiten 10. Der in Fig. 1 vorhandene Steuerblock 7.1 ist hier in die den einzelnen Funktionseinheiten funktionell zugeordneten Steuerventile und Blenden aufgegliedert. Dabei ist 6.9 ein 4/3-Wegeventil, 6.5 ein 2/2-Wegeventil, 10.6 ein 4/2-Wegeventil, 6.8 eine elektrisch gesteuerte Blende und 10.9 eine feste Blende. Die beiden 4/3-Wegeventile 6.9 besitzen je einen Betätigungsmagnet 6.10 und einen Betätigungsmagnet 6.11. Die dargestellten Ventilstellungen zeigen die stabile, durch nicht dargestellte Rückstellfedern erzeugte Ruhelage im stromlosen Zustand. Die beiden 2/2-Wegeventile 6.5 besitzen je eine Rückstellfeder 6.7 und je einen Betätigungsmagnet 6.6 und das 4/2-Wegeventil 10.6 eine Rückstellfeder 10.8 und je einen Betätigungsmagnet 10.7. Die Betätigungsmagnete 6.10, 6.11, 6.6 und 10.7 sowie die elektrisch gesteuerten Blenden 6.8 sind je mit einer elektrischen Steuerleitung 7.8 verbunden. 7.7 ist eine elektrische Speiseleitung für den Motor 7.3. Eine Rücklaufleitung 7.6 führt Ablass- und/oder Rücklauföl von den Funktionsgruppen zurück in einen Tank 7.4. Die Betätigungszylinder 6 sind als doppelt wirkende Hydraulikzylinder ausgebildet und bestehen aus einem mit zwei Anschlussöffnungen versehenen Zylindergehäuse 6.1, welches mit einem Gelenk 6.4 mit dem unteren Joch 2 verbunden ist und einem Kolben 6.2 mit einer Kolbenstange 6.3, welche ihrerseits mit dem Kabinenkörper 1 gelenkig verbunden ist. Der dritte Betätigungszylinder 6 ist, zwecks Vereinfachung des Hydraulikschemas, nicht dargestellt.The entire hydraulic system is explained with the essential details in FIG. A motor 7.3 drives a hydraulic pump 7.2 with a constant displacement and a current direction. An outgoing pressure line 7.5 feeds the functional units oil slide cushion units 5, actuating cylinders 6 and mechanical fixing units 10. The control block 7.1 shown in FIG. 1 is broken down here into the control valves and orifices functionally assigned to the individual functional units. 6.9 is a 4/3-way valve, 6.5 is a 2/2-way valve, 10.6 is a 4/2-way valve, 6.8 is an electrically controlled orifice and 10.9 is a fixed orifice. The two 4/3-way valves 6.9 each have an actuating magnet 6.10 and an actuating magnet 6.11. The valve positions shown show the stable return springs, not shown generated rest position in the de-energized state. The two 2/2-way valves 6.5 each have a return spring 6.7 and an actuating magnet 6.6, and the 4/2-way valve 10.6 has a return spring 10.8 and an actuating magnet 10.7. The actuating magnets 6.10, 6.11, 6.6 and 10.7 and the electrically controlled orifices 6.8 are each connected to an electrical control line 7.8. 7.7 is an electrical feed line for the motor 7.3. A return line 7.6 leads drain and / or return oil from the functional groups back into a tank 7.4. The actuating cylinders 6 are designed as double-acting hydraulic cylinders and consist of a cylinder housing 6.1 provided with two connection openings, which is connected with a joint 6.4 to the lower yoke 2 and a piston 6.2 with a piston rod 6.3, which in turn is connected in an articulated manner to the cabin body 1 . The third actuating cylinder 6 is not shown in order to simplify the hydraulic diagram.

Die Ausgangsseiten der 4/3-Wegeventile 6.9 sind mit zwei Oelleitungen 6.12 und 6.13 je mit den beiden Anschlussöffnungen an den Zylindergehäusen 6.1 verbunden. Je eine Querverbindung 6.14 zwischen den beiden Oelleitungen führt über eine elektrisch gesteuerte Blende 6.8 und ein 2/2-Wegeventil 6.5. Eine Signalleitung 9.6 ist mit den Positionsgebern 9, welche die jeweilige Horizontalposition des Kabinenkörpers 1 wiedergeben, verbunden. Die Oelgleitkisseneinheit 5 besteht aus einem horizontalen, mit einem vertikalen Rand versehenen Gleitteller 5.1, einem Gleitschuh 5.2 und einer Staubschutzmembrane 5.3. Eine Oelkissenzone ist mit 5.6, eine Oeleintrittsöffnung mit 5.4 und eine Oelaustrittsöffnung mit 5.5 bezeichnet. Gleitschuhe 5.2 sind an der Unterseite des Kabinenkörpers 1 angebracht.The outlet sides of the 4/3-way valves 6.9 are connected to the two connection openings on the cylinder housings 6.1 by two oil lines 6.12 and 6.13. A cross connection 6.14 between the two oil lines leads via an electrically controlled orifice 6.8 and a 2/2-way valve 6.5. A signal line 9.6 is connected to the position transmitters 9, which represent the respective horizontal position of the cabin body 1. The oil slide cushion unit 5 consists of a horizontal slide plate 5.1 provided with a vertical edge, a slide shoe 5.2 and a dust protection membrane 5.3. An oil cushion zone is designated with 5.6, an oil inlet opening with 5.4 and an oil outlet opening with 5.5. Slide shoes 5.2 are attached to the underside of the cabin body 1.

