EP0340530B1 - Titanium-free activating agents, process for preparing them and their use in activating a metal surface before zinc phosphating - Google Patents

Titanium-free activating agents, process for preparing them and their use in activating a metal surface before zinc phosphating Download PDF

Info

Publication number
EP0340530B1
EP0340530B1 EP89106998A EP89106998A EP0340530B1 EP 0340530 B1 EP0340530 B1 EP 0340530B1 EP 89106998 A EP89106998 A EP 89106998A EP 89106998 A EP89106998 A EP 89106998A EP 0340530 B1 EP0340530 B1 EP 0340530B1
Authority
EP
European Patent Office
Prior art keywords
titanium
alkali metal
reaction
phosphating
free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89106998A
Other languages
German (de)
French (fr)
Other versions
EP0340530A1 (en
Inventor
Karl-Dieter Brands
Helmut Dr. Endres
Peter Dr. Christophliemk
Wolf-Achim Dr. Roland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP0340530A1 publication Critical patent/EP0340530A1/en
Application granted granted Critical
Publication of EP0340530B1 publication Critical patent/EP0340530B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated

Definitions

  • the invention relates to titanium-free agents for the activation of metal surfaces made of iron or steel, zinc or galvanized steel and aluminum or aluminized steel before phosphating the surfaces mentioned with phosphating baths containing zinc ions, in particular before a so-called low zinc phosphating, in which the ratio of zinc to phosphate ions in the treatment solution is less than 1:12.
  • the present invention further relates to a method for producing the titanium-free activating agents and their use.
  • the usual materials used for body construction conventionally iron or steel sheets, have recently been phosphated, more and more recently electrolytically galvanized or hot-dip galvanized steel or materials with a surface made of zinc alloys, which contain, for example, iron, nickel, cobalt or aluminum as alloying partners. Corrosion-inhibiting phosphating of such surfaces is common not only in automobile construction, but also in the manufacture of household appliances such as washing machines or refrigerators.
  • the workpieces are cleaned, rinsed and activated in order to achieve a thin and uniform phosphate layer during phosphating, which is known to be a prerequisite for good corrosion protection.
  • high-zinc phosphating processes it was possible to remove adhering oils, fats and other impurities, also from mechanical processing, from the metal surface in one process step and at the same time to activate it for the subsequent step of zinc phosphating.
  • Corresponding treatment baths are described, for example, in the context of processes for pretreating metal surfaces before phosphating in DE-A-2 951 600 and DE-A-3 213 649.
  • the activation of the metal surface has the following goals: Increase in the nucleation rate and thus the number of crystal nuclei in the starting phase of zinc phosphating, which leads to a layer refinement; by forming crystals as close together as possible, the porosity of the desired zinc phosphate layer is reduced. This results in a uniform and closed zinc phosphate layer over the entire metal surface with a low basis weight (specified in grams of metal phosphate per m2 metal surface), whereby low basis weights have proven to be favorable as an adhesive base for paints. Reduction of the minimum phosphating time, ie the time until the metal surface is completely covered with a closed zinc phosphating layer.
  • the essential manufacturing step comprises the reaction (sometimes called "aging” in the literature) of suitable titanium compounds (for example titanyl sulfate, potassium hexafluorotitanate, titanium disulfate, titanium dioxide, potassium titanium oxide oxalate) with a large excess of phosphate components (preferably disodium hydrogen phosphate) at a temperature above 70 ° C. a pH Value between 6 and 9.
  • suitable titanium compounds for example titanyl sulfate, potassium hexafluorotitanate, titanium disulfate, titanium dioxide, potassium titanium oxide oxalate
  • phosphate components preferably disodium hydrogen phosphate
  • Jernstedt describes activating agents based on zirconium phosphate or reaction products of water-soluble tin and lead compounds with disodium hydrogen phosphate in US Pat. Nos. 2,456,947 and 2,462,196.
  • DE-C-29 31 712 describes hydrolysis-stable organic titanium compounds as activating agents for zinc , Zinc-manganese or manganese surfaces described. They are obtained by reacting a beta-di-ketontitanyl cetylacetonate with gluconic acid or gluconates in the presence of a hydrogen halide salt of an aliphatic amino alcohol.
  • EP-B-0 056 675 describes aqueous solutions for the treatment of iron-containing metal surfaces which contain a titanium compound, a phosphate and / or acid phosphate, pyrophosphate and carbonate and / or acid carbonate and a pH of 8.5 to 9.5. Instead of carbonate, carboxylic acids or alkali metal salts or ammonium salts of carboxylic acids can also be used. Solutions of this type are used to treat the metal surfaces before subsequent zinc phosphating.
  • the object of the present invention was to provide titanium-free activating agents.
  • the object of the present invention was to provide activating agents which are soluble in clear water and contain a high proportion for activating effective amounts of substances.
  • the titanium-free agents according to the invention are characterized in that the ratio of complexing agent to alkali metal phosphate is in the range from 0.2: 10 to 0.5: 10.
  • the alkali metal phosphate to be reacted with the complexing agents under the conditions of an optionally hydrothermal reaction at a pH in the range from 6 to 12 are mentioned in DE-A-37 31 049 and correspond to the general formulas (I) to (III), M m H 3-m PO4 (I) M p H n + 2-p P n O 3n + 1 (II) (M q H 1-q PO3) r (III) in which M represents an alkali metal and m 0, 1, 2 or 3, n 2, 3 or 4, p 0, 1, 2 ..., n + 2, q 0 or 1 and r is an integer from 2 to 20.
  • orthophosphates of the general formula (I) are used M m H 3-m PO4 (I) in the m for 0, 1, 2 or 3 and M stand for an alkali metal.
  • Orthophosphates of the general formula (I) from the group orthophosphoric acid, monoalkali metal dihydrogen phosphate, dialkali metal monohydrogen phosphate and trialkali metal orthophosphate are thus used.
  • the preferred alkali metal in the orthophosphates of the general formula (I) is sodium.
  • the above-mentioned salts of orthophosphoric acid are therefore sodium salts in preferred embodiments of the process.
  • polyphosphates of the general formula (II) are used as the phosphate component M p H n + 2-p P n O 3n + 1 (II) in the n for 2, 3 or 4, p for an integer in the range from 0 to (n + 2) and M for an alkali metal stand.
  • alkali metal salts are also suitable, in which - compared to the polyphosphoric acids mentioned above - one or more hydrogen atoms are replaced by alkali metal atoms .
  • the respective sodium salts are preferably used.
  • metaphosphates of the general formula (III) are used as phosphates, (M q H 1-q PO3) r (III) in the M for an alkali metal, r for an integer from 2 to 20 and q for 0 or 1 stand.
  • One or more of the hydrogen atoms bonded to an oxygen atom in such polyphosphoric acids can be replaced by one or more alkali metal atoms in such ring-shaped metaphosphates.
  • the preferred alkali metal atom is again sodium.
  • the reaction can advantageously be carried out in a kneader, especially if the reaction mixture has a high solids content.
  • a reaction temperature of 80 ° C is sufficient, but can also be exceeded without damaging the product.
  • the preparation can advantageously be carried out in a stirred kettle at boiling temperature under atmospheric pressure with subsequent spray drying.
  • Particularly preferred complexing agents used in the present invention are 1,1-diphosphonic acids of the general formula (IV), where R represents an unbranched alkyl radical having 1 to 6 carbon atoms.
  • the sodium salts are preferably used as alkali metal salts in the poly (aldehydocarboxylic acids) and the 1,1-diphosphonic acids, so that M in the general formula (IV) is sodium.
  • reaction of complexing agents with alkali metal phosphate can usually be carried out to dryness in a kneader or in a stirred kettle with subsequent spray drying.
  • a further preferred embodiment of the present invention consists in carrying out the reaction of alkali metal phosphate with complexing agents at temperatures in the range from 75 ° C. to 120 ° C. in a kneader to dryness or in a stirred kettle with subsequent spray drying.
  • the process is particularly preferred if the reaction is carried out at temperatures in the range from 80 ° C. to 100 ° C.
  • the process according to the invention allows a large variation in the solids content of the reaction. Accordingly, a further preferred embodiment of the process according to the invention is that the solids content in the reaction is in the range from 30 to 85%. A particularly preferred embodiment of the present invention is that the solids content of the reaction in a kneader is in the range from 75 to 85%. When reacting in a stirred tank, it is particularly preferred that the solids content is in the range from 30 to 40%.
  • a further preferred embodiment of the process according to the invention consists in that up to 30% by weight of the total amount of complexing agent is used before or during the reaction of the Adds complexing agent with alkali metal phosphate and incorporates the remaining amount into the reaction mixture after a first drying to a residual moisture content of 10 to 20%.
  • Activating agents of this type are usually used by adjusting solids contents in the range from 0.001 to 10% by weight of the titanium-free activating agents according to the invention with water directly for activating metal surfaces before zinc phosphating.
  • the present invention furthermore relates to the use of the titanium-free activating agents according to the invention prior to phosphating metal surfaces made of iron, steel, zinc, galvanized iron or galvanized steel, aluminum and / or aluminized steel with phosphating baths containing zinc ions.
  • a further preferred embodiment of the present invention consists in the use of titanium-free activating agents according to the present invention in the form of aqueous dispersions as activating agents before the low zinc phosphating.
  • the poly (aldehydocarboxylic acids) used according to the invention are commercially available and are available from Degussa AG, Frankfurt, for example under the names POC OS 20, POC HS 0010, POC HS 2020, POC HS 5060, POC HS 65 120 and POC AS 0010, POC AS 2020, POC AS 5060 or POC AS 65 120 sold.
  • the HS designation relates to the acid form and the AS designation relates to the sodium salt form of the poly (aldehydocarboxylic acids). They can be produced using a special process developed by Degussa, the "oxidative polymerization" of acrolein. Acrolein is aqueous or mixed with acrylic acid Solution treated with hydrogen peroxide.
  • the H2O2 acts as an initiator of the polymerization and as a molecular weight regulator.
  • some of the aldehyde groups of acrolein are oxidized to carboxyl groups by hydrogen peroxide. This creates polymers with pendant aldehyde and carboxyl groups, namely the poly (aldehydocarboxylic acids).
  • the poly (aldehydocarboxylic acids) described above and on their possible uses can be found in the Degussa AG company publication entitled "POC-Environmentally Friendly Polycarboxylic Acids with Many Possible Applications” (printed notice: CH 215-3-3-582 Vol).
  • the poly (aldehydocarboxylic acids) can be used, for example, as hardness stabilizers with regard to the inhibition of the crystallization of calcium and other alkaline earth metal salts, as deposit inhibitors in seawater desalination, as dispersants for aqueous pigment dispersions with high solids content and as builders for detergents and cleaning agents.
  • This company publication also contains information on relevant patent literature, for example DE-B-10 71 339 (production), DE-A-19 04 940 (complexing agent), DE-A-19 04 941 (polyoxycarboxylic acids), DE-B- 19 42 556 (complexing agent) DE-A-21 54 737 (rust protection treatment), DE-A-23 30 260 and DE-A-23 57 036 (production).
  • DE-B-10 71 339 production
  • DE-A-19 04 940 complexing agent
  • DE-A-19 04 941 polyoxycarboxylic acids
  • DE-B- 19 42 556 complexing agent
  • DE-A-21 54 737 rust protection treatment
  • DE-A-23 30 260 and DE-A-23 57 036 production.
  • the free poly (aldehydocarboxylic acids) can be neutralized with lyes to the corresponding salts, e.g. with NaOH to sodium poly (aldehydocarboxylates).
  • the carboxyl and carbonyl content and the average molecular weight of the various poly (aldehydocarboxylic acid) qualities can be varied by selecting the reaction conditions.
  • the general formula (V) represents the basic structure of the poly (aldehydocarboxylic acids) to be used according to the invention.
  • the poly (aldehydocarboxylic acids) are predominantly linear poly (aldehydocarboxylic acids) linked via carbon-carbon bonds with many carboxyl and a few carbonyl side groups and hydroxyl end groups. Their chemical constitution is characterized in particular by the general formula (V).
  • the average degrees of polymerization are characterized by the viscosity numbers. These are usually between 5 to 50 ml / g, based on 100% strength, measured as a 2% solution in 0.1 N NaBr at 25 ° C. and pH 10 in an Ubbelohde viscometer, capillary Oa.
  • the spatial linkage of the monomer units can be assumed to be atactic, the order of the linkage to be statistical.
  • the carboxyl group content expressed in mol% COOH, can be calculated from the acid number (DIN 53402) of the dried polymers.
  • the acid number of aqueous poly is unsuitable for calculating the molar percentages of COOH, since the technical qualities contain small amounts of formic acid, acetic acid and ⁇ -hydroxypropionic acid as by-products.
  • the sodium poly (aldehydocarboxylates) must be converted into the H form by ion exchange before the acid number is determined.
  • the agents containing titanium phosphate are at least equivalent if suitable complexing agents are reacted with a large excess of a phosphate component in an aqueous medium at elevated temperature.
  • 1-Hydrocxyethane-1,1-diphosphonic acid (HEDP) can particularly preferably be used as the complexing agent.
  • alkali metal phosphate monomeric or oligomeric orthophosphates are used as alkali salts; the pH of the aqueous reaction mixture is optionally adjusted to the range between 7.5 and 9. With the particularly preferred use of disodium hydrogen phosphate, there is no need to adjust the pH.
  • the new activating agents like the conventional agents containing titanium phosphate, are used in about 0.2% by weight aqueous preparation. They then form clear solutions. This is an application technology advantage over the conventional agents based on titanium phosphate, which, because of their largely insolubility, can only be used as cloudy, cloudy suspensions. These usually contain a considerable proportion of coarse and ineffective particles for the activation.
  • a decisive step in the production of the new titanium-free activating agents is the reaction of the complexing agent with alkali metal phosphate at a temperature above 70 ° C., preferably between 80 ° C. and 100 ° C. in the presence of water. Simply adding the complexing agent to an aqueous phosphate solution does not lead to the desired result.
  • the reaction can advantageously take place in a kneader at high solids contents of the reaction mixture. Kneaded for this a mixture of 20 to 25 parts by weight of deionized water with 70 to 79 parts by weight of phosphate, preferably disodium hydrogenphosphate, and 1 to 4 parts by weight, preferably 1 to 2 parts by weight, of complexing agent under the specified temperature conditions until the reaction mixture is dry, ie to a residual moisture content of about 2%. It can be particularly advantageous to add only about a quarter of the amount of complexing agent envisaged at the start of the reaction, and the rest after the reaction mixture has first dried to a residual moisture content of between 10 and 20%.
  • phosphate preferably disodium hydrogenphosphate
  • 1 to 4 parts by weight preferably 1 to 2 parts by weight
  • the surfaces of steel coupons were measured using standardized phosphating processes according to Table 1 (immersion phosphating, normal zinc process) and 3 (spray phosphating, manganese-modified low-zinc process) phosphated.
  • Weight per unit area means the mass per unit area of the metal phosphate layer in grams per square meter, which is determined in accordance with DIN 50 492.
  • To determine the bath capacity two liters of a 0.2% strength by weight aqueous preparation of the activating agent were loaded with test sheets, which were then phosphated. Initially and then after every tenth sample sheet, the average basis weight of four successive sample sheets was determined. The average values calculated from this are given in Table 2. The baths were considered exhausted if ten sheets in a row were missing during the zinc phosphating or had coarse crystalline areas. The bath capacity is given in m2 of activatable area per 2 l of activating bath.
  • HEDP 1-Hydroxyethane1,1-diphosonic acid
  • VE demineralized
  • Table 2 contains the activation results for immersion phosphating in the normal zinc process.
  • Example 3 in Table 2 shows the significant decrease in activation performance when the quantity ratio of complexing agent to phosphate exceeds the preferred value of 5 to 100.
  • Table 3 shows how the test was carried out by spraying.
  • the commercially available activating agent Fixodine R 6 from Collardin, Cologne was used as a comparative product.
  • the results show that the product according to the invention from Example 1 (Table 2) has no loss of performance compared to the standard product: while a weight per unit area of 3.07 g / m 2 was achieved with the commercial product, the product according to the invention gave a weight per unit area of 3.01 g / m2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

