EP0342082B1 - Procédé de réfroidissement d'un produit métallique coulé en continu - Google Patents

Procédé de réfroidissement d'un produit métallique coulé en continu Download PDF

Info

Publication number
EP0342082B1
EP0342082B1 EP89401150A EP89401150A EP0342082B1 EP 0342082 B1 EP0342082 B1 EP 0342082B1 EP 89401150 A EP89401150 A EP 89401150A EP 89401150 A EP89401150 A EP 89401150A EP 0342082 B1 EP0342082 B1 EP 0342082B1
Authority
EP
European Patent Office
Prior art keywords
cooling
product
core
pasty
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP89401150A
Other languages
German (de)
English (en)
Other versions
EP0342082A1 (fr
Inventor
Manuel Bobadilla
Michel Martinot
Jean-Marc Jolivet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASCOMETAL EN UGINE EN UNIMETAL SOCIETE FRANCAISE D
Original Assignee
Unimetal SA
Ugine SA
Ascometal SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9366459&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0342082(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Unimetal SA, Ugine SA, Ascometal SA filed Critical Unimetal SA
Priority to AT89401150T priority Critical patent/ATE91656T1/de
Publication of EP0342082A1 publication Critical patent/EP0342082A1/fr
Application granted granted Critical
Publication of EP0342082B1 publication Critical patent/EP0342082B1/fr
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling

Definitions

  • the present invention relates to a method of cooling a metal product during continuous casting intended to reduce, or even eliminate the presence of a large segregated zone in the central part of the product.
  • This process is advantageously applicable to the continuous casting of steel products known to be difficult to cast according to this technique, such as steels having a wide solidification interval, that is to say for example those whose carbon content is between 0, 25 and 1.5% approximately.
  • pasty state is meant a state where the metal is at a temperature between the liquidus and the solidus, and where coexist in variable proportions of the liquid metal and solid crystals.
  • the interfaces between these various concentric bodies constitute, respectively, as we are used to designating them, the fronts of ending and beginning solidification.
  • the liquid core disappears (bottom of the beginning solidification well), and only a solidified crust and a pasty core remain.
  • the pasty zone disappears in turn (closing of the finishing solidification well) and the product is completely solidified.
  • the forced cooling of the product in the mold and after its exit from the mold provides rapid growth in the thickness of solidified skin, in order to limit the risks of breakthrough and significantly increase the speed of extraction of the product, on which the productivity of the continuous casting machine.
  • the solubility in iron of alloying elements is lower when the iron is in the solid state than in the liquid state.
  • alloying elements such as carbon
  • the other alloying elements have a behavior similar to that of carbon, and the location of the segregated zones can be deduced from the tests commonly called "Baumann imprints" which make it possible to identify the distribution of the sulfur on a polished section of the product.
  • These segregated zones also identifiable on metallographic attacks, have a detrimental influence on the homogeneity of the mechanical properties of the product.
  • the relatively higher concentration of carbon in the center leads to higher hardness in these areas than in the rest of the product after rolling.
  • the object of the present invention is to propose a simple and economical solution for reducing, or even eliminating the highly segregated zones in the core of the continuously cast products, by attacking the very cause responsible for their formation. It can be added to or a substitute for electromagnetic stirring in the end of pasty solidification zone.
  • the subject of the invention is a method of cooling a metal product, in particular steel, during continuous casting, characterized in that a forced cooling of the product is carried out, while the product is in pasty solidification phase, this cooling being carried out so that the differential thermal contraction between the pasty core and the already completely solidified crust which envelops it, permanently causes a tightening effect of the heart by the crust.
  • This cooling is carried out in an area which extends at least between the place where, in the absence of such cooling, the rate of cooling of the pasty core of the product would exceed that of the surface of the product, and a place where the thermomechanical behavior of the pasty core during cooling is identical to that of the solidified outer crust.
  • the invention consists in fact in using the solidified outer crust as a vice which accompanies the contraction of the heart during cooling.
  • the inside diameter of the ring formed by the solidified crust must decrease faster than the diameter of the pasty core would decrease if the crust had no effect on the heart.
  • This vice is put into action, by thermal, simply by means of an accelerated cooling of the surface of the product in the lower part of the machine, where usually the product was allowed to cool naturally.
  • Figure 1 is a schematic longitudinal section of a conventional continuous casting installation, and in particular it shows the product being solidified.
  • a pocket not shown, feeds liquid steel 1 to a distribution basket 2.
  • the liquid steel 1 then flows into one or more ingot molds 3 with copper or copper alloy walls energetically cooled by water. It is in each of these ingot molds or primary cooling zones X that the solidification of a product 4 begins at its periphery, which thus takes its final section.
  • the mold shown in Figure 1 has a curvature, and it is found on the product. The case of the right ingot mold giving birth to a right product is also encountered in industrial practice.
  • the secondary cooling zone Y in which the product 4 is sprayed over a variable length according to the machines by a ramp of injectors 5. These project all around the product a cooling fluid , usually sprayed or atomized water.
  • a cooling fluid usually sprayed or atomized water.
  • the natural cooling zone Z where a conventional machine such as that shown schematically does not have means for cooling the product.
  • a conventional machine such as that shown schematically does not have means for cooling the product.
  • FIG. 1 makes it possible to distinguish several concentric regions inside the product during casting, corresponding to the physical state of the material which they contain.
  • a product section located in the upper part of the machine for example in zone Y
  • the metal is entirely in the liquid state; the section of this zone decreases as the product solidifies, and after the point of closure of the liquid well 7, there is no longer any liquid metal alone.
  • a pasty region 8 corresponding to the metal being solidified, contains both liquid and solid. The proportion of the latter increases as the temperature decreases.
  • the crust 9 consists only of solidified metal. Beyond the closing point of the ending solidification well 10, this region 9 covers the entire product, the solidification of which is then completed.
  • the zone of the installation which extends between the meniscus and the level corresponding to the point of closure of the finishing solidification well 10 is called "metallurgical length".
  • Figure 2 shows the continuous casting machine of Figure 1 modified according to the invention.
  • the elements common with Figure 1 are identified by the same numbers.
  • the difference between the two configurations lies in the addition to the original machine of a second ramp of injectors 11, located in the zone Z of the machine where the product completes its solidification.
  • Curves A and B correspond to the case of FIG. 1, where the product, in the terminal part of the machine, is not subjected to any forced cooling.
  • Curve A represents the rate of surface cooling of the product. It shows that this speed remains substantially constant (a loss of 0.5 ° C / s) over the entire length of the zone considered.
  • Curve B represents the rate of cooling of the pasty core of the product. It shows that, at the start of the zone considered, the temperature of the pasty core remains practically constant, as the cooling rate appears close to 0 ° C / s. It is only from a distance to the meniscus of approximately 8 m that the cooling of the pasty heart accelerates significantly. At a distance from the meniscus of 9.5 m, curve B intersects curve A.
  • Curves C and D correspond to the case of FIG. 2, where the product, in accordance with the invention, is subjected to forced cooling in the zone Z at the end of solidification by means of the injector ramp 11.
  • These curves have been traced in the hypothesis where the product is watered, between the distances to the meniscus 8.40 m and 11.20 m, with water at a flow rate of 12 m3 per hour and per m2 of product sprayed, this flow rate being evenly distributed over the entire watering area.
  • the distance to the meniscus of 8.40 m was chosen from curves A and B in Figure 3, that is to say a distance which is less than the distance of 9.50 m at which, in the absence of such a watering zone (case of FIG.
  • the rate of cooling of the pasty core begins to exceed the rate of cooling of the surface of the product.
  • Curve C represents, when the product is watered according to the invention, the rate of cooling of the surface of the product
  • curve D represents, under the same conditions, the rate of cooling of the pasty core. Upstream of the cooling zone, these curves merge with curves A and B respectively. From the start of the forced cooling zone, the cooling of the surface accelerates suddenly, reaching 9 ° C / s at a distance at the meniscus 9 m. Then, the cooling becomes more and more slow, because of the progressive deterioration of the quality of the heat exchanges between the cooling water (whose flow and temperature are constant) and the product (whose temperature decreases as and as it progresses through the cooling zone).
  • the recommended cooling water flows are of the order of 8 to 15 m3 / h and per m2 of sprinkled metal. Preferably, a flow rate of 12 m3 / m2.h is chosen.
  • This process is easily adaptable to all continuous casting machines intended for the manufacture of steel products. It is more specifically designed for the casting of steel grades containing approximately from 0.25 to 1.5% of carbon.
  • a variant of this method would consist in designing the cooling ramp 11 so that the flow of cooling fluid varies between the start and the end of the cooling zone.
  • the value of the average overall flow over the entire area would be unchanged compared to the configuration described above. In this way, it would be possible to better control the flow of heat extracted from the product along the cooling zone, in order to attenuate the reduction, visible in FIG. 3, of the speed of cooling at the surface of the product. Thus, one would increase the probability of having until the extreme end of solidification a cooling at heart less rapid than in skin.
  • the invention is not limited to the examples described, but extends to multiple variants or equivalents insofar as the characteristics mentioned in the appended claims are respected.
  • the method according to the invention can be applied to vertical, straight or curved continuous casting machines, as well as to horizontal continuous casting machines, as well as to existing or future installations for casting. direct continuous of thin products.
  • the invention does not apply restrictively to steel semi-finished products, but extends its field of application to any metallurgical product which is poured continuously, or which may be.
  • the invention applies equally to any metallurgical product cast continuously whatever its format: blooms, billets or slabs, in particular those intended for slitting to form blooms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Heat Treatment Of Articles (AREA)