Die mechanischen Fixiereinheiten 10 bestehen je aus einem Zylindergehäuse 10.10, welches am Seitenschild 4 befestigt ist, einer Druckfeder 10.1, einem Kolben 10.2 und einer an ihrem unteren Ende beispielsweise konisch ausgebildeten Kolbenstange 10.3, welche ihrerseits je in eine passende Oeffnung 10.5 einer am Kabinenkörper 1 befestigten Lasche 10.4 hineintaucht.The mechanical fixing units 10 each consist of a cylinder housing 10.10, which is attached to the side plate 4, a compression spring 10.1, a piston 10.2 and one its lower end, for example, a conical piston rod 10.3, which in turn dips into a suitable opening 10.5 of a tab 10.4 fastened to the cabin body 1.

Die Figur 5 zeigt als Seitenansicht einen der beiden Positionsgeber 9. Ein mit dem Kabinenkörper 1 verbundener Senderteil 9.1 sendet einen Lichtstrahl 9.2 über einen Zwischenraum 9.6 zu einer Lichtsensorplatte 9.3, welche am Seitenschild 4 des Tragrahmens 12 befestigt ist.FIG. 5 shows a side view of one of the two position transmitters 9. A transmitter part 9.1 connected to the car body 1 sends a light beam 9.2 through a space 9.6 to a light sensor plate 9.3 which is attached to the side plate 4 of the support frame 12.

In der Figur 6 ist die Lichtsensorplatte 9.3 in einem Ausführungsbeispiel dargestellt. Die Sensorfläche ist in fünf Kreisringe K1 bis K5 aufgeteilt und diese ihrerseits in die acht Kreissegmente KS1 bis KS8. Ein vom Lichtstrahl 9.2 erzeugter Lichtfleck LF weist einen Durchmesser von beispielsweise doppelter Grösse der vorhandenen Zwischenräume zwischen den Kreisringen K1 bis K8 bzw. zwischen den Kreissegmenten KS1 bis KS8 auf. Zwei markierte Positionspunkte heissen PS für Position Stop und PF für Position Fahrt. Die einzelnen Sensorsegmente sind mit 9.7 bezeichnet.FIG. 6 shows the light sensor plate 9.3 in one embodiment. The sensor surface is divided into five circular rings K1 to K5 and these in turn into the eight circular segments KS1 to KS8. A light spot LF generated by the light beam 9.2 has a diameter of, for example, twice the size of the spaces between the circular rings K1 to K8 or between the circular segments KS1 to KS8. Two marked position points are called PS for stop position and PF for travel position. The individual sensor segments are designated 9.7.

Die Figuren 7 und 8 zeigen typische Funktionsabläufe, deren Verlauf direkt aus den Funktionsblöcken ablesbar sind. Die darin enthaltenen Operationen sind im folgenden näher erläutert.FIGS. 7 and 8 show typical functional sequences, the course of which can be read directly from the functional blocks. The operations contained therein are explained in more detail below.

Die in den Figuren dargestellte und vorstehend beschriebene Vorrichtung für die Ausübung des Verfahrens arbeitet wie folgt: Die Vorrichtung funktioniert generell nach dem an sich bekannten Prinzip der reibungsfreien horizontalen Lastenbewegung auf Oel-, Wasser-, Magnet- oder Luftkissen. Bei der beschriebenen Vorrichtung ist der Kabinenkörper 1 auf drei Oelgleitkisseneinheiten 5, welche auf einer horizontalen Ebene in Dreiecksform angeordnet sind, abgestützt. Es werden vorteilhaft drei Abstützpunkte gewählt, um bei allen Oelgleitkisseneinheiten 5 möglichst gleich hohe Oelkissenzonen 5.6 zu erhalten. Das Oelkissen entsteht dort, wenn von der Hydropumpe 7.2 mit konstantem Verdrängungsvolumen durch die Oeffnung 5.4 Drucköl in die Oelkissenzone 5.6 zwischen Gleitteller 5.1 und Gleitschuh 5.2 gepumpt wird. Nicht dargestellte Volumenregler in den Zuleitungen zu den Eintrittsöffnungen 5.4 sorgen dafür, dass die Oelkissen bei allen drei Oelgleitkisseneinheiten 5 gleichzeitig und gleichmässig erfolgen. Das aus der Oelkissenzone seitlich herausgedrückte Oel fliesst über die Rücklaufleitung 7.6 zum Tank 7.4 zurück. Die lichten Weiten des Rückflusssystems sind so dimensioniert, dass in den Gleittellern 5.1 kein Stau entsteht. Wird die Hydropumpe 7.2 durch Abschalten des Motors 7.3 stillgesetzt, sinkt der Kabinenkörper 1 sofort ab und steht fest mit den Gleitschuhen 5.2 auf den Gleittellern 5.1. Die Hydropumpe 7.2 wird vorteilhaft als nicht zu schnell laufende Mehrkolben- oder Zahnradpumpe ausgebildet.The device for carrying out the method shown in the figures and described above works as follows: The device generally works according to the known principle of the friction-free horizontal movement of loads on oil, water, magnetic or air cushions. In the described device, the cabin body 1 is supported on three oil slide cushion units 5, which are arranged in a triangular shape on a horizontal plane. Three support points are advantageously chosen in order to support all Oil slide cushion units 5 to obtain the same high oil cushion zones 5.6. The oil cushion is created when the hydraulic pump 7.2 pumps with constant displacement through the opening 5.4 pressure oil into the oil cushion zone 5.6 between the sliding plate 5.1 and the slide shoe 5.2. Volume regulators (not shown) in the feed lines to the inlet openings 5.4 ensure that the oil cushions in all three oil slide cushion units 5 take place simultaneously and uniformly. The oil pressed out laterally from the oil cushion zone flows back via the return line 7.6 to the tank 7.4. The clear widths of the return flow system are dimensioned so that there is no jam in the sliding plates 5.1. If the hydraulic pump 7.2 is stopped by switching off the motor 7.3, the cabin body 1 sinks immediately and stands firmly with the slide shoes 5.2 on the sliding plates 5.1. The hydraulic pump 7.2 is advantageously designed as a multi-piston or gear pump that does not run too fast.