Die Erfindung betrifft titanfreie Mittel für die Aktivierung von Metalloberflächen aus Eisen oder Stahl, Zink oder verzinktem Stahl sowie Aluminium oder aluminiertem Stahl vor einer Phosphatierung der genannten Oberflächen mit Zinkionen enthaltenden Phosphatierbädern, insbesondere vor einer sogenannten Niedrigzink-Phosphatierung, bei der das Verhältnis von Zink- zu Phosphationen in der Behandlungslösung kleiner als 1 : 12 ist. Weiterhin betrifft die vorliegende Erfindung ein Verfahren zur Herstellung der titanfreien Aktivierungsmittel und ihre Verwendung.The invention relates to titanium-free agents for the activation of metal surfaces made of iron or steel, zinc or galvanized steel and aluminum or aluminized steel before phosphating the surfaces mentioned with phosphating baths containing zinc ions, in particular before a so-called low zinc phosphating, in which the ratio of zinc to phosphate ions in the treatment solution is less than 1:12. The present invention further relates to a method for producing the titanium-free activating agents and their use.

Verfahren zur Erzeugung von Phosphatschichten auf Eisen- oder Stahloberflächen mit Hilfe phosphorsaurer Lösungen, die verschiedene mehrwertige Metallkationen sowie beschleunigend wirkende Zusätze (z.B. Oxidationsmittel) enthalten, sind seit langem bewährter Stand der Technik. Solche Verfahren werden insbesondere in der Automobilindustrie eingesetzt, um einen verbesserten Korrosionsschutz der Automobilkarossen zu erzielen. Die phosphatierten Oberflächen werden anschließend lackiert, bevorzugt durch kathodische Elektrotauchlackierung.Processes for the production of phosphate layers on iron or steel surfaces with the aid of phosphoric acid solutions which contain various polyvalent metal cations and accelerating additives (eg oxidizing agents) have long been proven prior art. Such processes are used in particular in the automotive industry in order to achieve improved corrosion protection for automobile bodies. The phosphated surfaces are then painted, preferably by cathodic electrocoating.

Phosphatiert werden die üblichen für den Karosseriebau verwendeten Werkstoffe, herkömmlicherweise Eisen- oder Stahlbleche, in jüngerer Zeit auch zunehmend elektrolytisch verzinkter oder feuerverzinkter Stahl oder Werkstoffe mit einer Oberfläche aus Zinklegierungen, welche als Legierungspartner beispielsweise Eisen, Nickel, Kobalt oder Aluminium enthalten. Eine korrosionsinhibierende Phosphatierung solcher Oberflächen ist nicht nur im Automobilbau, sondern auch bei der Herstellung von Haushaltsgeräten wie Waschmaschinen oder Kühlschränken üblich.The usual materials used for body construction, conventionally iron or steel sheets, have recently been phosphated, more and more recently electrolytically galvanized or hot-dip galvanized steel or materials with a surface made of zinc alloys, which contain, for example, iron, nickel, cobalt or aluminum as alloying partners. Corrosion-inhibiting phosphating of such surfaces is common not only in automobile construction, but also in the manufacture of household appliances such as washing machines or refrigerators.

Vor der oben genannten Behandlung werden die Werkstücke gereinigt, gespült und aktiviert, um bei der Phosphatierung eine dünne und gleichmäßige Phosphatschicht zu erzielen, die bekannterweise eine Voraussetzung für einen guten Korrosionsschutz bildet. In den Lange Zeit üblichen "Hochzink-Phosphatierverfahren" war es möglich, die Metalloberfläche in einem Verfahrensschritt von anhaftenden Ölen, Fetten sowie anderen, auch aus der mechanischen Bearbeitung herrührenden Verunreinigungen zu befreien und gleichzeitig für den folgenden Schritt der Zinkphosphatierung zu aktivieren. Entsprechende Behandlungsbäder sind beispielweise im Rahmen von Verfahren zur Vorbehandlung von Metalloberflächen vor dem Phosphatieren in der DE-A-2 951 600 und der DE-A-3 213 649 beschrieben.Before the treatment mentioned above, the workpieces are cleaned, rinsed and activated in order to achieve a thin and uniform phosphate layer during phosphating, which is known to be a prerequisite for good corrosion protection. In the long-established "high-zinc phosphating processes", it was possible to remove adhering oils, fats and other impurities, also from mechanical processing, from the metal surface in one process step and at the same time to activate it for the subsequent step of zinc phosphating. Corresponding treatment baths are described, for example, in the context of processes for pretreating metal surfaces before phosphating in DE-A-2 951 600 and DE-A-3 213 649.

