EP0334935A1 - Gas-steam generating power plant - Google Patents

Gas-steam generating power plant

Info

Publication number
EP0334935A1
EP0334935A1 EP88908952A EP88908952A EP0334935A1 EP 0334935 A1 EP0334935 A1 EP 0334935A1 EP 88908952 A EP88908952 A EP 88908952A EP 88908952 A EP88908952 A EP 88908952A EP 0334935 A1 EP0334935 A1 EP 0334935A1
Authority
EP
European Patent Office
Prior art keywords
steam
gas
combustion chamber
combustion
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88908952A
Other languages
German (de)
French (fr)
Other versions
EP0334935B1 (en
Inventor
Raimund Croonenbrock
Reinhold Ulrich Pitt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Inova Steinmueller GmbH
Original Assignee
L&C Steinmueller GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L&C Steinmueller GmbH filed Critical L&C Steinmueller GmbH
Priority to AT88908952T priority Critical patent/ATE84600T1/en
Publication of EP0334935A1 publication Critical patent/EP0334935A1/en
Application granted granted Critical
Publication of EP0334935B1 publication Critical patent/EP0334935B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/04Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas
    • F01K21/042Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas pure steam being expanded in a motor somewhere in the plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/061Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with combustion in a fluidised bed
    • F01K23/062Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with combustion in a fluidised bed the combustion bed being pressurised

Definitions

  • the invention relates to a gas-steam power plant with at least one high-pressure steam generator having a water-steam circuit, in the pressurized combustion chamber of which heat and combustion gases are generated by combustion of a fuel, at least one heating surface assigned to the combustion chamber, via the heat from the combustion chamber is transferred directly to the water-steam cycle, at least one steam turbine downstream of the heating surface and at least one gas turbine downstream of the combustion chamber on the exhaust gas side for work-expanding expansion of the combustion exhaust gas.
  • At least partially expanded steam is withdrawn from the steam turbine with replenishment of a corresponding amount of water into the water-steam circuit and input directly into the combustion chamber at a pressure above the pressure prevailing in the combustion chamber is heated there to the highest possible temperature in the combustion chamber and then expanded together with the combustion gas in the gas turbine.
  • a gas-steam power plant in which a gas turbine with an upstream combustion chamber for propellant gas supply for heat recovery is followed by a heat recovery steam boiler, which in turn has a connection to the combustion chamber on the steam side. At least one steam turbine is switched on in the connection from the heat recovery steam boiler to the combustion chamber. On the gas side, at least one further heat recovery steam generator is connected downstream of the heat recovery steam generator is connected to the combustion chamber on the steam side.
  • Heat recovery steam boilers fed to the combustion chamber are each set higher than the working pressure in the
  • Air, fuel and injection steam are introduced into the combustion chamber to generate a propellant gas, and the combustion gas mixed with the steam is expanded in the gas turbine in a work-performing manner. Except for inevitable losses, no heat is removed from the combustion chamber, i.e. H. the combustion chamber is not integrated in the water-steam cycle of the waste heat boiler and steam turbine. Therefore, the temperature of the propellant gas lying on the gas turbine is alone a function of the ratio of combustion air to fuel, the temperature of the supplied combustion air. the quantity and condition of the injection steam and the calorific value of the fuel supplied to the combustion chamber.
  • DE-OS 33 31 153 aims to reduce pollutant emissions, it is entirely in the spirit of the gas-steam power plant known from DE-OS if the supply of injection steam has a temperature-reducing effect with a fixed combustion air ratio. However, it is disadvantageous that such a lowering of the temperature is associated with a reduction in the thermal efficiency of the overall system.
  • the combustion air ratio In order to keep the gas temperature in front of the gas turbine at a desired high value from a thermodynamic point of view (efficiency) despite the steam injection, the combustion air ratio must be changed by adding fuel in the direction of a lower excess air. Because with the same air mass flow in the case of steam injection to adapt the gas temperature to one for the Gas turbine compatible temperature must be given more fuel, the propellant gas mass flow supplied to the gas turbine through the gas turbine is not only increased by the steam mass flow injected to lower the temperature, but also by the combustion exhaust gas mass flow due to the additionally required fuel mass flow. Thus, the work of the gas turbine is increased, but it is more difficult to use the energy available in the larger amount of exhaust gas from the gas turbine, so that the exhaust gas loss is increased in addition to the increased work output.
  • Injected steam it can be achieved by appropriate design of the size of the heating surface or heating surfaces that the amount of heat transferred to the high-pressure steam is reduced by just as much as to the overheating of the steam input directly into the combustion chamber to the exhaust gas temperature, i. H. the gas turbine fuel gas temperature is to be used.
  • the heating surface can be adapted in a particularly simple manner by adjusting the height of the fluidized bed.
  • the combustion takes place unchanged at the same Near stoichiometric combustion air ratio.
  • the propellant gas mass flow is therefore only increased by the injection steam mass flow, but not by an additional combustion gas flow.
  • the exhaust gas loss after utilizing the energy available in the exhaust gas of the gas turbine is therefore smaller than in the known process.
  • the heating surface can preferably be designed as a wall and / or as a heating surface which is arranged in the combustion chamber.
  • Pressure fluidized bed combustion with stationary fluidized bed is formed.
  • the gas turbine in a manner known per se from DE-OS 35 36 451 has a heat exchanger for the heat exchange with the combustion air and / or a heat exchanger for the water-steam cycle and this one more Gas turbine is connected downstream, in which the combustion gas is expanded while still performing work.
  • This second turbine is in turn preferred and known per se part of a turbocharger for the combustion air.
  • Pressure fluidized bed firing is further preferred that the steam introduced into the combustion chamber serves at least partially as motive steam for injecting the fuel into the pressure fluidized bed.
  • the steam to be supplied and removed from the turbine is fed to the combustion chamber in at least two pressure stages, z. B. at a turbine system with reheating which can take a pressure stage from the cold Zu, while the lower pressure stage can be taken from a turbine charged with the Zü steam.
  • FIG. 1 shows a simplified circuit diagram to explain the gas-steam power plant according to the invention
  • FIG. 2 shows an embodiment of the gas-steam power plant according to the invention, in which the combustion chamber of the high-pressure steam generator is designed as a pressure-charged fluidized bed, and
  • FIG. 3 shows a Ts diagram to explain the
  • FIG. 1 schematically shows a high pressure steam generator (1), the combustion chamber of which is designed as a pressure-charged fluidized bed (2).
  • the fluidized bed is fed as fuel Konle (K) and for desulfurization CaCO 3 .
  • a heating surface (3) is assigned to the firebox (2). It is clear that several heating surfaces in the form of wall heating surfaces and heating surfaces arranged inside the firebox can be provided).
  • the high-pressure steam leaving the heating surface (3) is fed via a line (4) to a steam turbine (5), in which it is expanded to perform work.
  • the steam turbine (5) drives a generator (6).
  • the Da mpf emerging from the steam turbine (5) is condensed in a condenser (7) and by means of pumps (8) and (9) and a feed water tank (10) located between these pumps via a line (11) to the high-pressure steam generator (1 ) forwarded.
  • Compressed combustion air (L) is fed to the pressure fluidized bed (2) by means of a compressor (12).
  • the combustion exhaust gases from the combustion chamber (2) are fed via a filter (13) to a gas turbine (14) which expands the combustion exhaust gas and from there via a heat exchanger (15) switched into the line (11) to a chimney (not shown).
  • tap steam from the turbine (5) is introduced directly into the combustion chamber (2) of the high-pressure steam generator (1).
  • the steam is heated to the highest possible temperature in the firing chamber and expanded together with the combustion exhaust gas in the turbine (14), which drives the compressor (12) and possibly an additional generator (18).
  • the steam is the turbine (5) z. B. at a temperature of the order of 530 ° C and a pressure of 37 bar.
  • the bleed steam introduced into the combustion chamber via the line (16) can be heated to a temperature of 850 ° C. in the case of a pressure fluidized bed and can be expanded in the gas turbine (14), which improves the efficiency.
  • FIG. 1 For the gas-steam power plant according to FIG. 2 are shown in FIG. 1 used reference numerals, as far as possible. With regard to the circuit of the gas turbine process shown there, reference is expressly made to DE-OS 35 36 451 and DE-Z, the disclosure of which is hereby also made the subject of the disclosure of the present application.
  • a high-pressure turbine (5a) and a low-pressure turbine (5b) are provided in the gas-steam power plant according to FIG. 2.
  • Steam emerging from the high-pressure turbine (5a) is fed via line (2) to a heating surface (21) in the high-pressure steam generator (1), in order to be subjected to reheating there.
  • the reheated steam is fed to the low-pressure turbine via a line (22).
  • steam of a first pressure stage is fed to a preheater (24) lying parallel to the heat exchanger (15) via a cold reheater line (23).
  • a preheater (24) In series with the preheater (24) is another preheater (25) which is supplied with bleed steam from the turbine (5b) via a bleed line (26).
  • a control valve (27) is in series with the preheaters (24) and (25), and the feed water reservoir (10) is heated via a further tap line (28) of the turbine (5b).
  • a line (30) having a throttle valve (29) branches off from the line (23), via which motive steam for injecting the coal (K) into the combustion chamber (2) is fed to the high-pressure steam generator. Because less steam is directly introduced into the combustion chamber (2) for the injection of the fuel in the form of a coal-water mixture than seems reasonable for the possible increase in efficiency, the combustion chamber is still connected to the system via a tap line (31) Steam turbine (5b) connected, a control valve (32) also being set in line (31).
  • the pressure in the lines (31) and (30) downstream of the rain valves (32) and (29) must be greater than the pressure in the combustion chamber built up by the compressor (12), and furthermore the pressure in the line (30) because of the injection of the fuel be higher than in the line (31).
  • the gas emerging from the gas turbine (14) is fed to the heat exchanger (15) via a combustion air / combustion gas heat exchanger (33) and is subsequently expanded in a further gas turbine (34) which, together with a compressor upstream of the compressor (12) (35) builds a turbocharger.
  • a gas cooler (36) which is preferably also integrated in the water-steam circuit.
  • the steam brought in via line (4) and having a temperature of 530 is partially expanded in the steam turbine (5a) and, after reheating again, is fully expanded to a temperature of 530 in the turbine (5b) and at a temperature of 30 ° C. condensed.
  • the steam removed from the turbine (5a) via line (23'30) is fed into the combustion chamber (2) in the case of the pressure fluidized bed according to FIG. 2 heated to the highest possible temperature of 850o C and together with the combustion gases in the gas turbine relaxed working.
  • This is shown in the (Ts) diagram of the steam turbine process by the dash-dotted line.
  • the gas turbine (14) or the gas turbines (14) and (34) can thus be evaluated based on the Dampfturbi nenprocess as a steam turbine integrated into the gas turbines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

