EP0361353B1 - Direct current-energised control circuit for a solenoid valve - Google Patents

Direct current-energised control circuit for a solenoid valve Download PDF

Info

Publication number
EP0361353B1
EP0361353B1 EP89117647A EP89117647A EP0361353B1 EP 0361353 B1 EP0361353 B1 EP 0361353B1 EP 89117647 A EP89117647 A EP 89117647A EP 89117647 A EP89117647 A EP 89117647A EP 0361353 B1 EP0361353 B1 EP 0361353B1
Authority
EP
European Patent Office
Prior art keywords
resistor
voltage
comparator
control circuit
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89117647A
Other languages
German (de)
French (fr)
Other versions
EP0361353A1 (en
Inventor
Derk Vegter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell BV
Original Assignee
Honeywell BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell BV filed Critical Honeywell BV
Publication of EP0361353A1 publication Critical patent/EP0361353A1/en
Application granted granted Critical
Publication of EP0361353B1 publication Critical patent/EP0361353B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/32Energising current supplied by semiconductor device
    • H01H47/325Energising current supplied by semiconductor device by switching regulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings

Definitions

  • the invention relates to a direct current-fed control circuit for a modulating gas solenoid valve of a burner system according to the preamble of claim 1.
  • a pulse width modulator converts the DC supply voltage into a pulse train that alternately charges a capacitor located in the excitation circuit of the solenoid valve and discharges it via the excitation winding of the solenoid valve.
  • the object of the invention is to construct such a control circuit in such a way that errors in the circuit arrangement due to component failure or short circuits cannot lead to an increase in the excitation current and thus also in the gas pressure.
  • the control circuit should therefore be intrinsically safe.
  • the control circuit is supplied between the supply terminals 1 and 2 with a DC voltage U V of, for example, + 30V.
  • a control voltage U S at the input terminal 3 specifies the target value for the current flowing through the coil 4 of the solenoid valve.
  • a constant current generator of conventional design turned on, which consists of a Zener diode Z1, a diode D1, two resistors R1 and R2 and a transistor T1. It feeds a potentiometer consisting of a variable resistor P1 and a fixed resistor R3.
  • the connection point F between adjusting resistor P1 and transistor T1 is connected via a resistor R5 of, for example, 22 kOhm to the non-inverting input of a first comparator CM1 working as an integrating amplifier.
  • the voltage generated at the series resistor R16 by the excitation current through the winding 4 is also fed to this via a resistor R11 of, for example, also 22 kOhm.
  • the voltage U E at the non-inverting input of the comparator CM1 corresponds to half the sum of the voltages U F and U G.
  • the control voltage U S is fed from the input terminal 3 to the inverting input of the comparator CM1.
  • the pulse width modulator II comprises an oscillator which has a third comparator CM3 with feedback resistor R10 between the output and non-inverting input, a second resistor R9 between the output and node B and a charging capacitor C3 which is connected to the DC supply terminal via a resistor R7 1 is connected.
  • the non-inverting input is also connected via a high-resistance resistor R4 to the connection point of diode D1 and resistor R1 in the constant current source.
  • the inventory input is connected to circuit point B via a high-resistance resistor R8.
  • This relaxation oscillator generates a sawtooth voltage that changes, for example, between a minimum value of 10V and a maximum value of 24V with a frequency of 25kHz.
  • This sawtooth voltage U B passes through the resistor R8 to the inventory input of the comparator CM3 and at the same time to the non-inverting input of the second comparator CM2, whose inverting input is at the output C of the amplifier CM1.
  • This output C is also connected to the supply terminal 1 via a high-resistance resistor R6, and a storage capacitor C2 of, for example, 10 ⁇ F lies between the switching point C and ground.
  • a power stage III controlled by the second comparator CM2 comprises three transistors T2, T3 and T4 in addition to three resistors R12, R13 and R14.
  • the input of this power stage is connected to the output D of the comparator CM2, while its output A forms a charging current connection for charging the capacitor C6.
  • This is in series with a low-resistance resistor R15, the field winding 4 and the series resistor R16 between the charging current connection A and ground, a diode D2 of the series connection of the field winding 4 and resistor R16 being connected in parallel in a current-permeable manner in the direction of the ground connection.
  • a switching transistor T5 is also switched on, which is controlled by the output signal of the second comparator CM2 in such a way that either the switching transistor T5 is switched through and at the same time the power stage T2 to T4 is blocked, or conversely the power stage is switched on and the Charging current connection A connects to the supply terminal 1 and at the same time the switching transistor T5 is blocked.
  • the capacitor C6 is charged via the power stage and the diode D2, while in the former case the capacitor C6 is discharged via the excitation winding 4 and the switching transistor T5 and an excitation current thus flows through the excitation winding 4 of the solenoid valve.
  • the frequency and duration of these excitation current pulses determine the degree of opening of the solenoid valve.
  • the capacitor C6 In order to provide sufficient excitation energy for the solenoid valve 4, the capacitor C6 must have a sufficient capacitance of, for example, 47 ⁇ F.
  • capacitors C2 and C3 are discharged before the control circuit is switched on. If voltage is applied to terminals 1 and 2 and the open collector outputs of comparators CM1 and CM2 are initially open, capacitor C3 charges faster than capacitor C2 because it has a lower capacitance of, for example, 390pF than capacitor C2 (10 ⁇ F ).
  • the capacitor C2 is charged via the resistor R6 and the capacitor C3 is charged via the resistor R7, both resistors having a value of, for example, 100 kOhm.
  • the relaxation oscillator therefore begins to oscillate quickly and generates a sawtooth voltage U B at its output B in a voltage range between 10 and 24 V.
  • the non-inverting input of the comparator CM2 therefore receives a positive voltage, while the inverting input is initially still at the potential 0. This results in a positive output signal U D at the output D of the comparator CM2. This blocks the switching transistor T5 and switches through the power stage T2 to T4. The capacitor C6 is consequently charged from the supply voltage between the terminals 1 and 2 via the transistor T4 and the diode D2.
  • the constant current source with the transistor T1 generates a voltage U F of a maximum of 1.5 V at the circuit point F, that is to say at the series connection of the adjusting resistor P1 and the fixed resistor R10. This is determined by a current of approximately 1 mA from the constant current source and by the series connection consisting of potentiometer P1 of, for example, 1KOhm and resistor R3 of, for example, 560 Ohm. Between the circuit points F and G there is a voltage divider consisting of the two resistors R5 and R11 of the same size, so that at the tap E and thus at the non-inverting input of the first comparator CM1 half the sum of these two voltages U F and U G is present.
  • the voltage U C at the output of the comparator CM1 rises until it reaches the value of the sawtooth voltage U B at the non-inverting input of the comparator CM2.
  • the output D of the comparator CM2 switches to a low potential. This has the consequence that the power stage T2 to T4 blocks and the switching transistor T5 turns on.
  • the capacitor C6 is now discharged via the excitation coil 4 of the solenoid valve in a circuit which is formed by the resistor R16, the switching transistor T5 and the resistor R15.
  • the excitation current derived from this charging voltage is linearly dependent on the ratio of the discharge time to the total period of the pulse-shaped voltage at the charging current connection A. This period is for example 40 ⁇ s, which corresponds to a frequency of 25kHz.
  • the pulse / pause ratio changes depending on the voltage U C.
  • the comparator CM1 works as an integrating operational amplifier, so that its output voltage U C corresponds to the time integral of the differential voltage at its two inputs. This difference is regulated by changing the output voltage U C and the pulse / pause ratio and the excitation current through the winding 4 and thus by changing the voltage U G across the series resistor R16 to zero.
  • circuit interruptions and short circuits in individual components either lead to the excitation current being switched off or to a current limitation to a value below the maximum current.
  • the capacitor C6 is short-circuited or its supply line is interrupted, no charge can be stored on it and no current will flow through the excitation winding 4.
  • An interruption of the diode D2 prevents charging as well as a short circuit of the diode D2 prevents current flow through the excitation winding 4.
  • the upper peak value of the sawtooth voltage U B of the oscillator is 24V lower than the supply voltage of 30V.
  • the lower peak value of the sawtooth voltage U B is higher than the ground potential. It is determined by the voltage at the non-inverting input of the comparator CM3 when the open collector output of the comparator CM3 is connected through to the ground line 2. The minimum value of the voltage U B is determined by the voltage divider R4, R10 and the voltage across the resistor R1.
  • the control circuit proves to be intrinsically safe in both directions.
  • the output signal of the comparator CM1 can be worst In this case, the value of the supply voltage U V of, for example, + 30V can be reached and thus safely exceed the upper peak value of the sawtooth voltage.
  • the effect of the comparator CM1 as an integrating operational amplifier leads to the fact that in this case the current through the excitation winding is reduced to zero. The same applies in the event of a short circuit in the Zener diode Z1 or the transistor T1 or in the event of an interruption in the feedback resistor R2.
  • the value of the resistor R15 is selected so that when the supply voltage U V drops to 27V, just enough current flows through the excitation winding 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Feedback Control In General (AREA)
  • Magnetically Actuated Valves (AREA)