Description

  • La présente invention concerne un procédé de refroidissement d'un produit métallique en cours de coulée continue destiné à réduire, voire éliminer la présence d'une importante zone ségrégée dans la partie centrale du produit. Ce procédé est avantageusement applicable à la coulée continue de produits en acier réputés difficilement coulables selon cette technique, comme les aciers ayant un large intervalle de solidification, c'est-à-dire par exemple ceux dont la teneur en carbone se situe entre 0,25 et 1,5% environ.
  • Pour la bonne compréhension de ce qui va suivre, on aura avantage à se représenter le produit en cours de solidification comme la combinaison de trois corps concentriques, à savoir : un anneau constitué par la croûte externe, ou peau, déjà solidifiée, enserrant un autre anneau à l'état pâteux, lequel entoure le coeur liquide de métal en fusion. Par état pâteux, on entend un état où le métal se trouve à une température comprise entre le liquidus et le solidus, et où coexistent dans des proportions variables du métal liquide et des cristaux solides. Au cours de l'extraction du produit, celui-ci défile lentement le long de la machine en étant refroidi, de sorte que la solidification progresse de la périphérie vers le centre. Le coeur liquide et l'anneau pâteux présentent ainsi des profils coniques dont les pointes sont orientées vers le bas de la machine. Les interfaces entre ces différents corps concentriques constituent, respectivement, comme on a l'habitude de les désigner, les fronts de solidification finissante et commençante. A un stade avancé de la solidification, le coeur liquide disparaît (fond du puits de solidification commençante), et seuls subsistent une croûte solidifiée et un coeur pâteux. A un stade ultérieur, la zone pâteuse disparaît à son tour (fermeture du puits de solidification finissante) et le produit est complètement solidifié.
  • La solidification et le refroidissement du produit en cours de coulée sont normalement assurés dans trois zones successives de la machine de coulée continue, à savoir, dans le sens de progression du produit au cours de son extraction :
    • la lingotière, où le métal liquide entre en contact avec des parois bonnes conductrices de la chaleur et énergiquement refroidies par circulation d'eau. C'est dans cette zone, dite de refroidissement primaire que débute la formation de la peau solidifiée qui enserre le coeur liquide du produit, et que le produit prend sa forme définitive ;
    • la zone dite de "refroidissement secondaire", qui débute juste en-dessous de la lingotière et s'étend sur une longueur variable selon les conditions locales. Dans cette zone, la peau solidifiée du produit en défilement est arrosée par un fluide refroidissant (généralement de l'eau pulvérisée, ou un mélange-air eau), ce qui a pour effet d'accélérer la progression des fronts de solidification commençante et finissante vers l'intérieur du produit. Cependant, à l'endroit où cesse l'aspersion d'eau, la solidification complète du produit n'est pas réalisée, et le coeur du produit demeure à l'état liquide ;
    • et la portion de la machine qui fait suite à la zone de refroidissement secondaire. Le produit en défilement n'y est plus arrosé et se refroidit de façon naturelle. C'est dans cette zone que s'achève la solidification du coeur du produit.
  • Le refroidissement forcé du produit en lingotière et après sa sortie de la lingotière procure une croissance rapide de l'épaisseur de peau solidifiée, afin de limiter les risques de percée et d'augmenter sensiblement la vitesse d'extraction du produit, dont dépend directement la productivité de la machine de coulée continue.
  • Par ailleurs, la solubilité dans le fer des éléments d'alliage, tels que le carbone, est plus faible lorsque le fer est à l'état solide qu'à l'état liquide. Dans l'anneau pâteux, il existe donc localement dans le liquide des différences de concentration, par exemple en carbone.
    Si, au sein de l'anneau pâteux, il y a mouvement du liquide enrichi en carbone cela se traduit par la présence, au centre du produit complètement solidifié, de zones dites "ségrégées", où la concentration en carbone (et/ou autres éléments ségrégants) est sensiblement plus élevée que dans les autres régions. Les autres éléments d'alliage ont un comportement analogue à celui du carbone, et l'emplacement des zones ségrégées peut être déduit des tests appelés communément "empreintes Baumann" qui permettent de repérer la répartition du soufre sur une section polie du produit. Ces zones ségrégées, repérables également sur des attaques métallographiques, ont une influence néfaste sur l'homogénéité des propriétés mécaniques du produit. C'est ainsi que la concentration relativement plus importante en carbone au centre conduit à une dureté plus élevée dans ces zones que dans le reste du produit après laminage.
  • Ce phénomène est particulièrement marqué dans le cas des aciers très chargés en éléments d'alliage, tels que ceux contenant 0,5 à 1,5 % de carbone et couramment appelés aciers à large intervalle de solidification, comme la nuance d'acier à roulements 100 C6 par exemple. Une "empreinte Baumann" réalisée sur un échantillon du produit prélevé selon l'axe longitudinal de celui-ci montrerait que les ségrégations se répartissent autour de l'axe du produit suivant des "vés" dont les mécanismes de formation ne sont d'ailleurs pas encore totalement élucidés.
  • On a tenté de résoudre ce problème par l'application d'un brassage électromagnétique du métal dans la zone de solidification pâteuse de manière à forcer le liquide ségrégé à se répartir sur une zone plus étendue. Mais ce faisant, on corrige en fait les effets sans s'attaquer vraiment aux causes du phénomène. De plus, cette technique implique l'acquisition d'au moins un inducteur de brassage, ainsi que des coûts de fonctionnement non négligeables