A gas-steam generating power plant has at least one high-pressure steam generator (1) with a steam circuit, in which heat and flue gases are produced by combustion of a fuel (K) in a pressurized furnace (2), at least one heating surface (3, 21) connected to the furnace and through which heat from the furnace is transferred directly to the steam circuit, at least one steam turbine (5; 5a, 5b) connected downstream to the heating surface (3; 21), and at least one gas turbine (14; 34) connected to the flue gas side of the furnace (2) for work-performing expansion of the flue gases. To improve the efficiency, at least partially expanded steam (16; 30; 31) is withdrawn from the steam turbine (5; 5a, 5b) during quasi-stoichiometric combustion of the fuel (K) in the furnace and an equivalent amount of water is fed (19) into the steam circuit. Said steam is introduced directly into the furnace (2) at a presure higher than that prevailing in the furnace, heated to the highest possible furnace temperature, and then expanded, together with the flue gas, in the gas turbine (14; 34).

Description

Beschreibung description
Gas-Dampf-KraftanlageGas-steam power plant
Die Erfindung betrifft eine Gas-Dampf-Kraftanlage mit mindestens einem einen Wasser-Dampf-Kreislauf aufweisenden Hochdruckdampferzeuger, in dessen unter Druck stehendem Feuerraum durch Verbrennung eines Brennstoffes Wärme und Verbrennungsabgase erzeugt werden, mindestens einer dem Feuerraum zugeordneten Heizfläche, über die Wärme aus dem Feuerraum unmittelbar auf den Wasser-Dampf-Kreislauf übertragen wird, mindestens einer der Heizfläche nachgescha lteten Dampfturbine und mindestens einer dem Feuerraum abgasseitig nachgeschalteten Gasturbine zur arbeitsleistenden Expansion des Verbrennungsabgases.The invention relates to a gas-steam power plant with at least one high-pressure steam generator having a water-steam circuit, in the pressurized combustion chamber of which heat and combustion gases are generated by combustion of a fuel, at least one heating surface assigned to the combustion chamber, via the heat from the combustion chamber is transferred directly to the water-steam cycle, at least one steam turbine downstream of the heating surface and at least one gas turbine downstream of the combustion chamber on the exhaust gas side for work-expanding expansion of the combustion exhaust gas.
Aus der DE-OS 35 36 451 bzw. der DE-Z "Energiespektrum", Jan. 1987, S. 21-22, ist eine Ga s-Dampf-Kraftanlage der vorstehend genannten Art bekannt, bei der der Feuerraum des Hochdruck-Dampferzeugers als druckaufgeladene Wirbelschicht ausgebildet ist. Der Brennstoff Kohle wird mit Dickstoffpumpen in das Wirbelbett eingetragen. Zur Einhaltung des NOx-Grenzwertes ist ein konstantes Brennstoff-luft-Verhältnis und eine konstante Wirbelschichttemperatur notwendig.From DE-OS 35 36 451 and DE-Z "Energiespektrum", Jan. 1987, pp. 21-22, a gas-steam power plant of the aforementioned type is known, in which the combustion chamber of the high-pressure steam generator is designed as a pressure-charged fluidized bed. The fuel coal is fed into the fluidized bed with thick matter pumps. A constant fuel-air ratio and a constant fluidized bed temperature are necessary to maintain the NO x limit value.
Andere Hochdruck-Dampferzeuger können mit Druckkohlenstaub-Feuerungen, Drucköl oder Druckgas-Feuerungen ausgerüstet sein. Es wird stets angestrebt, den Wirkungsgrad von Gas-Dampf-Kraftanlagen zu verbessern.Other high pressure steam generators can be equipped with compressed coal dust furnaces, pressurized oil or compressed gas furnaces. The aim is always to improve the efficiency of gas-steam power plants.
Es ist die Aufgabe der vorliegenden Erfindung, bei einer Gas-Dampf-Kraftanlage der im Oberbegriff des Anspruches 1 genannten Art den Wirkungsgrad zu verbessern.It is the object of the present invention to improve the efficiency in a gas-steam power plant of the type mentioned in the preamble of claim 1.
Es ist erfindungsgemäß vorgesehen, daß bei nahstöchiometrischer Verbrennung des Brennstoffes in dem Feuerraum aus der Dampfturbine zumindest tei lexpandierter Dampf unter Nachspeisung einer entsprechenden Wassermenge in den Wasser-Dampf-Kreislauf entnommen wird und bei einem Druck oberhalb des im Feuerraum herrschenden Drucks direkt in den Feuerraum eingegeben wird, dort auf die im Feuerraum höchstmögliehe Temperatur erhitzt und danach zusammen mit dem Verbrennungsgas in der Gasturbine expandiert wird.It is provided according to the invention that, in the case of near-stoichiometric combustion of the fuel in the combustion chamber, at least partially expanded steam is withdrawn from the steam turbine with replenishment of a corresponding amount of water into the water-steam circuit and input directly into the combustion chamber at a pressure above the pressure prevailing in the combustion chamber is heated there to the highest possible temperature in the combustion chamber and then expanded together with the combustion gas in the gas turbine.
Durch die Erhitzung des aus der Dampfturbine entnommenen Dampfes auf die hochstmögliche Feuerraumtemperatur und die Expansion dieses hocherhitzten Dampfes in der Gasturbine wird eine Wirkungsgradverbesserung des Gesamtprozesses erzielt. Bei einer Wirbelschichtfeuerung mit einer höchstmöglichen Feuerraumtemperatur von 850 wird der Dampf auf eine Temperatur erhitzt, der wesentlich über der z. Zt. höchstmoglichen Temperatur im Wasser-Dampf-Kreislauf liegt, die z. B. 530º betragen kann.By heating the steam removed from the steam turbine to the highest possible combustion chamber temperature and the expansion of this superheated steam in the gas turbine, an improvement in the efficiency of the overall process is achieved. With a fluidized bed combustion with a maximum possible combustion chamber temperature of 850, the steam is heated to a temperature which is significantly higher than the z. Zt. Highest possible temperature in the water-steam cycle, the z. B. 530 °.