In jüngster Zeit werden jedoch zunehmend sogenannte "Niedrigzink-Phosphatierverfahren" eingesetzt, wie sie beispielsweise in der DE-C-2 232 067 angegeben sind. Diese führen in Verbindung mit der üblicherweise nachfolgenden Elektrotauchlackierung zu einem deutlich verbesserten Korrosionsschutz. Allerdings reagieren diese Verfahren viel empfindlicher auf Änderungen der Verfahrensparameter und auf Verunreinigungen, die mit den zu beschichtenden Blechen in das Phosphatierbad eingetragen werden. Damit kommt dem Schritt der Aktivierung der Metalloberfläche eine viel größere Bedeutung als bislang zu. Besonders hat es sich als vorteilhaft erwiesen, die Aktivierung in einem getrennten Verfahrensschritt dem Reinigungs- und Entfettungsschritt nachzuschalten. Dies trifft insbesondere dann zu, wenn die Phosphatierung nach dem Niedrigzink-Verfahren in einem Tauchvorgang erfolgt, ist aber auch gleichermaßen für die Zinkphosphatierung nach einem Spritz- oder kombinierten Spritztauchverfahren sowie Tauchspritzverfahren bedeutsam.In recent times, however, so-called "low zinc phosphating processes" have increasingly been used, as are specified, for example, in DE-C-2 232 067. In conjunction with the usually subsequent electrocoating, these lead to significantly improved corrosion protection. However, these processes are much more sensitive to changes in process parameters and impurities, which are entered into the phosphating bath with the metal sheets to be coated. The step of activating the metal surface is thus of much greater importance than before. It has proven to be particularly advantageous to follow the activation in a separate process step after the cleaning and degreasing step. This is particularly true if the phosphating is carried out by the low-zinc process in one dipping process, but is also equally important for the zinc phosphating by a spray or combined spray-immersion process and immersion-spraying process.

Die Aktivierung der Metalloberfläche haf folgende Ziele:
   Erhöhung der Keimbildungsgeschwindigkeit und damit der Zahl der Kristallkeime in der Startphase der Zinkphosphatierung, was zu einer Schichtverfeinerung führt; durch die Bildung möglichst dicht nebeneinanderliegender Kristalle wird die Porosität der angestrebten Zinkphosphatschicht verringert. Hieraus resultiert eine gleichmäßige und geschlossene Zinkphosphatschicht über die gesamte Metalloberfläche bei geringem Flächengewicht (angegeben in Gramm Metallphosphat pro m² Metalloberfläche), wobei sich als Haftgrund für Lacke geringe Flächengewichte als güngstig erwiesen haben.
   Reduzierung der Mindestphosphatierzeit, d.h. der Zeit bis zur vollständigen Bedeckung der Metalloberfläche mit einer geschlossenen Zinkphosphatierschicht.
The activation of the metal surface has the following goals:
Increase in the nucleation rate and thus the number of crystal nuclei in the starting phase of zinc phosphating, which leads to a layer refinement; by forming crystals as close together as possible, the porosity of the desired zinc phosphate layer is reduced. This results in a uniform and closed zinc phosphate layer over the entire metal surface with a low basis weight (specified in grams of metal phosphate per m² metal surface), whereby low basis weights have proven to be favorable as an adhesive base for paints.
Reduction of the minimum phosphating time, ie the time until the metal surface is completely covered with a closed zinc phosphating layer.

Diese Wirkungen des Aktivierungsmittels führen letztlich dazu, daß über die feinteiligen und dichten, gut auf dem Metallgrund haftenden Zinkphosphatschichten eine gute Verankerung der aufzubringenden Lackschichten und somit guter Korrosionsschutz als Hauptziel der Zinkphosphatierung erreicht werden.These effects of the activating agent ultimately lead to good anchoring via the finely divided and dense zinc phosphate layers which adhere well to the metal base of the paint layers to be applied and thus good corrosion protection as the main goal of zinc phosphating.

In der Praxis haben sich als wirksame Aktirviermittel mit den geforderten Eigenschaften ausschließlicht polymeres Titan(IV)-phosphat enthaltende Produkte bewährt, wie sie bereits von Jernstedt, beispielsweise in den US-A-2 456 947 und 2 310 239, beschrieben wurden. Diese Aktivierungsmittel werden heutzutage bevorzugt in einem gesonderten Spülbad direkt vor der Zinkphosphatierung eingesetzt, können aber auch vorab einem - allenfalls mid alkalischen - Reinigerbad zugegeben werden. Der wesentliche Herstellungsschritt umfaßt die Umsetzung (in der Literatur teilweise "Alterung" genannt) geeigneter Titanverbindungen (beispielsweise Titanylsulfat, Kaliumhexafluorotitanat, Titandisulfat, Titandioxid, Kaliumtitanoxidoxalat) mit einem hohen Überschuß von Phosphatkomponenten (vorzugsweise Dinatriumhydrogenphosphat) bei einer Temperatur oberhalb 70 °C einem pH-Wert zwischen 6 und 9.In practice, products containing only polymeric titanium (IV) phosphate, such as those described by Jernstedt, for example in US Pat. Nos. 2,456,947 and 2,310,239, have proven to be effective active agents with the required properties. These activating agents are nowadays preferably used in a separate rinsing bath directly before the zinc phosphating, but can also be added beforehand to an - if necessary mid-alkaline - cleaning bath. The essential manufacturing step comprises the reaction (sometimes called "aging" in the literature) of suitable titanium compounds (for example titanyl sulfate, potassium hexafluorotitanate, titanium disulfate, titanium dioxide, potassium titanium oxide oxalate) with a large excess of phosphate components (preferably disodium hydrogen phosphate) at a temperature above 70 ° C. a pH Value between 6 and 9.

Da die technische Herstellung solcher Aktiviermittel mit gleichbleibender und hoher Qualität schwierig ist, hat es nicht an Versuchen gefehlt, Aktivierungsmittel auf anderer Basis als Titanphosphat zu entwickeln.Since the technical production of such activating agents with constant and high quality is difficult, there has been no shortage of attempts to develop activating agents based on other than titanium phosphate.

So beschreibt Jernstedt Aktivierungsmittel auf Basis von Zirkonphosphat oder von Umsetzungsprodukten wasserlöslicher Zinn- und Bleiverbindungen mit Dinatriumhydrogenphosphat in den US-A-2 456 947 und 2 462 196. In der DE-C-29 31 712 werden hydrolysestabile organische Titanverbindungen als Aktiviermittel für Zink-, Zink-Mangan- oder Mangenoberflächen beschrieben. Man erhält sie durch Umsetzung eines beta-Di-ketontitanylcetylacetonates mit Gluconsäure oder Gluconaten in Gegenwart eines Halogenwasserstoffsalzes eines aliphatischen Aminoalkohols.Jernstedt describes activating agents based on zirconium phosphate or reaction products of water-soluble tin and lead compounds with disodium hydrogen phosphate in US Pat. Nos. 2,456,947 and 2,462,196. DE-C-29 31 712 describes hydrolysis-stable organic titanium compounds as activating agents for zinc , Zinc-manganese or manganese surfaces described. They are obtained by reacting a beta-di-ketontitanyl cetylacetonate with gluconic acid or gluconates in the presence of a hydrogen halide salt of an aliphatic amino alcohol.

Eine weitere Möglickeit zur Erhöhung der Keimbildungsgeschwindigkeit auf Stahl besteht in der Behandlung der Oberfläche mit verdünnten wäßrigen Kupfersulfat- oder Kupfernitritlösungen sowie mit Oxalsäure. Letztere darf dabei jedoch nur eine schwache Ätzung der Eisenoberfläche hervorrufen; wird eine zusammelhängende Eisenoxalatschicht gebildet, verschwindet der Aktivierungseffekt (US-A-2 164 024, DE-A-17 71 924).Another possibility for increasing the rate of nucleation on steel is to treat the surface with dilute aqueous copper sulfate or copper nitrite solutions and with oxalic acid. However, the latter may only cause a weak etching of the iron surface; if a coherent layer of iron oxalate is formed, the activation effect disappears (US Pat. No. 2,164,024, DE-A-17 71 924).

In der EP-B-0 056 675 werden wäßrige Lösungen zur Behandlung von eisenhaltigen Metalloberflächen beschrieben, die eine Titanverbindung, ein Phosphat und/oder saures Phosphat, Pyrophosphat sowie Carbonat und/oder saures Carbonat enthalten und einen pH-Wert von 8,5 bis 9,5 aufweisen. Anstelle von Carbonat können auch Carbonsäuren oder Alkalimetallsalze oder Ammoniumsalze von Carbonsäuren eingesetzt werden. Derartige Lösungen dienen zur Behandlung der Metalloberflächen vor einer nachfolgenden Zinkphosphatierung.EP-B-0 056 675 describes aqueous solutions for the treatment of iron-containing metal surfaces which contain a titanium compound, a phosphate and / or acid phosphate, pyrophosphate and carbonate and / or acid carbonate and a pH of 8.5 to 9.5. Instead of carbonate, carboxylic acids or alkali metal salts or ammonium salts of carboxylic acids can also be used. Solutions of this type are used to treat the metal surfaces before subsequent zinc phosphating.

In der Praxis hat sich bisher keine dieser Alternativen gegenüber der Aktivierung mit titanphosphathaltigen Mitteln bewährt.In practice, none of these alternatives has so far proven successful compared to activation with agents containing titanium phosphate.

Die Aufgabe der vorliegenden Erfindung bestand darin, titanfreie Aktivierungsmittel zur Verfügung zu stellen. Insbesondere bestand die Aufgabe der vorliegenden Erfindung darin, klarwasserlösliche Aktivierungsmittel zur Verfügung zu stellen, die einen hohen Anteil für die Aktivierung wirksamer Substanzmengen enthalten.The object of the present invention was to provide titanium-free activating agents. In particular, the object of the present invention was to provide activating agents which are soluble in clear water and contain a high proportion for activating effective amounts of substances.