Description

Die Erfindung betrifft eine gleichstromgespeiste Steuerschaltung für ein modulierend betriebenes Gas-Magnetventil einer Brenneranlage gemäß Oberbegriff des Anspruchs 1.The invention relates to a direct current-fed control circuit for a modulating gas solenoid valve of a burner system according to the preamble of claim 1.

Bei erartigen Schaltungen wandelt ein Impulsbreitenmodulator die Versorgungsgleichspannung in eine Impulsfolge um, die einen im Erregerstromkreis des Magnetventils liegenden Kondensator abwechselnd auflädt und über die Erregerwicklung des Magnetventils entlädt.In such circuits, a pulse width modulator converts the DC supply voltage into a pulse train that alternately charges a capacitor located in the excitation circuit of the solenoid valve and discharges it via the excitation winding of the solenoid valve.

Aufgabe der Erfindung ist es, eine derartige Steuerschaltung derart aufzubauen, daß Fehler in der Schaltungsanordnung durch Ausfall von Bauteilen oder Kurzschlüsse nicht zu einer Erhöhung des Erregerstroms und damit auch des Gasdrucks führen können. Die Steuerschaltung soll also eigensicher sein.The object of the invention is to construct such a control circuit in such a way that errors in the circuit arrangement due to component failure or short circuits cannot lead to an increase in the excitation current and thus also in the gas pressure. The control circuit should therefore be intrinsically safe.

Diese Aufgabe wird gelöst durch die im Anspruch 1 gekennzeichnete Erfindung.This object is achieved by the invention characterized in claim 1.

Vorteilhafte Ausgestaltungen ergeben sich aus den Unteransprüchen.Advantageous refinements result from the subclaims.

Die Erfindung wird nachfolgend anhand eines in der Zeichnung dargestellten Ausführungsbeispiels erläutert. Dabei zeigt:

Fig. 1
ein Beispiel für eine Steuerschaltung gemäß der Erfindung;
Fig. 2
den Verlauf der Spannungen an den Schaltungspunkten A, B, C, D, E, F, G der Fig. 1, wenn die Steuerspannung US an der Eingangsklemme 3 größer ist als die Hälfte der Spannung am Schaltungspunkt F, d.h.