Aus der DE-OS 33 31 153 ist eine Gas-Dampf-Kraftanlage bekannt, bei der einer Gasturbine mit vorgeschalteter Brennkammer zur Treibgasversorgung zur Abhitzenutzung ein Abhitzedampfkessel nachgeschaltet ist, der seinerseits dampfseitig eine Verbindung zur Brennkammer aufweist. In die Verbindung vom Abhitzedampfkessel zur Brennkammer ist mindestens eine Dampfturbine eingeschaltet. Dem Abhitzedampfkessel ist gasseitig wenigstens ein weiterer Abhitzedampfkessel nachgeschaltet, der ebenfalls dampfseitig mit der Brennkammer verbunden ist. DerFrom DE-OS 33 31 153 a gas-steam power plant is known, in which a gas turbine with an upstream combustion chamber for propellant gas supply for heat recovery is followed by a heat recovery steam boiler, which in turn has a connection to the combustion chamber on the steam side. At least one steam turbine is switched on in the connection from the heat recovery steam boiler to the combustion chamber. On the gas side, at least one further heat recovery steam generator is connected downstream of the heat recovery steam generator is connected to the combustion chamber on the steam side. The
Dampfdruck des von der Dampfturbine der Brennkammer zugeführten Dampfes und des von dem weiterenVapor pressure of the steam supplied from the steam turbine to the combustion chamber and from the other
Abhitzedampfkessel der Brennkammer zugeführten Dampfes sind jeweils höher eingestel lt als der Arbeitsdruck in demHeat recovery steam boilers fed to the combustion chamber are each set higher than the working pressure in the
Gasturbinenkreislauf.Gas turbine cycle.
In die Brennkammer werden zur Erzeugung eines Treibgases luft, Brennstoff und Injektionsdampf eingebracht, und das mit dem Dampf gemischte Verbrennungsgas wird in der Gasturbine arbeitsleistend expandiert. Außer unvermeidlichen Verlusten wird keine Wärme aus der Brennkammer abgeführt, d. h. die Brennkammer ist nicht in den Wasser-Dampf-Kreislauf von Abhitzekessel und Dampfturbine eingebunden. Daher ist die Temperatur des die Gasturbine beauf seh lagenden Treibgases al leine eine Funktion des Verhältnisses von Verbrennungsluft zu Brennstoff, der Temperatur der zugeführten Verbrennungsluft. der Menge und des Zustandes des Injektionsdampfes und des Brennwertes des der Brennkammer zugeführten Brennstoffes. Da die DE-OS 33 31 153 eine Verringerung der Schadstoffemission anstrebt, ist es ganz im Sinne der aus der DE-OS bekannten Gas Dampf-Kraftanlage, wenn bei einem festen Verbrennungsluftverhältnis die Zufuhr von Injektionsdampf temperatursenkend wirkt. Nachteilig ist aber, daß mit einer solchen Temperaturabsenkung eine Ve r k l e inerung des thermischen Wirkungsgrades der Gesamtanlage verbunden ist.Air, fuel and injection steam are introduced into the combustion chamber to generate a propellant gas, and the combustion gas mixed with the steam is expanded in the gas turbine in a work-performing manner. Except for inevitable losses, no heat is removed from the combustion chamber, i.e. H. the combustion chamber is not integrated in the water-steam cycle of the waste heat boiler and steam turbine. Therefore, the temperature of the propellant gas lying on the gas turbine is alone a function of the ratio of combustion air to fuel, the temperature of the supplied combustion air. the quantity and condition of the injection steam and the calorific value of the fuel supplied to the combustion chamber. Since DE-OS 33 31 153 aims to reduce pollutant emissions, it is entirely in the spirit of the gas-steam power plant known from DE-OS if the supply of injection steam has a temperature-reducing effect with a fixed combustion air ratio. However, it is disadvantageous that such a lowering of the temperature is associated with a reduction in the thermal efficiency of the overall system.
Um trotz der Dampfinjektion die Treibgastemperatur vor der Gasturbine auf einem aus thermodynamischer Sicht (Wirkungsgrad) erwünscht hohen Wert zu halten, muß das Verbrennungsluftverhältnis durch zusätzliche Brennstoffaufgabe in Richtung eines geringeren luftüberschussees verändert werden. Weil also bei gleichem Luftmassenstrom im Falle einer Dampfinjektion zur Anpassung der Treibgastemperatur an eine für die Gasturbine verträgliche Temperatur mehr Brennstoff aufgegeben werden muß, wird der der Gasturbine zugeführte Treibgasmassenstrom durch die Gasturbine nicht nur um den zur Temperaturabsenkung injizierten Dampfmassenstrom vergrößert, sondern auch um den auf den zusätzlich erforderlichen Brennstoffmassenstrom zurückgehenden Verbrennungsabgasmassenstrom. Somit wird zwar die Arbeitsabgabe der Gasturbine vermehrt, aber es ist schwieriger, die in der größeren Abgasmenge der Gasturbine verfügbare Energie auszunutzen, so daß neben der vermehrten Arbeitsabgabe der Abgasverlust vergrößert wird.In order to keep the gas temperature in front of the gas turbine at a desired high value from a thermodynamic point of view (efficiency) despite the steam injection, the combustion air ratio must be changed by adding fuel in the direction of a lower excess air. Because with the same air mass flow in the case of steam injection to adapt the gas temperature to one for the Gas turbine compatible temperature must be given more fuel, the propellant gas mass flow supplied to the gas turbine through the gas turbine is not only increased by the steam mass flow injected to lower the temperature, but also by the combustion exhaust gas mass flow due to the additionally required fuel mass flow. Thus, the work of the gas turbine is increased, but it is more difficult to use the energy available in the larger amount of exhaust gas from the gas turbine, so that the exhaust gas loss is increased in addition to the increased work output.
Bei der erfindungsgemäßen Gas-Dampf-Kraftanlage sorgt die durch die Zuordnung der Heizfläche zum Feuerraum mögliche direkte Wärmeübertragung an den Hochdruckdampf dafür, daß bei nahstöchiometri scher Verbrennung, d. h. im Bereich von n = 1-1,5, vorzugsweise 1-1,4, die Verbrennungstemperatur im Feuerraum und somit die Treibgastemperatur vor der Gasturbine so begrenzt bleiben wie durch das Feuerungssystem (Druckkohlenstaub-Feuerung, Druckwirbelschicht usw.) und die Bauweise der eingesetzten Gasturbine vorgegeben wird. Wird in einen Feuerraum, dem mindestens eine Heizfläche zugeordnet ist. Dampf injiziert, so kann durch entsprechende Auslegung der Größe der Heizfläche oder Heizflächen erreicht werden, daß die an den Hochdruckdampf übertragene Wärmemenge gerade um soviel vermindert wird, wie zu der überhitzung des direkt in den Feuerraum eingegebenen Dampfes auf die Abgastemperatur, d. h. die Treibgastemperatur der Gasturbine, aufzuwenden ist.In the gas-steam power plant according to the invention, the direct heat transfer to the high-pressure steam possible by assigning the heating surface to the combustion chamber ensures that with near-stoichiometric combustion, i.e. H. in the range of n = 1-1.5, preferably 1-1.4, the combustion temperature in the combustion chamber and thus the propellant temperature in front of the gas turbine remain as limited as by the combustion system (compressed carbon dust furnace, pressure fluidized bed, etc.) and the construction of the ones used Gas turbine is specified. Is placed in a combustion chamber with at least one heating surface. Injected steam, it can be achieved by appropriate design of the size of the heating surface or heating surfaces that the amount of heat transferred to the high-pressure steam is reduced by just as much as to the overheating of the steam input directly into the combustion chamber to the exhaust gas temperature, i. H. the gas turbine fuel gas temperature is to be used.