Bei laufender Hydropumpe 7.2 stösst der, unter anderem durch den Widerstand der Oelkissenbildung entstehende, Systemdruck in der Druckleitung 7.5 die Kolben 10.2 in den mechanischen Fixiereinheiten 10 gegen die Druckfedern 10.1 an den oberen Anschlag in den Zylindergehäusen 10.10. Dabei tauchen die Kolbenstangen 10.3 mit ihren konisch ausgebildeten Enden aus den Oeffnungen 10.5 in den Laschen 10.4 und heben damit die mechanische Fixierung des Kabinenkörpers 1 mit den Seitenschildern 4 des Tragrahmens 12 auf. Die Steuerung der in der Figur 4 gezeigten Funktionseinheiten 5, 6, 7, 9 und 10 erfolgt durch die elektrische Steuereinheit 8, welche ihrerseits Signale von der Aufzugssteuerung 11 und den Positionsgebern 9 empfängt und verarbeitet. Die wesentlichen Elemente der elektrischen Steuereinheit 8 sind ein Rechnersystem mit entsprechenden Steuer- und Reglerprogrammen und eine Interface-Gruppe für Signal- und Daten-Ein/Ausgabe sowie Verstärkerstufen für die Ansteuerung der Magnetspulen der Ventile und Schütze.When the hydraulic pump 7.2 is running, the system pressure in the pressure line 7.5 which arises, inter alia, due to the resistance of the oil cushion formation, pushes the pistons 10.2 in the mechanical fixing units 10 against the compression springs 10.1 against the upper stop in the cylinder housings 10.10. The cone-shaped ends of the piston rods 10.3 emerge from the openings 10.5 in the tabs 10.4 and thus remove the mechanical fixation of the cabin body 1 with the side plates 4 of the support frame 12. The functional units 5, 6, 7, 9 and 10 shown in FIG. 4 are controlled by the electrical control unit 8, which in turn receives and processes signals from the elevator control 11 and the position transmitters 9. The essential elements of the electrical control unit 8 are a computer system with corresponding control and regulator programs and an interface group for signal and data input / output as well as amplifier stages for controlling the solenoid coils of the valves and contactors.

Die Aufzugssteuerung 11 liefert die Signale Fahrbefehl, Verzögerungsbefehl und Geschwindigkeits-Istwert. Umgekehrt liefert die elektrische Steuereinheit 8 Status-Signale der Vorrichtung an die Aufzugssteuerung 11. Diese Statussignale enthalten die Informationen Kabinenkörper 1 mechanisch fixiert/nicht fixiert, Oelkissen/kein Oelkissen und jene der genauen momentanen Position des Kabinenkörpers 1. Letzteres wird von den beiden je an einer Seite des Kabinenkörpers 1 angebrachten Positionsgebern 9 signalisiert. Die horizontale Position jeder Seite des Kabinenkörpers 1 wird mit einem Lichtstrahl 9.2 auf die Lichtsensorplatte 9.3 übertragen. Der projizierte Lichtfleck LF beleuchtet Teilflächen von einem oder mehreren bzw. maximal vier Sensorsegmenten 9.7. Die teilweise angeleuchteten Sensorsegmente 9.7 geben entsprechende aktive elektrische Signale an die elektrische Steuereinheit 8. Die Adresse eines Segmentes 9.7 kann beispielsweise K3/KS3 lauten und gibt so bekannt, dass jenes Sensorsegment 9.7 des Kreisringes K3 im Kreissegment KS3 gemeint ist. In einer weitergebildeten, nicht dargestellten Ausführung, sind die Sensorsegmente 9.7 in Matrixform angeordnet.The elevator control 11 supplies the signals travel command, deceleration command and actual speed value. Conversely, the electrical control unit 8 supplies status signals of the device to the elevator control 11. These status signals contain the information car body 1 mechanically fixed / not fixed, oil cushion / no oil cushion and that of the exact current position of the car body 1. The latter is dependent on the two one side of the cabin body 1 attached position signaling 9 signals. The horizontal position of each side of the cabin body 1 is transmitted to the light sensor plate 9.3 with a light beam 9.2. The projected light spot LF illuminates partial areas of one or more or a maximum of four sensor segments 9.7. The partially illuminated sensor segments 9.7 give corresponding active electrical signals to the electrical control unit 8. The address of a segment 9.7 can be, for example, K3 / KS3 and thus announces that that sensor segment 9.7 of the circular ring K3 is meant in the circular segment KS3. In a further developed embodiment, not shown, the sensor segments 9.7 are arranged in matrix form.