U F ≧ ½ · U F
Figure imgb0001
;
Fig. 3
die entsprechenden Spannungen für den Fall, daß die Steuerspannung Us kleiner ist als

½ · U s , d.h. 0 ≦ U S ≦ ½ U F ;
Figure imgb0002
und
Fig. 4
die Spannungsverläufe bei U S = 0
Figure imgb0003
.
The invention is explained below with reference to an embodiment shown in the drawing. It shows:
Fig. 1
an example of a control circuit according to the invention;
Fig. 2
the course of the voltages at the circuit points A, B, C, D, E, F, G of Fig. 1, if the control voltage U S at the input terminal 3 is greater than half the voltage at the switching point F, ie

U F ≧ ½ · U F
Figure imgb0001
;
Fig. 3
the corresponding voltages in the event that the control voltage U s is less than

½ · U s , ie 0 ≦ U S U ½ U F ;
Figure imgb0002
and
Fig. 4
the voltage profiles at U S = 0
Figure imgb0003
.

Die Steuerschaltung wird zwischen den Versorgungsklemmen 1 und 2 mit einer Gleichspannung UV von beispielsweise +30V versorgt. Eine Steuerspannung US an der Eingangsklemme 3 gibt den Sollwert für den durch die Spule 4 des Magnetventils fließenden Strom vor. Die Schaltungsanordnung besteht im wesentlichen aus einem den Sollwert mit dem Istwert vergleichenden Regelkreis I, einem die Regelabweichung in ein pulsbreitenmoduliertes Signal umformenden Pulsbreitenmodulator II und einer den Strom durch die Erregerwicklung 4 steuernden Leistungsstufe III. Sie ist derart ausgelegt, daß bei einer minimalen Steuerspannung US = 0 der Strom durch die Spule 4 seinen Maximalwert erreicht und bei einem maximalen Steuersignal von beispielsweise U S = +0,75V

Figure imgb0004
der Erregerstrom für das Magnetventil 4 auf Null zurückgeht.The control circuit is supplied between the supply terminals 1 and 2 with a DC voltage U V of, for example, + 30V. A control voltage U S at the input terminal 3 specifies the target value for the current flowing through the coil 4 of the solenoid valve. The circuit arrangement essentially consists of a control circuit I comparing the setpoint value with the actual value, a pulse width modulator II converting the control deviation into a pulse width modulated signal and a power stage III controlling the current through the excitation winding 4. It is designed such that the current through the coil 4 reaches its maximum value at a minimum control voltage U S = 0 and at a maximum control signal of, for example U S = + 0.75V
Figure imgb0004
the excitation current for the solenoid valve 4 drops to zero.

Zwischen die Stromversorgungsklemme 1 und Masseleitung 2 ist ein Konstantstromgenerator herkömmlicher Bauart eingeschaltet, der aus einer Zenerdiode Z1, einer Diode D1, zwei Widerständen R1 und R2 sowie einem Transistor T1 besteht. Er speist ein Potentiometer bestehend aus einem veränderbaren Widerstand P1 und einem Festwiderstand R3. Der Verbindungspunkt F zwischen Einstellwiderstand P1 und Transistor T1 ist über einen Widerstand R5 von beispielsweise 22kOhm an den nicht invertierenden Eingang eines als integrierender Verstärker arbeitenden ersten Vergleichers CM1 angeschlossen. Diesem wird ferner über einen Widerstand R11 von beispielsweise ebenfalls 22kOhm, die am Reihenwiderstand R16 vom Erregerstrom durch die Wicklung 4 erzeugte Spannung zugeführt. Sie wird durch den Spannungsteiler bestehend aus den in ihrem Widerstandswert übereinstimmenden Widerständen R5 und R11 im Verhältnis R11/(R11 + R5)

Figure imgb0005
im Bezug auf UF geteilt, d.h. bei gleich großen Widerständen R5 und R11 halbiert. Die Spannung UE am nicht invertierenden Eingang des Vergleichers CM1 entspricht der halben Summe der Spannungen UF und UG. Es gilt:

U E = U F + (U G · U F ):2 = (U F + U G ):2
Figure imgb0006


Dem invertierenden Eingang des Vergleichers CM1 wird von der Eingangsklemme 3 die Steuerspannung US zugeleitet. Bei abgeglichenem Regelkreis I, d.h. bei

U E = U S = (U F + U G ):2
Figure imgb0007


ergibt sich: U G = 2U S - U F
Figure imgb0008
und damit

i = 2(U S - U F ):R16
Figure imgb0009


Ist U S = 0
Figure imgb0010
, so wird U G = - U F
Figure imgb0011
,
d.h. i max = -U F /R16
Figure imgb0012
.

Für U S ≧ U F
Figure imgb0013
wird U G = 0
Figure imgb0014
und somit i min = 0
Figure imgb0015
.Is between the power supply terminal 1 and ground line 2 a constant current generator of conventional design turned on, which consists of a Zener diode Z1, a diode D1, two resistors R1 and R2 and a transistor T1. It feeds a potentiometer consisting of a variable resistor P1 and a fixed resistor R3. The connection point F between adjusting resistor P1 and transistor T1 is connected via a resistor R5 of, for example, 22 kOhm to the non-inverting input of a first comparator CM1 working as an integrating amplifier. The voltage generated at the series resistor R16 by the excitation current through the winding 4 is also fed to this via a resistor R11 of, for example, also 22 kOhm. It is divided by the voltage divider consisting of the resistors R5 and R11 which have the same resistance value R11 / (R11 + R5)
Figure imgb0005
divided with respect to U F , ie halved for resistors R5 and R11 of the same size. The voltage U E at the non-inverting input of the comparator CM1 corresponds to half the sum of the voltages U F and U G. The following applies:

U E = U F + (U G · U F ): 2 = (U F + U G ): 2
Figure imgb0006


The control voltage U S is fed from the input terminal 3 to the inverting input of the comparator CM1. With adjusted control loop I, ie with

U E = U S = (U F + U G ): 2
Figure imgb0007


surrendered: U G = 2U S - U F
Figure imgb0008
and thus

i = 2 (rev S - U F ): R16
Figure imgb0009


Is U S = 0
Figure imgb0010
, so will U G = - U F
Figure imgb0011
,
ie i Max = -U F / R16
Figure imgb0012
.