Bei Αusbildung des Feuerraums als druckaufgeladene Wirbelschicht kann die Heizflächenanpassung in besonders einfacher Weise durch Anpassung der Wirbelschichthöhe erfoIgen.If the combustion chamber is designed as a pressure-charged fluidized bed, the heating surface can be adapted in a particularly simple manner by adjusting the height of the fluidized bed.
Bei der erfindungsgemäßen Gas-Dampf-Kraftanlage erfolgt die Verbrennung unverändert bei gleichem nahstöchiometrischem VerbrennungsluftverhäItnis. Bei gleichem Luftmassenstrom wie im Falle ohne Dampfinjektion in den Feuerraum wird daher der Treibgasmassenstrom nur um den Injektionsdampfmassenstrom vergrößert, nicht aber durch einen zusätzlichen Verbrennungsgasstrom. Der Abgasverlust nach Ausnutzung der im Abgas der Gasturbine verfügbaren Energie ist daher kleiner als im bekannten Prozeß.In the gas-steam power plant according to the invention, the combustion takes place unchanged at the same Near stoichiometric combustion air ratio. With the same air mass flow as in the case without steam injection into the combustion chamber, the propellant gas mass flow is therefore only increased by the injection steam mass flow, but not by an additional combustion gas flow. The exhaust gas loss after utilizing the energy available in the exhaust gas of the gas turbine is therefore smaller than in the known process.
Die Heizfläche kann vorzugsweise als Wand- und/oder als Heizfläche ausgebildet sein, die im Feuerraum angeordnet ist.The heating surface can preferably be designed as a wall and / or as a heating surface which is arranged in the combustion chamber.
Es wird weiterhin bevorzugt, daß der Feuerraum alsIt is further preferred that the firebox as
Druck-Wirbelschichtfeuerung mit stationärer Wirbelschicht ausgebiIdet ist.Pressure fluidized bed combustion with stationary fluidized bed is formed.
Zur weiteren Ausnutzung der Abwärme ist es von Vorteil, wenn der Gasturbine in an sich aus der DE-OS 35 36 451 bekannten Art und Weise ein Wärmetauscher für den Wärmetausch zur Verbrennungsluft und/oder ein Wärmetauscher zum Wasser-Dampf-Kreislauf und diesem eine weitere Gasturbine nachgeschaltet ist, in dem das Verbrennungsgas arbeitsleistend weiterexpandiert wird. Diese zweite Turbine ist in wiederum bevorzugter und an sich bekannte Weise Teil eines Turboladers für die Verbrennungs luft.To further utilize the waste heat, it is advantageous if the gas turbine in a manner known per se from DE-OS 35 36 451 has a heat exchanger for the heat exchange with the combustion air and / or a heat exchanger for the water-steam cycle and this one more Gas turbine is connected downstream, in which the combustion gas is expanded while still performing work. This second turbine is in turn preferred and known per se part of a turbocharger for the combustion air.
Bei der Ausbildung des Feuerraums alsWhen designing the firebox as
Druckwirbelschichtfeuerung wird weiterhin bevorzugt, daß der in den Feuerraum eingeführte Dampf zumindest teilweise als Treibdampf zur Injektion des Brennstoffes in die Druckwirbelschicht dient. Da aber u. U. für die Injektion des Brennstoffes weniger Treibdampf erforderlich ist als für die Wirkungsgradanhebung zugeführt werden kann, ist es weiterhin von Vorteil, daß der dem Feuerraum zuzuführende und aus der Turbine entnommene Dampf dem Feuerraum in mindestens zwei Druckstufen zugeführt wird, wobei z. B. bei einer Turbinenanlage mit Zwischenüberhitzung die eine Druckstufe aus der kalten Zu entnommen werden kann, während die niedrigere Druckstufe aus einer mit dem Zü-Dampf beaufschlagten Turbine entnommen werden kann.Pressure fluidized bed firing is further preferred that the steam introduced into the combustion chamber serves at least partially as motive steam for injecting the fuel into the pressure fluidized bed. But since u. U. less propellant steam is required for the injection of the fuel than can be supplied for increasing the efficiency, it is furthermore advantageous that the steam to be supplied and removed from the turbine is fed to the combustion chamber in at least two pressure stages, z. B. at a turbine system with reheating which can take a pressure stage from the cold Zu, while the lower pressure stage can be taken from a turbine charged with the Zü steam.
Die Erfindung soll nun anhand der beigefügten Figuren genauer erläutert werden. Es zeigt:The invention will now be explained in more detail with reference to the accompanying figures. It shows:
FIG. 1 ein vereinfachtes Schaltdiagramm zur Erläuterung der erfindungsgemäßen Gas-Dampf-Kraftanlage,FIG. 1 shows a simplified circuit diagram to explain the gas-steam power plant according to the invention,
FIG. 2 eine Ausführungsform der erfindungsgemäßen Gas- Dampf-Kraftanlage, bei der der Feuerraum des Hochdruck-Dampferzeugers als druckaufgeladene Wirbelschicht ausgebildet ist, undFIG. 2 shows an embodiment of the gas-steam power plant according to the invention, in which the combustion chamber of the high-pressure steam generator is designed as a pressure-charged fluidized bed, and
FIG. 3 ein Ts-Diagramm zur Erläuterung derFIG. 3 shows a Ts diagram to explain the
Zustandsänderung für den einen DampfteiIstrom, der bei der Ausführungsform gemäß FIG. 2 in den Feuerraum eingeführt wird.Change of state for the one steam component flow, which in the embodiment according to FIG. 2 is introduced into the combustion chamber.