Zwei Positionspunkte sind besonders markiert. Im Zentrum befindet sich die Position Fahrt PF und weiter aussen, beispielsweise zwischen K3 und K4 bzw. zwischen KS4 und KS5 die Position Stop PS. Diese beiden Positionspunkte sind Ortssollwerte und entsprechen den zwei Betriebszuständen des Aufzuges: Fahrt und Stillstand. Bei Stillstand auf Stockwerk wird der Kabinenkörper 1 möglichst nahe zur Schachtwand hin auf die Position Stop PS positioniert und dort mechanisch fixiert zwecks korrekter Türkupplung und kleinem Antrittsluftspalt. Die Position Fahrt PF wird während der Fahrt eingenommen, womit der Kabinenkörper 1 einige Zentimeter von den türseitigen Schachtarmaturen distanziert wird und so den nötigen Spielraum für das Auffangen der horizontalen Stösse erhält. Die aktive Verschiebung des Kabinenkörpers 1 in bestimmte horizontale Positionen erfolgt mittels den diagonal angeordneten Betätigungszylindern 6. Diese funktionieren mit zwei verschiedenen Betriebsarten. Die erste Betriebsart heisst zwangsläufige Positionierung. Bei dieser Betriebsart bleiben die Steuerventile 6.5 in den Querverbindungen 6.14 in der in Figur 4 gezeigten geschlossenen Stellung und die Bewegungen der Kolben 6.2 erfolgen zwangsläufig entsprechend der jeweiligen Stellung des Steuerventiles 6.9 und der Volumenstromgrösse in den einzelnen Zuleitungen. Generell ist zu bemerken, dass eine horizontale Verschiebung des Kabinenkörpers 1 nur dann vorgenommen wird, wenn dieser schwimmt bzw. die Oelkissen in den Oelgleitkisseneinheiten 5 vorhanden sind.Two position points are specially marked. The PF position is in the center and further out, for example between K3 and K4 or between KS4 and KS5 the Stop PS position. These two position points are local setpoints and correspond to the two operating states of the elevator: travel and standstill. When the floor is at a standstill, the car body 1 is positioned as close as possible to the Stop PS position in the shaft wall and mechanically fixed there for the purpose of correct door coupling and a small air gap. The driving position PF is assumed while driving, whereby the cabin body 1 is spaced a few centimeters from the door-side shaft fittings and thus has the necessary scope to absorb the horizontal bumps. The active displacement of the car body 1 into certain horizontal positions takes place by means of the diagonally arranged actuating cylinders 6. These work with two different operating modes. The first operating mode is called forced positioning. In this operating mode, the control valves 6.5 in the cross-connections 6.14 remain in the closed position shown in FIG. 4, and the movements of the pistons 6.2 inevitably take place in accordance with the respective position of the control valve 6.9 and the volume flow size in the individual feed lines. In general, it should be noted that the cabin body 1 is only horizontally displaced when it is floating or when the oil pads are present in the oil slide pad units 5.

Die zweite Betriebsart heisst Schlupfpositionierung. Bei dieser Betriebsart werden die Steuerventile 6.5 geöffnet, wobei abhängig von der Stellung der elektrisch gesteuerten Blenden 6.8 bei der Ansteuerung der Betätigungszylinder 6 ein entsprechender Parallelstrom in der Querverbindungen 6.14 entsteht, welcher im erforderlichen Mass die Stellkraft der Betätigungszylinder herabsetzt. Die Schlupfpositionierung hat die Aufgabe, den schwimmenden Kabinenkörper 1 während der Fahrt gegen horizontale Driftkräfte mit minimalster Stellkraft auf Position PF zu halten. Horizontale Stösse werden von den quasi freilaufenden Kolben in die geöffneten parallelen Oelflusskreise der Querverbindungen 6.14 geleitet und sind innerhalb des Kabinenkörpers nicht mehr spürbar, weil nur eine Relativbewegung des Tragrahmens 12 zum Kabinenkörper 1 stattfindet. In einer beispielhaften, nicht dargestellten Ausführung weisen zwecks Vermeidung jeglicher mechanischen Reibung in den Betätigungszylindern die Kolben 6.2 berührungsfreie Schikanedichtungen auf und sind die Kolbenstangendurchführungen an den Zylindergehäusen 6.1 ebenfalls mit berührungsfreien Schikanedichtungen sowie mit einem Linearwälzlager versehen. Wird nach horizontalen Stössen eine bleibende Versetzung der horizontalen Lage signalisiert, so erfolgt mit leicht erhöhter Stellkraft eine Lagekorrektur zu den Positionspunkten PF. Die Stellkraftgrösse ist abhängig von den jeweiligen Oeffnungsweiten der elektrisch gesteuerten Blenden 6.8. Die Stellrichtung ergibt sich, unabhängig von der Betriebsart, aus der Stellung der Steuerventile 6.9. Die erforderliche Stellgrösse, Stellkraft, Stellrichtung und Stellgeschwindigkeit muss aus den kombinierten Signalen der Positionsgeber 9 in der elektrischen Steuereinheit 8 errechnet werden. Die Stellkraftgrösse und die Stellgeschwindigkeit weisen beispielsweise eine von der radialen Abweichung vom Punkt PF abhängige progressive Charakteristik auf. Damit soll verhindert werden, dass je einmal bei wiederholten, den Tragrahmen 12 in gleiche Richtung versetzenden Stössen der vertikale Rand des Gleittellers 5.1 mit dem Gleitfuss 5.2 berührt wird. Zusätzlich wird die Stellkraft beim Einfahren in ein Stockwerk umgekehrt quadratisch abhängig von der Fahrgeschwindigkeit erhöht, um in dieser Phase den Positionspunkt PS anzusteuern und allmählich in die zwangsläufige Betriebsart überzugehen.The second operating mode is called slip positioning. In this operating mode, the control valves 6.5 are opened, and depending on the position of the electrically controlled orifices 6.8, when the actuating cylinders 6 are actuated, a corresponding parallel current is produced in the cross-connections 6.14, which reduces the actuating force of the actuating cylinders to the required extent. The slip positioning has the task of keeping the floating car body 1 in position PF while driving against horizontal drift forces with minimal actuating force. Horizontal impacts are conducted by the quasi free-running pistons into the open parallel oil flow circuits of the cross-connections 6.14 and are no longer noticeable within the cabin body because only a relative movement of the support frame 12 to the cabin body 1 takes place. In an exemplary embodiment, not shown, in order to avoid any mechanical friction in the actuating cylinders, the pistons 6.2 have non-contact baffle seals and the piston rod bushings on the cylinder housings 6.1 are also provided with non-contact baffle seals and a linear roller bearing. If a permanent displacement of the horizontal position is signaled after horizontal impacts, the position is corrected to the position points PF with a slightly increased actuating force. The The size of the actuating force depends on the respective opening widths of the electrically controlled orifices 6.8. Regardless of the operating mode, the direction of adjustment results from the position of the control valves 6.9. The required manipulated variable, actuating force, actuating direction and actuating speed must be calculated from the combined signals from the position transmitter 9 in the electrical control unit 8. The actuating force magnitude and the actuating speed have, for example, a progressive characteristic which is dependent on the radial deviation from the point PF. This is intended to prevent the vertical edge of the sliding plate 5.1 from being touched by the sliding foot 5.2 once each time there are repeated impacts displacing the supporting frame 12 in the same direction. In addition, the actuating force when entering a floor is increased in a quadratic manner depending on the driving speed in order to control the position point PS in this phase and to gradually switch to the inevitable operating mode.