Die Erfindung betrifft somit titanfreie Mittel für die Aktivierung von Metalloberflächen aus Eisen oder Stahl, Zink oder verzinktem Stahl sowie Aluminium oder aluminiertem Stahl vor der Phosphatierung mit Zinkionen enthaltenden Phosphatierbädern, auf Basis von Komplexbildnern und Alkalimetallphosphaten, welche dadurch gekennzeichnet sind, daß sie erhältlich sind durch Umsetzung von

  • Poly(aldehydocarbonsäuren) und/oder 1,1-Diphosphonsäuren als Komplexbildner und
  • Alkalimetallphosphaten
bei einer Temperatur oberhalb 70 °C in Gegenwart von Wasser, wobei das Verhältnis von Komplexbildner zu Alkalimetallphosphat im Bereich von 0,1 : 10 bis 1 : 10 liegt.The invention thus relates to titanium-free agents for the activation of metal surfaces made of iron or steel, zinc or galvanized steel and aluminum or aluminized steel prior to phosphating with phosphating baths containing zinc ions, based on complexing agents and alkali metal phosphates, which are characterized in that they are obtainable by Implementation of
  • Poly (aldehydocarboxylic acids) and / or 1,1-diphosphonic acids as complexing agents and
  • Alkali metal phosphates
at a temperature above 70 ° C in the presence of water, the ratio of complexing agent to alkali metal phosphate being in the range from 0.1: 10 to 1:10.

Gemäß einer bevorzugten Ausführungsform sind die erfindungsgemäßen titanfreien Mittel dadurch gekennzeichnet, daß das Verhältnis von Komplexbildner zu Alkalimetallphosphat im Bereich von 0,2 : 10 bis 0,5 : 10 liegt.According to a preferred embodiment, the titanium-free agents according to the invention are characterized in that the ratio of complexing agent to alkali metal phosphate is in the range from 0.2: 10 to 0.5: 10.

Die mit den Komplexbildnern unter den Bedingungen einer gegebenenfalls hydrothermalen Umsetzung bei einem pH-Wert im Bereich von 6 bis 12 umzusetzenden Alkalimetallphosphat werden in der DE-A-37 31 049 genannt und entsprechen den allgemeinen Formeln (I) bis (III),

        MmH3-mPO₄   (I)



        MpHn+2-pPnO3n+1   (II)



        (MqH1-qPO₃)r   (III)

in denen
   M für ein Alkalimetall steht und
   m 0, 1, 2 oder 3,
   n 2, 3 oder 4,
   p 0, 1, 2 ..., n+2,
   q 0 oder 1 und
   r eine ganze Zahl von 2 bis 20 bedeuten.
The alkali metal phosphate to be reacted with the complexing agents under the conditions of an optionally hydrothermal reaction at a pH in the range from 6 to 12 are mentioned in DE-A-37 31 049 and correspond to the general formulas (I) to (III),

M m H 3-m PO₄ (I)



M p H n + 2-p P n O 3n + 1 (II)



(M q H 1-q PO₃) r (III)

in which
M represents an alkali metal and
m 0, 1, 2 or 3,
n 2, 3 or 4,
p 0, 1, 2 ..., n + 2,
q 0 or 1 and
r is an integer from 2 to 20.

In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden Orthophosphate der allgemeinen Formel (I) eingesetzt

        MmH3-mPO₄   (I)

in der
   m für 0, 1, 2 oder 3 und
   M für ein Alkalimetall stehen.
In a preferred embodiment of the present invention, orthophosphates of the general formula (I) are used

M m H 3-m PO₄ (I)

in the
m for 0, 1, 2 or 3 and
M stand for an alkali metal.

Es kommen somit Orthophosphate der allgemeinen Formel (I) aus der Gruppe Orthophosphorsäure, Monoalkalimetalldihydrogenphosnhat, Dialkalimetallmonohydrogenphosphat und Trialkalimetallorthophosphat zur Verwendung. Bevorzugtes Alkalimetall in den Orthophosphaten der allgemeinen Formel (I) ist das Natrium. Die oben genannten Salze der Orthophosphorsäure sind also in bevorzugten Ausführungsformen des Verfahrens Natriumsalze.Orthophosphates of the general formula (I) from the group orthophosphoric acid, monoalkali metal dihydrogen phosphate, dialkali metal monohydrogen phosphate and trialkali metal orthophosphate are thus used. The preferred alkali metal in the orthophosphates of the general formula (I) is sodium. The above-mentioned salts of orthophosphoric acid are therefore sodium salts in preferred embodiments of the process.

In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfirdung verwendet man als Phosphatkomponente Polyphosphate der allgemeinen Formel (II)

        MpHn+2-pPnO3n+1   (II)

in der
   n für 2, 3 oder 4,
   p für eine ganze Zahl im Bereich von 0 bis (n+2) und
   M für ein Alkalimetall
stehen.
In a further preferred embodiment of the present invention, polyphosphates of the general formula (II) are used as the phosphate component

M p H n + 2-p P n O 3n + 1 (II)

in the
n for 2, 3 or 4,
p for an integer in the range from 0 to (n + 2) and
M for an alkali metal
stand.

Aus der Gruppe der Verbindungen der allgemeinen Formel (II) kommen also (p = 0) die sogenannten Polyphosphorsäuren in Frage, die dadurch entstehen, daß sich zwei oder mehrere Moleküle Orthonphosphorsäure unter Wasserabspaltung zu kettenförmigen Molekülen in aus dem Stand der Technik bekannter Art zusammenlagern und dadurch kettenförmige Moleküle der allgemeinen Formel (IIa) entstehen,

Figure imgb0001

in der n für 2, 3 oder 4 steht.From the group of compounds of the general formula (II), the so-called polyphosphoric acids come into question (p = 0), which result from the fact that two or more molecules of orthonphosphoric acid form with elimination of water chain-like molecules together in a manner known from the prior art and thereby chain-like molecules of the general formula (IIa) are formed,
Figure imgb0001

in which n stands for 2, 3 or 4.

Neben den so entstehenden Diphosphorsäuren (n = 2), Triphosphorsären (n = 3) und Tetraphosphrosäuren (n = 4) kommen jedoch auch deren Alkalimetallsalze in Frage, in denen - verglichen mit den oben genannten Polyphosphorsäuren - ein oder mehrere Wasserstoffatome durch Alkalimetallatome ersetzt sind. Bevorzugt werden die jeweiligen Natriumsalze verwendet. In der oben genannten allgemeinen Formel (II) können also einzelne (p = 1, 2, ...) oder alle (p = n + 2) Wasserstoffatome durch Alkalimetallatome, bevorzugt Natriumatome, ersetzt sein.In addition to the diphosphoric acids (n = 2), triphosphoric acids (n = 3) and tetraphosphoric acids (n = 4) thus formed, their alkali metal salts are also suitable, in which - compared to the polyphosphoric acids mentioned above - one or more hydrogen atoms are replaced by alkali metal atoms . The respective sodium salts are preferably used. In the general formula (II) mentioned above, individual (p = 1, 2, ...) or all (p = n + 2) hydrogen atoms can be replaced by alkali metal atoms, preferably sodium atoms.

In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung werden als Phosphate Metaphosphate der allgemeinen Formel (III) verwendet,

        (MqH1-qPO₃)r   (III)

in der
   M für ein Alkalimetall,
   r für eine ganze Zahl von 2 bis 20 und
   q für 0 oder 1
stehen.
In a further preferred embodiment of the present invention, metaphosphates of the general formula (III) are used as phosphates,

(M q H 1-q PO₃) r (III)

in the
M for an alkali metal,
r for an integer from 2 to 20 and
q for 0 or 1
stand.

Aus der Gruppe der Verbindungen der allgemeinen Formel (III) sind also sowohl die freien Metaphosphorsäuren geeignet (q = 0), die die im wesentlichen aus dem Stand der Technik bekannte ringförmige Struktur aufweisen und üblicherweise durch Kondensationsreaktion aus den oben genannten Polyphosphorsäuren entstehen. Eines oder mehrere der in derartigen Polyphosphorsäuren an ein Sauerstoffatom gebundenen Wasserstoffatome können in derartigen ringförmigen Metaphosphaten durch ein oder mehrere Alkalimetallatom(e) ersetzt sein. Bevorzugtes Alkalimetallatom ist wiederum Natrium.From the group of the compounds of the general formula (III), both the free metaphosphoric acids are suitable (q = 0), which have the ring-shaped structure essentially known from the prior art and are usually formed by the condensation reaction from the above-mentioned polyphosphoric acids. One or more of the hydrogen atoms bonded to an oxygen atom in such polyphosphoric acids can be replaced by one or more alkali metal atoms in such ring-shaped metaphosphates. The preferred alkali metal atom is again sodium.

Aus den genannten Gruppen der Polyphosphate der allgemeinen Formel (II) und der Metaphosphate der allgemeinen Formel (III) sind mit besonderem Vorteil diejenigen Verbindungen der genannten allgemeinen Formeln verwendbar, in denen M für Natrium, n für eine ganze Zahl von 2 bis 4 und r für eine ganze Zahl von 2 bis 6 stehen.From the groups of the polyphosphates of the general formula (II) and the metaphosphates of the general formula (III) mentioned, those compounds of the general formulas mentioned can be used with particular advantage in which M is sodium, n is an integer from 2 to 4 and r represent an integer from 2 to 6.

Die Umsetzung kann vor allem bei hohem Feststoffgehalt im Reaktionsgemisch vorteilhaft in einem Kneter gescheben. Dabei ist eine Reaktionstemperatur von 80 °C ausreichend, kann aber auch ohne Produktschädigung überschritten werden. Insbesondere bei weniger hoch konzentrierten Reaktionsgemischen kann die Herstellung vorteilhaft in einem Rührkessel bei Siedetemperatur unter Normaldruck mit nachfolgender Sprühtrocknung erfolgen.The reaction can advantageously be carried out in a kneader, especially if the reaction mixture has a high solids content. A reaction temperature of 80 ° C is sufficient, but can also be exceeded without damaging the product. In particular in the case of less highly concentrated reaction mixtures, the preparation can advantageously be carried out in a stirred kettle at boiling temperature under atmospheric pressure with subsequent spray drying.