In der FIG. 1 ist schematisch ein Hochdruck-Dampferzeuger (1) dargestellt, dessen Feuerraum als druckaufgeladene Wirbelschicht (2) ausgebildet ist. Der Wirbelschicht wird als Brennstoff Konle (K) und zur Entschwefelung CaCO3 zugeführt. Dem Feuerraum (2) ist eine Heizfläche (3) zugeordnet Ces ist klar, daß mehrere Heizflächen in Form von Wandheizflächen und im Innern des Feuerraums angeordneten Heizflächen vorgesehen sein können). Der die Heizfläche (3) verlassende Hochdruckdampf wird über eine Leitung (4) einer Dampfturbine (5) zugeleitet, in der er arbeitsleistend expandiert wird. Die Dampfturbine (5) treibt einen Generator (6) an. Der aus der Dampfturbine (5) austretende Da mpf wird in einem Kondensator (7) kondensiert und mittels Pumpen (8) und (9) und einem zwischen diesen Pumpen liegenden Speisewasserbehälter (10) über eine Leitung (11) dem Hochdruck-Dampferzeuger (1) zugeleitet. Der Druckwirbelschicht (2) wird mittels eines Verdichters (12) verdichtete Verbrennungsluft (L) zugeführt. Die Verbrennungsabgase aus dem Feuerraum (2) werden über einen Filter (13) einer das Verbrennungsabgas arbeitsleistend expandierenden Gasturbine (14) zugeleitet und von dieser über einen in die Leitung (11) eingeschalteten Wärmetauscher (15) zu einem nicht dargestellten Kamin abgeführt.In FIG. 1 schematically shows a high pressure steam generator (1), the combustion chamber of which is designed as a pressure-charged fluidized bed (2). The fluidized bed is fed as fuel Konle (K) and for desulfurization CaCO 3 . A heating surface (3) is assigned to the firebox (2). It is clear that several heating surfaces in the form of wall heating surfaces and heating surfaces arranged inside the firebox can be provided). The high-pressure steam leaving the heating surface (3) is fed via a line (4) to a steam turbine (5), in which it is expanded to perform work. The steam turbine (5) drives a generator (6). The Da mpf emerging from the steam turbine (5) is condensed in a condenser (7) and by means of pumps (8) and (9) and a feed water tank (10) located between these pumps via a line (11) to the high-pressure steam generator (1 ) forwarded. Compressed combustion air (L) is fed to the pressure fluidized bed (2) by means of a compressor (12). The combustion exhaust gases from the combustion chamber (2) are fed via a filter (13) to a gas turbine (14) which expands the combustion exhaust gas and from there via a heat exchanger (15) switched into the line (11) to a chimney (not shown).
Neben dem in den Wasser-Dampf-Kreislauf eingebundenen Wärmetauscher (15) können bei Bedarf in der Leitung (11) noch weitere Wärmetauscher angeordnet sein, die mit Anzapfdampf von der Dampfturbine (5) her beaufschlagbar sind (vgl. FIG. 2).In addition to the heat exchanger (15) integrated in the water-steam circuit, further heat exchangers can be arranged in the line (11) if required, which can be supplied with bleed steam from the steam turbine (5) (see FIG. 2).
über eine Anzapflei tung (16), in der ein Drosselventil (17) vorgesehen ist, wird Anzapfdampf von der Turbine (5) direkt in den Feuerraum (2) des Hochdruck-Dampferzeugers (1) eingeleitet. Der Dampf wird auf die im Feurraum vorhandene höchstmögliche Temperatur erwärmt und zusammen mit dem Verbrennungsabgas in der Turbine (14) entspannt, die den Verdichter (12) und ggf. zusätzlich einen weiteren Generator (18) antreibt.Via a tap (16), in which a throttle valve (17) is provided, tap steam from the turbine (5) is introduced directly into the combustion chamber (2) of the high-pressure steam generator (1). The steam is heated to the highest possible temperature in the firing chamber and expanded together with the combustion exhaust gas in the turbine (14), which drives the compressor (12) and possibly an additional generator (18).
Der Dampf wird der Turbine (5) z. B. mit einer Temperatur in der Größenordnung von 530º C und einem Druck von 37 bar zugeführt. Der über die Leitung (16) in den Feuerraum eingeführte Anzapfdampf kann jedoch auf eine Temperatur von 850° C im Falle einer Druckwirbelschicht erhitzt werden und in der Gasturbine (14) entspannt werden, wodurch der Wirkungsgrad verbessert wird.The steam is the turbine (5) z. B. at a temperature of the order of 530 ° C and a pressure of 37 bar. However, the bleed steam introduced into the combustion chamber via the line (16) can be heated to a temperature of 850 ° C. in the case of a pressure fluidized bed and can be expanded in the gas turbine (14), which improves the efficiency.
Entsprechend der aus dem Wasserdampf-Kreislauf entnommenen Dampfmenge wird vor oder nach Speisewasserbehälter eine entsprechende Speisewassermenge über Leitung (19) fortlaufend zugeführt. Für die Gas-Dampf-Kraftanlage gemäß FIG. 2 werden die in der FIG. 1 benutzten Bezugszeichen übernommen, soweit dies möglich ist. Hinsichtlich der dort gezeigten Schaltung des Gasturbinenprozesses wird ausdrücklich auf die DE-OS 35 36 451 und die DE-Z verwiesen, deren Offenbarung hiermit auch zum Gegenstand der Offenbarung der vorliegenden Anmeldung gemacht wird.Depending on the amount of steam removed from the steam cycle, a corresponding amount of feed water is continuously supplied via line (19) before or after the feed water tank. For the gas-steam power plant according to FIG. 2 are shown in FIG. 1 used reference numerals, as far as possible. With regard to the circuit of the gas turbine process shown there, reference is expressly made to DE-OS 35 36 451 and DE-Z, the disclosure of which is hereby also made the subject of the disclosure of the present application.
Bei der Gas-Dampf-Kraftanlage gemäß FIG. 2 ist eine Hochdruckturbine (5a) und einer Niederdruckturbine (5b) vorgesehen. Aus der Hochdruckturbine (5a) austretender Dampf wird über Leitung (2) einer Heizfläche (21) im Hochdruekdampferzeuger (1) zugeführt, um dort einer Zwischenüberhitzung unterzogen zu werden. Der zwischenüberhitzte Dampf wird über eine Leitung (22) der Niederdruckturbine zugeführt.In the gas-steam power plant according to FIG. 2, a high-pressure turbine (5a) and a low-pressure turbine (5b) are provided. Steam emerging from the high-pressure turbine (5a) is fed via line (2) to a heating surface (21) in the high-pressure steam generator (1), in order to be subjected to reheating there. The reheated steam is fed to the low-pressure turbine via a line (22).