For U S ≧ U F
Figure imgb0013
becomes U G = 0
Figure imgb0014
and thus i min = 0
Figure imgb0015
.

Der Pulsbreitenmodulator II umfaßt neben einem zweiten Vergleicher CM2 einen Oszillator, der einen dritten Vergleicher CM3 mit Rückführungswiderstand R10 zwischen Ausgang und nicht invertierendem Eingang, einen zweiten Widerstand R9 zwischen Ausgang und Schaltungspunkt B sowie einen Ladekondensator C3 aufweist, der über einen Widerstand R7 an die Gleichstromversorgungsklemme 1 angeschlossen ist. Der nicht invertierende Eingang steht ferner über einen hochohmigen Widerstand R4 mit dem Verbindungspunkt von Diode D1 und Widerstand R1 in der Konstantstromquelle in Verbindung. Der inventierende Eingang ist über einen hochohmigen Widerstand R₈ an den Schaltungspunkt B angeschlossen. Dieser Relaxationsoszillator erzeugt eine Sägezahnspannung, die sich beispielsweise zwischen einen Minimalwert von 10V und einem Maximalwert von 24V mit einer Frequenz von 25kHz ändert. Diese Sägezahnspannung UB gelangt über den Widerstand R8 an den inventierenden Eingang des Vergleichers CM3 und zugleich an den nicht invertierenden Eingang des zweiten Vergleichers CM2, dessen invertierender Eingang am Ausgang C des Verstärkers CM1 liegt. Dieser Ausgang C ist ferner über einen hochohmigen Widerstand R6 an die Versorgungsklemme 1 angeschlossen, und ein Speicherkondensator C2 von beispielsweise 10 µF liegt zwischen dem Schaltungspunkt C und Masse.In addition to a second comparator CM2, the pulse width modulator II comprises an oscillator which has a third comparator CM3 with feedback resistor R10 between the output and non-inverting input, a second resistor R9 between the output and node B and a charging capacitor C3 which is connected to the DC supply terminal via a resistor R7 1 is connected. The non-inverting input is also connected via a high-resistance resistor R4 to the connection point of diode D1 and resistor R1 in the constant current source. The inventory input is connected to circuit point B via a high-resistance resistor R₈. This relaxation oscillator generates a sawtooth voltage that changes, for example, between a minimum value of 10V and a maximum value of 24V with a frequency of 25kHz. This sawtooth voltage U B passes through the resistor R8 to the inventory input of the comparator CM3 and at the same time to the non-inverting input of the second comparator CM2, whose inverting input is at the output C of the amplifier CM1. This output C is also connected to the supply terminal 1 via a high-resistance resistor R6, and a storage capacitor C2 of, for example, 10 μF lies between the switching point C and ground.

Eine vom zweiten Vergleicher CM2 gesteuerte Leistungsstufe III umfaßt neben drei Widerständen R12, R13 und R14 drei Transistoren T2, T3 und T4. Der Eingang dieser Leistungsstufe ist mit dem Ausgang D des Vergleichers CM2 verbunden, während ihr Ausgang A einen Ladestromanschluß für die Aufladung des Kondensators C6 bildet. Dieser liegt in Reihe mit einem niederohmigen Widerstand R15, der Erregerwicklung 4 und dem Reihenwiderstand R16 zwischen dem Ladestromanschluß A und Masse, wobei eine Diode D2 der Reihenschaltung von Erregerwicklung 4 und Widerstand R16 in Richtung zum Masseanschluß hin stromdurchlässig parallelgeschaltet ist. Zwischen den Ladestromanschluß A und Masse ist ferner ein Schalttransistor T5 eingeschaltet, der durch das Ausgangssignal des zweiten Vergleichers CM2 derart gesteuert wird, daß abwechselnd entweder der Schalttransistor T5 durchgeschaltet und gleichzeitig die Leistungsstufe T2 bis T4 gesperrt ist, oder umgekehrt die Leistungsstufe durchgeschaltet ist und den Ladestromanschluß A mit der Versorgungsklemme 1 verbindet und gleichzeitig der Schalttransistor T5 gesperrt ist. Im letztgenannten Fall wird der Kondensator C6 über die Leistungsstufe und die Diode D2 aufgeladen, während im erstgenannten Fall der Kondensator C6 sich über die Erregerwicklung 4 und den Schalttransistor T5 entlädt und damit ein Erregerstrom durch die Erregerwicklung 4 des Magnetventils fließt. Häufigkeit und Dauer dieser Erregerstromimpulse bestimmen den Grad der öffnung des Magnetventils. Um eine genügende Erregerenergie für das Magnetventil 4 bereitzustellen, muß der Kondensator C6 eine ausreichende Kapazität von beispielsweise 47 µF aufweisen.A power stage III controlled by the second comparator CM2 comprises three transistors T2, T3 and T4 in addition to three resistors R12, R13 and R14. The input of this power stage is connected to the output D of the comparator CM2, while its output A forms a charging current connection for charging the capacitor C6. This is in series with a low-resistance resistor R15, the field winding 4 and the series resistor R16 between the charging current connection A and ground, a diode D2 of the series connection of the field winding 4 and resistor R16 being connected in parallel in a current-permeable manner in the direction of the ground connection. Between the charging current connection A and ground, a switching transistor T5 is also switched on, which is controlled by the output signal of the second comparator CM2 in such a way that either the switching transistor T5 is switched through and at the same time the power stage T2 to T4 is blocked, or conversely the power stage is switched on and the Charging current connection A connects to the supply terminal 1 and at the same time the switching transistor T5 is blocked. In the latter case, the capacitor C6 is charged via the power stage and the diode D2, while in the former case the capacitor C6 is discharged via the excitation winding 4 and the switching transistor T5 and an excitation current thus flows through the excitation winding 4 of the solenoid valve. The frequency and duration of these excitation current pulses determine the degree of opening of the solenoid valve. In order to provide sufficient excitation energy for the solenoid valve 4, the capacitor C6 must have a sufficient capacitance of, for example, 47 μF.