Als Komplexbildner werden erfindungsgemäß eingesetzt: Poly(aldehydocarbonsäuren) oder deren Alkalimetallsalze, erhältlich durch die Umsetzung von Wasserstoffperoxid, Acrolein und Acrylsäure mit

  • einer Viskositätszahl im Bereich von 5 bis 50 ml/g,
  • einer Säurezahl im Bereich von 450 bis 670,
  • einem Säureäquivalentgewicht im Bereich von 125 bis 70,
  • einem Stockpunkt von weniger als 0 °C und
  • einem Gehalt an Carboxylgruppen im Bereich von 55 bis 90 Mol-% und
  • einem Molekulargewicht im Bereich von 1 000 bis 20 000
und/oder
1,1-Diphosphonsäuren der allgemeinen Formel (IV)
Figure imgb0002

wobei
   R für einen unsubstituierten oder einen in Parastellung mit Halogen-, Amino-, Hydroxy- oder C₁₋₄-Alkylgruppen, vorzugsweise mit Cl oder NH₂, substituierten Phenylrest, einen geradkettigen oder verzweigtkettigen oder cyclischen, gesättigten oder einfach oder mehrfach ungesättigten Alkylrest mit 1 bis 10 C-Atomen,
   X für Wasserstoff, Hydroxy, Halogen oder Amino und
   M₁ und M₂ jeweils unabhängig voneinander für Wasserstoff und/oder das Äquivalent eines Alkalimetallions stehen.The following are used as complexing agents according to the invention: poly (aldehydocarboxylic acids) or their alkali metal salts, obtainable by the reaction of hydrogen peroxide, acrolein and acrylic acid with
  • a viscosity number in the range from 5 to 50 ml / g,
  • an acid number in the range from 450 to 670,
  • an acid equivalent weight in the range from 125 to 70,
  • a pour point of less than 0 ° C and
  • a content of carboxyl groups in the range of 55 to 90 mol% and
  • a molecular weight in the range of 1,000 to 20,000
and or
1,1-diphosphonic acids of the general formula (IV)
Figure imgb0002

in which
R for an unsubstituted or in a para position with halogen, amino, hydroxy or C₁₋₄-alkyl groups, preferably with Cl or NH₂, substituted phenyl radical, a straight-chain or branched-chain or cyclic, saturated or mono- or polyunsaturated alkyl radical with 1 to 10 carbon atoms,
X represents hydrogen, hydroxy, halogen or amino and
M₁ and M₂ each independently represent hydrogen and / or the equivalent of an alkali metal ion.

Insbesondere bevorzugt werden als Komplexbildner in der vorliegenden Erfindung 1,1-Diphosphonsäuren der allgemeinen Formel (IV) eingesetzt, wobei R für einen unverzweigten Alkylrest mit 1 bis 6 C-Atomen steht.Particularly preferred complexing agents used in the present invention are 1,1-diphosphonic acids of the general formula (IV), where R represents an unbranched alkyl radical having 1 to 6 carbon atoms.

Vorzugsweise werden in den Poly(aldehydocarbonsäuren) und den 1,1-Diphosphonsäuren als Alkalimetallsalze jeweils die Natriumsalze eingesetzt, so daß in der allgemeinen Formel (IV) M für Natrium steht.The sodium salts are preferably used as alkali metal salts in the poly (aldehydocarboxylic acids) and the 1,1-diphosphonic acids, so that M in the general formula (IV) is sodium.

Die Umsetzung von Komplexbildnern mit Alkalimetallphosphat kann üblicherweise in einem Kneter bis zur Trockene oder in einem Rührkessel bei anschließender Sprühtrocknung durchgeführt werden. Demgemäß besteht eine weitere bevorzugte Ausführungsform der vorliegenden Erfindung darin, daß man die Umsetzung von Alkalimetallphosphat mit Komplexbildnern bei Temperaturen im Bereich von 75 °C bis 120 °C in einem Kneter bis zur Trockene oder in einem Rührkessel bei anschließender Sprühtrocknung durchfürht.The reaction of complexing agents with alkali metal phosphate can usually be carried out to dryness in a kneader or in a stirred kettle with subsequent spray drying. Accordingly, a further preferred embodiment of the present invention consists in carrying out the reaction of alkali metal phosphate with complexing agents at temperatures in the range from 75 ° C. to 120 ° C. in a kneader to dryness or in a stirred kettle with subsequent spray drying.

Inbesondere bevorzugt ist das Verfahren, wenn man die Umsetzung bei Temperaturen im Bereich von 80 °C bis 100 °C durchführt.The process is particularly preferred if the reaction is carried out at temperatures in the range from 80 ° C. to 100 ° C.

Das erfindungsgemäße Verfahren erlaubt eine große Variation des Feststoffgehaltes der Umsetzung. Demgemäß besteht eine weitere bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens darin, daß der Feststoffgehalt bei der Umsetzung im Bereich von 30 bis 85 % liegt. Eine insbesondere bevorzugte Ausführungsform der vorliegenden Erfindung besteht darin, daß der Feststoffgehalt der Umsetzung in einem Kneter im Bereich von 75 bis 85 % liegt. Bei der Umsetzung in einem Rührkessel wird insbesondere bevorzugt, daß der Feststoffgehalt im Bereich von 30 bis 40 % liegt.The process according to the invention allows a large variation in the solids content of the reaction. Accordingly, a further preferred embodiment of the process according to the invention is that the solids content in the reaction is in the range from 30 to 85%. A particularly preferred embodiment of the present invention is that the solids content of the reaction in a kneader is in the range from 75 to 85%. When reacting in a stirred tank, it is particularly preferred that the solids content is in the range from 30 to 40%.

Eine weitere bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens besteht darin, daß man bis zu 30 Gew.-% der Gesamtmenge an Komplexbildner vor oder während der Umsetzung der Komplexbildner mit Alkalimetallphosphat zugibt und die restliche Menge nach einem ersten Antrocknen auf eine Restfeuchte von 10 bis 20 % in die Reaktionsmischung einarbeitet.A further preferred embodiment of the process according to the invention consists in that up to 30% by weight of the total amount of complexing agent is used before or during the reaction of the Adds complexing agent with alkali metal phosphate and incorporates the remaining amount into the reaction mixture after a first drying to a residual moisture content of 10 to 20%.

Derartige Aktivierungsmittel werden üblicherweise durch Einstellen von Feststoffgehalten im Bereich von 0,001 bis 10 Gew.-% der erfindungsgemäßen titanfreien Aktivierungsmittel mit Wasser unmittelbar zur Aktivierung von Metalloberflächen vor einer Zinkphosphatierung eingesetzt.Activating agents of this type are usually used by adjusting solids contents in the range from 0.001 to 10% by weight of the titanium-free activating agents according to the invention with water directly for activating metal surfaces before zinc phosphating.

Demgemäß besteht ein weiterer Gegenstand der vorliegenden Erfindung in der Verwendung der erfindungsgemäßen titanfreien Aktivierungsmittel vor der Phosphatierung von Metalloberflächen aus Eisen, Stahl, Zink, verzinktem Eisen oder verzinktem Stahl, Aluminium und/oder aluminiertem Stahl mit Zinkionen enthaltenden Phosphatierbädern.Accordingly, the present invention furthermore relates to the use of the titanium-free activating agents according to the invention prior to phosphating metal surfaces made of iron, steel, zinc, galvanized iron or galvanized steel, aluminum and / or aluminized steel with phosphating baths containing zinc ions.

Eine weitere bevorzugte Ausführungsform der vorliegenden Erfindung besteht in der Verwendung von titanfreien Aktivierungsmitteln gemäß der vorliegenden Erfindung in Form von wäßrigen Dispersionen als Aktivierungsmittel vor der Niedrigzinkphosphatierung.A further preferred embodiment of the present invention consists in the use of titanium-free activating agents according to the present invention in the form of aqueous dispersions as activating agents before the low zinc phosphating.

Die erfindungsgemäß eingesetzten Poly(aldehydocarbonsäuren) sind im Handel erhältlich und werden von der Firma Degussa AG, Frankfurt, beispielsweise unter den Bezeichnungen POC OS 20, POC HS 0010, POC HS 2020, POC HS 5060, POC HS 65 120 sowie POC AS 0010, POC AS 2020, POC AS 5060 oder POC AS 65 120 vertrieben. Hierbei betrifft die Kennzeichnung HS die Säureform und die Kennzeichnung AS die Natriumsalz-Form der Poly(aldehydocarbonsäuren). Sie können nach einem speziellen, bei der Firma Degussa entwickelten Verfahren, der "oxidativen Polymerisation" von Acrolein hergestellt werden. Dabei wird Acrolein allein oder im Gemisch mit Acrylsäure in wäßriger Lösung mit Wasserstoffperoxid behandelt. Das H₂O₂ wirkt hierbei als Initiator der Polymerisation und als Molekulargewichtsregler. Gleichzeitig wird durch Wasserstoffperoxid ein Teil der Aldehydgruppen des Acroleins zu Carboxylgruppen oxidiert. So entstehen Polymere mit seitenständigen Aldehyd- und Carboxylgruppen, nämlich die Poly(aldehydocarbonsäuren).The poly (aldehydocarboxylic acids) used according to the invention are commercially available and are available from Degussa AG, Frankfurt, for example under the names POC OS 20, POC HS 0010, POC HS 2020, POC HS 5060, POC HS 65 120 and POC AS 0010, POC AS 2020, POC AS 5060 or POC AS 65 120 sold. The HS designation relates to the acid form and the AS designation relates to the sodium salt form of the poly (aldehydocarboxylic acids). They can be produced using a special process developed by Degussa, the "oxidative polymerization" of acrolein. Acrolein is aqueous or mixed with acrylic acid Solution treated with hydrogen peroxide. The H₂O₂ acts as an initiator of the polymerization and as a molecular weight regulator. At the same time, some of the aldehyde groups of acrolein are oxidized to carboxyl groups by hydrogen peroxide. This creates polymers with pendant aldehyde and carboxyl groups, namely the poly (aldehydocarboxylic acids).