An der Hochdruckturbine (5a) wird über eine kalte Zwischenüberhitzerleitung (23) Dampf einer ersten Druckstufe einem parallel zum Wärmetauseher (15) liegenden Vorwärmer (24) zugeführt. In Reihe zum Vorwärmer (24) liegt ein weiterer Vorwärmer (25), der über eine Anzapfleitung (26) mit Anzapfdampf von der Turbine (5b) versorgt wird. Mit den Vorwärmern (24) und (25) liegt ein Regelventil (27) in Reihe, über eine weitere Anzapfleitung (28) der Turbine (5b) wird der Speisewasser-Vorratsbehälter (10) beheizt.At the high-pressure turbine (5a), steam of a first pressure stage is fed to a preheater (24) lying parallel to the heat exchanger (15) via a cold reheater line (23). In series with the preheater (24) is another preheater (25) which is supplied with bleed steam from the turbine (5b) via a bleed line (26). A control valve (27) is in series with the preheaters (24) and (25), and the feed water reservoir (10) is heated via a further tap line (28) of the turbine (5b).
Von der Leitung (23) zweigt eine ein Drosselventil (29) aufweisende Leitung (30) ab, über die Treibdampf zur Injektion der Kohle (K) in den Feuerraum (2) dem Hochdruck-Dampferzeuger zugeleitet wird. Dar für die Injektion des Brennstoffes in Form einer Kohle-Wasser-Mischung weniger Dampf direkt in den Feuerraum (2) eingeführt wird, als für die mögliche Erhöhung des Wirkungsgrades sinnvoll erscheint, ist der Feuerraum über eine Anzapfleitung (31) weiterhin mit der Dampfturbine (5b) verbunden, wobei in der Leitung (31) ebenfalls ein Regelventil (32) eingestellt ist.A line (30) having a throttle valve (29) branches off from the line (23), via which motive steam for injecting the coal (K) into the combustion chamber (2) is fed to the high-pressure steam generator. Because less steam is directly introduced into the combustion chamber (2) for the injection of the fuel in the form of a coal-water mixture than seems reasonable for the possible increase in efficiency, the combustion chamber is still connected to the system via a tap line (31) Steam turbine (5b) connected, a control valve (32) also being set in line (31).
Der Druck in den Leitungen (31) und (30) stromab de r Regenventile (32) und (29) muß größer sein als der durch den Verdichter (12) im Feuerraum aufgebaute Feuerraumdruck, und weiterhin wird der Druck in der Leitung (30) wegen der Injektion des Brennstoffes höher sein als in der Leitung (31).The pressure in the lines (31) and (30) downstream of the rain valves (32) and (29) must be greater than the pressure in the combustion chamber built up by the compressor (12), and furthermore the pressure in the line (30) because of the injection of the fuel be higher than in the line (31).
Weiterhin wird bei der Ausführungsform gemäß FIG. 2 das aus der Gasturbine (14) austretende Gas über einen Verbrennungsluft-Verbrennungsgas-Wärmetauscher (33) dem Wärmetauscher (15) zugeführt und wird nach diesem in einer weiteren Gasturbine (34) nachexpandiert, die zusammen mit einem dem Verdichter (12) vorgeschalteten Verdichter (35) einen Turbolader aufbaut. Zwischen den beiden Verdichtern (35) und (12) ist ein vorzugsweise ebenfalls in den Wasser-Dampf-Kreislauf eingebundener Gaskühler (36) angeordnet.Furthermore, in the embodiment according to FIG. 2, the gas emerging from the gas turbine (14) is fed to the heat exchanger (15) via a combustion air / combustion gas heat exchanger (33) and is subsequently expanded in a further gas turbine (34) which, together with a compressor upstream of the compressor (12) (35) builds a turbocharger. Between the two compressors (35) and (12) there is a gas cooler (36) which is preferably also integrated in the water-steam circuit.
Es kann zweckdienlich sein, der Reihenschaltung aus Verdichter (35) und Kühler (36), dem Wärmetauscher (15) und der Gasturbine (34) jeweils eine vorzugsweise regelbare Bypassleitung zuzuordnen, um verschiedene Betriebszustände besser auffangen zu können.It may be expedient to assign a preferably controllable bypass line to the series circuit comprising the compressor (35) and cooler (36), the heat exchanger (15) and the gas turbine (34) in order to be able to better absorb different operating states.
Wie aus der FIG. 3 ersichtlich ist, wird der über Leitung (4) herangeführte und eine Temperatur von 530 aufweisende Dampf in der Dampfturbine (5a) teilentspannt und nach erneuter Zwischenüberhitzung auf eine Temperatur von 530 in der Turbine (5b) voll entspannt und bei einer Temperatur von 30º C kondensiert. Der aus der Turbine (5a) über Leitung (23'30) entnommene Dampf wird in den Feuerraum (2) im Falle der Druckwirbelschicht gemäß FIG. 2 auf die höchstmögliche Temperatur von 850º C erwärmt und zusammen mit den Verbrennungsabgasen in der Gasturbine arbeitsleistend entspannt. Dies ist in dem (Ts) -Diagramm des Dampfturbinenprozesses durch die strichpunktierte Linie dargestellt. Die Gasturbine (14) bzw. die Gasturbinen (14) und (34) können somit bezogen auf den Dampfturbi nenprozeß auch als in die Gasturbinen integrierte Dampfturbine gewertet werden.As shown in FIG. 3, the steam brought in via line (4) and having a temperature of 530 is partially expanded in the steam turbine (5a) and, after reheating again, is fully expanded to a temperature of 530 in the turbine (5b) and at a temperature of 30 ° C. condensed. The steam removed from the turbine (5a) via line (23'30) is fed into the combustion chamber (2) in the case of the pressure fluidized bed according to FIG. 2 heated to the highest possible temperature of 850º C and together with the combustion gases in the gas turbine relaxed working. This is shown in the (Ts) diagram of the steam turbine process by the dash-dotted line. The gas turbine (14) or the gas turbines (14) and (34) can thus be evaluated based on the Dampfturbi nenprocess as a steam turbine integrated into the gas turbines.
Aus dem Vorstehenden geht hervor, daß mit der erfindungsgemäßen Ga s-Dampf-Kraftanlage durch die Anhebung der mittleren Temperatur des Dampfprozesses eine Wirkungsgradverbesserung erreicht werden kann, ohne daß die heute üblichen Bereiche für Frischdampfdruck und/oder -temperatur für Dampfturbinen verlassen werden müssen. Heute hat sich unter Vermeidung der teuren austeni tischen Werkstoffe bei den Großturbinen die Frischdampf- und Zwischenüberhi tzungstemperatur auf etwa 520 bis 565° C, der Frischdampfdruck auf etwa 160 bis 250 bar eingependelt. From the foregoing it can be seen that with the gas steam power plant according to the invention, an increase in efficiency can be achieved by increasing the average temperature of the steam process without having to leave the ranges for live steam pressure and / or temperature for steam turbines which are common today. Today, while avoiding the expensive austenitic materials in the large turbines, the live steam and intermediate overheating temperature has settled to around 520 to 565 ° C, the live steam pressure to around 160 to 250 bar.