  • Le but de la présente invention est de proposer une solution simple et économique pour réduire, voire éliminer les zones fortement ségrégées dans le coeur des produits coulés en continu, en s'attaquant à la cause même responsable de leur formation. Elle peut s'ajouter ou se substituer à un brassage électromagnétique dans la zone de fin de solidification pâteuse.
  • A cet effet, l'invention a pour objet un procédé de refroidissement d'un produit métallique, notamment en acier, en cours de coulée continue, caractérisé en ce qu'on réalise un refroidissement forcé du produit, alors que le produit se trouve en phase de solidification pâteuse, ce refroidissement étant mené de manière que la contraction thermique différentielle entre le coeur pâteux et la croûte déjà complètement solidifiée qui l'enveloppe, provoque en permanence un effet de serrage du coeur par la croûte. Ce refroidissement est mis en oeuvre dans une zone qui s'étend au moins entre l'endroit où, en l'absence d'un tel refroidissement, la vitesse de refroidissement du coeur pâteux du produit dépasserait celle de la surface du produit, et un endroit où le comportement thermomécanique du coeur pâteux en cours de refroidissement est identique à celui de la croûte extérieure solidifiée.
  • Comme on l'aura compris, l'invention consiste en fait à se servir de la croûte extérieure solidifiée comme d'un étau qui accompagne la contraction du coeur lors du refroidissement. Autrement dit, le diamètre intérieur de l'anneau formé par la croûte solidifiée doit diminuer plus vite que ne diminuerait le diamètre du coeur pâteux si la croûte n'exerçait aucune action sur le coeur. Cet étau est mis en action, par la thermique, simplement au moyen d'un refroidissement accéléré de la surface du produit dans la partie basse de la machine, là où habituellement on laissait le produit se refroidir naturellement.
  • On a indiqué plus haut que les causes de formation des "vés" ségrégés dans la partie centrale du produit coulé n'étaient pas à ce jour parfaitement identifiées et expliquées.
  • Toutefois, l'hypothèse faite par les inventeurs comme étant la plus probable et qui sous-tend la présente invention, peut être schématiquement exposée de la façon suivante.
  • Lors de la traversée de la zone de refroidissement secondaire, la peau du produit se refroidit rapidement, alors que le coeur liquide demeure à une température presque constante. Au passage du produit dans la zone de refroidissement naturel, le refroidissement de la peau, qui n'est plus arrosée, devient beaucoup plus lent. D'autre part, compte tenu de la longueur habituelle de la zone de refroidissement secondaire, c'est seulement lorsque le produit est déjà largement engagé dans la zone de refroidissement naturel que la température du coeur (qui se trouve alors dans l'état pâteux), tend à s'abaisser sensiblement.
  • La partie interne pâteuse du produit se refroidit alors plus rapidement que la couche solide qui l'enveloppe et subit une plus forte contraction thermique. Les contraintes mécaniques ainsi créées se libèrent par formation de fissures dans le bloc central préalablement "pâteux", fissures dans lesquelles peut pénétrer par aspiration, du liquide fortement ségrégé.
  • Ainsi, dans le produit complètement solidifié, les emplacements de ces fissures seront repérés par leur concentration élevée en éléments d'alliage, conduisant aux défauts cités plus haut.
  • Dans le cas des aciers fortement chargés en éléments d'alliage, tels que le carbone, comme le 100 C6 par exemple, l'écart entre les températures de début et de fin de solidification est relativement important, et la solidification pâteuse est donc susceptible de s'effectuer sur une zone plus étendue que dans le cas des nuances peu alliées. Ceci, joint à une plus grande sensibilité à la ségrégation des éléments entre les phases liquide et solide, explique pourquoi les nuances alliées sont à ce point sujettes à la formation de zones ségrégées dans la région axiale des produits coulés en continu. Dans certains cas extrêmes, de tels défauts rendent impossible l'obtention de produit finis d'une qualité suffisante, et imposent de devoir renoncer à les produire par coulée continue.
  • On vient de voir rapidement comment l'invention, en provoquant une contraction thermique de la croûte solide périphérique, contrecarre les vélléités du produit à former ces fissures internes responsables des zones centrales fortement ségrégées. Toutefois l'invention sera bien comprise et d'autres caractéristiques et avantages ressortiront de la description détaillée suivante donnée en référence aux planches de dessins annexées, sur lesquelles :
    • la figure 1 représente schématiquement une installation de coulée continue courbe de demi-produits en acier, de conception classique ;
    • la figure 2 représente l'installation de la figure 1, modifiée selon l'invention par adjonction d'une rampe de refroidissement dans la zone de fin de solidification, du produit ;
    • la figure 3 montre un cas d'évolution des vitesses de refroidissement de la surface et du coeur du produit au cours de son défilement dans la partie inférieure de la machine. Sont figurés les deux cas de l'absence et de la présence d'un dispositif de refroidissement dans la zone de fin de solidification du produit.
  • La figure 1 est une coupe schématique longitudinale d'une installation classique de coulée continue, et elle présente notamment le produit en cours de solidification. Une poche, non représentée, alimente en acier liquide 1 un panier répartiteur 2. L'acier liquide 1 s'écoule ensuite dans une ou plusieurs lingotières 3 aux parois en cuivre ou alliage de cuivre énergiquement refroidies par eau. C'est dans chacune de ces lingotières ou zones de refroidissement primaire Ⓧ que s'amorce par sa périphérie la solidification d'un produit 4 qui prend ainsi sa section définitive. La lingotière montrée par la figure 1 présente une courbure, et celle-ci se retrouve sur le produit. Le cas de la lingotière droite donnant naissance à un produit droit est également rencontré dans la pratique industrielle. Juste en-dessous de la lingotière 3 débute la zone de refroidissement secondaire Ⓨ dans laquelle le produit 4 est arrosé sur une longueur variable selon les machines par une rampe d'injecteurs 5. Ceux-ci projettent sur tout le pourtour du produit un fluide refroidissant, généralement de l'eau pulvérisée ou atomisée. Vient ensuite la zone de refroidissement naturel Ⓩ , où une machine classique telle que celle schématisée ne comporte pas de moyens de refroidissement du produit. Dans la partie inférieure de la machine se trouvent les moyens (non représentés) de décintrage du produit, chargés de lui donner une forme droite, et des moyens (non représentés) de tronçonnage du produit pour sa mise à longueur.