Die zwangsläufige Betriebsart dient zur konkreten Positionierung und dem stabilen Halten des noch schwimmenden Kabinenkörpers 1 auf Position PS beim Einfahren in ein Stockwerk bzw. unmittelbar vor der mechanischen Fixierung des Kabinenkörpers 1 im Tragrahmen 12. Letzteres erfolgt durch die mechanischen Fixiereinheiten 10 und findet vor der mechanischen Kupplung der Kabinen- mit der Schachttür statt. Dabei wird das Steuerventil 10.6 durch Abschalten des Betätigungsmagnetes 10.7 in jene in der Figur 4 gezeigte Stellung gebracht. Nun kann die Druckfeder 10.1 den Kolben 10.3 nach unten drücken und das verdrängte Oel über die Blende 10.9 und die Rückleitung 7.6 in den Tank 7.6 fliessen. Die konischen Enden der Kolbenstangen 10.3 tauchen in die Oeffnungen 10.5 der Laschen 10.4 am Kabinenkörper 1 und halten diesen in der dadurch bestimmten Lage unverrückbar fest. Mit der Wirkung der mechanischen Fixierung wird nun auch die Hydropumpe 7.2 stillgesetzt und der Kabinenkörper 1 steht mit den Gleitfüssen 5.2 fest in den Gleittellern 5.5 ohne Oelkissen. In diesem Zustand kann der Kabinenkörper 1 die bei der Schacht- und Kabinentürbetätigung entstehenden Kräfte ohne Lageveränderung aufnehmen. Gleichzeitig wird mit dieser Verfahren eine vorteilhafte Verkleinerung des Antrittluftspaltes erreicht.The inevitable operating mode is used for the concrete positioning and the stable holding of the still floating car body 1 in position PS when entering a floor or immediately before the mechanical fixing of the car body 1 in the support frame 12. The latter is done by the mechanical fixing units 10 and takes place before the mechanical Coupling the cabin with the landing door instead. The control valve 10.6 is brought into that position shown in FIG. 4 by switching off the actuating magnet 10.7. The compression spring 10.1 can now push the piston 10.3 down and the displaced oil flows through the orifice 10.9 and the return line 7.6 into the tank 7.6. The conical ends of the piston rods 10.3 dip into the openings 10.5 of the tabs 10.4 on the cabin body 1 and hold it immovably in the position determined thereby. With the effect of the mechanical fixation, the hydraulic pump 7.2 is now also stopped and the cabin body 1 stands with it the sliding feet 5.2 firmly in the sliding plates 5.5 without oil pads. In this state, the car body 1 can absorb the forces generated when the shaft and car door are actuated without changing the position. At the same time, this method achieves an advantageous reduction in the inlet air gap.

Der chronologische Ablauf der vorstehend beschriebenen einzelnen Funktionen während einer normalen Fahrt des Aufzuges ist in den Figuren 7 und 8 dargestellt. Das Verfahren und die zu dessen Ausübung vorhandene Vorrichtung beginnen in jenem Moment zu arbeiten, wo bei geschlossener und verriegelter Tür ein aktiver Fahrbefehl von der Aufzugssteuerung 11 vorliegt (Fig. 7). Durch die laufende Hydropumpe 7.2 wird der Kabinenkörper 1 durch das entstehende Oelkissen auf Schwimmniveau gehoben, werden die Kolben 10.3 der mechanischen Fixiereinheit 10 hochgedrückt, womit die mechanische Fixierung des Kabinenkörpers 1 im Tragrahmen 12 aufgehoben ist und wird durch die Betätigungszylinder 6 eine zwangsläufige Positionierung des Kabinenkörpers 1 zu den Positionspunkten PF vorgenommmen. Beim Erreichen dieser Positionspunkte PF - die Kabine hat inzwischen Fahrt aufgenommen - werden die Betätigungszylinder 6 auf die Betriebsart Schlupfpositionierung umgeschaltet. Der Uebergang von der Betriebsart "zwangsläufige Positionierung" auf die Betriebsart "Schlupfpositionierung" erfolgt weich und beginnt schon vor dem Erreichen der Positionspunkte PF. Während der Fahrt funktioniert die Vorrichtung wie bereits beschrieben.The chronological sequence of the individual functions described above during normal elevator travel is shown in FIGS. 7 and 8. The method and the device available for exercising it begin to work at the moment when there is an active travel command from the elevator control 11 when the door is closed and locked (FIG. 7). Due to the running hydraulic pump 7.2, the cabin body 1 is lifted to the floating level by the oil cushion that is created, the pistons 10.3 of the mechanical fixing unit 10 are pushed up, which removes the mechanical fixation of the cabin body 1 in the support frame 12, and the actuating cylinder 6 inevitably positions the cabin body 1 to the position points PF. When these position points PF are reached - the cabin has now started to move - the actuating cylinders 6 are switched to the slip positioning operating mode. The transition from the "forced positioning" mode to the "slip positioning" mode is smooth and begins before the position points PF are reached. While driving, the device works as already described.