Claims

Patentansprüche Claims
1. Gas-Dampf-Kraftanlage mit mindestens einem einen Wasser-Dampf-Kreislauf aufweisenden Hochdruckdampferzeuger (1), in dessen unter Druck stehendem Feuerraum (2) durch Verbrennung eines Brennstoffes (K) Wärme und Verbrennungsabgase erzeugt werden, mindestens einer dem Feuerraum zugeordneten Heizfläche (3; 21), über die Wärme aus dem Feuerraum unmittelbar auf den Wasser-Dampf-Kreislauf übertragen wird, mindestens einer der Heizfläche (3; 21) nachgeschalteten Dampfturbine (5; 5a, 5b) und mindestens einer dem Feuerraum (2) abgasseitig nachgeschalteten Gasturbine (14; 34) zur arbeitsleistenden Expansion des Verbrennungsabgases, d a d u r c h g e k e n n z e i c h n e t, daß bei nahstöchiometrischer Verbrennung des Brennstoffes (K) in dem Feuerraum aus der Dampfturbine (5; 5a, 5b) zumindest teilexpandierter Dampf (16; 30; 31) unter Naehspeisung (19) einer entsprechenden Wassermenge in den Wasser-Dampf-Kreislauf entnommen wird und bei einem Druck oberhalb des im Feuerraum (2) herrschenden Drucks direkt in den Feuerraum (2) eingegeben wird, dort auf die im Feuerraum höchstmögliche Temperatur erhitzt und danach zusammen mit dem Verbrennungsgas in der Gasturbine (14: 34) expandiert wird.1. Gas-steam power plant with at least one high-pressure steam generator (1) having a water-steam circuit, in the pressurized combustion chamber (2) of which heat and combustion gases are generated by combustion of a fuel (K), at least one heating surface assigned to the combustion chamber (3; 21), via which heat from the combustion chamber is transferred directly to the water-steam cycle, at least one steam turbine (5; 5a, 5b) downstream of the heating surface (3; 21) and at least one on the flue gas side Downstream gas turbine (14; 34) for work-expanding expansion of the combustion exhaust gas, characterized in that in the case of near-stoichiometric combustion of the fuel (K) in the combustion chamber from the steam turbine (5; 5a, 5b) at least partially expanded steam (16; 30; 31) with local feed ( 19) a corresponding amount of water is taken into the water-steam cycle and prevails at a pressure above that in the combustion chamber (2) end pressure is entered directly into the combustion chamber (2), heated there to the highest possible temperature in the combustion chamber and then expanded together with the combustion gas in the gas turbine (14:34).
2. Gas-Dampf-Kraftanlage nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß die Heizfläche als Wand- und/oder als im Feuerraum angeordnete Heizfläche ausgebildet ist.2. Gas-steam power plant according to claim 1, that the heating surface is designed as a wall surface and / or as a heating surface arranged in the combustion chamber.
./ ./
3. Gas-Dampf-Kraftanlage nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, daß der Feuerraum als Druckwirbelschichtfeuerung mit stationärer Wirbelschicht ausgebildet ist.3. Gas-steam power plant according to claim 1 or 2, d a d u r c h g e k e n n z e i c h n e t that the combustion chamber is designed as a pressure fluidized bed combustion with a stationary fluidized bed.
4. Gas-Dampf-Kraftanlage nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t, daß der Gasturbine (14) ein Wärmetauscher (33) für den Wärmetausch zur Verbrennungsluft (L) und/oder ein Wärmetauscher zum Wasser-Dampf-Kreislauf (15) und diesem eine weitere Gasturbine (34) nachgeschaltet ist, in der das Verbrennungsgas arbeitsleistend weiter expandiert wird.4. Gas-steam power plant according to one of claims 1 to 3, characterized in that the gas turbine (14) has a heat exchanger (33) for the heat exchange to the combustion air (L) and / or a heat exchanger for the water-steam circuit (15) and this is followed by a further gas turbine (34), in which the combustion gas is expanded to perform the work.
5. Gas-Dampf-Kraftanlage nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t, daß der in den Feuerraum eingeführte Dampf zumindest teilweise (30) als Treibdampf zur Injektion des Brennstoffes (K) in die Druckwirbelschieht dient.5. Gas-steam power plant according to one of claims 1 to 4, d a d u r c h g e k e n n z e i c h n e t that the steam introduced into the combustion chamber at least partially (30) serves as motive steam for injecting the fuel (K) into the pressure vortex.
6. Gas-Dampf-Kraftanlage nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t, daß der dem Feuerraum zuzuführende und aus der Turbine (5) entnommene Dampf dem Feuerraum in mindestens zwei Druckstufen (30, 31) zugeführt wird.6. Gas-steam power plant according to one of claims 1 to 5, d a d u r c h g e k e n n z e i c h n e t that the steam to be supplied to and removed from the turbine (5) steam is supplied to the combustion chamber in at least two pressure stages (30, 31).
Gas-Dampf-Kraftanlage nach einem der Ansprüche 1 bis 6 mit einer Turbinenanlage mit Zwischenüberhitzung, d a d u r c h g e k e n n z e i c h n e t, daß zumindest ein Teil des in den Feuerraum einzuführenden Dampfes (30) aus der kalten Zü-Leitung (23) entnommen wird. Gas-steam power plant according to one of claims 1 to 6 with a turbine system with reheating, so that at least part of the steam (30) to be introduced into the combustion chamber is removed from the cold supply line (23).
EP88908952A 1987-10-15 1988-10-13 Gas-steam generating power plant Expired - Lifetime EP0334935B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88908952T ATE84600T1 (en) 1987-10-15 1988-10-13 GAS STEAM POWER PLANT.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3734959 1987-10-15
DE19873734959 DE3734959A1 (en) 1987-10-15 1987-10-15 GAS STEAM POWER PLANT