Angaben über die vorstehend beschriebene Herstellung der Poly(aldehydocarbonsäuren) sowie über deren Verwendungsmöglichkeiten finden sich in der Firmenschrift der Degussa AG mit dem Titel "POC-Umweltfreundliche Polycarbonsäuren mit vielfältigen Anwendungsmöglichkeiten" (Druckvermerk: CH 215-3-3-582 Vol). Hiernach lassen sich die Poly(aldehydocarbonsäuren) beispielsweise als Härtestabilisatoren bezüglich der Inhibierung der Kristallisation von Calcium- und anderen Erdalkalimetallsalzen, als Belagverhinderer bei der Meerwasserentsalzung, als Dispergiermittel für feststoffreiche wäßrige Pigmentdispersionen sowie als Gerüststoff (Builder) für Wasch- und Reinigungsmittel verwenden. In dieser Firmenschrift finden sich ferner Angaben über diesbezüglich relevante Patentliteratur, beispielsweise DE-B-10 71 339 (Herstellung), DE-A-19 04 940 (Komplexbildner), DE-A-19 04 941 (Polyoxycarbonsäuren), DE-B-19 42 556 (Komplexbildner) DE-A-21 54 737 (Rostschutzbehandlung), DE-A-23 30 260 sowie DE-A-23 57 036 (Herstellung).Information on the production of the poly (aldehydocarboxylic acids) described above and on their possible uses can be found in the Degussa AG company publication entitled "POC-Environmentally Friendly Polycarboxylic Acids with Many Possible Applications" (printed notice: CH 215-3-3-582 Vol). According to this, the poly (aldehydocarboxylic acids) can be used, for example, as hardness stabilizers with regard to the inhibition of the crystallization of calcium and other alkaline earth metal salts, as deposit inhibitors in seawater desalination, as dispersants for aqueous pigment dispersions with high solids content and as builders for detergents and cleaning agents. This company publication also contains information on relevant patent literature, for example DE-B-10 71 339 (production), DE-A-19 04 940 (complexing agent), DE-A-19 04 941 (polyoxycarboxylic acids), DE-B- 19 42 556 (complexing agent) DE-A-21 54 737 (rust protection treatment), DE-A-23 30 260 and DE-A-23 57 036 (production).

Die freien Poly(aldehydocarbonsäuren) können mit Laugen zu den entsprechenden Salzen neutralisiert werden, z.B. mit NaOH zu Natrium-poly(aldehydocarboxylaten).The free poly (aldehydocarboxylic acids) can be neutralized with lyes to the corresponding salts, e.g. with NaOH to sodium poly (aldehydocarboxylates).

Durch Wahl der Reaktionsbedingungen können Carboxyl- und Carbonylgehalt sowie das mittlere Molekulargewicht der verschiedenen Poly(aldehydocarbonsäure)-Qualitäten variiert werden. Die allgemeine Formel (V) gibt den grundlegencen Aufbau der erfindungsgemäß zu verwendenden Poly(aldehydocarbonsäuren) wieder.

Figure imgb0003
The carboxyl and carbonyl content and the average molecular weight of the various poly (aldehydocarboxylic acid) qualities can be varied by selecting the reaction conditions. The general formula (V) represents the basic structure of the poly (aldehydocarboxylic acids) to be used according to the invention.
Figure imgb0003

Die Poly(aldehydocarbonsäuren) sind überwiegend linear über Kohlenstoff-Kohlenstofibindungen verknüpfte Poly(aldehydocarbonsäuren) mit vielen Carboxyl- und wenigen Carbonyl-Seitengruppen sowie Hydroxyl-Endgruppen. Ihre chemische Konstitution wird insbesondere durch die allgemeine Formel (V) charakterisiert.The poly (aldehydocarboxylic acids) are predominantly linear poly (aldehydocarboxylic acids) linked via carbon-carbon bonds with many carboxyl and a few carbonyl side groups and hydroxyl end groups. Their chemical constitution is characterized in particular by the general formula (V).

Die mittleren Polymerisationsgrade werden durch die Viskositätszahlen gekennzeichnet. Diese liegen üblicherweise zwischen 5 bis 50 ml/g, bezogen auf 100 %igen Fetstoff, gemessen als 2 %ige Lösung in 0,1 N NaBr bei 25 °C und pH 10 in einem Ubbelohde Viskosimeter, Kapillare Oa. Die räumliche Verknüpfung der Monomerbausteine kann als ataktisch, die Reihenfolge der Verknüpfung als statistisch angenommen werden.The average degrees of polymerization are characterized by the viscosity numbers. These are usually between 5 to 50 ml / g, based on 100% strength, measured as a 2% solution in 0.1 N NaBr at 25 ° C. and pH 10 in an Ubbelohde viscometer, capillary Oa. The spatial linkage of the monomer units can be assumed to be atactic, the order of the linkage to be statistical.

Der Gehalt an Carboxylgruppen, ausgedrückt in Mol-% COOH, kann aus der Säurezahl (DIN 53402) der getrockneten Polymeren berechnet werden. Die Säurezahl wäßriger Poly(aldehydocarbonsäuren) ist zur Berechnung der Molprozente COOH ungeeignet, da die technischen Qualitäten geringe Mengen Ameisensäure, Essigsäure und β-Hydroxypropionsäure als Nebenprodukte enthalten.The carboxyl group content, expressed in mol% COOH, can be calculated from the acid number (DIN 53402) of the dried polymers. The acid number of aqueous poly (aldehydocarboxylic acids) is unsuitable for calculating the molar percentages of COOH, since the technical qualities contain small amounts of formic acid, acetic acid and β-hydroxypropionic acid as by-products.

Die Natrium-poly(aldehydocarboxylate) müssen vor der Säurezahlbestimmung durch Ionenaustausch in die H-Form überführt werden.The sodium poly (aldehydocarboxylates) must be converted into the H form by ion exchange before the acid number is determined.

Überraschend wurde nun gefunden, daß man den titanphosphathaltigen Mitteln wenigstens gleichwertige Mittel erhält, wenn man geeignete Komplexbildner mit einem hohen Überschuß einer Phosphatkomponente in wäßrigem Medium bei erhöhter Temperatur umsetzt. Als Komplexbildner kann besonders bevorzugt 1-Hydrocxyethan-1,1-diphosphsäure (HEDP) eingesetzt werden. Als Alkalimetallphosphat kommen monomere oder oligomere Orthophosphate als Alkalisalze zur Anwendung; der pH-Wert der wäßrigen Reaktionsmischung wird gegebenenfalls auf den Bereich zwischen 7,5 und 9 eingestellt. Bei der besonders bevorzugten Verwendung von Dinatriumhydrogenphosphat kann auf eine Einstellung des pH-Wertes verzichtet werden.Surprisingly, it has now been found that the agents containing titanium phosphate are at least equivalent if suitable complexing agents are reacted with a large excess of a phosphate component in an aqueous medium at elevated temperature. 1-Hydrocxyethane-1,1-diphosphonic acid (HEDP) can particularly preferably be used as the complexing agent. As alkali metal phosphate, monomeric or oligomeric orthophosphates are used as alkali salts; the pH of the aqueous reaction mixture is optionally adjusted to the range between 7.5 and 9. With the particularly preferred use of disodium hydrogen phosphate, there is no need to adjust the pH.

Die neue Aktiviermittel kommen, wie die herkömmlichen titanphosphathaltigen Mittel, in etwa 0,2 gew.-%iger wäßriger Zubereitung zur Anwendung. Sie bilden dann klare Lösungen. Hierin liegt ein anwendungstechnischer Vorteil gegenüber den herkömmlichen Mitteln auf der Basis von Titanphosphat, die wegen ihrer weitgehenden Unlöslichkeit nur als milchig-trübe Suspensionen eingesetzt werden können. Diese enthalten üblicherweise einen beträchtlichen Anteil grober und für die Aktivierung unwirksamer Partikel.The new activating agents, like the conventional agents containing titanium phosphate, are used in about 0.2% by weight aqueous preparation. They then form clear solutions. This is an application technology advantage over the conventional agents based on titanium phosphate, which, because of their largely insolubility, can only be used as cloudy, cloudy suspensions. These usually contain a considerable proportion of coarse and ineffective particles for the activation.

Ein entscheidender Schritt bei der Herstellung der neuen titanfreien Aktivierungsmittel ist die Umsetzung des Komplexbildners mit Alkalimetallphosphat bei einer Temperatur oberhalb 70 °C, bevorzugt zwischen 80 °C und 100 °C in Gegenwart von Wasser. Ein einfaches Zumischen des Komplexbildners zu einer wäßrigen Phosphatlösung führt nicht zu dem erwünschten Ergebnis.A decisive step in the production of the new titanium-free activating agents is the reaction of the complexing agent with alkali metal phosphate at a temperature above 70 ° C., preferably between 80 ° C. and 100 ° C. in the presence of water. Simply adding the complexing agent to an aqueous phosphate solution does not lead to the desired result.

Die Umsetzung kann bei hohen Feststoffgehalten des Reaktionsgemisches vorteilhaft in einem Kneter geschehen. Hierzu verknetet man ein Gemenge aus 20 bis 25 Gewichtsteilen vollentsalztem Wasser mit 70 bis 79 Gewichtsteilen Phosphat, vorzugsweise Dinatriumhydrogenphosphat, und 1 bis 4 Gewichtsteilen, vorzugsweise 1 bis 2 Gewichtsteilen, Komplexbildner unter den angegebenen Temperaturbedingungen bis zur Trockene des Reaktionsgemisches, d.h. bis auf eine Restfeuchte von etwa 2 %. Dabei kann es besonders vorteilhaft sein, nur etwa ein Viertel der vorgesehenen Komplexbildnermenge zu Beginn der Umsetzung, den Rest nach einem ersten Antrocknen des Reaktionsgemisches auf eine Restfeuchte zwischen 10 und 20 % zuzugeben.The reaction can advantageously take place in a kneader at high solids contents of the reaction mixture. Kneaded for this a mixture of 20 to 25 parts by weight of deionized water with 70 to 79 parts by weight of phosphate, preferably disodium hydrogenphosphate, and 1 to 4 parts by weight, preferably 1 to 2 parts by weight, of complexing agent under the specified temperature conditions until the reaction mixture is dry, ie to a residual moisture content of about 2%. It can be particularly advantageous to add only about a quarter of the amount of complexing agent envisaged at the start of the reaction, and the rest after the reaction mixture has first dried to a residual moisture content of between 10 and 20%.