Die nächste Phase beginnt mit dem Eintreffen des Verzögerungsbefehls (Fig. 8), welcher eine Fahrtverzögerung bis zum Stillstand des Aufzuges zur Folge hat. Mit abnehmender Fahrgeschwindigkeit nimmt umgekehrt quadratisch zur Geschwindigkeitsabnahme die Positionierkraft der Betätigungszylinder 6 zu, was einen allmählichen Uebergang von der Schlupfpositionierung zur zwangsläufigen Posionierung bedeutet. Beispielsweise 2 Meter vor dem Zielstockwerk wird die Verschiebung des Kabinenkörpers 1 zu den Positionspunkten PS vorgenommen. Diese Verschiebung muss beispielsweise 1 Meter vor dem Zielstockwerk abgeschlossen sein, weil nun rechtzeitig vor dem Kuppeln der Türen der Kabinenkörper 1 fest auf die Unterlage abgestellt und mechanisch fixiert sein muss, was durch das Stillsetzen der Hydropumpe 7.2 erfolgt. Die Positionen PS werden nun beibehalten bis zur nächsten Fahrt. Die Position PS muss so spät wie möglich eingenommen werden, um mit dem Kabinenkörper 1 möglichst nahe an die Schachtwand zu kommen und so den Antrittsluftspalt zu verkleinern.The next phase begins with the arrival of the deceleration command (FIG. 8), which results in a deceleration until the elevator comes to a standstill. Conversely, as the driving speed decreases, the positioning force of the actuating cylinders 6 increases quadratically with the decrease in speed, which means a gradual transition from the slip positioning to the inevitable positioning. For example, 2 meters in front of the target floor the displacement of the car body 1 to the position points PS made. This shift must be completed, for example, 1 meter in front of the target floor, because now, before the doors are coupled, the car body 1 must be firmly placed on the base and mechanically fixed, which is done by stopping the hydraulic pump 7.2. The positions PS are now maintained until the next trip. The position PS must be taken as late as possible in order to get the car body 1 as close as possible to the shaft wall and thus to reduce the air gap.

In einer weiteren Variante des Verfahrens ist es möglich, mit einer dritten Phase den Antrittsluftspalt ganz zu eliminieren, indem unmittelbar bei Stillstand und geöffneter Tür der Kabinenkörper 1 erneut auf Schwimmniveau gehoben und in Richtung Ausgang bis zum Verschwinden des Antrittluftspaltes zu einem dritten nicht gezeigten Positionspunkt verschoben wird. Dieses ergänzende Verfahren bringt entsprechende Komfortvorteile für rollende Beladung von Aufzugskabinen.In a further variant of the method, it is possible to completely eliminate the starting air gap in a third phase, by immediately lifting the cabin body 1 to a floating level immediately when the vehicle is at a standstill and with the door open, and moving it towards the exit until the starting air gap disappears to a third position point (not shown) becomes. This complementary procedure brings the corresponding convenience advantages for rolling loading of elevator cars.

Bei dem in der Figur 4 gezeigten Hydrauliksystem enthalten die Zuleitungen von der Druckleitung 7.5 zu den einzelnen Funktionseinheiten in einer weitergebildeten Form teilweise noch nicht dargestellte druck- und mengenregulierende Elemente und/oder Rückschlagventile zwecks Optimierung der gesteuerten Funktionen. In einer weiteren Variante sind separate Hydropumpen 7.2 mit angepassten Charakteristiken für die einzelnen Funktionseinheiten vorgesehen. Es ist ferner möglich, das Verfahren mit einer Pneumatik-Vorrichtung durchzuführen oder für die einzelnen Funktionseinheiten verschiedene Medien, Oel und Luft, mit den dazu nötigen Vorrichtungen einzusetzen. Ebenso ist ein Verfahren und eine Vorrichtung mit Magnetkissen inform von sich gegenseitig abstossenden Elektro- und/oder Permanetmagneten möglich nach dem Prinzip der Magnetschwebebahnen. Dabei bietet sich für die horizontale Verschiebung des Kabinenkörpers 1 der Linearmotor an. Die elektrische Steuerung der hydraulischen Vorrichtung gemäss Figur 4 lässt sich auch mittels einer elektrisch-hydraulisch-fluidischen Analogie ausführen.In the hydraulic system shown in FIG. 4, the supply lines from the pressure line 7.5 to the individual functional units contain, in a further developed form, pressure and quantity-regulating elements and / or check valves, which have not yet been shown, in order to optimize the controlled functions. In a further variant, separate hydraulic pumps 7.2 are provided with adapted characteristics for the individual functional units. It is also possible to carry out the method with a pneumatic device or to use different media, oil and air with the devices required for the individual functional units. Likewise, a method and a device with magnetic cushions from mutually repelling electro and / or permanent magnets is possible according to the principle of magnetic levitation trains. It offers for the horizontal displacement of the cabin body 1 of the linear motor. The electrical control of the hydraulic device according to FIG. 4 can also be carried out by means of an electrical-hydraulic-fluidic analogy.

Es ist vorgesehen, ein schon vorhandenes Hydrauliksystem mittels einem entsprechenden Zusatz in der Kabinenaufhängung mit einem hydraulischen Nachreguliersystem für eine exakte Bündigstellung der Kabine bei Laständerungen zu ergänzen.It is envisaged to supplement an already existing hydraulic system by means of a corresponding add-on in the cabin suspension with a hydraulic readjustment system for an exact leveling of the cabin in the event of load changes.

Bei entsprechender Messung und Auswertung des Systemdrucks im Zweig der Oelkissengleiteinheiten 5 ist es möglich, Informationen über die Kabinenbelastung zu gewinnen, also eine hydraulische Lastmessung zu realisieren. Es können auch Druckspeicher eingesetzt werden, wodurch beispielsweise kleinere Hydropumpen verwendet werden könnten bzw. diese zwecks Geräuschverminderung niedertourig laufen würden.With appropriate measurement and evaluation of the system pressure in the branch of the oil cushion sliding units 5, it is possible to obtain information about the cabin load, that is to say to implement a hydraulic load measurement. Pressure accumulators can also be used, as a result of which, for example, smaller hydraulic pumps could be used or these would run at low speed in order to reduce noise.