Vor Einschaltung der Steuerschaltung sind die Kondensatoren C2 und C3 entladen. Wird Spannung an die Klemmen 1 und 2 gelegt und sind anfänglich die offenen Kollektorausgänge der Komparator CM1 und CM2 geöffnet, so lädt sich der Kondensator C3 schneller auf als der Kondensator C2, weil er eine geringere Kapazität von beispielsweise 390pF hat als der Kondensator C2 (10µF). Der Kondensator C2 wird über den Widerstand R6 und der Kondensator C3 wird über den Widerstand R7 aufgeladen, wobei beide Widerstände einen Wert von beispielsweise 100kOhm haben. Der Relaxationsoszillator beginnt also schnell zu schwingen und erzeugt an seinem Ausgang B eine Sägezahnspannung UB in einem Spannungsbereich zwischen 10 und 24V. Der nicht invertierende Eingang des Vergleichers CM2 erhält also eine positive Spannung, während der invertierende Eingang zunächst noch auf dem Potential 0 liegt. Damit ergibt sich ein positives Ausgangssignal UD am Ausgang D des Vergleichers CM2. Dieses sperrt den Schalttransistor T5 und schaltet die Leistungsstufe T2 bis T4 durch. Über den Transistor T4 und die Diode D2 wird folglich der Kondensator C6 aus der Versorgungsspannung zwischen den Klemmen 1 und 2 aufgeladen.The capacitors C2 and C3 are discharged before the control circuit is switched on. If voltage is applied to terminals 1 and 2 and the open collector outputs of comparators CM1 and CM2 are initially open, capacitor C3 charges faster than capacitor C2 because it has a lower capacitance of, for example, 390pF than capacitor C2 (10μF ). The capacitor C2 is charged via the resistor R6 and the capacitor C3 is charged via the resistor R7, both resistors having a value of, for example, 100 kOhm. The relaxation oscillator therefore begins to oscillate quickly and generates a sawtooth voltage U B at its output B in a voltage range between 10 and 24 V. The non-inverting input of the comparator CM2 therefore receives a positive voltage, while the inverting input is initially still at the potential 0. This results in a positive output signal U D at the output D of the comparator CM2. This blocks the switching transistor T5 and switches through the power stage T2 to T4. The capacitor C6 is consequently charged from the supply voltage between the terminals 1 and 2 via the transistor T4 and the diode D2.

Die Konstantstromquelle mit dem Transistor T1 erzeugt im Schaltungspunkt F, d.h. an der Reihenschaltung von Einstellwiderstand P1 und Festwiderstand R10 eine Spannung UF von maximal 1,5V. Diese ist bestimmt durch einen Strom von etwa 1mA aus der Konstantstromquelle und durch die Reihenschaltung bestehend aus Potentiometer P1 von beispielsweise 1KOhm und Widerstand R3 von beispielsweise 560 Ohm. Zwischen den Schaltungspunkten F und G liegt ein Spannungsteiler bestehend aus den beiden gleich großen Widerständen R5 und R11, so daß an dessen Abgriff E und damit am nicht invertierenden Eingang des ersten Vergleichers CM1 die halbe Summe dieser beiden Spannungen UF und UG liegt. Bei anfänglich UG = 0 beträgt die Spannung U E = U F /2 = 0,75V

Figure imgb0016
, wenn U F = 1.5V
Figure imgb0017
. Bei maximalem Erregerstrom ist U G = -1.5V
Figure imgb0018
und beträgt die Spannung U E = (U F + U G ):2= 0V
Figure imgb0019
Figure imgb0020
. Wenn die Steuerspannung US im gewählten Ausführungsbeispiel den Betrag von +0,75V überschreitet, bleibt der offene Kollektorausgang des Komparators CM1 nach Masseleitung 2 durchgeschaltet. Wenn die Steuerspannung US die Spannung UE nicht überschreitet, ist der offene Kollektorausgang des Komparators CM1 offen.The constant current source with the transistor T1 generates a voltage U F of a maximum of 1.5 V at the circuit point F, that is to say at the series connection of the adjusting resistor P1 and the fixed resistor R10. This is determined by a current of approximately 1 mA from the constant current source and by the series connection consisting of potentiometer P1 of, for example, 1KOhm and resistor R3 of, for example, 560 Ohm. Between the circuit points F and G there is a voltage divider consisting of the two resistors R5 and R11 of the same size, so that at the tap E and thus at the non-inverting input of the first comparator CM1 half the sum of these two voltages U F and U G is present. With initially U G = 0, the voltage is U E = U F / 2 = 0.75V
Figure imgb0016
, if U F = 1.5V
Figure imgb0017
. At maximum excitation current U G = -1.5V
Figure imgb0018
and is the tension U E = (U F + U G ): 2 = 0V
Figure imgb0019
Figure imgb0020
. If the control voltage U S exceeds the amount of + 0.75 V in the selected exemplary embodiment, the open collector output of the comparator CM1 remains connected through to the ground line 2. If the control voltage U S does not exceed the voltage U E , the open collector output of the comparator CM1 is open.