  • La figure 1 permet de distinguer plusieurs régions concentriques à l'intérieur du produit en cours de coulée, correspondant à l'état physique de la matière qu'elles renferment. Dans une section de produit située dans la partie supérieure de la machine (par exemple dans la zone Y), on rencontre successivement trois régions. A coeur (région 6) le métal se trouve entièrement à l'état liquide ; la section de cette zone diminue au fur et à mesure de la solidification du produit, et après le point de fermeture du puits liquide 7, on ne trouve plus de métal liquide seul. Autour du coeur liquide 6, une région pâteuse 8, correspondant au métal en cours de solidification, renferme à la fois du liquide et du solide. La proportion de ce dernier augmente à mesure que la température diminue. Autour de la région pâteuse, la croûte 9 n'est constituée que de métal solidifié. Au-delà du point de fermeture du puits de solidification finissante 10, cette région 9 recouvre l'ensemble du produit, dont la solidification est alors achevée. La zone de l'installation qui s'étend entre le ménisque et le niveau correspondant au point de fermeture du puits de solidification finissante 10 est appelée " longueur métallurgique".
  • La figure 2 présente la machine de coulée continue de la figure 1 modifiée selon l'invention. Les éléments communs avec la figure 1 sont repérés par les mêmes chiffres. La différence entre les deux configurations réside dans l'adjonction à la machine originale d'une deuxième rampe d'injecteurs 11, située dans la zone Ⓩ de la machine où le produit achève sa solidification.
  • La figure 3 montre des exemples d'évolution de la vitesse V de refroidissement du métal en surface et à coeur au fur et à mesure de l'avancement du produit dans la zone Ⓩ de la machine où il achève sa solidification. Cet avancement est exprimée par la distance D au ménisque, c'est-à-dire la surface du métal liquide en lingotière. Les courbes ont été tracées à l'aide de modèles mathématiques similaires à ceux dont disposent les utilisateurs de machines de coulée continue. Elles sont valables pour les conditions de coulée suivantes :
    • format du produit : billettes de section carrée, de 105 mm de côté,
    • composition du produit : acier à 0,7 % de carbone,
    • vitesse d'extraction du produit : 3,3 m/min.
  • Dans ces conditions la solidification complète du produit est réalisée à une distance de 11,20 m du ménisque, marquée sur la figure par la ligne S.
  • Les courbes A et B correspondent au cas de la figure 1, où le produit, dans la partie terminale de la machine, n'est soumis à aucun refroidissement forcé. La courbe A représente la vitesse de refroidissement en surface du produit. Elle montre que cette vitesse reste sensiblement constante (soit une perte de 0,5°C/s) sur toute la longueur de la zone considérée. La courbe B représente la vitesse de refroidissement du coeur pâteux du produit. Elle montre que, au début de la zone considérée, la température du coeur pâteux reste pratiquement constante, comme la vitesse de refroidissement apparaît proche de 0°C/s. Ce n'est qu'à partir d'une distance au ménisque d'environ 8 m que le refroidissement du coeur pâteux s'accélère de façon notable. A une distance au ménisque de 9,5 m, la courbe B coupe la courbe A. Cela signifie qu'au-delà de ce point, le coeur pâteux commence à perdre plus de 0,5 °C/s, et donc que la vitesse de refroidissement du coeur pâteux commence à excéder la vitesse de refroidissement de la surface du produit. Cela entraîne une contraction thermique du coeur plus forte que celle de la surface, phénomène dont on a vu que, selon l'hypothèse faite par les inventeurs, il était à l'origine des défauts sur le produit que l'invention a pour but d'éviter.
  • Les courbes C et D correspondent au cas de la figure 2, où le produit, conformément à l'invention, est soumis à un refroidissement forcé dans la zone Ⓩ de fin de solidification au moyen de la rampe d'injecteurs 11. Ces courbes ont été tracées dans l'hypothèse où le produit est arrosé, entre les distances au ménisque 8,40 m et 11,20 m, par de l'eau à un débit de 12 m³ par heure et par m² de produit arrosé, ce débit étant réparti de façon homogène sur l'ensemble de la zone d'arrosage. La distance au ménisque de 8,40 m a été choisie d'après les courbes A et B de la Figure 3, c'est-à-dire une distance qui est inférieure à la distance de 9,50 m à laquelle, en l'absence d'une telle zone d'arrosage (cas de la figure 1), la vitesse de refroidissement du coeur pâteux commence à excéder la vitesse de refroidissement de la surface du produit. La courbe C représente, lorsque le produit est arrosé selon l'invention, la vitesse de refroidissement de la surface du produit, et la courbe D représente dans les mêmes conditions la vitesse de refroidissement du coeur pâteux. En amont de la zone de refroidissement, ces courbes se confondent respectivement avec les courbes A et B. Dès le début de la zone de refroidissement forcé, le refroidissement de la surface s'accélère brusquement, pour atteindre 9°C/s à la distance au ménisque 9 m. Ensuite, le refroidissement devient de plus en plus lent, à cause de la détérioration progressive de la qualité des échanges thermiques entre l'eau de refroidissement (dont le débit et la température sont constants) et le produit (dont la température diminue au fur et à mesure qu'il progresse dans la zone de refroidissement). Simultanément, le refroidissement forcé a pour conséquence d'accélérer le refroidissement du coeur pâteux, mais cet effet ne se fait sentir que tardivement (à partir de la distance au ménisque 10 m), et progressivement. En fin de compte, ce n'est qu'à une distance au ménisque de 11 m, que la courbe D coupe la courbe C. Cela signifie qu'à cette distance, le refroidissement du coeur pâteux devient plus rapide que celui de la surface du produit. A ce niveau, le coeur pâteux a pratiquement achevé de se solidifier, et son comportement thermomécanique est suffisamment proche de celui de la croûte entièrement solidifiée pour que le phénomène de contraction thermique différentielle soit négligeable, et que les "vés" ségrégés ne puissent être formés.
  • L'exemple décrit ci-dessus n'est, bien sûr, pas limitatif. Une figure similaire à la figure 3 peut être tracée pour toute machine de coulée continue, sur laquelle serait coulé un produit donné dans des conditions définies.
  • On considère que, au-delà de l'endroit où la fraction solide du coeur pâteux du produit atteint 90 %, il est inutile de poursuivre l'arrosage. Dans certains cas, il est même suffisant de n'arroser que jusqu'à une fraction solide de 60 %.
  • Il est conseillé de poursuivre le refroidissement forcé du produit jusqu'à environ 1 m au-delà du point de fin de solidification déterminé par le calcul. C'est dans cet esprit que sur la figure 3, la rampe de refroidissement 11 est représentée comme se prolongeant au-delà du point 10. De même, l'incertitude de calcul sur la détermination du point d'intersection entre les courbes A et B de la figure 3 est de ± 1 m environ. Le choix du point où débute le refroidissement forcé doit tenir compte de cette incertitude. Il est donc conseillé de placer les premiers injecteurs de la rampe 11 à au moins 1 m en amont dudit point d'intersection, ce qui a été fait dans l'exemple numérique de la figure 3, comme expliqué précédemment. Mais il faut également s'assurer que cet avancement du début du refroidissement ne provoque pas un croisement prématuré des courbes C et D de la figure 3, c'est-à-dire qui aurait lieu en un point où la fraction solide du coeur pâteux serait inférieure à 60 % au moins.
  • Les débits d'eau de refroidissement recommandés sont de l'ordre de 8 à 15 m³/h et par m² de métal arrosé. Préférentiellement, on choisit un débit de 12 m³/m².h.
  • Ce procédé est aisément adaptable à toutes les machines de coulée continue destinées à la fabrication de produits en acier. Il est plus spécialement conçu pour la coulée de nuances d'acier contenant environ de 0,25 à 1,5 % de carbone.
  • Une variante de ce procédé consisterait à concevoir la rampe de refroidissement 11 de facon que le débit de fluide refroidissant varie entre le début et la fin de la zone de refroidissement. La valeur du débit global moyen sur l'ensemble de la zone serait inchangée par rapport à la configuration décrite précédemment. De cette façon, il serait possible de mieux contrôler le flux de chaleur extrait du produit le long de la zone de refroidissement, dans le but d'atténuer la diminution, visible sur la figure 3, de la vitessse de refroidissement en surface du produit. Ainsi, on augmenterait la probabilité d'avoir jusqu'à l'extrême fin de la solidification un refroidissement à coeur moins rapide qu'en peau.
  • D'autre part, on a remarqué qu'une bonne homogénéité du coeur du produit sur lequel on allait appliquer le procédé était favorable à la reproductibilité des bons résultats métallurgiques recherchés. On a pu constater que cette homogénéité pouvait avantageusement être obtenue par une mise en mouvement du coeur liquide dans la zone du refroidissement secondaire, ou même en lingotière. Cette mise en mouvement peut être favorablement obtenue à l'aide de moyens électromagnétiques de brassage, désormais largement connus dans'le domaine de la coulée continue. Ces moyens peuvent être constitués par des inducteurs polyphasés annulaires disposés autour du produit coulé et produisant un champ magnétique tournant autour de l'axe de coulée, ou par des inducteurs polyphasés de structure plane produisant un champ glissant, parallèlement à l'axe de coulée ou perpendiculairement à ce dernier. La littérature abonde désormais à propos de ce type de brassage. Pour plus de détails, on pourra se reporter si on le souhaite aux documents suivants : le brevet français 2 315 344 pour le brassage par champ tournant en lingotière, le brevet français 2 211 304 concernant le brassage par champ tournant dans la zone du refroidissement secondaire, le brevet luxembourgeois 67 753 concernant le brassage à l'aide d'inducteurs produisant un champ glissant perpendiculairement à l'axe de coulée dans la zone du refroidissement secondaire. Les enseignements de ces différents documents sont inclus par référence dans la présente description.
  • Il va de soi que l'invention ne se limite pas aux exemples décrits, mais s'étend à de multiples variantes ou équivalents dans la mesure où sont respectées les caractéristiques évoquées dans les revendications jointes. En particulier, le procédé selon l'invention peut s'appliquer à des machines de coulée continue verticales, droites ou courbes, de même qu'aux machines de coulée continue horizontale, de même encore qu'aux installations existantes ou à venir pour la coulée continue directe de produits de faible épaisseur.
  • D'autre part l'invention ne s'applique pas limitativement aux demi-produits sidérurgiques, mais étend son domaine d'application à tout produit métallurgique coulé en continu, ou susceptible de l'être.
  • De même encore, l'invention s'applique indifféremment à tout produit métallurgique coulé en continu que que soit son format : blooms, billettes ou brames, notamment celles destinées au refendage pour former des blooms.