Publications (2)

Publication Number Publication Date
EP0334935A1 true EP0334935A1 (en) 1989-10-04
EP0334935B1 EP0334935B1 (en) 1993-01-13

Family

ID=6338414

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88908952A Expired - Lifetime EP0334935B1 (en) 1987-10-15 1988-10-13 Gas-steam generating power plant

Country Status (4)

Country Link
EP (1) EP0334935B1 (en)
AT (1) ATE84600T1 (en)
DE (2) DE3734959A1 (en)
WO (1) WO1989003471A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2624891B2 (en) * 1990-11-30 1997-06-25 株式会社日立製作所 Pressurized fluidized bed boiler power plant
DE4117192C2 (en) * 1991-05-25 1994-06-23 Saarbergwerke Ag Process for generating energy in a combined gas-steam power plant and plant for carrying out the process
FR2968706A1 (en) * 2010-12-10 2012-06-15 Alstom Technology Ltd STEAM SUPPLY CIRCUIT OF A TURBINE

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB935658A (en) * 1959-12-30 1963-09-04 Union Carbide Corp Process for generating steam using a fluidized bed, combustion apparatus
CH456250A (en) * 1966-05-06 1968-05-15 Sulzer Ag Process for the mixed gas and steam operation of a gas turbine system as well as system for carrying out the process
FR1496420A (en) * 1966-10-11 1967-09-29 Sulzer Ag Process for the mixed supply of gas and steam to a gas turbine installation and installation for implementing this process
FR92028E (en) * 1966-12-28 1968-09-13 Sulzer Ag Process for the mixed supply of gas and steam to a gas turbine installation and installation for implementing this process
DE2138664C3 (en) * 1971-07-23 1974-01-24 Gebrueder Sulzer Ag, Winterthur (Schweiz) Gas-steam turbine plant
CH555471A (en) * 1972-09-07 1974-10-31 Sulzer Ag GAS STEAM TURBINE SYSTEM.
SE434883B (en) * 1980-10-15 1984-08-20 Stal Laval Turbin Ab SET TO OPERATE A COMBINED GAS ANTURBIN INSTALLATION AND COMBINED GAS ANTURBIN INSTALLATION FOR USE OF THE SET
DE3536451A1 (en) * 1985-10-12 1987-04-16 Steinmueller Gmbh L & C PRESSURE-CHARGED OPERATING FIRING FOR A STEAM GENERATOR

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8903471A1 *

Also Published As

Publication number Publication date
WO1989003471A1 (en) 1989-04-20
EP0334935B1 (en) 1993-01-13
ATE84600T1 (en) 1993-01-15
DE3734959A1 (en) 1989-07-13
DE3877557D1 (en) 1993-02-25
DE3734959C2 (en) 1990-05-31

Similar Documents

Publication Publication Date Title
EP0783619B1 (en) Method of operating a gas and steam turbine plant
EP0523467B1 (en) Method of operating a gas and steam turbines plant and plant for carrying out the method
DE1476903A1 (en) Process for the mixed gas and steam operation of a gas turbine system as well as system for practicing the process
DE19506787B4 (en) Process for operating a steam turbine
EP0001569A1 (en) Method and plant for generating electrical energy
CH678987A5 (en)
DE1526897C3 (en) Gas-steam turbine plant
EP0709561B1 (en) Power plant
DE3815993A1 (en) Binary-vapour turbine plant
WO1989003471A1 (en) Gas-steam generating power plant
DE1932721C3 (en) Steam generator
DE917284C (en) Gas-steam power plant
DE2733223A1 (en) STEAM BOILER WITH DIRECT HEAT TRANSFER FOR FUELS WITH LOW ENERGY CONTENT AND LOW ASH CONTENT
DE3801605C1 (en)
DE1050609B (en) A thermal power plant comprising a gas turbine and a steam turbine plant
EP0586431A1 (en) Environmentally acceptable energy generation process and plant in a combined gas/steam generating power station
EP0394281A1 (en) Controllable fluidized-bed combustion under pressure.
DE102021203730A1 (en) Generation of electrical energy from hydrogen and oxygen
DE1476903C (en) Gas-steam turbine plant
WO1989006306A1 (en) Process and installation for performing mechanical work
DE3343319A1 (en) Combined gas turbine-steam turbine system or gas turbine system
EP1275821A1 (en) Method of operating a steam power plant and corresponding power plant
DE3519950A1 (en) Combined gas turbine/steam turbine system
DE3012600C2 (en) Process for operating a steam power plant provided with a fluidized bed furnace
DE3318601A1 (en) Combined gas turbine-steam turbine plant and/or combined gas turbine steam generator plant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890621

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE GB IT NL SE

17Q First examination report despatched

Effective date: 19900821

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19930113

REF Corresponds to:

Ref document number: 84600

Country of ref document: AT

Date of ref document: 19930115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3877557

Country of ref document: DE

Date of ref document: 19930225

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19931013

Ref country code: AT

Effective date: 19931013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19931014

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931202

Year of fee payment: 6

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931013

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
EUG Se: european patent has lapsed

Ref document number: 88908952.0

Effective date: 19940510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950701