Claims (4)

  1. Method for the absorption of vibrations in the case of fast-running lifts of a cage body (1) borne with low friction in a carrier frame (12), by which method the horizontal drift of the cage body (1) is made possible and influenced, characterised thereby, that the cage body (1) is borne in the carrier frame (12) to be floating on at least one oil slide cushion unit (5) and the cage body (1) assumes a setting on the oil slide cushion units (5), which is insulated against horizontal movements, in the carrier frame (12) executing horizontal shock movements, wherein the cage body (1) can assume at least one certain horizontal positional location (PF, PS) and an horizontal displacement of the cage body (1) relative to the positional locations (PF, PS) takes place with variable force by actuating cylinders (6) and the cage body (1) is positioned nearer to the shaft wall at the door side and fixed in the carrier frame (12) during the movement of the lift into a destination stopping place, wherein the step air gap between the lift and the shaft opening is made smaller by comparison with the air gap in the travelling position of the lift and the cage body (1) assumes a position Stop (PS), wherein the cage body (1) during the travel assumes a position Travel (PF) spaced further from the shaft wall at the door side and compensating and positioning forces, which counteract the horizontal drift of the cage body (1) in the carrier frame (12), are effective with a characteristic dependent on the deviation magnitude relative to the position travel (PF).
  2. Method according to claim 1, characterised thereby, that information data for load-measuring purposes are formed in the hydraulic circuit of the oil slide cushion unit (5).
  3. Device for the absorption of vibrations in the case of fast-running lifts of a cage body (1) borne with low friction in a carrier frame (12), by which device the horizontal drift of the cage body (1) is made possible and influenced, characterised thereby, that a fixing unit (10), which effects a detachable connection, is present between the cage body (1) and the carrier frame (12), that the detachable connection between the cage body (1) and the carrier frame (12) is rigid, that the lift cage (13) displays at least one oil slide cushion unit (5) or an air cushion unit or a magnetic cushion unit between the lower yoke (2) of the carrier frame (12) and the underside of the cage body (1) and that actuating cylinders (6) are present and these display a cross-connection (6.14), which is parallel to the actuating cylinder (6), is provided with controllable elements and which effects a slipping or constrained operation, wherein the actuating cylinders (6) are effective horizontally between the cage body (1) and the carrier frame at the underside of the cage body (1), and that position transmitters (9) for ascertaining the position of the cage body (1) are connected with the actuating cylinders (6) by way of an electronic control unit (8) and an hydraulic pump (7.2), and that the hydraulic pump (7.2) as well as the oil slide cushion unit (5) fed by it are connected with the electronic control unit (8).
  4. Device according to claim 3, characterised thereby, that a tracking regulation functional unit, which augments the device, is present.
EP89114779A 1988-11-02 1989-08-10 Method and device for carrying out the process for absorbing the vibrations of the compartments of fast moving lifts Expired - Lifetime EP0366883B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89114779T ATE88679T1 (en) 1988-11-02 1989-08-10 METHOD AND DEVICE FOR PERFORMING THE METHOD FOR VIBRATION ABSORBING ON CABINS IN HIGH-SPEED LIFT.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH4073/88 1988-11-02
CH407388 1988-11-02

Publications (2)

Publication Number Publication Date
EP0366883A1 EP0366883A1 (en) 1990-05-09
EP0366883B1 true EP0366883B1 (en) 1993-04-28

Family

ID=4269311

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89114779A Expired - Lifetime EP0366883B1 (en) 1988-11-02 1989-08-10 Method and device for carrying out the process for absorbing the vibrations of the compartments of fast moving lifts

Country Status (6)