Im Zuge der Aufladung des Kondensators C1 über den Widerstand R16 steigt die Spannung UC am Ausgang des Vergleichers CM1 solange an, bis sie den Wert der Sägezahnspannung UB am nicht invertierenden Eingang des Vergleichers CM2 erreicht. Sobald die Spannung UC an seinem invertierenden Eingang größer wird als die Spannung UB am nicht invertierenden Eingang, schaltet der Ausgang D des Vergleichers CM2 auf niedriges Potential. Dies hat zur Folge, daß die Leistungsstufe T2 bis T4 sperrt und der Schalttransistor T5 durchschaltet. Der Kondensator C6 entlädt sich jetzt über die Erregerspule 4 des Magnetventils in einem Stromkreis, der gebildet wird durch den Widerstand R16, den Schalttransistor T5 und den Widerstand R15. Solange die Ladezeit für den Kondensator C6 lang genug ist, um diesen auf volle Spannung aufzuladen, ist der aus dieser Ladespannung abgeleitete Erregerstrom linear vom Verhältnis der Entladezeit zur Gesamtperiodendauer der am Ladestromanschluß A stehenden impulsförmigen Spannung abhängig. Diese Periodendauer beträgt beispielsweise 40µs, was einer Frequenz von 25kHz entspricht. Das Impuls/Pausen-Verhältnis ändert sich in Abhängigkeit von der Spannung UC. Der Vergleicher CM1 arbeitet als integrierender Operationsverstärker, so daß seine Ausgangsspannung UC dem Zeitintegral der Differenzspannung an seinen beiden Eingängen entspricht. Diese Differenz wird über die Veränderung der Ausgangsspannung UC und des Impuls/Pausen-Verhältnisses und des Erregerstroms durch die Wicklung 4 und damit durch Verändern der Spannung UG am Reihenwiderstand R16 auf Null geregelt. Der maximale Strom fließt, wenn die Steuerspannung US = 0. Damit läßt sich mit Hilfe des Potentiometers P1 der maximale Erregerstrom einstellen. Selbst bei einem Kurzschluß der Eingangsklemmen 2 und 3 wird er nicht überschritten. Der maximale Erregerstrom ergibt sich dann zu -UF/R3.In the course of charging the capacitor C1 via the resistor R16, the voltage U C at the output of the comparator CM1 rises until it reaches the value of the sawtooth voltage U B at the non-inverting input of the comparator CM2. As soon as the voltage U C at its inverting input becomes greater than the voltage U B at the non-inverting input, the output D of the comparator CM2 switches to a low potential. This has the consequence that the power stage T2 to T4 blocks and the switching transistor T5 turns on. The capacitor C6 is now discharged via the excitation coil 4 of the solenoid valve in a circuit which is formed by the resistor R16, the switching transistor T5 and the resistor R15. As long as the charging time for the capacitor C6 is long enough to bring it to full voltage charge, the excitation current derived from this charging voltage is linearly dependent on the ratio of the discharge time to the total period of the pulse-shaped voltage at the charging current connection A. This period is for example 40µs, which corresponds to a frequency of 25kHz. The pulse / pause ratio changes depending on the voltage U C. The comparator CM1 works as an integrating operational amplifier, so that its output voltage U C corresponds to the time integral of the differential voltage at its two inputs. This difference is regulated by changing the output voltage U C and the pulse / pause ratio and the excitation current through the winding 4 and thus by changing the voltage U G across the series resistor R16 to zero. The maximum current flows when the control voltage U S = 0. This allows the maximum excitation current to be set using the potentiometer P1. Even if the input terminals 2 and 3 are short-circuited, it is not exceeded. The maximum excitation current then results in -U F / R3.

Nachfolgend soll erläutert werden, daß Schaltkreisunterbrechungen und Kurzschlüsse einzelner Bauelemente entweder zu einer Abschaltung des Erregerstroms oder zu einer Strombegrenzung auf einen Wert unterhalb des Maximalstroms führen. Dies bedeutet bei Anwendung des Ventils in einem Gasbrenner, daß dieser entweder abgeschaltet oder mit verringerter Leistung weiterläuft. Sollte beispielsweise der Kondensator C6 kurzgeschlossen oder seine Zuleitung unterbrochen werden, so kann keine Ladung auf ihm gespeichert werden und kein Strom durch die Erregerwicklung 4 fließen. Eine Unterbrechung der Diode D2 verhindert ebenso ein Aufladen wie ein Kurzschluß der Diode D2 Stromfluß durch die Erregerwicklung 4 verhindert. Der obere Scheitelwert der Sägezahnspannung UB des Oszillators ist mit 24V niedriger als die Versorgungsspannung von 30V. Ihre Höhe wird durch die Spannung am nicht invertierenden Eingang des Vergleichers CM3 bestimmt, die am Widerstand R1 abgegriffen wird, sofern der offene Kollektorausgang des Komparators CM3 offen ist. Wird der Widerstand R4 unterbrochen, so schwingt der Oszillator nicht. Wird die Zenerdiode Z1 kurzgeschlossen, so arbeitet die Konstantstromquelle nicht, was in beiden Fällen zu einer sicheren Abschaltung des Erregerstroms führt.It will be explained in the following that circuit interruptions and short circuits in individual components either lead to the excitation current being switched off or to a current limitation to a value below the maximum current. When the valve is used in a gas burner, this means that it is either switched off or continues to run with reduced output. If, for example, the capacitor C6 is short-circuited or its supply line is interrupted, no charge can be stored on it and no current will flow through the excitation winding 4. An interruption of the diode D2 prevents charging as well as a short circuit of the diode D2 prevents current flow through the excitation winding 4. The upper peak value of the sawtooth voltage U B of the oscillator is 24V lower than the supply voltage of 30V. Its level is determined by the voltage at the non-inverting input of the comparator CM3, which is tapped at the resistor R1, provided the open collector output of the comparator CM3 is open. If the resistor R4 is interrupted, the oscillator does not oscillate. If the Zener diode Z1 is short-circuited, the constant current source does not work, which leads to a safe disconnection of the excitation current in both cases.