BeispieleExamples

Um die aktivierende Wirkung der erfindungsgemäß hergestellten Mittel und zum Vergleich herangezogener Produkte zu bestimmen, wurden die Oberflächen von Stahlcoupons (Werkstoff St 1405, Abmessungen 10 cm x 20 cm, ca. 1 mm Dicke) mittels standardisierter Phosphatierverfahren gemäß Tabellen 1 (Tauchphosphatierung, Normalzinkverfahren) und 3 (Spritzphosphatierung, manganmodifiziertes Niedrigzinkverfahren) phosphatiert.In order to determine the activating effect of the agents produced according to the invention and to compare the products used, the surfaces of steel coupons (material St 1405, dimensions 10 cm x 20 cm, approx. 1 mm thickness) were measured using standardized phosphating processes according to Table 1 (immersion phosphating, normal zinc process) and 3 (spray phosphating, manganese-modified low-zinc process) phosphated.

Unter "Flächengewicht" wird die flächenbezogene Masse der Metallphosphatschicht in Gramm pro Quadratmeter verstanden, die gemäß DIN 50 492 ermittelt wird. Zur Bestimmung der Badkapazität wurden jeweils zwei Liter einer 0,2 gew.-%igen wäßrigen Zubereitung des Aktiviermittels mit Prüfblechen belastet, die anschließend phosphatiert wurden. Anfänglich und dann nach jedem zehnten Probeblech wurde das mittlere Flächengewicht von vier aufeinanderfolgenden Probeblechen bestimmt. Die hieraus berechneten Durchschnittswerte sind in Tabelle 2 angegeben. Die Bäder galten als erschöpft, wenn zehn Bleche hintereinander bei der Zinkphosphatierung Fehlstellen oder grobkristalline Bereiche aufwiesen. Die Badkapazität wird in m² aktivierbare Fläche pro 2 l Aktivierbad angegeben."Weight per unit area" means the mass per unit area of the metal phosphate layer in grams per square meter, which is determined in accordance with DIN 50 492. To determine the bath capacity, two liters of a 0.2% strength by weight aqueous preparation of the activating agent were loaded with test sheets, which were then phosphated. Initially and then after every tenth sample sheet, the average basis weight of four successive sample sheets was determined. The average values calculated from this are given in Table 2. The baths were considered exhausted if ten sheets in a row were missing during the zinc phosphating or had coarse crystalline areas. The bath capacity is given in m² of activatable area per 2 l of activating bath.

Vergleichsbeispiel 1Comparative Example 1

Als Vergleichsprodukt wurde ein handelsgängiges titanphosphathaltiges Aktivierungsmittel der Firma Collardin, Köln (FixodineR6) eingesetzt. Die damit erzielten Aktivierungsergebnisse sind in Tabelle 2 den erfindungsgemäßen Aktivierungsmitteln (Beispiele 1 bis 7) gegenübergestellt.A commercially available activating agent containing titanium phosphate from Collardin, Cologne (Fixodine R 6) was used as the comparative product. The activation results obtained in this way are compared in Table 2 with the activating agents according to the invention (Examples 1 to 7).

Beispiele 1 bis 7Examples 1 to 7

Zur Herstellung der Aktiviermittel wurden die Ausgangsverbindungen in den in Tabelle 2 angegebenen Mengenverhältnissen umgesetzt. Typischerweise wurde dabei so verfahren, wie hier für Beispiel 1 näher beschrieben wird. Die 1-Hydroxyethan1,1-diphosnhönsäure (HEDP) wurde dabei als 60 gew.-%ige wäßrige Lösung (TurpinalR SL, Henkel KGaA, Düsseldorf) eingesetzt, die folgenden Mengenangaben beziehen sich auf Wirksubstanz:To prepare the activators, the starting compounds were reacted in the proportions given in Table 2. The procedure was typically as described here for Example 1. 1-Hydroxyethane1,1-diphosonic acid (HEDP) was used as a 60% strength by weight aqueous solution (Turpinal R SL, Henkel KGaA, Düsseldorf), the following quantities relate to the active substance:

In einem Taborkneter mit Sigma-Schaufeln wurden 171,4 g vollentsalztes (VE)- Wasser bei 80 °C vorgelegt und mit 366 g (= 2/3 der Gesamtmenge) Na₂HPO₄ vermischt. Danach wurden 2,9 g HEDP zugegeben und 15 Minuten verknetet.In a tab kneader with Sigma blades, 171.4 g of demineralized (VE) water were placed at 80 ° C and mixed with 366 g (= 2/3 of the total amount) Na₂HPO₄. Then 2.9 g of HEDP were added and kneaded for 15 minutes.

Anschließend wurde die Restmenge (183,3 g) Na₂HPO₄ zugefügt und das Produkt bis zum Antrocknen verknetet. Nun wurden weitere 11,5 g HEDP zugefügt und die Reaktionsmischung bis zur Trockene geknetet.Then the remaining amount (183.3 g) Na₂HPO₄ was added and the product kneaded until it dries. A further 11.5 g of HEDP were then added and the reaction mixture was kneaded to dryness.

Tabelle 2 enthält die Aktivierungsergebnisse für Tauchphosphatierung im Normalzinkverfahren. Das Beispiel 3 in Tabelle 2 zeigt den deutlichen Rückgang der Aktivierungsleistung, wenn das Mengenverhältnis Komplexbildner zu Phosphat den vorgezogenen Wert von 5 zu 100 überschreitet.Table 2 contains the activation results for immersion phosphating in the normal zinc process. Example 3 in Table 2 shows the significant decrease in activation performance when the quantity ratio of complexing agent to phosphate exceeds the preferred value of 5 to 100.

Vergleichsbeispiel 2Comparative Example 2

Zum Vergleich mit dem erfindungsgemäßen Produkt aus Beispiel 1 wurden 3,9 g Na₂HPO₄ und 0,1 g HEDP in 2 l Wasser gelöst, um ein Bad mit ähnlichen Stoffmengen zu erhalten wie in Beispiel 1. Die nach Aktivierung mit dieser Lösung phosphatierten Bleche zeigten Passivierungserscheinungen, Flecken und grobe Kristalle und damit eine völlig unzureichende Aktivierung an. Dieser Befund unterstreicht die Bedeutung der erfindungsgemäßen Herstellung der Aktivierungsmittel.For comparison with the product according to the invention from Example 1, 3.9 g Na₂HPO₄ and 0.1 g HEDP were dissolved in 2 l water in order to obtain a bath with similar amounts of substance as in Example 1. The sheets phosphated after activation with this solution showed signs of passivation , Stains and coarse crystals and thus a completely inadequate activation. This finding underlines the importance of the production of the activating agents according to the invention.

Beispiel 8Example 8

Tabelle 3 zeigt die Durchführung der Prüfung im Spritzverfahren. Als Vergleichsprodukt wurde das handelsübliche Aktivierungsmittel FixodineR6 der Firma Collardin, Köln eingesetzt. Die Ergebnisse zeigen, daß das erfindungsgemäße Produkt aus Beispiel 1 (Tabelle 2) keine Leistungseinbuße gegenüber dem Standardprodukt aufweist: Während bei dem handelsüblichen Produkt ein Flächengewicht von 3,07 g/m² erzielt wurde, ergab das erfindungsgemäße Produkt ein Flächengewicht von 3,01 g/m².

Figure imgb0004
Figure imgb0005
Figure imgb0006
Figure imgb0007
Figure imgb0008
Table 3 shows how the test was carried out by spraying. The commercially available activating agent Fixodine R 6 from Collardin, Cologne was used as a comparative product. The results show that the product according to the invention from Example 1 (Table 2) has no loss of performance compared to the standard product: while a weight per unit area of 3.07 g / m 2 was achieved with the commercial product, the product according to the invention gave a weight per unit area of 3.01 g / m².
Figure imgb0004
Figure imgb0005
Figure imgb0006
Figure imgb0007
Figure imgb0008

Claims (15)

1. Titanium-free preparations based on complexing agents and alkali metal phosphates for the activation of metal surfaces of iron or steel, zinc or galvanized steel and aluminium or aluminized steel before phosphating with phosphating baths containing zinc ions, characterized in that they are obtainable by reaction of
- poly(aldehydocarboxylic acids) and/or 1,1-diphosphonic acids as complexing agents and
- alkali metal phosphates
at a temperature of above 70°C in the presence of water, the ratio of complexing agent to alkali metal phosphate being in the range from 0.1:10 to 1:10.
2. Titanium-free preparations as claimed in claim 1, characterized in that the ratio of complexing agent to alkali metal phosphate is in the range from 0.2:10 to 0.5:10.
3. Titanium-free preparations as claimed in claims 1 and 2, characterized in that the complexing agents are poly(aldehydocarboxylic acids) or alkali metal salts thereof obtainable by the reaction of hydrogen peroxide, acrolein and acrylic acid with
- a viscosity number of 5 to 50 ml/g,
- an acid value of 450 to 670,
- an acid equivalent weight of 125 to 70,
- a pour point below 0°C and
- a content of carboxyl groups of 55 to 90 mol-% and
- a molecular weight in the range from 1,000 to 20,000 and/or
1,1-diphosphonic acids corresponding to general formula (IV)
Figure imgb0010
in which
   R is an unsubstituted phenyl group or a phenyl group substituted in the para position by halogen, amino, hydroxy or C₁-₄ alkyl groups, preferably by Cl or NH₂, a linear or branched or cyclic, saturated or mono- or polyunsaturated alkyl radical containing 1 to 10 carbon atoms,
   X is hydrogen, hydroxy, halogen or amino and
   M₁ and M₂ independently of one another represent hydrogen and/or the equivalent of an alkali metal ion.
4. Titanium-free preparations as claimed in claim 3, characterized in that 1,1-diphosphonic acids corresponding to general formula (IV), in which R is an unbranched alkyl radical containing 1 to 6 carbon atoms, are used as the complexing agents.
5. Titanium-free preparations as claimed in claim 3; characterized in that sodium salts are used as the alkali metal salt of the poly(aldehydocarboxylic acids) and/or 1,1-diphosphonic acids.
6. Titanium-free preparations as claimed in claims 1 to 5, characterized in that the alkali metal phosphates correspond to general formulae (I) and/or (II) and/or (III)

        MmH3-mPO₄   (I)



        MpHn+2-pPnO3n+1   (II)