Country Link
US (1) US5020639A (en)
EP (1) EP0366883B1 (en)
JP (1) JPH02175584A (en)
AT (1) ATE88679T1 (en)
DE (1) DE58904201D1 (en)
ES (1) ES2041910T3 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5308938A (en) * 1990-07-18 1994-05-03 Otis Elevator Company Elevator active suspension system
US5321217A (en) * 1990-07-18 1994-06-14 Otis Elevator Company Apparatus and method for controlling an elevator horizontal suspension
US5322144A (en) * 1990-07-18 1994-06-21 Otis Elevator Company Active control of elevator platform
US5400872A (en) * 1990-07-18 1995-03-28 Otis Elevator Company Counteracting horizontal accelerations on an elevator car
US5294757A (en) * 1990-07-18 1994-03-15 Otis Elevator Company Active vibration control system for an elevator, which reduces horizontal and rotational forces acting on the car
JP2756207B2 (en) * 1991-03-13 1998-05-25 オーチス エレベータ カンパニー Method and apparatus for measuring horizontal deviation of an elevator car on a vertical shaft rail
JP2756208B2 (en) * 1991-03-13 1998-05-25 オーチス エレベータ カンパニー Horizontal deviation correction device for elevator cars running vertically
CA2072240C (en) * 1991-07-16 1998-05-05 Clement A. Skalski Elevator horizontal suspensions and controls
ZA927572B (en) * 1991-10-24 1993-04-16 Otis Elevator Co Elevator ride quality.
DE69315952D1 (en) * 1992-10-15 1998-02-05 Toshiba Kawasaki Kk Passenger elevator cabin
SG50564A1 (en) * 1993-12-28 1998-07-20 Hitachi Ltd Elevator
JPH09208161A (en) * 1996-02-02 1997-08-12 Toshiba Corp Car of elevator
US5955709A (en) * 1996-07-31 1999-09-21 Otis Elevator Company Elevator control system featuring all-electromagnet vibration and centering elevator car controller for coupling a roller arranged on a pivot arm to a guide rail
US5866861A (en) * 1996-08-27 1999-02-02 Otis Elevator Company Elevator active guidance system having a model-based multi-input multi-output controller
JP4131764B2 (en) * 1998-09-01 2008-08-13 東芝エレベータ株式会社 Elevator equipment
FR2789669B1 (en) * 1999-02-16 2001-05-04 Sodimas DEVICE FOR LIMITING THE LOAD ON-BOARD IN AN ELEVATOR CAB
US6435314B1 (en) * 2000-03-24 2002-08-20 Otis Elevator Company Elevator platform stabilization coupler
US6357554B1 (en) * 2000-07-11 2002-03-19 Otis Elevator Company Elevator ride improvements utilizing smart floor
US6668980B2 (en) * 2001-07-06 2003-12-30 Thyssen Elevator Capital Corp. Elevator car isolation system and method
WO2004083096A1 (en) * 2003-03-12 2004-09-30 Otis Elevator Company Active elevator car balance system
US7503433B2 (en) * 2003-04-07 2009-03-17 Chiu Nan Wang Elevator
WO2005100226A1 (en) * 2004-04-08 2005-10-27 Mitsubishi Denki Kabushiki Kaisha Elevator apparatus
BRPI0913051B1 (en) 2008-05-23 2020-06-23 Thyssenkrupp Elevator Corporation APPARATUS TO DAMAGE THE SWING OF A LIFT CAR
DE102014017357A1 (en) * 2014-11-25 2016-05-25 Thyssenkrupp Ag elevator system
EP3369686B1 (en) * 2017-03-02 2020-08-26 KONE Corporation Elevator comprising an electric linear motor
EP3517474A1 (en) * 2018-01-30 2019-07-31 KONE Corporation Method and an elevator control unit for controlling a doorstep gap of an elevator and an elevator
CN112173926B (en) * 2020-09-25 2021-12-31 上海申菱电梯配件有限公司 Elevator car bottom structure
CN112173925B (en) * 2020-09-25 2021-12-31 上海申菱电梯配件有限公司 Elevator car bottom structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1669184A (en) * 1926-10-21 1928-05-08 Milo A Baker Elevator
US2793264A (en) * 1954-03-29 1957-05-21 Chicago Elevator And Machine C Elevator signal control
US2726735A (en) * 1955-02-23 1955-12-13 New York Air Brake Co Electric control for hydraulic lifts
JPS5344737B2 (en) * 1972-12-01 1978-12-01
JPS59153792A (en) * 1982-11-10 1984-09-01 エレベ−タ−ズ・ピ−テイ−ワイ・リミテツド Support structure of elevator
JPS61215826A (en) * 1985-03-19 1986-09-25 Sanai Kogyo Kk Horizontal retaining device for vibro-preventive table
FI72947C (en) * 1985-09-27 1987-08-10 Kone Oy FOERFARANDE OCH ANORDNING FOER KONTINUERLIG KOMPENSERING AV EN HISSKORGS HORISONTALA KAST.
JPS6298684U (en) * 1985-12-11 1987-06-23

Also Published As

Publication number Publication date
DE58904201D1 (en) 1993-06-03
EP0366883A1 (en) 1990-05-09
US5020639A (en) 1991-06-04
JPH02175584A (en) 1990-07-06
ES2041910T3 (en) 1993-12-01
ATE88679T1 (en) 1993-05-15

Similar Documents

Publication Publication Date Title
EP0366883B1 (en) Method and device for carrying out the process for absorbing the vibrations of the compartments of fast moving lifts
DE10150382B4 (en) Driving simulator
EP0350582B1 (en) Device for vibration damping of elevator cabins
EP2219985B1 (en) Lift system with lift cars which can move vertically and horizontally
EP0648703B1 (en) Safety braking device for an elevator
DE69813332T2 (en) slipper brake
WO2018046406A1 (en) Elevator car for an elevator installation having a linear motor drive, elevator installation having such a car, and method for operating an elevator installation
WO2018234211A1 (en) Cabin arrangement
EP1006071A1 (en) Elevator with two drives
WO2011082897A1 (en) Double-decker lift installation
DE1803176B1 (en) Device for fastening a linear motor on a rail vehicle
DD151280A5 (en) DEVICE FOR AUTOMATICALLY CONTROLLING THE BRAKING POWER OF A SWITCHABLE AND / OR FRICTION RAIL BRAKE CONTINUOUSLY SWITCHABLE BY PUSHABLE OR TURNABLE PERMANENT MAGNETS
EP0873963A1 (en) Linear drive for a transportation device
DE2350504A1 (en) STACKING CRANE
EP1479636A1 (en) Buffer that can create a safety inspection zone for elevators
DE202016103634U1 (en) Under a structural base plate located elevator machine
EP0314885B1 (en) Hydraulic elevator
DE102022124754B3 (en) SELF-ADJUSTING HEAVY DUTY GEARING DRIVE
CH600426A5 (en) Electrohydraulic transverse inclination mechanism
WO1996003289A1 (en) Electromagnetically borne hovering rig
DE10249334A1 (en) Positioning system for moving a bogie truck in overhead gantry robot systems has an electromagnetic linear drive mechanism with active and passive units for moving the bogie truck
CH375865A (en) Crane drive
DE2502313A1 (en) Magnetically levitated railway system - has flexibly mounted damping solenoids facing levitating and guiding solenoids on the vehicle
DE2813023C2 (en)
DE248351C (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI

17P Request for examination filed

Effective date: 19900927

17Q First examination report despatched

Effective date: 19911127

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI

REF Corresponds to:

Ref document number: 88679

Country of ref document: AT

Date of ref document: 19930515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58904201

Country of ref document: DE

Date of ref document: 19930603

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930609

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2041910

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950717

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19950720

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950726

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950727

Year of fee payment: 7

Ref country code: AT

Payment date: 19950727

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19951120

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960810

Ref country code: AT

Effective date: 19960810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19960812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960831

Ref country code: CH

Effective date: 19960831

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960810

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050810