Claims (13)

  1. Procédé de refroidissement d'un produit métallique (4), notamment en acier, en cours de coulée continue, caractérisé en ce qu'on réalise un refroidissement forcé du produit (4) lorsque celui-ci se trouve à coeur en phase de solidification pâteuse, ledit refroidissement étant mené de manière que la contraction thermique différentielle entre le coeur pâteux (8) et la croûte extérieure déjà complètement solidifiée (9) provoque en permanence un effet de serrage du coeur (8) par la croûte (9), et étant mis en oeuvre dans une zone qui s'étend le long de la machine de coulée au moins entre l'endroit où, en l'absence d'un tel refroidissement, la vitesse de refroidissement du coeur pâteux (8) du produit (4) dépasserait celle de la surface du produit (4), et un endroit où le comportement thermomécanique du coeur pâteux (8) en cours de refroidissement est identique à celui de la croûte extérieure solidifiée (9).
  2. Procédé selon la revendication 1, caractérisé en ce que l'on maintient le refroidissement de façon que l'effet de serrage du coeur pâteux (8) par la croûte solidifiée (9) se poursuive jusqu'à un point où la proportion de matière solide au sein du coeur pâteux (8) est au moins de 60 %.
  3. Procédé selon les revendications 1 ou 2, caractérisé en ce que l'on effectue le refroidissement forcé par projection d'un fluide refroidissant sur la surface du produit coulé (4), tel que de l'eau.
  4. Procédé selon la revendication 3, caractérisé en ce que l'on effectue le refroidissement avec de l'eau sous un débit moyen compris entre 8 et 15 m³ par heure et par m² de produit arrosé.
  5. Procédé selon la revendication 4, caractérisé en ce que l'on choisit pour ledit débit moyen une valeur d'environ 12 m³ par heure et par m² de produit arrosé.
  6. Procédé selon la revendication 3, caractérisé en ce que le débit de fluide refroidissant varie entre le début et la fin de la zone de refroidissement.
  7. Procédé selon les revendications 1, 2, ou 3, caractérisé en ce que l'on applique à la coulée de produits en acier dont la teneur pondérale en carbone est de l'ordre de 0,25 à 1,5 %.
  8. Procédé selon les revendications 1, 2, ou 3, caractérisé en ce que, simultanément, on réalise une mise en mouvement du coeur liquide (6) du produit (4) à l'aide de moyens de brassage.
  9. Procédé selon la revendication 8, caractérisé en ce que lesdits moyens de brassage sont constitués par au moins un inducteur à champ électromagnétique mobile.
  10. Procédé selon la revendication 9, caractérisé en ce qu'on utilise un inducteur entourant le produit coulé (4) et générant un champ magnétique tournant autour de l'axe de coulée.
  11. Procédé selon la revendication 9, caractérisé en ce qu'on utilise un inducteur de structure plane produisant un champ glissant au sein du produit coulé.
  12. Installation de coulée continue de produits métalliques (4), notamment en acier, telle que, des moyens (11) de refroidissement du produit sont disposés dans la portion terminale de la longueur métallurgique, dans une zone qui s'étend le long de la machine de coulée au moins entre l'endroit où, en l'absence de tels moyens de refroidissement, la vitesse de refroidissement du coeur pâteux (8) du produit (4) dépasserait celle de la surface du produit (4), et un endroit où le comportement thermomécanique du coeur pâteux (8) en cours de refroidissement est identique à celui de la croûte extérieure solidifiée (9).
  13. Installation de coulée continue selon la revendication 12, caractérisée en ce que lesdits moyens (11) de refroidissement sont constitués par des rampes d'arrosage projetant sur la surface du produit coulé (4) un fluide de refroidissement.
EP89401150A 1988-05-13 1989-04-21 Procédé de réfroidissement d'un produit métallique coulé en continu Revoked EP0342082B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89401150T ATE91656T1 (de) 1988-05-13 1989-04-21 Verfahren zur kuehlung eines metallischen stranggussproduktes.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8806743A FR2631263B1 (fr) 1988-05-13 1988-05-13 Procede de refroidissement d'un produit metallique coule en continu
FR8806743 1988-05-13