        (MqH1-qPO₃)r   (III)

in which
   M is an alkali metal,
   m is 0, 1, 2 or 3,
   n is 2, 3 or 4,
   p is 0, 1, 2, ... n+2,
   q is 0 or 1 and
   r is an integer of 2 to 20.
7. Titanium-free preparations as claimed in claim 6, characterized in that, in general formulae (I), (II) and (III), M is sodium.
8. A process for the production of the titanium-free activating preparations claimed in claims 1 to 7, characterized in that the reaction of alkali metal phosphates and complexing agents is carried out to dryness at temperatures of 75 to 120°C in a kneader or in a stirred tank in the event of subsequent spray drying.
9. A process as claimed in claim 8, characterized in that the reaction is carried out at temperatures of 80 to 100°C.
10. A process as claimed in claims 8 and 9, characterized in that the solids content during the reaction is in the range from 30% to 85%.
11. A process as claimed in claim 10, characterized in that the solids content during the reaction in a kneader is in the range from 75% to 85%.
12. A process as claimed in claim 10, characterized in that the solids content during the reaction in a stirred tank is in the range from 30% to 40%.
13. A process as claimed in claims 8 to 12, characterized in that up to 30% by weight of the total quantity of complexing agent is added before or during the reaction with alkali metal phosphates and the remaining quantity is incorporated in the reaction mixture after drying to a residual moisture content of 10 to 20%.
14. The use of the titanium-free activating preparations claimed in claims 1 to 7 in the form of aqueous dispersions before the phosphating of metal surfaces of iron, steel, zinc, galvanized iron or galvanized steel, aluminium and/or aluminized steel with phosphating baths containing zinc ions.
15. The use claimed in claim 14 before low-zinc phosphating.
EP89106998A 1988-04-28 1989-04-19 Titanium-free activating agents, process for preparing them and their use in activating a metal surface before zinc phosphating Expired - Lifetime EP0340530B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3814363 1988-04-28
DE3814363A DE3814363A1 (en) 1988-04-28 1988-04-28 TITANIUM-FREE ACTIVATING AGENTS, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE FOR ACTIVATING METAL SURFACES BEFORE ZINC PHOSPHATING

Publications (2)

Publication Number Publication Date
EP0340530A1 EP0340530A1 (en) 1989-11-08
EP0340530B1 true EP0340530B1 (en) 1992-06-24

Family

ID=6353098

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89106998A Expired - Lifetime EP0340530B1 (en) 1988-04-28 1989-04-19 Titanium-free activating agents, process for preparing them and their use in activating a metal surface before zinc phosphating

Country Status (10)

Country Link
US (2) US5039362A (en)
EP (1) EP0340530B1 (en)
JP (1) JPH01316467A (en)
AR (1) AR240485A1 (en)
AU (1) AU608153B2 (en)
BR (1) BR8902023A (en)
CA (1) CA1333989C (en)
DE (2) DE3814363A1 (en)
ES (1) ES2032622T3 (en)
MX (1) MX172303B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4012795A1 (en) * 1990-04-21 1991-10-24 Metallgesellschaft Ag ACTIVATING AGENT FOR PHOSPHATING
US5628838A (en) * 1992-01-29 1997-05-13 C.F.P.I Societe Anonyme Concentrate for activating and defining bath and bath obtained from this concentrate
DE4232292A1 (en) * 1992-09-28 1994-03-31 Henkel Kgaa Process for phosphating galvanized steel surfaces
US5326408A (en) * 1993-06-15 1994-07-05 Henkel Corporation Rapidly dissolving and storage stable titanium phosphate containing activating composition
DE4416619A1 (en) * 1994-05-11 1995-11-16 Henkel Kgaa Preparation of phosphate-containing phosphating phosphors using microwaves
DK1294834T3 (en) * 2000-05-31 2013-12-09 Chemetall Gmbh Process for treating or pre-treating containers
US20040094236A1 (en) * 2002-11-14 2004-05-20 Crown Technology, Inc. Methods for passivating stainless steel
CN103132122B (en) * 2011-11-22 2015-07-22 吴怡岗 Steel wire on-line normal-temperature electrolytic phosphatization method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2164024A (en) * 1935-12-07 1939-06-27 Ig Farbenindustrie Ag Electric arc furnace
IT429345A (en) * 1941-10-25 1900-01-01
NL62521C (en) * 1943-07-29
US2456947A (en) * 1944-12-21 1948-12-21 Westinghouse Electric Corp Corrosion resistant coating for metal surfaces
US3141804A (en) * 1961-07-18 1964-07-21 Foils Packaging Corp Dielectric heat sealing
GB1176066A (en) * 1967-08-18 1970-01-01 Pyrene Co Ltd Phosphate Coating of Steel.
DE1904940C2 (en) * 1969-02-01 1982-07-22 Degussa Ag, 6000 Frankfurt Use of polymers containing carboxyl or carboxylate and hydroxyl groups as complexing agents
DE1904941A1 (en) * 1969-02-01 1970-08-06 Degussa Polyoxycarboxylic acids
BE755099A (en) * 1969-08-21 1971-02-22 Degussa COMPLEXING AGENTS
DE2330260A1 (en) * 1973-06-14 1975-01-16 Degussa PROCESS FOR THE PRODUCTION OF POLYCARBOXYLATES WITH IMPROVED BIODEGRADABILITY
NL157021B (en) * 1973-11-15 1978-06-15 Degussa PROCESS FOR PREPARING POLYCARBOXYLATES WITH IMPROVED BIODEGRADABILITY.
US4266677A (en) * 1979-01-19 1981-05-12 Donaldson Display Company, Inc. Samples clamp
IT1165849B (en) * 1979-05-16 1987-04-29 Fosfa Col Sas Di A Dal Pane & PROCEDURE FOR PREPARING A PRODUCT ACTIVATING THE PHOSPHATION PROCESSES AND PRODUCT OBTAINED WITH THE SAME PROCEDURE
DE2951600A1 (en) * 1979-12-21 1981-07-02 Gerhard Collardin GmbH, 5000 Köln METHOD FOR PRE-TREATING METAL SURFACES BEFORE PHOSPHATING
JPS5855229B2 (en) * 1981-01-19 1983-12-08 日本ペイント株式会社 Surface conditioner for zinc phosphate treatment
FR2572422B1 (en) * 1984-10-31 1993-03-05 Produits Ind Cie Fse IMPROVED ACTIVATION AND REFINING BATH FOR ZINC PHOSPHATATION PROCESS AND CONCENTRATE THEREOF

Also Published As

Publication number Publication date
EP0340530A1 (en) 1989-11-08
MX172303B (en) 1993-12-13
AR240485A1 (en) 1990-04-30
US5112414A (en) 1992-05-12
BR8902023A (en) 1989-12-05
DE58901729D1 (en) 1992-07-30
US5039362A (en) 1991-08-13
CA1333989C (en) 1995-01-17
JPH01316467A (en) 1989-12-21
AU608153B2 (en) 1991-03-21
ES2032622T3 (en) 1993-02-16
DE3814363A1 (en) 1989-11-09
AU3378989A (en) 1989-11-02

Similar Documents

Publication Publication Date Title
EP0015020B2 (en) Process for the surface treatment of metals and its use for the treatment of aluminium surfaces
DE69732102T2 (en) Surface treated metallic corrosion resistant material and surface treatment agent
DE68903512T2 (en) CORROSION-RESISTANT PIGMENT AND THEIR PRODUCTION.
DE69936529T2 (en) CONDITIONING A METAL SURFACE BEFORE PHOSPHATING
DE69404663T2 (en) PRE-RINSE FOR PHOSPHATING METAL SURFACES
EP0454211A1 (en) Process for applying phosphate coatings on metal surfaces
DE3234558A1 (en) WATER-ACID ZINC PHOSPHATE COATING SOLUTIONS, LOW-TEMPERATURE METHODS USING SUCH SOLUTIONS FOR THE FORMATION OF CHEMICAL CONVERSION TRANSFORMERS ON IRON AND / OR ZINCO SURFACES AND THE USEFUL LIQUID DETERMINANT
EP0340530B1 (en) Titanium-free activating agents, process for preparing them and their use in activating a metal surface before zinc phosphating
WO1994013856A1 (en) Method of phosphating metal surfaces
EP0339452B1 (en) Polymer titanium phosphates, process for their preparaton and their use in the activation of metal surfaces before zinc phosphating
EP3676419B1 (en) Improved method for nickel-free phosphating of metallic surfaces
EP0307839B1 (en) Process for the production of activating titanium phosphates for zinc phosphatizing
DE69513036T3 (en) Liquid activating agent for phosphate conversion coatings
DE69730711T2 (en) Manganese Phosphate Conversion Coating Composition and Method for Use at Moderate Temperatures
EP3918108B1 (en) Alternative composition and alternative method for effectively phosphating metal surfaces
EP0340529B1 (en) Hard water stabilizing additive for activating agents before zinc phosphating
EP2893054A1 (en) Method for corrosion-protective serial surface treatment of metallic components
EP0759097B1 (en) Production of phosphate-containing activating agents for phosphatization with the aid of microwaves
WO2019052701A1 (en) Two-stage pre-treatment of aluminum, in particular aluminum casting alloys, comprising pickle and conversion treatment
JPH05156473A (en) Corrosion inhibiter
DE2419526A1 (en) SEALING FLUSH FOR PHOSPHATE COATINGS ON METALS
DE2931712C2 (en) Process for the production of a titanium compound for the activation of phosphating processes
DE4012796A1 (en) PROCESS FOR PREPARING ACTIVATING AGENTS FOR ZINC PHOSPHATING
AT245893B (en) Process for making chemical conversion coatings
DE2038105C3 (en) Process for applying zinc phosphate layers to surfaces made of iron, steel and hot-dip galvanized material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19891110

17Q First examination report despatched

Effective date: 19910312

RBV Designated contracting states (corrected)

Designated state(s): BE DE ES FR GB IT

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT

REF Corresponds to:

Ref document number: 58901729

Country of ref document: DE

Date of ref document: 19920730

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2032622

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960321

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960410

Year of fee payment: 8

Ref country code: FR

Payment date: 19960410

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19960429

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960612

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19970430

BERE Be: lapsed

Owner name: HENKEL K.G.A.A.

Effective date: 19970430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050419