Der untere Scheitelwert der Sägezahnspannung UB ist höher als Massepotential. Er wird bestimmt durch die Spannung am nicht-invertierenden Eingang des Vergleichers CM3, wenn der offene Kollektorausgang des Komparators CM3 nach Masseleitung 2 durchgeschaltet ist. Der Minimalwert der Spannung UB wird durch den Spannungsteiler R4, R10 und die Spannung am Widerstand R1 festgelegt.The lower peak value of the sawtooth voltage U B is higher than the ground potential. It is determined by the voltage at the non-inverting input of the comparator CM3 when the open collector output of the comparator CM3 is connected through to the ground line 2. The minimum value of the voltage U B is determined by the voltage divider R4, R10 and the voltage across the resistor R1.

Da infolge des Widerstands R4 der obere Scheitelwert der Sägezahnspannung UB niedriger als die Versorgungsspannung UV und der untere Scheitelwert größer als Massepotential ist, erweist sich die Steuerschaltung in beiden Richtungen als eigensicher.Since, due to the resistance R4, the upper peak value of the sawtooth voltage U B is lower than the supply voltage U V and the lower peak value is greater than ground potential, the control circuit proves to be intrinsically safe in both directions.

Das Ausgangssignal des Vergleichers CM1 kann im schlimmsten Fall den Wert der Versorgungsspannung UV von beispielsweise +30V erreichen und damit den oberen Scheitelwert der Sägezahnspannung sicher übersteigen. Die Wirkung des Vergleichers CM1 als integrierender Operationsverstärker führt dazu, daß in diesem Fall der Strom durch die Erregerwicklung auf Null reduziert wird. Gleiches gilt im Falle eines Kurzschlusses der Zenerdiode Z1 oder des Transistors T1 bzw. bei einer Unterbrechung des Rückführwiderstands R2. Der Wert des Widerstandes R15 ist so gewählt, daß bei einem Absinken der Versorgungsspannung UV auf 27V gerade noch genügend Strom durch die Erregerwicklung 4 fließt. Fällt die Spannung UV unter 27V, so erreicht die Spannung UC am Ausgang C des ersten Vergleichers CM1 den Wert der positiven Versorgungsspannung. Dies führt zu einer eigensicheren Abschaltung des Stroms durch die Erregerwicklung 4, weil die Sägezahnspannung dann niemals den Wert der Versorgungsspannung erreichen kann. Gleiches gilt für einen Ausfall des Widerstands R11.The output signal of the comparator CM1 can be worst In this case, the value of the supply voltage U V of, for example, + 30V can be reached and thus safely exceed the upper peak value of the sawtooth voltage. The effect of the comparator CM1 as an integrating operational amplifier leads to the fact that in this case the current through the excitation winding is reduced to zero. The same applies in the event of a short circuit in the Zener diode Z1 or the transistor T1 or in the event of an interruption in the feedback resistor R2. The value of the resistor R15 is selected so that when the supply voltage U V drops to 27V, just enough current flows through the excitation winding 4. If the voltage U V falls below 27 V , the voltage U C at the output C of the first comparator CM1 reaches the value of the positive supply voltage. This leads to an intrinsically safe disconnection of the current through the excitation winding 4, because the sawtooth voltage can then never reach the value of the supply voltage. The same applies to a failure of resistor R11.

Claims (8)

  1. Direct current-energized control circuit for a modulating operated gas solenoid valve of a burner installation, whose energizing winding (4) in series with a capacitor (C6) and a resistor (R16) is connected between a charging current terminal (A) and a reference voltage (2) and whereat a diode (D2) is connected in parallel to the series circuit consisting of the winding (4) and the resistor (R16), which diode is current-conducting in the direction to the reference voltage, characterized by
    a) a first comparator (CM1), whose one input (-) is supplied with a DC control signal (US) and whose second input (+) on the one hand is connected to a constant current source (T1, Z1, D1, R1, R2) via a first resistor (R5) and on the other hand is connected to a junction (G) between the energizing winding (4) and the series resistor (R16) via a second resistor (R11);
    b) a series circuit consisting of a resistor (R6) and a capacitor (C2) being connected between a DC source (UV) and said reference voltage (2), with the junction (C) between said resistor (R6) and said capacitor (C2) on the one hand being connected to the output of the first comparator (CM1) and on the other hand being connected to an input (-) of a second comparator (CM2);
    c) an oscillator (R4, R7 - R10, C3, CM3), generating a sawtooth voltage of predetermined frequency and amplitude, having its output (B) connected to the other input (+) of the second comparator (CM2);
    d) a power stage (T2, T3, T4, R13, R14) feeding the charging current terminal (A) of the series capacitor (C2) being controlled by the output signal (UD) of the second comparator (CM2);
    e) an electronic switch (T5) being connected between the charging current terminal (A) and the reference voltage (2) and being controlled by the output signal (UD) of the second comparator (CM2), whereat said electronic switch is rendered non-conducting when the power stage is conducting and whereat said switch is conducting when said power stage is non-conducting.
  2. Control circuit according to claim 1, characterized in that a low resistance resistor (R15) is connected between the series capacitor (C6) and the charging current terminal (A).
  3. Control circuit according to claim 1, characterized in that the constant current source (T1, Z1, D1, R1, R2) is connected in series with at least one resistor (P1, R3) to the energizing voltage source (1).
  4. Control circuit according to claim 3, characterized in that the resistor (P1) is adjustable.
  5. Control circuit according to one of the claims 1 to 4, characterized by such dimensioning of the oscillator (R4, R7 - R10, C3, CM3) that during normal operation the maximum value of the sawtooth voltage lies below the energizing DC voltage (UV) and its minimum value lies above the reference voltage.
  6. Control circuit according to claim 5, characterized in that the oscillator comprises a third comparator (CM3), whose output on the one hand is connected to the non-inverting input (+) via a first feedback resistor (R10) and on the other hand is connected to a charging capacitor (C3) via a second resistor (R9), whereat a high resistance resistor (R8) is provided between the charging capacitor (C3) and the inverting input (-), and that a stabilized reference voltage is fed to the non-inverting input (+) via a further high resistance resistor (R4).
  7. Control circuit according to claim 6, characterized in that the reference voltage is constituted by the voltage across a voltage divider (R1, Z1, D1) within the constant current source (Z1, D1, R1, R2, T1).
  8. Control circuit according to one of the claims 5 to 7, characterized in that the charging capacitor (C3) of the oscillator (CM3, C3, R7 - R10) is connected to the energizing DC voltage (UV) via a resistor (R7).
EP89117647A 1988-09-28 1989-09-25 Direct current-energised control circuit for a solenoid valve Expired - Lifetime EP0361353B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3832817A DE3832817A1 (en) 1988-09-28 1988-09-28 DC POWERED CONTROL CIRCUIT FOR A SOLENOID VALVE
DE3832817 1988-09-28