Publications (2)

Publication Number Publication Date
EP0342082A1 EP0342082A1 (fr) 1989-11-15
EP0342082B1 true EP0342082B1 (fr) 1993-07-21

Family

ID=9366459

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89401150A Revoked EP0342082B1 (fr) 1988-05-13 1989-04-21 Procédé de réfroidissement d'un produit métallique coulé en continu

Country Status (19)

Country Link
US (1) US5063991A (fr)
EP (1) EP0342082B1 (fr)
JP (1) JPH0215856A (fr)
KR (1) KR960004423B1 (fr)
CN (1) CN1018803B (fr)
AT (1) ATE91656T1 (fr)
AU (1) AU611797B2 (fr)
BR (1) BR8902241A (fr)
CA (1) CA1338164C (fr)
CS (1) CS287289A3 (fr)
DD (1) DD284175A5 (fr)
DE (1) DE68907644T2 (fr)
ES (1) ES2042023T3 (fr)
FR (1) FR2631263B1 (fr)
PL (1) PL279425A1 (fr)
PT (1) PT90543B (fr)
RU (1) RU1819188C (fr)
UA (1) UA15737A (fr)
ZA (1) ZA893402B (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5725046A (en) * 1994-09-20 1998-03-10 Aluminum Company Of America Vertical bar caster
JPH08234390A (ja) * 1995-02-24 1996-09-13 Fuji Photo Film Co Ltd 画像形成方法およびハロゲン化銀感光材料
US6264767B1 (en) 1995-06-07 2001-07-24 Ipsco Enterprises Inc. Method of producing martensite-or bainite-rich steel using steckel mill and controlled cooling
FR2767273B1 (fr) * 1997-08-14 1999-10-15 Vallourec Ind Procede de fabrication par coulee continue de produits en acier
AU4596899A (en) 1998-07-10 2000-02-01 Ipsco Inc. Method and apparatus for producing martensite- or bainite-rich steel using steckel mill and controlled cooling
JP5145791B2 (ja) 2007-06-28 2013-02-20 新日鐵住金株式会社 小断面ビレットの連続鋳造方法
US8245760B2 (en) * 2007-11-19 2012-08-21 Posco Continuous cast slab and method for manufacturing the same
EP2654990B1 (fr) * 2010-12-22 2015-12-09 Novelis, Inc. Élimination de la cavité de retrait dans des lingots coulés
CN102161090B (zh) * 2010-12-23 2012-11-07 中国科学院金属研究所 一种提高厚大断面铸坯自补缩能力的方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3512574A (en) * 1966-12-02 1970-05-19 Inland Steel Co Continuous casting process and apparatus
US3502133A (en) * 1967-03-03 1970-03-24 Reynolds Metals Co Continuous casting method and apparatus for controlling freeze line location
US3771584A (en) * 1971-01-08 1973-11-13 Roblin Industries Method for continuously casting steel billet strands to minimize the porosity and chemical segregation along the center line of the strand
FR2231454A2 (en) * 1973-05-29 1974-12-27 Cem Comp Electro Mec Slab casting machine - with metal stirring by electrically wound withdrawal rolls
US3882923A (en) * 1972-06-08 1975-05-13 Siderurgie Fse Inst Rech Apparatus for magnetic stirring of continuous castings
FR2211305B1 (fr) * 1972-12-21 1975-06-06 Cem Comp Electro Mec
CH559586A5 (fr) * 1973-06-04 1975-03-14 Concast Ag
FR2315344A1 (fr) * 1975-06-27 1977-01-21 Siderurgie Fse Inst Rech Lingotiere de coulee continue electrorotative
JPS5342131A (en) * 1976-09-29 1978-04-17 Hitachi Ltd Method of cooling cast piece in continuous casting
DE3048711C2 (de) * 1980-12-23 1991-08-01 Hamburger Stahlwerke Gmbh, 2103 Hamburg Verfahren zum Kühlen von Strängen beim Stranggießen von Stahlknüppeln
JPS57142752A (en) * 1981-02-27 1982-09-03 Kawasaki Steel Corp Slab casting method in vertically bent type continuous casting machine
US4617067A (en) * 1981-08-06 1986-10-14 Vallourec Process for the production of semi-finished articles of hard steels using a continuous casting operation
SE432893B (sv) * 1982-09-14 1984-04-30 Asea Ab Anordning vid kontinuerlig gjutning for omrorning av de icke-stelnade partierna av en gjutstreng
JPS5987962A (ja) * 1982-11-12 1984-05-21 Nippon Steel Corp 連続鋳造方法
JPS61119360A (ja) * 1984-11-16 1986-06-06 Sumitomo Metal Ind Ltd 鋼の連続鋳造方法
JPS62263855A (ja) * 1986-05-08 1987-11-16 Kawasaki Steel Corp 中心偏析の少ない連続鋳造方法