Publications (2)

Publication Number Publication Date
EP0361353A1 EP0361353A1 (en) 1990-04-04
EP0361353B1 true EP0361353B1 (en) 1993-04-28

Family

ID=6363831

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89117647A Expired - Lifetime EP0361353B1 (en) 1988-09-28 1989-09-25 Direct current-energised control circuit for a solenoid valve

Country Status (2)

Country Link
EP (1) EP0361353B1 (en)
DE (2) DE3832817A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2777384B1 (en) * 1998-04-10 2000-06-23 Europ Equip Menager DEVICE FOR CONTROLLING A PULSED SOLENOID VALVE FOR A FLUID CIRCUIT
DE10244522B4 (en) * 2002-09-25 2005-06-30 Karl Dungs Gmbh & Co. Kg Control device for a magnetic coil
CN104595552B (en) * 2015-01-28 2017-04-05 玉环联帮洁具制造有限公司 A kind of touch-control tap

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121703A (en) * 1981-01-22 1982-07-29 Nippon Denso Co Ltd Driving circuit of electromagnetic operating device
DE3233536A1 (en) * 1982-09-10 1984-04-05 Robert Bosch Gmbh, 7000 Stuttgart DEVICE FOR THE CLOCKED REGULATION OF A COIL FLOWING THROUGH
DE3440885A1 (en) * 1984-11-09 1986-05-15 Robert Bosch Gmbh, 7000 Stuttgart Circuit arrangement for switching on solenoid valves
GB8616965D0 (en) * 1986-07-11 1986-08-20 Lucas Ind Plc Drive circuit
DE3701985A1 (en) * 1987-01-23 1988-08-04 Knorr Bremse Ag Ballast electronics for an apparatus which can be energised by DC voltage

Also Published As

Publication number Publication date
DE3832817A1 (en) 1990-03-29
DE58904194D1 (en) 1993-06-03
EP0361353A1 (en) 1990-04-04

Similar Documents

Publication Publication Date Title
DE2832595C2 (en)
DE2338538C3 (en) Circuit arrangement with several direct current supply devices connected in series
DE2132031C3 (en) Converter
DE2912171C2 (en) DC / DC converter working as a switching regulator
DE3509714A1 (en) COUPLING CIRCUIT AND METHOD FOR MAKING SAME
DE3204840A1 (en) DC POWER SUPPLY WITH CONTINUOUS POWER, IN PARTICULAR FOR A TELECOMMUNICATION SYSTEM
DE2030547A1 (en) DC voltage regulator with multiple outputs
DE3031901A1 (en) CIRCUIT ARRANGEMENT FOR DELIVERING A REGULATED DC VOLTAGE
DE3639116A1 (en) DC VOLTAGE CIRCUIT FOR FLUORESCENT LAMPS
EP0986039B1 (en) Device for supplying power to a current loop transmitter
DE2722965C3 (en) Circuit arrangement for setting the speed of a motor operated with AC voltage
DE2909283C3 (en) Control circuit for a solenoid pump
DE3026147C2 (en) Regulated externally clocked DC voltage converter
DE2167212C2 (en) Circuit arrangement for generating at least one predetermined output voltage, the size of which is independent of an input voltage
EP0361353B1 (en) Direct current-energised control circuit for a solenoid valve
EP0130411B1 (en) Electronic switching power supply
DE3527619C1 (en) Self-testing proximity switch
WO1998043266A1 (en) Electromagnetic control device
EP0024523A1 (en) Single-ended forward converter for generating electrically separated d.c. output voltages
DE2736783A1 (en) LIMIT VALUE SIGNAL DEVICE FOR ALTERNATING SIGNALS
DE1812759B2 (en) ELECTRONIC REGULATOR FOR ADJUSTING THE OUTPUT VOLTAGE OF A DC GENERATOR
DE3914287A1 (en) DC voltage converter for vehicle voltage supply system - has FET controlled by regulating stages to provide stabilised output voltage
DE2357155C3 (en)
DE2100929A1 (en) Control circuit for supplying an inductive consumer
AT403965B (en) Regulated DC voltage source

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT NL

RTI1 Title (correction)
17P Request for examination filed

Effective date: 19900309

17Q First examination report despatched

Effective date: 19920504

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HONEYWELL B.V.

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT NL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930427

REF Corresponds to:

Ref document number: 58904194

Country of ref document: DE

Date of ref document: 19930603

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960612

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960617

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960625

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960820

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19970930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970925

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980603

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050925