Also Published As

Publication number Publication date
FR2631263A1 (fr) 1989-11-17
PT90543B (pt) 1994-05-31
KR890017020A (ko) 1989-12-14
DD284175A5 (de) 1990-11-07
AU3392789A (en) 1989-11-16
CS287289A3 (en) 1992-11-18
BR8902241A (pt) 1990-01-09
CA1338164C (fr) 1996-03-19
EP0342082A1 (fr) 1989-11-15
CN1038605A (zh) 1990-01-10
AU611797B2 (en) 1991-06-20
DE68907644D1 (de) 1993-08-26
ATE91656T1 (de) 1993-08-15
PT90543A (pt) 1989-11-30
US5063991A (en) 1991-11-12
JPH0215856A (ja) 1990-01-19
RU1819188C (ru) 1993-05-30
CN1018803B (zh) 1992-10-28
DE68907644T2 (de) 1993-12-02
PL279425A1 (en) 1989-12-27
FR2631263B1 (fr) 1990-07-20
ZA893402B (en) 1990-01-31
UA15737A (uk) 1997-06-30
ES2042023T3 (es) 1993-12-01
KR960004423B1 (ko) 1996-04-03

Similar Documents

Publication Publication Date Title
EP0342082B1 (fr) Procédé de réfroidissement d'un produit métallique coulé en continu
CA1106134A (fr) Procede de coulee de metal
CH628260A5 (fr) Procede de coulee de lingots.
CA1203069A (fr) Procede et dispositif de coulee electromagnetique de metaux
EP0471608B1 (fr) Procédé et dispositif de fabrication d'une bande en acier inoxydable semi-ferritique à partir de métal en fusion
EP1187691B1 (fr) Procede de coulee continue entre cylindres de bandes d'acier inoxydable ferritique exemptes de microcriques
EP0196952B1 (fr) Procédé d'obtention d'un acier calmé à faible teneur en azote
EP0092477A1 (fr) Procédé et dispositif de fabrication d'un lingot d'acier creux
CA2415244C (fr) Produit siderurgique en acier au carbone, notamment destine a la galvanisation, et ses procedes de realisation
FR2610551A1 (fr) Procede de fabrication de bandes minces de bronze au phosphore
CA1208878A (fr) Procede et installation de brassage electromagnetique de brames metalliques, notamment d'acier, coulees en continu
EP0242347A2 (fr) Dispositif pour la coulée d'un métal en phase pâteuse
EP1097753B1 (fr) Nouveau procédé de coulée centrifuge verticale pour cylindres de laminoirs permettant d'obtenir une liaison saine et sans porosités entre la couche externe en acier rapide et la fonte nodulaire du coeur.
FR2525131A1 (fr) Procede et dispositif de fabrication d'un lingot d'acier creux
FR2555922A1 (fr) Procede de production d'un fil metallique
FR2522287A1 (fr) Procede de fabrication de toles ou plaques d'acier
EP0385904A1 (fr) Procédé de réglage du refroidissement secondaire d'une machine de coulée continue de produits metalliques
BE903805A (fr) Procede pour la coulee continue des metaux.
FR2765819A1 (fr) Procede de coulee centrifuge verticale a hydrodynamique amelioree et cylindres de laminage composites, a structure equiaxes, en comportant application
FR2480155A1 (fr) Dispositif pour realiser l'alimentation en metal liquide d'une installation de coulee continue
EP0098214A1 (fr) Procédé de brassage électromagnétique des métaux, notamment des aciers, coulés en continu et dispositif de mise en oeuvre
EP1033191A1 (fr) Cylindre de laminoir composite pour le laminage à chaud ou à froid et son procédé de fabrication
BE874171A (fr) Procede perfectionne de fabrication d'une barre d'acier par coulee continue
FR2569359A2 (fr) Procede de production continue de lingots en acier coule
FR2475434A1 (fr) Procede de refroidissement de produits coules en continu

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19900409

17Q First examination report despatched

Effective date: 19920331

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UNIMETAL SOCIETE FRANCAISE DES ACIERS LONGS

Owner name: UGINE

Owner name: ASCOMETAL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 91656

Country of ref document: AT

Date of ref document: 19930815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 68907644

Country of ref document: DE

Date of ref document: 19930826

ITF It: translation for a ep patent filed

Owner name: BUGNION S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931007

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2042023

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3009299

EPTA Lu: last paid annual fee
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: CONCAST STANDARD AG

Effective date: 19940331

NLR1 Nl: opposition has been filed with the epo

Opponent name: CONCAST STANDARD AG.

EAL Se: european patent in force in sweden

Ref document number: 89401150.1

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: ASCOMETAL EN UGINE EN UNIMETAL SOCIETE FRANCAISE D

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAA Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFN

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990315

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19990324

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19990325

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990326

Year of fee payment: 11

Ref country code: CH

Payment date: 19990326

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990329

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19990331

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19990406

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19990414

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19990420

Year of fee payment: 11

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 20000106

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 20000106

NLR2 Nl: decision of opposition
APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO