EP0329856B1 - Apparatus for making concrete articles - Google Patents

Apparatus for making concrete articles Download PDF

Info

Publication number
EP0329856B1
EP0329856B1 EP88121815A EP88121815A EP0329856B1 EP 0329856 B1 EP0329856 B1 EP 0329856B1 EP 88121815 A EP88121815 A EP 88121815A EP 88121815 A EP88121815 A EP 88121815A EP 0329856 B1 EP0329856 B1 EP 0329856B1
Authority
EP
European Patent Office
Prior art keywords
arrangement according
ring
mould core
cam
mould
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88121815A
Other languages
German (de)
French (fr)
Other versions
EP0329856A3 (en
EP0329856A2 (en
Inventor
Richard Kraiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Georg Prinzing & Co KG Betonformen- und Maschinenfabrik GmbH
Original Assignee
Georg Prinzing & Co KG Betonformen- und Maschinenfabrik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Georg Prinzing & Co KG Betonformen- und Maschinenfabrik GmbH filed Critical Georg Prinzing & Co KG Betonformen- und Maschinenfabrik GmbH
Publication of EP0329856A2 publication Critical patent/EP0329856A2/en
Publication of EP0329856A3 publication Critical patent/EP0329856A3/en
Application granted granted Critical
Publication of EP0329856B1 publication Critical patent/EP0329856B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B21/00Methods or machines specially adapted for the production of tubular articles
    • B28B21/56Methods or machines specially adapted for the production of tubular articles incorporating reinforcements or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B21/00Methods or machines specially adapted for the production of tubular articles
    • B28B21/02Methods or machines specially adapted for the production of tubular articles by casting into moulds
    • B28B21/10Methods or machines specially adapted for the production of tubular articles by casting into moulds using compacting means
    • B28B21/22Methods or machines specially adapted for the production of tubular articles by casting into moulds using compacting means using rotatable mould or core parts
    • B28B21/24Methods or machines specially adapted for the production of tubular articles by casting into moulds using compacting means using rotatable mould or core parts using compacting heads, rollers, or the like
    • B28B21/26Methods or machines specially adapted for the production of tubular articles by casting into moulds using compacting means using rotatable mould or core parts using compacting heads, rollers, or the like with a packer head serving as a sliding mould or provided with guiding means for feeding the material

Definitions

  • the invention relates to a device for producing concrete parts of the type mentioned in the preamble of claim 1.
  • a device of this type is known (DE-A-21 31 898), the shape of which has only an outer molded casing and which is provided with a pressing device which has at least one pressing head which has a plurality of rings or disks.
  • a pressing device which has at least one pressing head which has a plurality of rings or disks.
  • three eccentric circular disks are provided in this press head, which are movable transversely within a radial plane relative to the longitudinal central axis of the shaped jacket and are intended to exert a radial pressing effect on the concrete material radially from the inside out.
  • the circular disks represent eccentrics which are arranged eccentrically with respect to the longitudinal axis of the shaped jacket, the eccentricity resulting from the fact that eccentric bushings are seated on a shaft projecting into the shaped jacket from above, which specify the eccentricity and on which the circular disks are arranged .
  • the press head is located at the lower end of the shaft mentioned, which dips into the mold jacket from above.
  • a drive is provided on the outside for the press head.
  • the wave is going also moved vertically downwards or upwards, i.e. downwards and upwards.
  • the mold also has a vibrator, which should be located in the area of the lower sleeve ring of the tubular shape and should only be switched on and run until this lower sleeve ring is filled.
  • This vibrator should therefore only compact the concrete by vibration, which falls in the area of the lower sleeve ring and cannot be reached by the eccentric circular discs. Otherwise there should be no vibration, but the concrete should be compacted by an upper centrifugal disc, which is intended to effect a pre-compaction, and the final compaction by the press head.
  • the press head is arranged at the lower end of the shaft which is immersed in the mold jacket from above, from the beginning to the lower end of the mold jacket, and which occurs when the concrete part is formed, that grows from the bottom up, is gradually pulled up.
  • This known device which has no mold core and also no vibrator arranged inside the mold core, has the disadvantage that - apart from the only small amount of concrete that fills the area of the lower sleeve ring and is to be compacted by the vibrator described only in the text - otherwise, the concrete is not compacted by vibration, but the concrete is to be compacted solely by radial pressing movement, without shaking.
  • the known device therefore only enables inadequate compaction of the concrete, which in no case meets the requirements placed on concrete parts.
  • Another disadvantage is that the press head, which is driven from above via the shaft immersed in the mold jacket, has an absolutely insufficient guidance in a mold without a mold core. Below the press head, the diameter of the concrete part to be produced, for example the Rohres, change.
  • Another disadvantage is that the filling of the concrete material from above is difficult because the upwardly projecting drive shaft, which protrudes into the inner region of the molded jacket, is a hindrance.
  • the mold only has an outer mold shell, but no inner mold core.
  • a press head is provided, which is placed at the lower end of a shaft which projects from above into the interior surrounded by the molded jacket. The shaft is driven from above.
  • a revolving roller is provided which has no eccentric. It is a revolving roller that rolls in a conical part and is thus intended to set the conical part in a pressing movement, which, however, does not take place radially because the cone part is inclined all around.
  • the rotating roller is driven by the shaft and possibly one with no. 11 designated unbalance.
  • the vibration and pressing movement destroy or change the area which is located below the cylindrical part during the production of a concrete part. It must be expected that this area of the concrete part below the cylindrical ring changes, for example the diameter of this part.
  • Another disadvantage is the drive located above, for which the same disadvantages apply as explained at the beginning of document DE-A-21 31 898.
  • the drive from above is disadvantageous, among other things, because it makes filling the concrete considerably more difficult. It is also questionable whether the mold can be evenly filled in the ring area between the press head, which is located at the lower end of the shaft, and the mold jacket. In addition, automatic filling of the mold is not possible because no measured value can be determined as a measure of the current filling level of the concrete.
  • Another disadvantage is that there is extremely high wear between the roller and the conical part of the press head, because the vibrations on the roller produce an extreme knocking and rubbing effect, which leads to high wear. Since there is no mold core and the press head only has to be guided over the relatively long and freely downwardly directed drive shaft, the press head can move radially within the mold shell, so that the production of concrete parts with a constant wall thickness in the circumferential direction is not guaranteed.
  • Document US-A-30 96 556 describes a device which is similar to that in document DE-A-21 31 898 and in which there is likewise no mold core, but only a mold shell, and also no vibrator in the interior of the mold core.
  • the press head sits at the lower end of a relatively long shaft which dips from above into the area which is only delimited by the molded jacket, the drive being effected from above.
  • the device has essentially the same disadvantages as that according to document DE-A-21 31 898.
  • a known device according to FR-A-14 72 820 belongs to the same category. Also in this device there is no inner mold core and no one arranged in the mold core Vibrator provided.
  • the press head is at the lower end of a shaft which is driven from above and that dips from above into the area surrounded by the molded jacket. No radial pressing movements take place here either. Rather, press movements are carried out which run in a plane inclined with respect to the radial plane. In addition, the design is extremely complicated, which is why this device is impractical. Otherwise, this device has the same disadvantages as that according to document DE-A-21 31 898.
  • the invention has for its object to provide a device for producing concrete parts, which enables the production of reproducibly accurate concrete parts in reproducible quality.
  • the press head according to the invention can at the upper end of a mandrel, e.g. replaceable, attached.
  • the press head according to the invention can either be part of a mold core or can instead be replaced as a separate element on another mold core by a device provided there.
  • the mold core which is vibrated by a vibrator, vibrates with a relatively high frequency and small vibration range, eg in the order of 1 - 4 mm.
  • the press head on the other hand, vibrates at a low frequency, for example in the order of 100-800 vibrations per minute, and with a larger vibration range, for example between 10 and 15 mm.
  • the elastic bearing device for example the at least one rubber bearing, between the mandrel and the press head, this different vibration range is possible and the mutual influence of both parts is kept low.
  • the direction of rotation of the vibrator on the mandrel and the unbalance arm of the press head is preferably chosen in opposite directions, which additionally counteracts any torque introduction.
  • a device 10 is shown only schematically, which is used for the production of concrete parts 11, which in the exemplary embodiment shown consist of concrete pipes which are provided with a reinforcement cage 12 made of wire. It goes without saying that instead of such reinforced concrete pipes, if the reinforcement cages 12 are omitted, other concrete pipes and, moreover, other types of concrete parts 11, e.g. B. yard or street gully, manhole rings, manhole necks or the like, can be produced by means of this device 10.
  • the device 10 is designed here as an underfloor machine which has a recessed pit 13.
  • At least one mold is used, which has a mold core 14 and a mold jacket 15, which surrounds the mold core 14 at a radial distance, forming a mold space 16 therebetween.
  • the mandrel 14 is designed as a so-called vibrating core. It has approximately the shape of a hat and is placed on a central vibrator 17, which is firmly attached to an underside support 18, which in turn e.g. is kept stationary.
  • the vibrator 17 protrudes into the interior of the mandrel 14 and extends at least approximately to the upper end region of the mandrel 14.
  • the mandrel 14 is held on the vibrator 17 by means of an indicated receptacle with a clamping device 19, but detachable for replacement purposes.
  • the mold core 14 is provided with a radial pressing device 20, which is only schematically indicated here, which is part of the mold core 14 and will be explained in more detail later.
  • the z. B. is part of the machine frame, a schematically indicated ejection device 22 is displaceably held and guided in the vertical direction.
  • the ejection device 22 has a carriage 23 which can be displaced along the guide 21.
  • the ejection device 22 has, for example, approximately L-shape in a side view. She wears z. B. a lower machine table 24 which is adapted to the shape of the concrete part 11 to be produced and here z. B. consists of a base plate with a central opening 25 therein which is at least slightly larger than the outer diameter of the mandrel 14 which can penetrate it.
  • the machine table 24 is designed as a support for a lower base ring 26 (lower sleeve) which can be placed and supported thereon.
  • the lower base ring 26 is part of the shape. It is supported by means of a vertical support 27 on the machine table 24 and at a distance above it.
  • the lower base ring 26 is used to shape and shape the lower tube end of the concrete part 11 to be produced, which here has a bell shape at the lower end, the front and inward end of this bell being shaped in a conventional manner by the shape of the base ring 26.
  • the ejection device 22 is in turn provided with a schematically indicated vertical guide 28, along which the shaped jacket 15 can be displaced vertically up and down.
  • the shaped jacket 15 is held on a carriage 29, which in turn is slidably and movably held and guided along the guide 28.
  • the ejection device 22 extends with its vertical guide 28 relatively far upwards, with a vertical output translation drive 31, e.g. B. a press cylinder is held, on the projecting piston rod 32, a plate 33 is attached.
  • the plate 33 carries an upper mold ring 34, which is used to shape the upper end of the concrete part 11 to be molded, for. B. the tip end of the tube is used.
  • the upper mold ring 34 can be moved in the vertical direction and in the direction of the mold space 16 and can be raised in the opposite direction.
  • the upper form ring 34 can also be rotated by means of this arrangement about the axis of the translation drive 31, and in this case, for. B. rotatable with changing direction of rotation.
  • the device 10 is further provided with at least one loading device 35, which is also only indicated schematically here.
  • the loading device 35 has a concrete container 36 and below this at least one transport device 37, for. B. a conveyor belt for the concrete material.
  • the transport device 37 is oriented transversely to the form in which the concrete part 11 is manufactured and can be moved back and forth in this direction according to arrow 38 by means of a drive (not shown further).
  • the at least one transport device 37 has, where the concrete material is released from the transport device 37, for example in free fall according to FIG. B. in the form of a scraper ring.
  • the entire loading device 35 is displaceably and movably held and guided relative to the locally located mandrel 14 on a preferably approximately vertical guide extending approximately parallel to the longitudinal central axis of the mandrel 14, this guide being formed here by the guide 21 as part of the machine frame.
  • the loading device 35 is fastened to the ejection device 22, which in turn is held and guided displaceably and movably on the guide 21 by means of the slide 23.
  • a separate guide and, for example, on the machine frame is provided for the guidance, in particular vertical guidance, of the loading device 35.
  • the loading device 35 is then provided with a carriage, by means of which it is guided directly on this guide.
  • This carriage is actuated by a drive device, for example a pressure medium-operated, in particular hydraulic, drive.
  • the device 10 described enables a method and method of production which is described as follows.
  • the slide 29 with the molded casing 15 has been moved all the way up along the guide 28, which is part of the ejection device 22, into a position, not shown, which has made it possible to remove the previously produced concrete part 11.
  • the slide 29 with the molded jacket 15 initially remains in this fully raised position.
  • a lower floor ring 26 with a reinforcing cage 12 is placed on the lower machine table 24, in particular its ejection plate, by hand or in particular in the automatic process and by means of suitable automatic devices. It is assumed that a concrete part 11 is to be produced in this cycle.
  • the drive for the carriage 23 of the ejection device 22 is now activated, so that the ejection device 22 travels downwards along the guide 21 by means of its carriage 23 and together with the carriage 29 and the molded jacket 15 that the upper end of the mandrel 14 with the pressing device 20 there in the inner opening of the lower Bottom ring 26 and the molded jacket 15 protrudes from below.
  • the loading device 35 is then activated.
  • the at least one transport device 37 has been in the retracted position until then, deviating from the position according to FIG. 1.
  • the transport device 37 in FIG. 2 now moves to the right in the direction of the arrow 38 and over the mold space 16 which is open at the top.
  • the amount of concrete 40 to be filled in by the loading device 35 is dependent on Performance sizes, e.g. B. the pressing device 20, controlled, for. B. depending on the torque of the pressing device 20. This torque can, for. B. on the power consumption of drive units or pressure medium, for. B.
  • the pressing device 20 can be measured. Analogously to these values, the transport device 37 is steplessly controlled and the required amount of concrete 40 is poured in above it. The method continues in this manner, with the ejection device 22 complete together with the slide 29 and the mold jacket 15 as well the loading device 35 is moved further down at a constant speed. If the upper end of the mold core 14, in particular the pressing device 20 there, is approximately flush with the upper edge of the mold jacket 15, this downward movement of the ejection device 22 is stopped, as is the filling process of the transport device 37. The transport device 37 is instead in the direction of arrow 38 and in Fig. 1-3 moved back to the left, the stripping device 39 in the form of z. B. an underside scraper scrapes the excess concrete 40 at the top of the mold.
  • the upper molding ring 34 is moved downwards and into the molding space 16 until the upper molding ring 34 assumes a fixed height within the molding jacket 15.
  • the translation drive 31 is stopped and this position is held.
  • the upper mold ring 34 is about the longitudinal central axis in a z. B. offset reciprocating rotary motion.
  • the ejection device 22 together with the slide 29 and the molding jacket 15 and with the upper molding ring 34 is slowly moved downward, the upper molding ring 34 moving further downward and into the molding space 16.
  • the upper end of the concrete part 11 is formed, in the example of the concrete pipe shown, for. B. its spiked end.
  • the pipe length is predetermined by the position of the upper form ring 34, which is constant with each work cycle, because the upper form ring 34 does not perform a pressing process, but only moves the material. Only at the end of this process, the central vibrator 17 and also the radial pressing device 22 are switched off.
  • z. B. first move the carriage 29 with the molded jacket 15 upwards, the upper mold ring 34 still remaining as a counterhold on the finished concrete part 11 and acting as a hold-down device. This enables a reliable demoulding process without the risk that the manufactured concrete part 11, z. B. the pipe, tears or the shaped end, e.g. B. spigot, this concrete part 11 is damaged. Instead, a simultaneous movement of the ejection device 22 and the mold jacket 15 upwards is also possible during demolding, the upper mold ring 24 also acting as a hold-down device.
  • a method for producing concrete parts 11, for example pipes, manhole rings or the like is thus possible in a manner according to the invention in a form which has a preferably central vibrator 17 arranged on a support 18 on the underside, and one on the vibrator 17 Detachably attachable mold core 14, a lower base ring 26 and a molded jacket 15, whereby in this method, especially when concrete pipes 11 and concrete pipes and those with reinforcement cage 12 are to be produced in the manner described can work according to the principle of the lowering shape.
  • the form jacket 15 is first placed on the bottom ring 26 above the mandrel 14 and then, if a reinforced concrete part is to be produced, which is to be provided with internal reinforcement, also a reinforcement cage 12.
  • the bottom ring 26 together with the reinforcement cage 12 and the mold jacket 15 lowered until the mold core 14 protrudes with its upper end, in particular the end carrying the pressing device 20, into the base ring 26 and the mold jacket 15.
  • concrete 40 is poured into the mold space 16 from above and, while the vibrator 17 is operating and the pressing device 20 is switched on, the base ring 26 together with the mold jacket 15 is constantly lowered further over the mold core 14 into the end position during filling.
  • the loading device 35 for the concrete 40 located at the level of the upper molded jacket end is also lowered. The loading device 35 always remains the same with respect to the molded jacket 15 Height.
  • the loading device 35 is moved down together with the mold jacket 15.
  • the loading device 35 can also be moved down together with the molded jacket 15 and / or the ejection device 22 carrying the base ring 26.
  • the downward movement of the loading device 35 can instead take place independently, independently of the molded jacket 15. In everything, the mold jacket 15 and the loading device 35 are lowered approximately at a constant speed.
  • the loading device 35 namely its transport device 37
  • the loading device 35 is laterally moved away from the mold jacket 15, so that the wiping device 39 on the charging device 35 located at the upper mold end, excess Strips concrete 40.
  • the upper mold ring 34 can be moved from above into the open end of the mold space 16 and the mold ring 34 can be lowered to a predetermined height and held in this position. In this position, the upper mold ring 34 can be rotated back and forth. Thereafter, the lower bottom ring 26 with the molded jacket 15 thereon together with the upper molded ring 34 at the same time, for. B. as a unit, are further lowered and the upper end of the concrete part 11, z. B. the tip end are formed, without a pressing process with any resulting disadvantages.
  • This procedure and the device 10 of the type described have the following advantages. With the help of the device 10, almost all products for civil engineering can be automatically produced, ie the various types and sizes of concrete parts 11, z. B. shaft rings, shaft necks, small pipes up to 1000 mm high, pipes up to 2500 mm high, street gullies, rectangular elements, reinforced concrete pipes or the like ..
  • the facility 10 is therefore extremely versatile. It allows the user a much better workload.
  • Another advantage is that z. B. in the manufacture of pipes and z. B. those that are reinforced with reinforcement cages 12, any tensions between the reinforcement cage 12 and the rest of the concrete part 11 are avoided.
  • the method according to the invention and the described device 10 according to the invention make it possible to avoid stresses in the reinforcement cage 12 and in the rest of the manufactured concrete part 11 and between the two, and thus to prevent any cracks which may arise later. Any twisting of the reinforcement cage 12 about the longitudinal axis of the mold is counteracted. Since the loading by means of the loading device 35 always takes place at a constant height in relation to the molded jacket 15, and specifically just above its upper end, splashing is avoided when pouring concrete 40. The mold is filled more evenly and steadily, which also prevents any cavities that form. It is also advantageous that by means of the loading device 35, namely the stripping device 39, at the end of the shaping process when the mold jacket 15 has reached the lower end position, excess concrete can be stripped and thus smoothed.
  • the device 10 in addition to the pipe production in the manner described also the production of other concrete parts, for. B. also of manhole rings.
  • the vertically movable loading device 35 which is used for the production e.g. B. vertically lowered from manhole rings until it is at ground level, as required for manhole ring production.
  • the upper form ring 34 which can also be used for this purpose, with the associated drive device likewise enables manhole ring production.
  • the device 10 and also the control of the individual work cycles is simple.
  • the device 10 is easily convertible to the manufacture of the desired concrete parts 11 of various types and sizes.
  • FIGS. 4 and 5 the parts which correspond to the exemplary embodiment in FIGS. 1-3 are used by 100 larger reference numerals, so that in order to avoid repetition, reference is made to the description in FIGS. 1-3 is.
  • the mandrel 114 is provided on the inside with a schematically indicated clamping device 119 and is interchangeably received and centered on a receptacle 141, which here is part of the central vibrator 117 and is formed by the outer surface.
  • a radial pressing device 120 is provided at the upper end of the mold core 114.
  • This has at least one press head 143 which is movable transversely within a radial plane 142 relative to the mold core 114 and exerts a radial pressing effect on the concrete material and is motor-driven.
  • the drive takes place here via a drive motor 144 which is arranged centrally in the interior of the mandrel 114 and which is coaxial with the longitudinal central axis 145.
  • the drive motor 144 is held centered in an opening of the upper cover plate 146 of the mandrel 14.
  • the drive direction of the vibrator 117 and that of the drive motor 144 are expediently in opposite directions.
  • the drive motor 144 has a drive shaft 147 which is coaxial with the longitudinal center axis 145.
  • the press head 143 has an eccentric 148 which is arranged eccentrically with respect to the longitudinal center axis 145 and which in this first exemplary embodiment has a ring 150 which is held coaxially thereto on an eccentric shaft 149.
  • the central axis 151 of the eccentric shaft 149 and the ring 150 runs eccentrically e eccentrically with respect to the longitudinal central axis 145.
  • the eccentric shaft 149 is an integral part of the drive shaft 147 and is located between the drive motor 144 and the free shaft end thereof.
  • the ring 150 is freely revolving by means of bearings 152, 153. This is not mandatory, but has the advantage that no torque is introduced into the concrete during circulation.
  • the bearings 152, 153 are within a central bearing bush 154 of the ring 150 added.
  • the ring 150 is firmly connected to the bearing bush 154 by means of a disk 155, the disk 155 also forming an upper cover of the press head 143.
  • individual cover e.g. radial spokes can be provided between the ring 150 and the bearing bush 154.
  • the disk 155 is arranged at a distance above the end face and cover plate 146 of the mandrel 115, which e.g. is predetermined by the bearing bush 154.
  • the ring 150 forms, together with the disk 155, an approximately bowl-shaped press head which is arranged upside down.
  • the underside of the ring 150 which points toward the cover plate 146, rests at least essentially on this end face of the mandrel 114 and is moved within this radial plane 142 by the drive motor 144.
  • the press head 143 On its upper side, on the upper side of the disk 155, the press head 143 has a distributing device 156, which is formed here at least from a distributing finger 157.
  • the distributor finger 157 lies at least essentially on the upper side of the disk 155. It is held in a rotationally fixed manner on the drive shaft 147, the distributor finger 157 being driven in this exemplary embodiment in a circumferential manner about the longitudinal central axis 145.
  • Fig. 5 shows that the distributor finger 157 can be inclined in the drive direction or against this.
  • the eccentric shaft 149 is led out upward through the disk 155 and the distributor finger 157 is held in a rotationally fixed manner on this extension shoulder.
  • the radial press head When the drive motor 144 is switched on, the radial press head is set into a circumferential radial press movement via the eccentric shaft 149. Due to the bearings 152, 153 is one Relative rotation between the eccentric shaft 149 and the press head 143 possible, so that the press head 143 does not rotate during this drive movement. If this is desired instead, a rotationally fixed connection between the eccentric shaft 149 and the press head 143 is provided. In the exemplary embodiment shown, only the distributor finger 157 is thus driven in rotation in one direction or the other via the drive motor 144, which pushes the concrete applied from above evenly in the radial direction to the outside, so that the radial press head 143, in particular its ring 150, causes this Concrete can constantly compact. No torque is introduced into the concrete, so that rotation of the reinforcement cage 12 (FIG. 1) is reliably avoided.
  • the central vibrator 117 is provided, through which the mandrel 114 is subjected to the vibrating movement, so that the concrete material is further compacted.
  • its ring 250 can be recognized by the cut. This runs with its towards the mold core 214, namely its upper cover plate 246, the underside at a distance from the cover plate 246 and above it, so that the ring 250 has no contact with the cover plate 246, which increases the ease of movement and reduces any wear.
  • the ring 250 is surrounded by an annular sealing sleeve 260, which extends with a lower ring edge 261 to the cover plate 246 and is firmly connected to the latter.
  • the sealing sleeve 260 closes off the space 262, which is enclosed by the ring 250 and is delimited by the upper side of the cover plate 246 of the mold core 214.
  • the ring edge 261 is clamped to the cover plate 246 by means of a fastening ring 263. An additional positive locking is done by an annular bead 265 engaging in a groove 264.
  • the sealing sleeve 260 is fixed with its upper ring edge 266 to the top of the ring 250, where the ring edge 266 e.g. is clamped by means of the disk 255, which is detachably connected to the ring 250.
  • the sealing sleeve 260 is in particular made of rubber, synthetic rubber, plastic or the like. Formed material that is highly wear-resistant in interaction with concrete. As such comes e.g. the material commercially available under the "Vulkollan" brand.
  • the press head 243 can be driven by the drive motor 244 via the eccentric shaft 249, the central axis 251 of which extends eccentrically with respect to the longitudinal central axis 245.
  • the at least one distributor finger 257 is held here in a rotationally fixed manner on an extension section 267 of the drive shaft, which extends coaxially with the eccentric axis 251 and thus also rotates eccentrically with respect to the longitudinal central axis 245.
  • the third exemplary embodiment shown in FIG. 7 differs from that in FIG. 6 solely in that the upper distributor finger 257 is missing.
  • the press head 343 is provided with a conical cover 368 on its upper side. This is e.g. fixed or detachably attached to the disc 355.
  • the conical cover 368 can run eccentrically with its central axis in relation to the longitudinal central axis 345 of the mandrel 314.
  • the central axis of the conical cover 368 can coincide with the eccentric central axis of the eccentric shaft 349.
  • the cover 368 is also designed as a distribution device 356, via which the filled concrete material is distributed. This embodiment is particularly advantageous in the case of concrete parts to be produced with small nominal widths.
  • the eccentric 448 is formed from an eccentric unbalance arm 469 which is held in a rotationally fixed manner on the drive shaft 447 of the drive motor 444 and thus forms a quite heavy eccentric.
  • the press head 443 has a closed housing 470, in the interior of which the unbalance arm 469 is protected.
  • the housing 470 is supported and supported at the upper end of the mandrel 414, namely its upper cover plate 446, by means of an elastic bearing device 471.
  • This has at least one rubber bearing 472 which, for example, is designed similarly to known vibration dampers, for example contains a rubber layer 475 between an upper and a lower ring 473 or 474.
  • the unbalance arm 469 is in the Area of the drive shaft 447 supported on the lower housing plate 476, for example by means of an axial bearing 477, and additionally supported.
  • a distributor device with at least one distributor finger 457 is provided above the housing 470.
  • the drive direction of the vibrator 417 is preferably opposite to the direction of rotation of the unbalance arm 469, so that any rotation of the reinforcement cage is counteracted.
  • the unbalance arm 469 is driven by the drive motor 444 at a relatively low speed, with which the distributor finger 457 is also driven at the same time. When the drive motor 444 is switched on, the concrete material is moved and distributed into the mold from the inside out using the distributor finger 457.
  • the mandrel 414 vibrates with a relatively high frequency and a small vibration range of, for example, 1-4 mm.
  • the press head 443 vibrates at a low frequency, for example in the order of 100-800 vibrations per minute, and with a larger vibration range of 10-15 mm, for example.
  • These different vibration ranges are made possible by the at least one rubber bearing 472 between the mandrel 414 and the press head 443, as a result of which mutual interference is kept to a minimum.
  • the distributor finger 457 Due to the low drive speed of the unbalance arm 469, the distributor finger 457 can also be driven at the same speed.
  • the elastic bearing device 471 also has the advantage that it ensures a very good seal between the press head 443 and the top of the mandrel 414.
  • the drive motor 444 is held on the housing plate 476.
  • the pressing head 543 in the fifth exemplary embodiment in FIG. 9 differs from the pressing head according to FIG. 8 by another distribution device 556.
  • the housing 570 itself is designed as a distribution device 556.
  • At least the upper wall 578 of the housing 570 is designed as a step plate 579, which has individual steps 580, 581, 582, which fall from the inside to the outside and from the top to the bottom.
  • FIG. 10 shows a sixth exemplary embodiment of a device 610, which corresponds in principle to that in FIGS. 1 to 3.
  • the shaped jacket 615 is also cylindrical at the lower end and there is provided with a welded ring 683, to which a further ring 684 is screwed from below, which is designed as a wear ring on the underside and also as a centering ring for the bottom ring 626.
  • a sealing device 685 which is variable and adjustable with regard to its sealing effect and which is an integral part of the ejection device 622.
  • the ejection plate 624 of the ejection device 622 carries a holder 686 in the form of an approximately S-shaped ring in cross section, in the upper region of which a flexible hollow body 687 is accommodated, which is designed, for example, as a hose and is made of rubber.
  • the hollow body 687 is fitted into the upper region of the annular holder 686 and is encompassed by the latter. With its inner side facing the outer circumferential surface of the mandrel 614, the hollow body 687 can rest on the outer surface of the mandrel 614.
  • the hollow body 687 has an inner cavity 688 into which a pressure medium under pressure can be introduced via a feed line 689.
  • the sealing device 685 is to be activated, then pressure medium with increased pressure is introduced into the cavity 688 via the feed line 689 and the hollow body 687 is thus acted upon by the pressure medium.
  • This enables the contact pressure of the seal to be adjusted. It is also advantageous that the seal created in this way is practically adjustable, so that even if there is any wear, the hollow body 687 can always achieve the same contact pressure.
  • the sealing device 685 is preferably only activated during the filling process and the compression process, and only then is the hollow body 687 pressed against the outer peripheral surface of the mold core 614 in a sealing manner. During the demoulding process, the cavity 688 is relieved of the pressure of the pressure medium.
  • the friction between the hollow body 687 and the mandrel 614 during the demoulding process is low, so that this can be carried out as trouble-free as possible and without additional wear on the hollow body 687. If the sealing device 685 is activated, this effectively prevents any concrete from escaping between the mandrel 614 and the bottom ring 626.
  • the seventh exemplary embodiment shown in FIGS. 11 and 12 is similar to the first exemplary embodiment in FIGS. 4 and 5.
  • the distribution device 756 has a distributor disk 790 which rotates around the eccentric axis 751 and rotates centrally to the eccentric 748 .
  • the distributor disk 790 extends flatly over the top of the disk 755 of the ring 750, so that the distributor disk 790 at least approximately covers the eccentric 748.
  • the distributor disk 790 is larger in diameter than the eccentric 748 and thus projects circumferentially beyond the latter. In another embodiment, not shown, the diameter of the distributor disk 790 is smaller.
  • the distributor disk 790 rests on the disk 755 while leaving a play in motion. It has on the circumference a ring 791 protruding on the underside, which, with its outer circumferential surface, terminates with the distributor disk 790 and engages in an annular groove 792 on the upper side of the eccentric 748, also while leaving play of movement and forming a labyrinth seal, for example. As a result, the occurrence of Concrete between the 750 ring and the 790 distributor disc prevented.
  • the distributor disk 790 is fixedly connected to the eccentric shaft 749 via a screw 793 and rotates centrally to the ring 750.
  • the distributor disk 790 has approximately radially directed strips 794 on its upper side, which are integral therewith. In the exemplary embodiment shown, these extend radially to the outer circumferential surface of the distributor disk 790. In FIG. 12, it is indicated by dashed lines that the distributor disk 790 can additionally also have protruding projections 795 on its outer circumferential surface. Similar protruding projections 796 are also indicated schematically on the upper side of the distributor disk 790 in FIG. 12. The projections 795, 796 consist, for example, of round cams.
  • protruding projections such as webs, strips, cams, or instead recessed depressions, such as grooves, depressions or the like, are provided.
  • This configuration of the distribution device 756 has the advantage of extremely low wear, since the penetration of concrete between the ring 750 and the distribution device 756 is completely avoided.
  • pouring concrete it falls onto the distributor disc 790, via which the concrete is rotated.
  • This rotational movement causes the concrete to accelerate away, which is thrown outwards into the cavity.
  • This acceleration of the concrete to the outside is increased further by the strips 794 and possibly projections 795 and 796, so that the concrete is rotated all the more and is thrown outwards.
  • the shape is overfilled, for example if there is too much concrete on the distributor disc 790, this leads to an increase in the torque that is measured, so that the control technology
  • the loading device 35 (FIG. 1) can be regulated back.
  • the distribution device 756 thus also forms a sensor for such an overload control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Moulds, Cores, Or Mandrels (AREA)

Description

Die Erfindung bezieht sich auf eine Einrichtung zum Herstellen von Betonteilen der im Oberbegriff des Anspruchs 1 genannten Art.The invention relates to a device for producing concrete parts of the type mentioned in the preamble of claim 1.

Es ist eine Einrichtung dieser Art bekannt (DE-A-21 31 898), deren Form lediglich einen äußeren Formmantel aufweist und die mit einer Preßeinrichtung versehen ist, die mindestens einen Preßkopf aufweist, der mehrere Ringe bzw. Scheiben hat. Insgesamt sind bei diesem Preßkopf drei exzentrische Kreisscheiben vorgesehen, die innerhalb einer Radialebene relativ zur Längsmittelachse des Formmantels quer beweglich sind und eine radiale Preßwirkung auf das Betonmaterial radial von innen nach außen ausüben sollen. Die Kreisscheiben stellen Exzenter dar, die in bezug auf die Längsachse des Formmantels exzentrisch angeordnet sind, wobei sich die Exzentrizität dadurch ergibt, daß auf einer von oben her in den Formmantel hineinragenden Welle Exzenterbuchsen sitzen, die die Exzentrizität vorgeben und auf denen die Kreisscheiben angeordnet sind. Der Preßkopf befindet sich am unteren Ende der genannten Welle, die von oben her in den Formmantel eintaucht. Für den Preßkopf ist außen ein Antrieb vorgesehen. Die Welle wird außerdem in vertikaler Richtung nach unten bzw. nach oben, also abwärts und aufwärts, bewegt. Die Form hat außerdem einen Rüttler, der sich im Bereich des unteren Muffenringes der Rohrform befinden soll und nur so lange eingeschaltet sein soll und laufen soll, bis dieser untere Muffenring gefüllt ist. Dieser Vibrator soll demnach nur den Beton durch Vibration verdichten, der in den Bereich des unteren Muffenringes fällt und von den exzentrischen Kreisscheiben nicht erreichbar ist. Ansonsten soll keine Vibration erfolgen, sondern die Verdichtung des Betons durch einen oberen Schleuderteller, der eine Vorverdichtung bewirken soll, und die endgültige Verdichtung durch den Preßkopf erfolgen. Eine weitere wesentliche Besonderheit dieser bekannten Einrichtung liegt darin, daß der Preßkopf am unteren Ende der Welle angeordnet ist, die von oben her in den Formmantel eingetaucht wird, und zwar zu Beginn bis zum unteren Ende des Formmantels, und die mit dem Entstehen des Betonteiles, das von unten nach oben anwächst, allmählich nach oben gezogen wird. Diese bekannte Einrichtung, die keinen Formkern und auch keinen im Inneren des Formkernes angeordneten Rüttler aufweist, hat den Nachteil, daß - abgesehen von der nur geringen Betonmenge, die den Bereich des unteren Muffenringes ausfüllt und durch den nur im Text beschriebenen Vibrator verdichtet werden soll - im übrigen keine Verdichtung des Betons durch Vibration erfolgt, sondern die Verdichtung des Betons allein durch radiale Preßbewegung, ohne Rüttlung, bewirkt werden soll. Die bekannte Einrichtung ermöglicht deswegen nur eine ungenügende Verdichtung des Betons, die den an Betonteile gestellten Anforderungen auf keinen Fall genügt. Nachteilig ist ferner, daß der Preßkopf, der von oben her über die in den Formmantel eintauchende Welle angetrieben ist, bei einer Form ohne Formkern eine absolut ungenügende Führung hat. Unterhalb des Preßkopfes kann sich z.B. durch Erschütterungen bzw. durch die Preßbewegung selbst der Durchmesser des herzustellenden Betonteiles, z.B. des Rohres, verändern. Von Nachteil ist außerdem, daß das Einfüllen des Betonmaterials von oben her schwierig ist, weil die nach oben ragende Antriebswelle, die in den inneren Bereich des Formmantels hineinragt, störend im Wege ist.A device of this type is known (DE-A-21 31 898), the shape of which has only an outer molded casing and which is provided with a pressing device which has at least one pressing head which has a plurality of rings or disks. In total, three eccentric circular disks are provided in this press head, which are movable transversely within a radial plane relative to the longitudinal central axis of the shaped jacket and are intended to exert a radial pressing effect on the concrete material radially from the inside out. The circular disks represent eccentrics which are arranged eccentrically with respect to the longitudinal axis of the shaped jacket, the eccentricity resulting from the fact that eccentric bushings are seated on a shaft projecting into the shaped jacket from above, which specify the eccentricity and on which the circular disks are arranged . The press head is located at the lower end of the shaft mentioned, which dips into the mold jacket from above. A drive is provided on the outside for the press head. The wave is going also moved vertically downwards or upwards, i.e. downwards and upwards. The mold also has a vibrator, which should be located in the area of the lower sleeve ring of the tubular shape and should only be switched on and run until this lower sleeve ring is filled. This vibrator should therefore only compact the concrete by vibration, which falls in the area of the lower sleeve ring and cannot be reached by the eccentric circular discs. Otherwise there should be no vibration, but the concrete should be compacted by an upper centrifugal disc, which is intended to effect a pre-compaction, and the final compaction by the press head. Another important special feature of this known device is that the press head is arranged at the lower end of the shaft which is immersed in the mold jacket from above, from the beginning to the lower end of the mold jacket, and which occurs when the concrete part is formed, that grows from the bottom up, is gradually pulled up. This known device, which has no mold core and also no vibrator arranged inside the mold core, has the disadvantage that - apart from the only small amount of concrete that fills the area of the lower sleeve ring and is to be compacted by the vibrator described only in the text - otherwise, the concrete is not compacted by vibration, but the concrete is to be compacted solely by radial pressing movement, without shaking. The known device therefore only enables inadequate compaction of the concrete, which in no case meets the requirements placed on concrete parts. Another disadvantage is that the press head, which is driven from above via the shaft immersed in the mold jacket, has an absolutely insufficient guidance in a mold without a mold core. Below the press head, the diameter of the concrete part to be produced, for example the Rohres, change. Another disadvantage is that the filling of the concrete material from above is difficult because the upwardly projecting drive shaft, which protrudes into the inner region of the molded jacket, is a hindrance.

Bei einer anderen bekannten Einrichtung (SOVIET INVENTIONS ILLUSTRATED, Woche K 38, 2. November 1983, Zusammenfassung Nr. 83-769402/38, Derwent Publications, SU-A-973 373 (BREST ENG.CONS.INST.) 25-11-1982) weist die Form lediglich einen äußeren Formmantel, jedoch keinen inneren Formkern auf. Es ist ein Preßkopf vorgesehen, der am unteren Ende einer Welle plaziert ist, die von oben her in das vom Formmantel umgebene Innere hineinragt. Der Antrieb der Welle erfolgt von oben her. Es ist eine umlaufende Rolle vorgesehen, die keinen Exzenter besitzt. Es handelt sich um eine umlaufende Rolle, die in einem kegeligen Teil abrollt und somit den kegeligen Teil in eine Preßbewegung versetzen soll, die aber nicht radial erfolgt, weil sich der Kegelteil umlaufend schrägstellt. Es handelt sich daher nicht um eine reine Radialpreßbewegung. Soweit aus dem Kurzauszug dieses Dokuments ersichtlich ist, wird über die Welle die umlaufende Rolle angetrieben sowie möglicherweise eine mit Ziff. 11 bezeichnete Unwucht. Dies bedeutet, daß ein einziger gemeinsamer Antrieb für die umlaufende Rolle einerseits und die Unwucht andererseits vorgesehen ist. Da diese Einrichtung keinen Formkern aufweist und der Preßkopf etwa im Bereich der Unwucht einen kurzen Zylinderabschnitt hat, der aber keinen Formkern darstellt, ergeben sich folgende Nachteile. Durch die Vibration und Preßbewegung wird bei der Herstellung eines Betonteiles der Bereich, der sich unterhalb des zylindrischen Teiles befindet, wieder zerstört bzw. verändert. Es muß damit gerechnet werden, daß sich dieser Bereich des Betonteiles unterhalb des zylindrischen Ringes verändert, z.B. der Durchmesser dieses Teiles. Nachteilig ist ferner der oben befindliche Antrieb, für den die gleichen Nachteile gelten wie eingangs zum Dokument DE-A-21 31 898 erläutert ist. Der Antrieb von oben ist u.a. deswegen nachteilig, weil hierdurch das Einfüllen des Betons erheblich erschwert wird. Auch ist fraglich, ob sich eine gleichmäßige Füllung der Form im Ringbereich zwischen dem Preßkopf, der sich am unteren Ende der Welle befindet, und dem Formmantel ergeben kann. Außerdem ist keine automatische Befüllung der Form möglich, weil sich kein Meßwert als Maß für die jeweilige augenblickliche Füllhöhe des Betons ermitteln läßt. Nachteilig ist ferner, daß zwischen der Rolle und dem kegelförmigen Teil des Preßkopfes ein extrem hoher Verschleiß gegeben ist, weil die Schwingungen auf die Rolle einen extremen Klopf- und Scheuereffekt erzeugen, der zu hohem Verschleiß führt. Da kein Formkern vorhanden ist und der Preßkopf nur über die relativ lange und frei nach unten gerichtete Antriebswelle geführt werden muß, kann sich der Preßkopf innerhalb des Formmantels radial verschieben, so daß die Herstellung von Betonteilen mit in Umfangsrichtung gleichbleibender Wandstärke nicht gewährleistet ist.At another known establishment (SOVIET INVENTIONS ILLUSTRATED, Week K 38, November 2, 1983, Summary No. 83-769402 / 38, Derwent Publications, SU-A-973 373 (BREST ENG.CONS.INST.) 25-11- 1982) the mold only has an outer mold shell, but no inner mold core. A press head is provided, which is placed at the lower end of a shaft which projects from above into the interior surrounded by the molded jacket. The shaft is driven from above. A revolving roller is provided which has no eccentric. It is a revolving roller that rolls in a conical part and is thus intended to set the conical part in a pressing movement, which, however, does not take place radially because the cone part is inclined all around. It is therefore not a pure radial press movement. As far as can be seen from the short extract of this document, the rotating roller is driven by the shaft and possibly one with no. 11 designated unbalance. This means that a single common drive is provided for the rotating role on the one hand and the unbalance on the other. Since this device does not have a mandrel and the press head has a short cylinder section in the area of the imbalance, but which does not constitute a mandrel, the following disadvantages arise. The vibration and pressing movement destroy or change the area which is located below the cylindrical part during the production of a concrete part. It must be expected that this area of the concrete part below the cylindrical ring changes, for example the diameter of this part. Another disadvantage is the drive located above, for which the same disadvantages apply as explained at the beginning of document DE-A-21 31 898. The drive from above is disadvantageous, among other things, because it makes filling the concrete considerably more difficult. It is also questionable whether the mold can be evenly filled in the ring area between the press head, which is located at the lower end of the shaft, and the mold jacket. In addition, automatic filling of the mold is not possible because no measured value can be determined as a measure of the current filling level of the concrete. Another disadvantage is that there is extremely high wear between the roller and the conical part of the press head, because the vibrations on the roller produce an extreme knocking and rubbing effect, which leads to high wear. Since there is no mold core and the press head only has to be guided over the relatively long and freely downwardly directed drive shaft, the press head can move radially within the mold shell, so that the production of concrete parts with a constant wall thickness in the circumferential direction is not guaranteed.

Das Dokument US-A-30 96 556 beschreibt eine Einrichtung, die ähnlich derjenigen im Dokument DE-A-21 31 898 ist und bei der ebenfalls kein Formkern, sondern nur ein Formmantel, und auch kein Rüttler im Inneren des Formkernes vorhanden ist. Auch bei dieser Einrichtung sitzt der Preßkopf am unteren Ende einer relativ langen Welle, die von oben her in den lediglich vom Formmantel umgrenzten Bereich eintaucht, wobei der Antrieb von oben her geschieht. Die Einrichtung hat im wesentlichen die gleichen Nachteile wie diejenige gemäß dem Dokument DE-A-21 31 898. Zur gleichen Kategorie gehört eine bekannte Einrichtung gemäß FR-A-14 72 820. Auch bei dieser Einrichtung ist kein innerer Formkern und kein im Formkern angeordneter Rüttler vorgesehen. Der Preßkopf befindet sich am unteren Ende einer Welle, die von oben her angetrieben ist und die von oben her in den Bereich eintaucht, der vom Formmantel umgeben ist. Auch hier erfolgen keine radialen Preßbewegungen. Vielmehr werden Preßbewegungen ausgeführt, die in einer in bezug auf die Radialebene geneigten Ebene verlaufen. Außerdem ist die Gestaltung äußerst kompliziert, weswegen diese Einrichtung unpraktikabel ist. Im übrigen hat diese Einrichtung die gleichen Nachteile wie diejenige gemäß dem Dokument DE-A-21 31 898.Document US-A-30 96 556 describes a device which is similar to that in document DE-A-21 31 898 and in which there is likewise no mold core, but only a mold shell, and also no vibrator in the interior of the mold core. In this device, too, the press head sits at the lower end of a relatively long shaft which dips from above into the area which is only delimited by the molded jacket, the drive being effected from above. The device has essentially the same disadvantages as that according to document DE-A-21 31 898. A known device according to FR-A-14 72 820 belongs to the same category. Also in this device there is no inner mold core and no one arranged in the mold core Vibrator provided. The press head is at the lower end of a shaft which is driven from above and that dips from above into the area surrounded by the molded jacket. No radial pressing movements take place here either. Rather, press movements are carried out which run in a plane inclined with respect to the radial plane. In addition, the design is extremely complicated, which is why this device is impractical. Otherwise, this device has the same disadvantages as that according to document DE-A-21 31 898.

Der Erfindung liegt die Aufgabe zugrunde, eine Einrichtung zum Herstellen von Betonteilen zu schaffen, welche die Herstellung reproduzierbar genauer Betonteile in reproduzierbarer Qualität ermöglicht.The invention has for its object to provide a device for producing concrete parts, which enables the production of reproducibly accurate concrete parts in reproducible quality.

Die Aufgabe ist bei einer Einrichtung zum Herstellen von Betonteilen der eingangs genannten Art durch die Merkmale im Kennzeichnungsteil des Anspruchs 1 gelöst. Mit dieser Einrichtung sind die eingangs beschriebenen Nachteile vermieden.The object is achieved in a device for producing concrete parts of the type mentioned by the features in the characterizing part of claim 1. With this device, the disadvantages described above are avoided.

Der erfindungsgemäße Preßkopf kann am oberen Ende eines Formkernes,z.B. auswechselbar, angebracht sein.The press head according to the invention can at the upper end of a mandrel, e.g. replaceable, attached.

Er wird über die Exzenterwelle in eine umlaufende Radialpreßbewegung versetzt, wobei sich jedoch der Ring selbst nicht dreht, sondern eine Relativdrehung zwischen der Exzenterwelle und dem Ring aufgrund der Lager erreicht ist. Allein der oberseitige Verteiler wird mitgedreht, der zugeführtes Betonmaterial gleichmäßig nach außen fördert und gleichmäßig verteilt, so daß der radiale Preßkopf ständig das Betonmaterial verdichten kann. In das herzustellende Betonteil wird hierbei keinerlei Drehmoment eingeleitet. Dadurch sind etwaige Verspannungen und insbesondere Verdrehungen eingelegter Bewehrungskörbe vermieden. Es erfolgt eine ausnahmslos radiale Preßbewegung ohne Drehmomenteinleitung in das Betonmaterial. Die Erfindung führt überdies zu geringem Verschleiß, geringer benötigter Antriebsleistung und geringem Aufwand. Der Preßkopf benötigt lediglich ein einziges zentrales Lager, wodurch der Lageraufwand ebenfalls wesentlich reduziert ist. Das Lager ist geschützt im Inneren des Preßkopfes enthalten und somit keiner Gefahr einer Verschmutzung oder Beschädigung von außen her ausgesetzt. Dabei versteht es sich, daß der erfindungsgemäße Preßkopf entweder Teil eines Formkerns sein kann oder statt dessen als separates Element an einem anderen Formkern gegen eine dort vorhandene Einrichtung ausgetauscht werden kann.It is set into a circumferential radial pressing movement via the eccentric shaft, but the ring itself does not rotate, but a relative rotation between the eccentric shaft and the ring is achieved due to the bearings. Only the top-side distributor is rotated, the supplied concrete material is evenly conveyed outwards and evenly distributed, so that the radial press head can constantly compact the concrete material. No torque is introduced into the concrete part to be manufactured. This avoids any tension and in particular twisting of the reinforcement cages. There is, without exception, a radial pressing movement without torque being introduced into the concrete material. The invention also leads to low wear, less required drive power and little effort. The press head only requires a single central bearing, which also significantly reduces the storage effort. The bearing is protected inside the press head and therefore not exposed to any risk of contamination or damage from the outside. It goes without saying that the press head according to the invention can either be part of a mold core or can instead be replaced as a separate element on another mold core by a device provided there.

Durch die Merkmale in den Ansprüchen 2 bis 28 werden folgende besondere Vorteile erreicht. Der über einen Rüttler in Schwingungen versetzte Formkern schwingt dabei mit relativ hoher Frequenz und kleiner Schwingungsweite, z.B. in der Größenordnung von 1 - 4 mm. Der Preßkopf hingegen schwingt mit niedriger Frequenz, z.B. in der Größenordnung von 100 - 800 Schwingungen pro Minute, und dabei mit größerer Schwingungsweite, z.B. zwischen 10 und 15 mm. Durch die elastische Lagereinrichtung, z.B. das mindestens eine Gummilager, zwischen dem Formkern und dem Preßkopf wird diese unterschiedliche Schwingungsweite möglich und eine gegenseitige Beeinflussung beider Teile gering gehalten. Die Drehrichtung des Rüttlers am Formkern und des Unwuchtarmes des Preßkopfes wird auch hier vorzugsweise gegenläufig gewählt, wodurch einer etwaigen Drehmomenteinleitung zusätzlich entgegengewirkt ist. Aufgrund der niedrigen Drehzahl für den Antrieb des Unwuchtarmes kann mit der gleichen Welle auch die Verteileinrichtung angetrieben werden. Durch die elastische Lagereinrichtung zwischen Preßkopf und Formkern ist im übrigen eine sehr gute Abdichtung geschaffen. Durch die Merkmale der Ansprüche 26 bis 28 ist zusätzlich der Verschleiß der Verteilvorrichtung reduziert. Gesteigert wird diese Wirkung noch durch die Merkmale der Ansprüche 11 bis 15.The following special advantages are achieved by the features in claims 2 to 28. The mold core, which is vibrated by a vibrator, vibrates with a relatively high frequency and small vibration range, eg in the order of 1 - 4 mm. The press head, on the other hand, vibrates at a low frequency, for example in the order of 100-800 vibrations per minute, and with a larger vibration range, for example between 10 and 15 mm. By means of the elastic bearing device, for example the at least one rubber bearing, between the mandrel and the press head, this different vibration range is possible and the mutual influence of both parts is kept low. The direction of rotation of the vibrator on the mandrel and the unbalance arm of the press head is preferably chosen in opposite directions, which additionally counteracts any torque introduction. Due to the low speed for driving the unbalance arm, the distributor can also be driven with the same shaft. The elastic bearing device between the press head and the mandrel also creates a very good seal. The features of claims 26 to 28 additionally reduce the wear on the distribution device. This effect is increased by the features of claims 11 to 15.

Die Erfindung ist nachfolgend anhand von in den Zeichnungen gezeigten Ausführungsbeispielen näher erläutert. Es zeigen:

Fig. 1, 2 und 3
jeweils eine schematische Seitenansicht mit teilweisem senktrechten Schnitt einer Einrichtung zur Herstellung von Betonteilen in verschiedenen Verfahrensstadien,
Fig. 4
eine Seitenansicht mit teilweisem schematischen Schnitt eines Teiles eines Formkernes mit oberseitiger radialer Preßeinrichtung, gemäß einem ersten Ausführungsbeispiel,
Fig. 5
eine Draufsicht des Formkernes mit Preßeinrichtung in Fig. 4,
Fig. 6
einen schematischen Schnitt etwa entsprechend demjenigen in Fig. 4 eines Formkernes mit einer oberseitigen Preßeinrichtung gemäß einem zweiten Ausführungsbeispiel,
Fig. 7
einen schematischen Schnitt mit teilweiser Seitenansicht etwa entsprechend demjenigen in Fig. 4 und 6 eines dritten Ausführungsbeispieles,
Fig. 8
einen schematischen Schnitt etwa entsprechend demjenigen in Fig. 4 eines vierten Ausführungsbeispieles,
Fig. 9
eine schematische Seitenansicht mit teilweisem Schnitt des oberen Endes eines Formkernes mit Preßeinrichtung gemäß einem fünften Ausführungsbeispiel,
Fig. 10
eine schematische Ansicht etwa entsprechend Fig. 1 eines sechsten Ausführungsbeispieles,
Fig. 11
eine schematische Ansicht etwa entsprechend Fig. 4 eines siebten Ausführungsbeispieles,
Fig. 12
eine Draufsicht des Formkernes in Fig. 11.
The invention is explained in more detail below with reference to exemplary embodiments shown in the drawings. Show it:
1, 2 and 3
each a schematic side view with a partial vertical section of a device for producing concrete parts in various stages of the process,
Fig. 4
2 shows a side view with a partial schematic section of a part of a mandrel with a radial pressing device on the top, according to a first exemplary embodiment,
Fig. 5
a plan view of the mandrel with pressing device in Fig. 4,
Fig. 6
4 shows a schematic section approximately corresponding to that in FIG. 4 of a mold core with an upper-side pressing device according to a second exemplary embodiment,
Fig. 7
3 shows a schematic section with a partial side view approximately corresponding to that in FIGS. 4 and 6 of a third exemplary embodiment,
Fig. 8
3 shows a schematic section approximately corresponding to that in FIG. 4 of a fourth exemplary embodiment,
Fig. 9
2 shows a schematic side view with a partial section of the upper end of a mandrel with a pressing device according to a fifth exemplary embodiment,
Fig. 10
2 shows a schematic view approximately corresponding to FIG. 1 of a sixth exemplary embodiment,
Fig. 11
3 shows a schematic view approximately corresponding to FIG. 4 of a seventh exemplary embodiment,
Fig. 12
11 is a top view of the mandrel in FIG. 11.

In Fig. 1 - 3 ist lediglich schematisch eine Einrichtung 10 gezeigt, die zur Herstellung von Betonteilen 11 dient, die beim gezeigten Ausführungsbeispiel aus Betonrohren bestehen, die mit einem Bewehrungskorb 12 aus Draht versehen sind. Es versteht sich, daß statt derartiger Stahlbetonrohre bei Weglassen der Bewehrungskörbe 12 auch andere Betonrohre und im übrigen auch anders geartete Betonteile 11, z. B. Hof- oder Straßenabläufe, Schachtringe, Schachthälse od.dgl., mittels dieser Einrichtung 10 hergestellt werden können. Die Einrichtung 10 ist hier als Unterflurmaschine ausgebildet, die eine eingesenkte Grube 13 aufweist. Zur Herstellung der Betonteile 11 dient jeweils mindestens eine Form, die einen Formkern 14 und einen Formmantel 15 aufweist, der dem Formkern 14 mit radialem Abstand unter Bildung eines Formraumes 16 dazwischen umgibt. Der Formkern 14 ist als sogenannter Rüttelkern ausgebildet. Er hat etwa Hutform und ist auf einem zentralen Rüttler 17 aufgesetzt, der an einem unterseitigen Träger 18 fest angebracht ist, der seinerseits z.B. ortsfest gehalten ist. Der Rüttler 17 ragt in das Innere des Formkernes 14 hinein und erstreckt sich zumindest etwa bis zum oberen Endbereich des Formkernes 14. An diesem Ende ist der Formkern 14 mittels einer angedeuteten Aufnahme mit Spanneinrichtung 19 fest, jedoch zu Auswechselzwecken lösbar, am Rüttler 17 gehalten. Am oberen Ende ist der Formkern 14 mit einer hier nur schematisch angedeuteten radialen Preßeinrichtung 20 versehen, die Teil des Formkerns 14 ist und später noch näher erläutert wird.In Fig. 1-3, a device 10 is shown only schematically, which is used for the production of concrete parts 11, which in the exemplary embodiment shown consist of concrete pipes which are provided with a reinforcement cage 12 made of wire. It goes without saying that instead of such reinforced concrete pipes, if the reinforcement cages 12 are omitted, other concrete pipes and, moreover, other types of concrete parts 11, e.g. B. yard or street gully, manhole rings, manhole necks or the like, can be produced by means of this device 10. The device 10 is designed here as an underfloor machine which has a recessed pit 13. To manufacture the concrete parts 11, at least one mold is used, which has a mold core 14 and a mold jacket 15, which surrounds the mold core 14 at a radial distance, forming a mold space 16 therebetween. The mandrel 14 is designed as a so-called vibrating core. It has approximately the shape of a hat and is placed on a central vibrator 17, which is firmly attached to an underside support 18, which in turn e.g. is kept stationary. The vibrator 17 protrudes into the interior of the mandrel 14 and extends at least approximately to the upper end region of the mandrel 14. At this end, the mandrel 14 is held on the vibrator 17 by means of an indicated receptacle with a clamping device 19, but detachable for replacement purposes. At the upper end, the mold core 14 is provided with a radial pressing device 20, which is only schematically indicated here, which is part of the mold core 14 and will be explained in more detail later.

An einer vertikalen, nur schematisch gezeigten Führung 21, die z. B. Teil des Maschinenrahmens ist, ist eine schematisch angedeutete Ausstoßvorrichtung 22 in vertikaler Richtung verschiebbar und beweglich gehalten und geführt. Die Ausstoßvorrichtung 22 weist hierzu einen Schlitten 23 auf, der entlang der Führung 21 verschiebbar ist. Die Ausstoßvorrichtung 22 hat in Seitenansicht z.B. etwa L-Form. Sie trägt z. B. einen unteren Maschinentisch 24, der an die Form für den herzustellenden Betonteil 11 angepaßt ist und hier z. B. aus einer Bodenplatte mit zentraler Öffnung 25 darin besteht, die zumindest geringfügig größer als der Außendurchmesser des Formkernes 14 ist, der diese durchsetzen kann. Der Maschinentisch 24 ist als Auflage für einen darauf auflegbaren und abgestützen unteren Bodenring 26 (Untermuffe) ausgebildet. Der untere Bodenring 26 ist Bestandteil der Form. Er ist mittels einer vertikalen Abstützung 27 am Maschinentisch 24 und dabei in Abstand oberhalb dieses abgestützt. Der untere Bodenring 26 dient zur Formgebung und Ausformung des unteren Rohrendes des herzustellenden Betonteils 11, das hier am unteren Ende Glockenform hat, wobei das stirnseitige und nach innen gezogene Ende dieser Glocke durch die Form des Bodenringes 26 in üblicher Weise geformt wird.On a vertical, only schematically shown guide 21, the z. B. is part of the machine frame, a schematically indicated ejection device 22 is displaceably held and guided in the vertical direction. For this purpose, the ejection device 22 has a carriage 23 which can be displaced along the guide 21. The ejection device 22 has, for example, approximately L-shape in a side view. She wears z. B. a lower machine table 24 which is adapted to the shape of the concrete part 11 to be produced and here z. B. consists of a base plate with a central opening 25 therein which is at least slightly larger than the outer diameter of the mandrel 14 which can penetrate it. The machine table 24 is designed as a support for a lower base ring 26 (lower sleeve) which can be placed and supported thereon. The lower base ring 26 is part of the shape. It is supported by means of a vertical support 27 on the machine table 24 and at a distance above it. The lower base ring 26 is used to shape and shape the lower tube end of the concrete part 11 to be produced, which here has a bell shape at the lower end, the front and inward end of this bell being shaped in a conventional manner by the shape of the base ring 26.

Die Ausstoßvorrichtung 22 ist ihrerseits mit einer schematisch angedeuteten vertikalen Führung 28 versehen, entlang der der Formmantel 15 vertikal auf und ab verschiebbar ist. Hierzu ist der Formmantel 15 an einem Schlitten 29 gehalten, der seinerseits entlang der Führung 28 verschiebbar und beweglich gehalten und geführt ist.The ejection device 22 is in turn provided with a schematically indicated vertical guide 28, along which the shaped jacket 15 can be displaced vertically up and down. For this purpose, the shaped jacket 15 is held on a carriage 29, which in turn is slidably and movably held and guided along the guide 28.

Die Ausstoßvorrichtung 22 reicht mit ihrer vertikalen Führung 28 relativ weit nach oben, wobei an deren oberem Ende mittels eines Armes 30 ein in vertikaler Richtung arbeitender Translationsabtrieb 31, z. B. ein Preßzylinder, gehalten ist, an dessen herausragender Kolbenstange 32 ein Teller 33 angebracht ist. Der Teller 33 trägt einen oberen Formring 34, der zur Formgebung des oberen Endes des zu formenden Betonteiles 11, z. B. des Spitzendes des Rohres, dient. Mittels des Translationsantriebs 31 ist der obere Formring 34 in vertikaler Richtung und in Richtung auf den Formraum 16 bewegbar sowie gegensinnig dazu anhebbar. Außerdem ist der obere Formring 34 mittels dieser Anordnung um die Achse des Translationsantriebes 31 auch noch drehbetätigbar, und hierbei z. B. mit wechselnder Drehrichtung hin und her drehbar.The ejection device 22 extends with its vertical guide 28 relatively far upwards, with a vertical output translation drive 31, e.g. B. a press cylinder is held, on the projecting piston rod 32, a plate 33 is attached. The plate 33 carries an upper mold ring 34, which is used to shape the upper end of the concrete part 11 to be molded, for. B. the tip end of the tube is used. By means of the translation drive 31, the upper mold ring 34 can be moved in the vertical direction and in the direction of the mold space 16 and can be raised in the opposite direction. In addition, the upper form ring 34 can also be rotated by means of this arrangement about the axis of the translation drive 31, and in this case, for. B. rotatable with changing direction of rotation.

Die Einrichtung 10 ist weiterhin mit zumindest einer Beschickungseinrichtung 35 versehen, die hier ebenfalls nur schematisch angedeutet ist. Die Beschickungseinrichtung 35 weist einen Betonbehälter 36 und unterhalb dieses zumindest eine Transportvorrichtung 37, z. B.ein Transportband, für das Betonmaterial auf. Die Transportvorrichtung 37 ist quer zur Form, in der der Betonteil 11 gefertigt wird, ausgerichtet und in dieser Richtung gemäß Pfeil 38 mittels eines nicht weiter gezeigten Antriebs vor und zurück bewegbar. Die mindestens eine Transportvorrichtung 37 weist etwa dort, wo das Betonmaterial von der Transportvorrichtung 37 etwa im freien Fall gemäß Fig. 2 abgegeben wird, unterseitig eine Abstreifvorrichtung 39 z. B. in Form eines Abstreifringes auf. Die gesamte Beschickungseinrichtung 35 ist relativ zum örtlich stehenden Formkern 14 an einer sich etwa parallel zur Längsmittelachse des Formkernes 14 erstreckenden, vorzugsweise etwa vertikalen, Führung verschiebbar und beweglich gehalten und geführt, wobei diese Führung hier durch die Führung 21 als Teil des Maschinenrahmens gebildet ist. Bei diesem Ausführungsbeispiel ist die Beschickungseinrichtung 35 an der Ausstoßvorrichtung 22 befestigt, die ihrerseits mittels des Schlittens 23 an der Führung 21 verschiebbar und beweglich gehalten und geführt ist.The device 10 is further provided with at least one loading device 35, which is also only indicated schematically here. The loading device 35 has a concrete container 36 and below this at least one transport device 37, for. B. a conveyor belt for the concrete material. The transport device 37 is oriented transversely to the form in which the concrete part 11 is manufactured and can be moved back and forth in this direction according to arrow 38 by means of a drive (not shown further). The at least one transport device 37 has, where the concrete material is released from the transport device 37, for example in free fall according to FIG. B. in the form of a scraper ring. The entire loading device 35 is displaceably and movably held and guided relative to the locally located mandrel 14 on a preferably approximately vertical guide extending approximately parallel to the longitudinal central axis of the mandrel 14, this guide being formed here by the guide 21 as part of the machine frame. In this exemplary embodiment, the loading device 35 is fastened to the ejection device 22, which in turn is held and guided displaceably and movably on the guide 21 by means of the slide 23.

Bei einem anderen, nicht gezeigten Ausführungsbeispiel dagegen ist für die Führung, insbesondere Vertikalführung, der Beschickungsvorrichtung 35 eine eigene Führung und z.B.am Maschinenrahmen vorgesehen. Die Beschickungseinrichtung 35 ist dann mit einem Schlitten versehen, mittels dessen sie unmittelbar an dieser Führung geführt ist. Die Betätigung dieses Schlittens erfolgt über eine Antriebseinrichtung, z.B. einen druckmittelbetriebenen, insbesondere hydraulischen, Antrieb.In another exemplary embodiment, not shown, on the other hand, a separate guide and, for example, on the machine frame is provided for the guidance, in particular vertical guidance, of the loading device 35. The loading device 35 is then provided with a carriage, by means of which it is guided directly on this guide. This carriage is actuated by a drive device, for example a pressure medium-operated, in particular hydraulic, drive.

Die beschriebene Einrichtung 10 ermöglicht eine Verfahrens-und Herstellungsweise, die wie folgt beschrieben ist.The device 10 described enables a method and method of production which is described as follows.

In einem Vorstadium vor demjenigen gemäß Fig. 1 ist der Schlitten 29 mit dem Formmantel 15 entlang der Führung 28, die Teil der Ausstoßvorrichtung 22 ist, in eine nicht gezeigte Position ganz nach oben verfahren, die den Abtransport des zuvor gefertigten Betonteiles 11 ermöglicht hat. Der Schlitten 29 mit Formmantel 15 verbleibt zunächst in dieser ganz hochgefahrenen Position. Zunächst wird auf dem unteren Maschinentisch 24, insbesondere dessen Ausstoßplatte, von Hand oder insbesondere im automatischen Prozeß und mittels geeigneter automatischer Vorrichtungen ein unterer Bodenring 26 mit darauf sitzendem Bewehrungskorb 12 abgesetzt. Dabei ist davon ausgegangen, daß in diesem Zyklus ein Betonteil 11 gefertigt werden soll. Werden statt dessen mehrere gleichartige oder verschiedenartige oder verschieden große Betonteile gleichzeitig in Mehrfachfertigung produziert, so wird die entsprechende Anzahl unterer Bodenringe 26 mit darauf sitzenden Bewehrungskörben 12, soweit diese notwendig sind, auf der Ausstoßplatte 24 abgesetzt. Anschließend daran wird der Antrieb des Schlittens 29 mit Formmantel 15 betätigt, der längs der Führung 28 nach unten fährt, wobei der Formmantel 15 in die in Fig. 1 gezeigte Stellung nach unten bewegt wird, bis er sich z. B. auf den unteren Bodenring 26 aufsetzt oder diesen in Endstellung außen umgreift. Bei dieser Abwärtsbewegung des Formmantels 15 verbleibt die Ausstoßvorrichtung 22 nach wie vor in der Position gemäß Fig. 1.In a preliminary stage before that according to FIG. 1, the slide 29 with the molded casing 15 has been moved all the way up along the guide 28, which is part of the ejection device 22, into a position, not shown, which has made it possible to remove the previously produced concrete part 11. The slide 29 with the molded jacket 15 initially remains in this fully raised position. First, a lower floor ring 26 with a reinforcing cage 12 is placed on the lower machine table 24, in particular its ejection plate, by hand or in particular in the automatic process and by means of suitable automatic devices. It is assumed that a concrete part 11 is to be produced in this cycle. If instead several identical or different or different sized concrete parts are produced simultaneously in multiple production, the corresponding number of lower floor rings 26 with reinforcing cages 12 sitting thereon, as far as these are necessary, are placed on the ejection plate 24. Subsequently, the drive of the carriage 29 is actuated with the molding jacket 15, which moves down along the guide 28, the molding jacket 15 being moved downward into the position shown in FIG. B. is placed on the lower base ring 26 or engages around it in the end position on the outside. During this downward movement of the mold jacket 15, the ejection device 22 remains in the position according to FIG. 1.

Ausgehend von dieser Position gemäß Fig. 1 wird nun der Antriebs für den Schlitten 23 der Ausstoßvorrichtung 22 aktiviert, so daß die Ausstoßvorrichtung 22 mittels ihres Schlittens 23 entlang der Führung 21 und dabei zusammen mit dem Schlitten 29 und dem Formmantel 15 daran soweit nach unten fährt, daß das obere Ende des Formkernes 14 mit dortiger Preßeinrichtung 20 in die innere Öffnung des unteren Bodenringes 26 und den Formmantel 15 von unten hineinragt. Daraufhin wird die Beschickungseinrichtung 35 aktiviert. Die mindestens eine Transporteinrichtung 37 hat sich bis dahin, abweichend von der Position gemäß Fig. 1, in der zurückgezogenen Stellung befunden. Beim Aktivieren der Beschickungseinrichtung 35 fährt nun deren Transportvorrichtung 37 in Fig. 2 in Pfeilrichtung 38 nach rechts vor und über den nach oben offenen Formraum 16. Über die Transportvorrichtung 37 wird aus dem Betonbehälter 36 abgegebener Beton 40 nun von ober her in den Formraum 16 eingefüllt. Gleichzeitig damit wird der zentrale Rüttler 17 eingeschaltet und außerdem die Preßeinrichtung 20 gestartet. Dadurch wird erreicht, daß der jeweils auf das obere Ende des Formkernes 14 auftreffende Beton 40 im Formraum 16 in Radialrichtung nach außen bewegt und verdichtet wird. Dabei wird nach der Methode der senkenden Form gearbeitet. Sobald bei Beginn dieses Zyklus, bei dem der Formraum 16 zunächst im Bereich oberhalb des unteren Bodenrings 26 gefüllt wird, der Beton 40 im Bereich der unteren Glocke und des Bodenringes 26 verdichtet ist, wird die gesamte Ausstoßvorrichtung 22 mitsamt dem Schlitten 29 und daran gehaltenen Formmantel 15 und ferner mitsamt der daran gehaltenen Beschickungseinrichtung 35 in vertikaler Richtung entlang der Führung 21 mit vorzugsweise konstanter Geschwindigkeit nach unten bewegt bei weiterhin ständigem Einfüllen von Beton 40 mittels der Transportvorrichtung 37. Die mittels der Beschickungseinrichtung 35 einzufüllende Menge an Beton 40 wird dabei in Abhängigkeit von Leistungsgrößen, z. B. der Preßeinrichtung 20, gesteuert, z. B. in Abhängigkeit vom Drehmoment der Preßeinrichtung 20. Dieses Drehmoment kann z. B. über die Leistungsaufnahme von Antriebsaggregaten oder Druckmittel, z. B. Druckflüssigkeit, der Preßeinrichtung 20 gemessen werden. Analog zu diesen Werten wird die Transportvorrichtung 37 stufenlos gesteuert und darüber die jeweils erforderliche Menge an Beton 40 eingefüllt. Das Verfahren nimmt seinen Fortgang in dieser Weise, wobei die Ausstoßvorrichtung 22 komplett mitsamt dem Schlitten 29 und Formmantel 15 sowie der Beschickungseinrichtung 35 mit konstanter Geschwindigkeit weiter nach unten bewegt wird. Ist dabei das obere Ende des Formkernes 14, insbesondere die dortige Preßeinrichtung 20, etwa bündig mit der Oberkante des Formmantels 15, so wird diese Abwärtsbewegung der Ausstoßvorrichtung 22 gestoppt, ebenso wie der Füllvorgang der Transportvorrichtung 37. Die Transportvorrichtung 37 wird statt dessen in Pfeilrichtung 38 und in Fig. 1 - 3 nach links zurückbewegt, wobei die Abstreifvorrichtung 39 in Form z. B. eines unterseitigen Abstreifringes den überschüssigen Beton 40 am oberen Ende der Form abstreift.Starting from this position according to FIG. 1, the drive for the carriage 23 of the ejection device 22 is now activated, so that the ejection device 22 travels downwards along the guide 21 by means of its carriage 23 and together with the carriage 29 and the molded jacket 15 that the upper end of the mandrel 14 with the pressing device 20 there in the inner opening of the lower Bottom ring 26 and the molded jacket 15 protrudes from below. The loading device 35 is then activated. The at least one transport device 37 has been in the retracted position until then, deviating from the position according to FIG. 1. When the loading device 35 is activated, the transport device 37 in FIG. 2 now moves to the right in the direction of the arrow 38 and over the mold space 16 which is open at the top. Via the transport device 37, concrete 40 discharged from the concrete container 36 is now poured into the mold space 16 from above . At the same time the central vibrator 17 is switched on and the pressing device 20 is started. It is thereby achieved that the concrete 40 which strikes the upper end of the mold core 14 in the molding space 16 is moved radially outwards and compacted. The lowering form method is used. As soon as at the beginning of this cycle, in which the molding space 16 is initially filled in the area above the lower base ring 26, the concrete 40 in the area of the lower bell and the base ring 26 is compacted, the entire ejection device 22 together with the slide 29 and the mold jacket held thereon 15 and furthermore, together with the loading device 35 held thereon, moved downwards in the vertical direction along the guide 21, preferably at a constant speed, while the concrete 40 is continuously being poured in by means of the transport device 37. The amount of concrete 40 to be filled in by the loading device 35 is dependent on Performance sizes, e.g. B. the pressing device 20, controlled, for. B. depending on the torque of the pressing device 20. This torque can, for. B. on the power consumption of drive units or pressure medium, for. B. hydraulic fluid, the pressing device 20 can be measured. Analogously to these values, the transport device 37 is steplessly controlled and the required amount of concrete 40 is poured in above it. The method continues in this manner, with the ejection device 22 complete together with the slide 29 and the mold jacket 15 as well the loading device 35 is moved further down at a constant speed. If the upper end of the mold core 14, in particular the pressing device 20 there, is approximately flush with the upper edge of the mold jacket 15, this downward movement of the ejection device 22 is stopped, as is the filling process of the transport device 37. The transport device 37 is instead in the direction of arrow 38 and in Fig. 1-3 moved back to the left, the stripping device 39 in the form of z. B. an underside scraper scrapes the excess concrete 40 at the top of the mold.

Anschließend wird mittels des Translationsantriebs 31 der obere Formring 34 von oben her nach unten und in den Formraum 16 hineinbewegt, bis der obere Formring 34 eine festgelegte Höhe innerhalb des Formmantels 15 einnimmt. Bei Erreichen dieser Stellung wird der Translationsantrieb 31 gestoppt und diese Position gehalten. Gleichzeitig wird der obere Formring 34 um die Längsmittelachse in eine z. B. hin und hergehende Drehbewegung versetzt. Nun wird die Ausstoßvorrichtung 22 mitsamt dem Schlitten 29 und dem Formmantel 15 und mit dem oberen Formring 34 daran langsam nach unten bewegt, wobei sich der obere Formring 34 weiter nach unten und in den Formraum 16 hineinbewegt. Bei dieser Bewegung wird das obere Ende des Betonteiles 11 geformt, beim Beispiel des gezeigten Betonrohres z. B. dessen Spitzende. Dabei wird die Rohrlänge durch die Position des oberen Formringes 34 vorgegeben, die bei jedem Arbeitstakt konstant ist, weil der obere Formring 34 keinen Preßvorgang ausübt, sondern lediglich eine Materialverschiebung vornimmt. Erst am Ende dieses Vorganges werden der zentrale Rüttler 17 und ferner die radiale Preßeinrichtung 22 abgeschaltet. Zum Entformen kann wahlweise z. B. zuerst der Schlitten 29 mit Formmantel 15 nach oben fahren, wobei nach wie vor der obere Formring 34 als Gegenhaltung auf dem gefertigten Betonteil 11 verbleibt und als Niederhalter wirksam ist. Dies ermöglicht einen zuverlässigen Entschalungsvorgang, ohne daß die Gefahr besteht, daß der gefertigte Betonteil 11, z. B. das Rohr, reißt oder das geformte Ende, z. B. Spitzende, dieses Betonteiles 11 beschädigt wird. Statt dessen ist beim Entformen auch eine gleichzeitge Bewegung der Ausstoßvorrichtung 22 und des Formmantels 15 nach oben hin möglich, wobei ebenfalls der obere Formring 24 als Niederhalter wirksam ist.Then, by means of the translation drive 31, the upper molding ring 34 is moved downwards and into the molding space 16 until the upper molding ring 34 assumes a fixed height within the molding jacket 15. When this position is reached, the translation drive 31 is stopped and this position is held. At the same time, the upper mold ring 34 is about the longitudinal central axis in a z. B. offset reciprocating rotary motion. Now the ejection device 22 together with the slide 29 and the molding jacket 15 and with the upper molding ring 34 is slowly moved downward, the upper molding ring 34 moving further downward and into the molding space 16. During this movement, the upper end of the concrete part 11 is formed, in the example of the concrete pipe shown, for. B. its spiked end. The pipe length is predetermined by the position of the upper form ring 34, which is constant with each work cycle, because the upper form ring 34 does not perform a pressing process, but only moves the material. Only at the end of this process, the central vibrator 17 and also the radial pressing device 22 are switched off. For demolding, z. B. first move the carriage 29 with the molded jacket 15 upwards, the upper mold ring 34 still remaining as a counterhold on the finished concrete part 11 and acting as a hold-down device. This enables a reliable demoulding process without the risk that the manufactured concrete part 11, z. B. the pipe, tears or the shaped end, e.g. B. spigot, this concrete part 11 is damaged. Instead, a simultaneous movement of the ejection device 22 and the mold jacket 15 upwards is also possible during demolding, the upper mold ring 24 also acting as a hold-down device.

Mittels der Einrichtung 10 ist also in erfindungsgemäßer Weise ein Verfahren zur Herstellung von Betonteilen 11, z.B. Rohren, Schachtringen od. dgl., in einer Form möglich, die eine auf einem unterseitigen Träger 18 angeordneten, vorzugsweise zentralen, Rüttler 17, einen am Rüttler 17 lösbar befestigbaren Formkern 14, einen unteren Bodenring 26 und einen Formmantel 15 aufweist, wobei man bei diesem Verfahren insbesondere dann, wenn als Betonteile 11 in beschriebener Weise Betonrohre und solche mit Bewehrungskorb 12 hergestellt werden sollen, nach dem Prinzip der senkenden Form arbeiten kann. Hierbei wird auf den oberhalb des Formkerns 14 befindlichen Bodenring 26 zunächst der Formmantel 15 aufgesetzt und dann, wenn ein Stahlbetonteil hergestellt werden soll, das mit einer inneren Bewehrung versehen werden soll, außerdem noch ein Bewehrungskorb 12. Sodann wird der Bodenring 26 mitsamt dem Bewehrungskorb 12 und dem Formmantel 15 soweit abgesenkt, bis der Formkern 14 mit seinem oberen Ende, insbesondere dem die Preßeinrichtung 20 tragenden Ende, in den Bodenring 26 und den Formmantel 15 hineinragt. Sodann wird von oben her Beton 40 in den Formraum 16 eingefüllt und bei arbeitendem Rüttler 17 und eingeschalteter Preßeinrichtung 20 der Bodenring 26 mitsamt dem Formmantel 15 während dem Füllen ständig weiter über den Formkern 14 bis in die Endstellung abgesenkt. Dabei senkt man etwa zeitgleich mit dem Absenken des Bodenringes 26 mit Formmantel 15 zugleich die auf Höhe des oberen Formmantelendes befindliche Beschickungseinrichtung 35 für den Beton 40 mit ab. Die Beschickungseinrichtung 35 verbleibt immer in Bezug auf den Formmantel 15 in gleicher Höhe dazu. Über die Beschickungseinrichtung 35 gibt man beim Absenken des Formmantels 15 den Beton 40 somit immer etwa auf Höhe des oberen Formmantelendes ein. Bei diesem Formfüll-und Verdichtungsvorgang bewegt man die Beschickungseinrichtung 35 zusammen mit dem Formmantel 15 nach unten. Man kann die Beschickungseinrichtung 35 auch zusammen mit dem Formmantel 15 und/oder der den Bodenring 26 tragenden Ausstoßvorrichtung 22 nach unten bewegen. Die Abwärtsbewegung der Beschickungseinrichtung 35 kann statt dessen auch eigenständig, unabhängig vom Formmantel 15, erfolgen. Bei allem werden der Formmantel 15 und die Beschickungseinrichtung 35 etwa mit konstanter Geschwindigkeit abgesenkt. Dann, wenn beim Absenken der untere Bodenring 26 mit Formmantel 15 die untere Enstellung erreicht haben, wird die Beschickungseinrichtung 35, und zwar deren Transportvorrichtung 37, vom Formmantel 15 seitlich wegbewegt, so daß die Abstreifvorrichtung 39 an der Beschickungseinrichtung 35 am oberen Formende befindlichen, überschüssigen Beton 40 abstreift. Nach diesem Abstreifen kann man den oberen Formring 34 von oben her in das oben offene Ende des formraumes 16 hineinbewegen und den Formring 34 auf vorgegebene Höhe absenken und in dieser Position halten. In dieser Position kann man den oberen Formring 34 hin und herdrehend betätigen. Hiernach kann der untere Bodenring 26 mit dem Formmantel 15 darauf mitsamt dem oberen Formring 34 gleichzeitig, z. B. als Einheit, weiter abgesenkt werden und dabei mittels des oberen Formringes 34 das oberen Ende des Betonteils 11, z. B. dessen Spitzende, ausgeformt werden, und zwar ohne daß hier ein Preßvorgang mit etwaigen daraus resultierenden Nachteilen erfolgt.By means of the device 10, a method for producing concrete parts 11, for example pipes, manhole rings or the like, is thus possible in a manner according to the invention in a form which has a preferably central vibrator 17 arranged on a support 18 on the underside, and one on the vibrator 17 Detachably attachable mold core 14, a lower base ring 26 and a molded jacket 15, whereby in this method, especially when concrete pipes 11 and concrete pipes and those with reinforcement cage 12 are to be produced in the manner described can work according to the principle of the lowering shape. Here, the form jacket 15 is first placed on the bottom ring 26 above the mandrel 14 and then, if a reinforced concrete part is to be produced, which is to be provided with internal reinforcement, also a reinforcement cage 12. Then the bottom ring 26 together with the reinforcement cage 12 and the mold jacket 15 lowered until the mold core 14 protrudes with its upper end, in particular the end carrying the pressing device 20, into the base ring 26 and the mold jacket 15. Then concrete 40 is poured into the mold space 16 from above and, while the vibrator 17 is operating and the pressing device 20 is switched on, the base ring 26 together with the mold jacket 15 is constantly lowered further over the mold core 14 into the end position during filling. At the same time as the lowering of the bottom ring 26 with the molded jacket 15, the loading device 35 for the concrete 40 located at the level of the upper molded jacket end is also lowered. The loading device 35 always remains the same with respect to the molded jacket 15 Height. When the mold jacket 15 is lowered, the concrete 40 is thus always fed in at about the height of the upper mold jacket end via the charging device 35. In this mold filling and compression process, the loading device 35 is moved down together with the mold jacket 15. The loading device 35 can also be moved down together with the molded jacket 15 and / or the ejection device 22 carrying the base ring 26. The downward movement of the loading device 35 can instead take place independently, independently of the molded jacket 15. In everything, the mold jacket 15 and the loading device 35 are lowered approximately at a constant speed. Then, when the lower bottom ring 26 with mold jacket 15 has reached the lower setting when lowering, the loading device 35, namely its transport device 37, is laterally moved away from the mold jacket 15, so that the wiping device 39 on the charging device 35 located at the upper mold end, excess Strips concrete 40. After this stripping, the upper mold ring 34 can be moved from above into the open end of the mold space 16 and the mold ring 34 can be lowered to a predetermined height and held in this position. In this position, the upper mold ring 34 can be rotated back and forth. Thereafter, the lower bottom ring 26 with the molded jacket 15 thereon together with the upper molded ring 34 at the same time, for. B. as a unit, are further lowered and the upper end of the concrete part 11, z. B. the tip end are formed, without a pressing process with any resulting disadvantages.

Diese Verfahrensweise und die Einrichtung 10 beschriebener Art haben folgende Vorteile. Mit Hilfe der Einrichtung 10 können nahezu alle Produkte für den Tiefbau automatisch produziert werden, d.h. die verschiedensten Arten und Größen von Betonteilen 11, z. B. Schachtringe, Schachthälse, Kleinrohre bis 1000 mm Höhe, Rohre bis 2500 mm Höhe, Straßenabläufe, Rechteckelemente, Stahlbetonrohre od. dgl.. Die Einrichtung 10 ist somit äußerst vielseitig. Sie gestattet dem Benutzer eine wesentlich bessere Auslastung. Von Vorteil ist ferner, daß z. B. bei der Herstellung von Rohren und z. B. solchen, die mit Bewehrungskörben 12 armiert werden, etwaige Spannungen zwischen Bewehrungskorb 12 und übrigem Betonteil 11 vermieden sind. Bei bekannten Einrichtungen bestand bisher das Problem, daß bereits beim Füllvorgang der Beton sich im Bewehrungskorb verfängt und sofort verdichtet wird, so daß sich innerhalb des Betonteiles, insbesondere Rohres, Hohlräume bilden konnten und ein gleichmäßiges Befüllen und Verdichten nicht gewährleistet war. Wenn bei solchen Fällen die Form dann ganz gefüllt war und durch Vibration eine weitere Verdichtung erfolgt ist, führte dies zu Spannungen im Bewehrungskorb, weil der Beton danach strebt, den Bewehrungskorb nach unten zu ziehen. Derartige Spannungen führten beim nachfolgenden Entformen zu Rißbildungen am gefertigten Betonteil 11. Außerdem kam es vor, daß Bewehrungsdrähte des Bewehrungskorbes unten mitunter hohl lagen. Bei bekannten Einrichtungen ergab sich außerdem der schwerwiegende Nachteil, daß aufgrund der Kreisschwingungen des Rüttlers eine Verdrehung des Bewehrungskorbes entstehen konnte, so daß zwischen dem Bewehrungskorb und dem eingefüllten Beton Spannungen auftraten, die ebenfalls beim nachfolgenden Entformen zu Rißbildungen und ferner zu krummen Betonteilen, z. B. Rohren, führten. Auch etwaige, mittels des oberen Formringes einwirkende Preßkräfte mit überlagerter Vibration führten bisher zu zusätzlichen Spannungen im Bewehrungskorb, die sich nach dem Entformen abgebaut und ebenfalls zu Rissen geführt haben.This procedure and the device 10 of the type described have the following advantages. With the help of the device 10, almost all products for civil engineering can be automatically produced, ie the various types and sizes of concrete parts 11, z. B. shaft rings, shaft necks, small pipes up to 1000 mm high, pipes up to 2500 mm high, street gullies, rectangular elements, reinforced concrete pipes or the like .. The facility 10 is therefore extremely versatile. It allows the user a much better workload. Another advantage is that z. B. in the manufacture of pipes and z. B. those that are reinforced with reinforcement cages 12, any tensions between the reinforcement cage 12 and the rest of the concrete part 11 are avoided. In known devices, there was previously the problem that the concrete caught in the reinforcement cage during the filling process and was immediately compacted, so that cavities could form within the concrete part, in particular the pipe, and uniform filling and compacting was not guaranteed. In such cases, if the mold was completely filled and vibration caused further compaction, this led to tensions in the reinforcement cage because the concrete tends to pull the reinforcement cage downwards. Such tensions led to crack formation on the finished concrete part 11 during the subsequent demolding. In addition, it sometimes happened that reinforcement wires of the reinforcement cage were sometimes hollow at the bottom. In known devices, there was also the serious disadvantage that a rotation of the reinforcement cage could arise due to the circular vibrations of the vibrator, so that stresses occurred between the reinforcement cage and the filled concrete, which also caused cracking during the subsequent demoulding and also bent concrete parts, e.g. B. pipes. Any pressing forces with superimposed vibration acting by means of the upper form ring have also led to additional tensions in the reinforcement cage, which have reduced after demolding and have also led to cracks.

Das erfindungsgemäße Verfahren und die beschriebene Einrichtung 10 gemäß der Erfindung machen es möglich, Spannungen im Bewehrungskorb 12 und im übrigen gefertigten Betonteil 11 sowie zwischen beiden zu vermeiden und somit etwaigen später entstehenden Rissen vorzubeugen. Etwaigen Verdrehungen des Bewehrungskorbes 12 um die Längsachse der Form wird entgegengewirkt. Da die Beschickung mittels der Beschickungseinrichtung 35 immer in gleichbleibender Höhe in Bezug auf den Formmantel 15 erfolgt, und zwar dicht über dessen oberem Ende, ist beim Einfüllen von Beton 40 ein Spritzen vermieden. Die Formfüllung erfolgt gleichmäßiger, stetiger, wodurch etwaigen sich bildenden Hohlräumen auch vorgebeugt wird. Von Vorteil ist außerdem, daß mittels der Beschickungseinrichtung 35, und zwar der Abstreifvorrichtung 39, am Ende des Formgebungsprozesses bei in die untere Endstellung gelangtem Formmantel 15 ein Abstreifen überschüssigen Betons und somit eine Glättung möglich ist. Da das obere Ende des Betonteiles 11 mit Hilfe des oberen Formringes 34 geformt wird, was durch axiales Einpressen von oben her geschieht, ist in diesem Endbereich eine wesentlich exaktere und glattere Formgebung der Endflächen erreichbar, als sonst durch radiales Pressen mittels allein der radialen Preßeinrichtung möglich war. Von Vorteil ist außerdem, daß die Einrichtung 10 zusätzlich zur Rohrfertigung in beschriebener Weise auch die Herstellung anderer Betonteile, z. B. auch von Schachtringen, möglich macht. Dies ist dank der vertikal verfahrbaren Beschickungseinrichtung 35 ermöglicht, die für die Herstellung z. B. von Schachtringen vertikal so weit herabgefahren wird, bis sie sich auf ebenerdigem Niveau, wie für die Schachtringfertigung gefordert, befindet. Der auch hierzu nutzbare obere Formring 34 mit zugehöriger Antriebseinrichtung ermöglicht ebenfalls die Schachtringfertigung. Bei allem ist die Einrichtung 10 und auch die Steuerung der einzelnen Arbeitszyklen einfach. Die Einrichtung 10 ist leicht auf die Herstellung der jeweils gewünschten Betonteile 11 verschiedenster Art und Größe umrüstbar.The method according to the invention and the described device 10 according to the invention make it possible to avoid stresses in the reinforcement cage 12 and in the rest of the manufactured concrete part 11 and between the two, and thus to prevent any cracks which may arise later. Any twisting of the reinforcement cage 12 about the longitudinal axis of the mold is counteracted. Since the loading by means of the loading device 35 always takes place at a constant height in relation to the molded jacket 15, and specifically just above its upper end, splashing is avoided when pouring concrete 40. The mold is filled more evenly and steadily, which also prevents any cavities that form. It is also advantageous that by means of the loading device 35, namely the stripping device 39, at the end of the shaping process when the mold jacket 15 has reached the lower end position, excess concrete can be stripped and thus smoothed. Since the upper end of the concrete part 11 is formed with the help of the upper molding ring 34, which is done by axial pressing in from above, a much more precise and smoother shaping of the end faces can be achieved in this end region than is otherwise possible by radial pressing using only the radial pressing device was. It is also advantageous that the device 10 in addition to the pipe production in the manner described also the production of other concrete parts, for. B. also of manhole rings. This is possible thanks to the vertically movable loading device 35, which is used for the production e.g. B. vertically lowered from manhole rings until it is at ground level, as required for manhole ring production. The upper form ring 34, which can also be used for this purpose, with the associated drive device likewise enables manhole ring production. In everything, the device 10 and also the control of the individual work cycles is simple. The device 10 is easily convertible to the manufacture of the desired concrete parts 11 of various types and sizes.

Bei dem in Fig. 4 und 5 gezeigten Ausführungsbeispiel sind für die Teile, die dem Ausführungsbeispiel in Fig. 1 - 3 entsprechen, um 100 größere Bezugszeichen verwendet, so daß dadurch zur Vermeidung von Wiederholungen auf die Beschreibung in Fig. 1 - 3 Bezug genommen ist.In the exemplary embodiment shown in FIGS. 4 and 5, the parts which correspond to the exemplary embodiment in FIGS. 1-3 are used by 100 larger reference numerals, so that in order to avoid repetition, reference is made to the description in FIGS. 1-3 is.

Auch in Fig. 4 ist der Formkern 114 im Inneren mit einer schematisch angedeuteten Spanneinrichtung 119 versehen und auf einer Aufnahme 141 auswechselbar aufgenommen und zentiert, die hier Teil des zentralen Rüttlers 117 ist und durch dessen Außenfläche gebildet ist.4, the mandrel 114 is provided on the inside with a schematically indicated clamping device 119 and is interchangeably received and centered on a receptacle 141, which here is part of the central vibrator 117 and is formed by the outer surface.

Am oberen Ende des Formkerns 114 ist eine radiale Preßeinrichtung 120 vorgesehen. Diese weist mindestens einen innerhalb einer Radialebene 142 relativ zum Formkern 114 quer beweglichen, eine radiale Preßwirkung auf das Betonmaterial ausübenden Preßkopf 143 auf, der motorisch angetrieben ist. Der Antrieb erfolgt hier über einen zentral im Inneren des Formkernes 114 angeordneten Antriebsmotor 144, der zur Längsmittelachse 145 koaxial verläuft. Der Antriebsmotor 144 ist in einer Öffnung der oberen Deckplatte 146 des Formkerns 14 zentriert gehalten.A radial pressing device 120 is provided at the upper end of the mold core 114. This has at least one press head 143 which is movable transversely within a radial plane 142 relative to the mold core 114 and exerts a radial pressing effect on the concrete material and is motor-driven. The drive takes place here via a drive motor 144 which is arranged centrally in the interior of the mandrel 114 and which is coaxial with the longitudinal central axis 145. The drive motor 144 is held centered in an opening of the upper cover plate 146 of the mandrel 14.

Die Antriebsrichtung des Rüttlers 117 und diejenige des Antriebsmotors 144 sind zweckmäßigerweise gegenläufig. Der Antriebsmotor 144 hat eine zur Längsmittelachse 145 koaxiale Antriebswelle 147. Der Preßkopf 143 weist einen in Bezug auf die Längsmittelachse 145 exzentrisch angeordneten Exzenter 148 auf, der bei diesem ersten Ausführungsbeispiel einen auf einer Exzenterwelle 149 koaxial dazu gehaltenen Ring 150 aufweist. Die Mittelachse 151 der Exzenterwelle 149 und des Ringes 150 verläuft mit Exzentrizität e exzentrisch in Bezug auf die Längsmittelachse 145. Die Exzenterwelle 149 ist fester Bestandteil der Antriebswelle 147 und befindet sich zwischen Antriebsmotor 144 und freiem Wellenende dieses. Auf der Exzenterwelle 149 ist der Ring 150 mittels Lagern 152, 153 frei umlaufend gelagert. Dies ist nicht zwingend, hat aber den Vorteil, daß dadurch beim Umlauf kein Drehmoment in den Beton eingeleitet wird. Die Lager 152, 153 sind innerhalb einer zentralen Lagerbuchse 154 des Ringes 150 aufgenommen.The drive direction of the vibrator 117 and that of the drive motor 144 are expediently in opposite directions. The drive motor 144 has a drive shaft 147 which is coaxial with the longitudinal center axis 145. The press head 143 has an eccentric 148 which is arranged eccentrically with respect to the longitudinal center axis 145 and which in this first exemplary embodiment has a ring 150 which is held coaxially thereto on an eccentric shaft 149. The central axis 151 of the eccentric shaft 149 and the ring 150 runs eccentrically e eccentrically with respect to the longitudinal central axis 145. The eccentric shaft 149 is an integral part of the drive shaft 147 and is located between the drive motor 144 and the free shaft end thereof. On the eccentric shaft 149, the ring 150 is freely revolving by means of bearings 152, 153. This is not mandatory, but has the advantage that no torque is introduced into the concrete during circulation. The bearings 152, 153 are within a central bearing bush 154 of the ring 150 added.

Der Ring 150 ist hier mittels einer Scheibe 155 mit der Lagerbuchse 154 fest verbunden, wobei die Scheibe 155 zugleich eine obere Abdeckung des Preßkopfes 143 bildet. Statt der Scheibe 155 können bei geeigneter Abdeckung auch einzelne z.B. radiale Speichen zwischen dem Ring 150 und der Lagerbuchse 154 vorgesehen sein. Die Scheibe 155 ist in Abstand oberhalb der endseitigen Stirnfläche und Deckplatte 146 des Formkernes 115 angeordnet, der z.B. durch die Lagerbuchse 154 vorgegeben ist. Der Ring 150 bildet zusammen mit der Scheibe 155 einen etwa schüsselförmigen und dabei umgedreht angeordneten Preßkopf. Der Ring 150 sitzt mit seiner Unterseite, die zur Deckplatte 146 hinweist, zumindest im wesentlichen auf dieser Stirnfläche des Formkernes 114 auf und wird innerhalb dieser Radialebene 142 durch den Antriebsmotor 144 bewegt.The ring 150 is firmly connected to the bearing bush 154 by means of a disk 155, the disk 155 also forming an upper cover of the press head 143. Instead of the disc 155, individual cover e.g. radial spokes can be provided between the ring 150 and the bearing bush 154. The disk 155 is arranged at a distance above the end face and cover plate 146 of the mandrel 115, which e.g. is predetermined by the bearing bush 154. The ring 150 forms, together with the disk 155, an approximately bowl-shaped press head which is arranged upside down. The underside of the ring 150, which points toward the cover plate 146, rests at least essentially on this end face of the mandrel 114 and is moved within this radial plane 142 by the drive motor 144.

Auf seiner Oberseite, oberseitig der Scheibe 155, weist der Preßkopf 143 eine Verteilvorrichtung 156 auf, die hier zumindest aus einem Verteilerfinger 157 gebildet ist. Der Verteilerfinger 157 liegt auf der Oberseite der Scheibe 155 zumindest im wesentlichen auf. Er ist drehfest an der Antriebswelle 147 gehalten, wobei der Verteilerfinger 157 bei diesem Ausführungsbeispiel um die Längsmittelachse 145 umlaufend angetrieben ist. Fig. 5 zeigt, daß der Verteilerfinger 157 in Antriebsrichtung oder entgegen dieser schräg gestellt sein kann.On its upper side, on the upper side of the disk 155, the press head 143 has a distributing device 156, which is formed here at least from a distributing finger 157. The distributor finger 157 lies at least essentially on the upper side of the disk 155. It is held in a rotationally fixed manner on the drive shaft 147, the distributor finger 157 being driven in this exemplary embodiment in a circumferential manner about the longitudinal central axis 145. Fig. 5 shows that the distributor finger 157 can be inclined in the drive direction or against this.

Bei einem anderen, nicht gezeigten Ausführungsbeispiel ist die Exzenterwelle 149 durch die Scheibe 155 nach oben herausgeführt und der Verteilerfinger 157 an diesem Verlängerungsabsatz drehfest gehalten.In another exemplary embodiment, not shown, the eccentric shaft 149 is led out upward through the disk 155 and the distributor finger 157 is held in a rotationally fixed manner on this extension shoulder.

Bei eingeschaltetem Antriebsmotor 144 wird der radiale Preßkopf über die Exzenterwelle 149 in eine umlaufende Radialpreßbewegung versetzt. Aufgrund der Lager 152, 153 ist eine Relativdrehung zwischen der Exzenterwelle 149 und dem Preßkopf 143 möglich, so daß sich bei dieser Antriebsbewegung der Preßkopf 143 nicht dreht. Wenn dies statt dessen gewünscht wird, wird eine drehfeste Verbindung zwischen der Exzenterwelle 149 und dem Preßkopf 143 vorgesehen. Beim gezeigten Ausführungsbeispiel wird über den Antriebsmotor 144 somit lediglich der Verteilerfinger 157 drehend in der einen oder anderen Richtung umlaufend angetrieben, der den von oben her aufgebrachten Beton gleichmäßig in Radialrichtung nach außen schiebt, so daß der radiale Preßkopf 143, insbesondere dessen Ring 150, diesen Beton ständig verdichten kann. Dabei wird in den Beton keinerlei Drehmoment eingeleitet, so daß eine Verdrehung des Bewehrungskorbes 12 ( Fig.1) zuverlässig vermieden ist.When the drive motor 144 is switched on, the radial press head is set into a circumferential radial press movement via the eccentric shaft 149. Due to the bearings 152, 153 is one Relative rotation between the eccentric shaft 149 and the press head 143 possible, so that the press head 143 does not rotate during this drive movement. If this is desired instead, a rotationally fixed connection between the eccentric shaft 149 and the press head 143 is provided. In the exemplary embodiment shown, only the distributor finger 157 is thus driven in rotation in one direction or the other via the drive motor 144, which pushes the concrete applied from above evenly in the radial direction to the outside, so that the radial press head 143, in particular its ring 150, causes this Concrete can constantly compact. No torque is introduced into the concrete, so that rotation of the reinforcement cage 12 (FIG. 1) is reliably avoided.

Beim gezeigten Ausführungsbeispiel ist der zentrale Rüttler 117 vorgesehen, durch den der Formkern 114 mit der Rüttelbewegung beaufschlagt ist, so daß darüber eine weitere Verdichtung des Betonmaterials erfolgt.In the exemplary embodiment shown, the central vibrator 117 is provided, through which the mandrel 114 is subjected to the vibrating movement, so that the concrete material is further compacted.

Beim zweiten Ausführungsbeispiel des Preßkopfes 243 in Fig. 6 ist dessen Ring 250 durch den Schnitt erkennbar. Dieser verläuft mit seiner zum Formkern 214, und zwar dessen oberer Deckplatte 246, weisenden Unterseite in Abstand von der Deckplatte 246 und oberhalb dieser, so daß der Ring 250 keine Berührung mit der Deckplatte 246 hat, was die Leichtgängigkeit erhöht und etwaigen Verschleiß mindert. Außen ist der Ring 250 von einer ringförmigen Dichtmuffe 260 umfaßt, die mit einem unteren Ringrand 261 bis zur Deckplatte 246 reicht und dort mit dieser fest verbunden ist. Die Dichtmuffe 260 schließt den Raum 262 nach außen hin ab, der vom Ring 250 umschlossen und von der Oberseite der Deckplatte 246 des Formkerns 214 begrenzt ist. Der Ringrand 261 ist an der Deckplatte 246 mittels eines Befestigungsringes 263 festgespannt. Eine zusätzliche formschlüssige Festlegung geschieht durch einen in eine Nut 264 eingreifenden Ringwulst 265. Nach dem gleichen Prinzip ist die Dichtmuffe 260 mit ihrem oberen Ringrand 266 an der Oberseite des Ringes 250 festgelegt, wo der Ringrand 266 z.B. mittels der Scheibe 255 festgespannt ist, die lösbar mit dem Ring 250 verbunden ist. Die Dichtmuffe 260 ist insbesondere aus Gummi, Kunstgummi, Kunststoff od.dgl. Material gebildet, das im Zusammenwirken mit Beton in hohem Maße verschleißfest ist. Als solches kommt z.B. das unter der Marke "Vulkollan" im Handel erhältliche Material in Frage.In the second embodiment of the press head 243 in FIG. 6, its ring 250 can be recognized by the cut. This runs with its towards the mold core 214, namely its upper cover plate 246, the underside at a distance from the cover plate 246 and above it, so that the ring 250 has no contact with the cover plate 246, which increases the ease of movement and reduces any wear. On the outside, the ring 250 is surrounded by an annular sealing sleeve 260, which extends with a lower ring edge 261 to the cover plate 246 and is firmly connected to the latter. The sealing sleeve 260 closes off the space 262, which is enclosed by the ring 250 and is delimited by the upper side of the cover plate 246 of the mold core 214. The ring edge 261 is clamped to the cover plate 246 by means of a fastening ring 263. An additional positive locking is done by an annular bead 265 engaging in a groove 264. According to the same principle, the sealing sleeve 260 is fixed with its upper ring edge 266 to the top of the ring 250, where the ring edge 266 e.g. is clamped by means of the disk 255, which is detachably connected to the ring 250. The sealing sleeve 260 is in particular made of rubber, synthetic rubber, plastic or the like. Formed material that is highly wear-resistant in interaction with concrete. As such comes e.g. the material commercially available under the "Vulkollan" brand.

Wie beim Ausführungsbeispiel in Fig. 4 ist der Preßkopf 243 vom Antriebsmotor 244 über die Exzenterwelle 249 antreibbar, deren Mittelachse 251 exzentrisch in Bezug auf die Längsmittelachse 245 verläuft. Der mindestens eine Verteilerfinger 257 ist hier drehfest an einem Verlängerungsabschnitt 267 der Antriebswelle gehalten, der koaxial zur Exzenterachse 251 verläuft und somit in Bezug auf die Längsmittelachse 245 ebenfalls exzentrisch umläuft.As in the exemplary embodiment in FIG. 4, the press head 243 can be driven by the drive motor 244 via the eccentric shaft 249, the central axis 251 of which extends eccentrically with respect to the longitudinal central axis 245. The at least one distributor finger 257 is held here in a rotationally fixed manner on an extension section 267 of the drive shaft, which extends coaxially with the eccentric axis 251 and thus also rotates eccentrically with respect to the longitudinal central axis 245.

Bei dieser Ausbildung des Preßkopfes 243 ist mittels der Dichtmuffe 260 eine vollkommene Abdichtung der beweglichen Teile und Zwischenräume gewährleistet. Da der Ring 250 nicht auf der Deckplatte 246 aufsitzt und relativ dazu bewegt wird, sind etwaige Reibungsverluste und etwaiger Verschleiß dadurch vermieden. Somit ist der Leistungsbedarf für den Antriebsmotor noch weiter reduziert, ebenso betriebsbedingter Verschleiß.In this configuration of the press head 243, a complete sealing of the moving parts and spaces is ensured by means of the sealing sleeve 260. Since the ring 250 is not seated on the cover plate 246 and is moved relative to it, any friction losses and any wear are avoided as a result. The power requirement for the drive motor is thus reduced even further, as is operational wear.

Das in Fig. 7 gezeigte dritte Ausführungsbeispiel unterscheidet sich von demjenigen in Fig. 6 allein dadurch, daß der obere Verteilerfinger 257 fehlt. Statt dessen ist der Preßkopf 343 auf seiner Oberseite mit einem kegelförmigen Deckel 368 versehen. Dieser ist z.B. an der Scheibe 355 fest oder lösbar angebracht. Der kegelförmige Deckel 368 kann mit seiner Mittelachse in Bezug auf die Längsmittelachse 345 des Formkerns 314 exzentrisch verlaufen. Dabei kann die Mittelachse des kegelförmigen Deckels 368 mit der exzentrischen Mittelachse der Exzenterwelle 349 zusammenfallen. Durch diese Ausbildung ist der Deckel 368 zugleich als Verteilvorrichtung 356 ausgebildet, über den die Verteilung des eingefüllten Betonmaterials erfolgt. Dieses Ausführungsbeispiel ist besonders bei herzustellenden Betonteilen mit kleinen Nennweiten von Vorteil.The third exemplary embodiment shown in FIG. 7 differs from that in FIG. 6 solely in that the upper distributor finger 257 is missing. Instead, the press head 343 is provided with a conical cover 368 on its upper side. This is e.g. fixed or detachably attached to the disc 355. The conical cover 368 can run eccentrically with its central axis in relation to the longitudinal central axis 345 of the mandrel 314. The central axis of the conical cover 368 can coincide with the eccentric central axis of the eccentric shaft 349. As a result of this design, the cover 368 is also designed as a distribution device 356, via which the filled concrete material is distributed. This embodiment is particularly advantageous in the case of concrete parts to be produced with small nominal widths.

Beim vierten Ausführungsbeispiel des Preßkopfes 443 in Fig.8 ist der Exzenter 448 aus einem an der Antriebswelle 447 des Antriebsmotors 444 drehfest gehaltenen exzentrischen Unwuchtarm 469 gebildet, der somit einen recht schweren Exzenter bildet. Der Preßkopf 443 weist ein geschlossenes Gehäuse 470 auf, in dessen Innerem der Unwuchtarm 469 geschützt enthalten ist. Das Gehäuse 470 ist am oberen Ende des Formkerns 414, und zwar dessen obere Deckplatte 446, mittels einer elastischen Lagereinrichtung 471 abgestützt und gelagert. Diese weist zumindest ein Gummilager 472 auf, das z.B. ähnlich wie bekannte Schwingungsdämpfer ausgebildet ist, z.B. zwischen einem oberen und einem unteren Ring 473 bzw. 474 eine Gummilage 475 enthält. Der Unwuchtarm 469 ist im Bereich der Antriebswelle 447 an der unteren Gehäuseplatte 476 z.B. mittels eines Axiallagers 477 abgestützt und zusätzlich gelagert. Wie bei Fig. 4 und 6 ist oberhalb des Gehäuses 470 eine Verteilvorrichtung mit zumindest einem Verteilerfinger 457 vorgesehen. Auch bei diesem Preßkopf 443 ist die Antriebsrichtung des Rüttlers 417 vorzugsweise gegenläufig zur Drehrichtung des Unwuchtarmes 469, damit einer etwaigen Verdrehung des Bewehrungskorbes entgegengewirkt ist. Der Unwuchtarm 469 wird vom Antriebsmotor 444 mit relativ niedriger Drehzahl angetrieben, mit der zugleich auch der Verteilerfinger 457 angetrieben wird. Bei eingeschaltetem Antriebsmotor 444 wird mittels des Verteilerfingers 457 das Betonmaterial von innen nach außen in die Form bewegt und verteilt. Aufgrund des Rüttlers 417 schwingt der Formkern 414 mit relativ hoher Frequenz und kleiner Schwingungsweite von z.B. 1 - 4 mm. Der Preßkopf 443 dagegen schwingt demgegenüber mit niedriger Frequenz, z.B. in der Größenordnung von 100 - 800 Schwingungen pro Minute, und bei größerer Schwingungsweite von z.B. 10 - 15 mm. Diese unterschiedlichen Schwingungsweiten werden durch das mindestens eine Gummilager 472 zwischen dem Formkern 414 und dem Preßkopf 443 ermöglicht, wodurch eine gegenseitige Beeinflussung gering gehalten ist. Aufgrund der niedrigen Antriebsdrehzahl des Unwuchtarmes 469 kann mit gleicher Drehzahl auch der Verteilerfinger 457 angetrieben werden. Die elastische Lagereinrichtung 471 hat ferner den Vorteil, daß dadurch eine sehr gute Abdichtung zwischen dem Preßkopf 443 und der Oberseite des Formkerns 414 gewährleistet ist. Der Antriebsmotor 444 ist an der Gehäuseplatte 476 gehalten.
Der Preßkopf 543 beim fünften Ausführungsbeispiel in Fig.9 unterscheidet sich vom Preßkopf gemäß Fig. 8 durch eine andere Verteilvorrichtung 556. Hier ist das Gehäuse 570 selbst als Verteilvorrichtung 556 ausgebildet. Zumindest die Oberwand 578 des Gehäuses 570 ist als Stufenplatte 579 ausgebildet, die einzelne Stufen 580, 581, 582 aufweist, die von innen nach außen und von oben nach unten abfallen. Aufgrund der starken Schwingbewegung des Preßkopfes 543 und somit des Gehäuses 570 und der einzelnen Stufen 580 - 582 wird das Betonmaterial nach außen in Richtung zum Formmantel befördert. Der sonst durch den Verteilerfinger 457 (Fig. 8) noch gegebene Verschleiß ist somit vermieden.
In the fourth embodiment of the press head 443 in FIG. 8, the eccentric 448 is formed from an eccentric unbalance arm 469 which is held in a rotationally fixed manner on the drive shaft 447 of the drive motor 444 and thus forms a quite heavy eccentric. The press head 443 has a closed housing 470, in the interior of which the unbalance arm 469 is protected. The housing 470 is supported and supported at the upper end of the mandrel 414, namely its upper cover plate 446, by means of an elastic bearing device 471. This has at least one rubber bearing 472 which, for example, is designed similarly to known vibration dampers, for example contains a rubber layer 475 between an upper and a lower ring 473 or 474. The unbalance arm 469 is in the Area of the drive shaft 447 supported on the lower housing plate 476, for example by means of an axial bearing 477, and additionally supported. As in FIGS. 4 and 6, a distributor device with at least one distributor finger 457 is provided above the housing 470. With this press head 443 too, the drive direction of the vibrator 417 is preferably opposite to the direction of rotation of the unbalance arm 469, so that any rotation of the reinforcement cage is counteracted. The unbalance arm 469 is driven by the drive motor 444 at a relatively low speed, with which the distributor finger 457 is also driven at the same time. When the drive motor 444 is switched on, the concrete material is moved and distributed into the mold from the inside out using the distributor finger 457. Due to the vibrator 417, the mandrel 414 vibrates with a relatively high frequency and a small vibration range of, for example, 1-4 mm. In contrast, the press head 443 vibrates at a low frequency, for example in the order of 100-800 vibrations per minute, and with a larger vibration range of 10-15 mm, for example. These different vibration ranges are made possible by the at least one rubber bearing 472 between the mandrel 414 and the press head 443, as a result of which mutual interference is kept to a minimum. Due to the low drive speed of the unbalance arm 469, the distributor finger 457 can also be driven at the same speed. The elastic bearing device 471 also has the advantage that it ensures a very good seal between the press head 443 and the top of the mandrel 414. The drive motor 444 is held on the housing plate 476.
The pressing head 543 in the fifth exemplary embodiment in FIG. 9 differs from the pressing head according to FIG. 8 by another distribution device 556. Here, the housing 570 itself is designed as a distribution device 556. At least the upper wall 578 of the housing 570 is designed as a step plate 579, which has individual steps 580, 581, 582, which fall from the inside to the outside and from the top to the bottom. Because of Due to the strong oscillating movement of the press head 543 and thus of the housing 570 and the individual steps 580-582, the concrete material is conveyed outwards in the direction of the shaped jacket. The wear otherwise given by the distributor finger 457 (FIG. 8) is thus avoided.

In Fig. 10 ist ein sechstes Ausführungsbeispiel einer Einrichtung 610 gezeigt, die im Prinzip derjenigen in Fig. 1 bis 3 entspricht. Abweichend davon ist der Formmantel 615 auch am unteren Ende zylindrisch und dort mit einem angeschweißten Ring 683 versehen, an dem von unten her ein weiterer ring 684 angeschraubt ist, der als unterseitiger Verschleißring und außerdem als Zentrierring für den Bodenring 626 ausgebildet ist. Zwischen dem Formkern 614 und dem Bodenring 626 ist eine hinsichtlich ihrer Abdichtwirkung variable und einstellbare Dichtungseinrichtung 685 angeordnet, die fester Bestandteil der Ausstoßvorrichtung 622 ist. Hierzu trägt die Ausstoßplatte 624 der Ausstoßvorrichtung 622 eine Halterung 686 in Form einer im Querschnitt etwa S-förmigen Ringes, in dessen oberen Bereich ein flexibler Hohlkörper 687 aufgenommen ist, der z.B. als Schlauch ausgebildet ist und aus Gummi besteht. Der Hohlkörper 687 ist in den oberen Bereich der ringförmigen Halterung 686 eingepaßt und wird von dieser umfaßt. Mit seiner der äußeren Umfangsfläche des Formkernes 614 zugewandten Innenseite kann der Hohlkörper 687 an der Außenfläche des Formkerns 614 anliegen. Der Hohlkörper 687 weist einen inneren Hohlraum 688 auf, in den über eine Speiseleitung 689 ein Druckmedium unter Druck einführbar ist. Soll die Dichtungseinrichtung 685 aktiviert werden, so wird über die Speiseleitung 689 Druckmedium mit erhöhtem Druck in den Hohlraum 688 eingeleitet und somit der Hohlkörper 687 mit dem Druckmedium beaufschlagt. Dadurch ist der Anpreßdruck der Dichtung einstellbar. Vorteilhaft ist ferner, daß die so geschaffene Dichtung praktisch nachstellbar ist, so daß auch bei etwaigem Verschleiß es Hohlkörpers 687 immer die gleiche Anpreßkraft erzielt werden kann. Mit Vorzug wird die Dichtungseinrichtung 685 nur beim Füllvorgang und Verdichtungsvorgang aktiviert und nur dann der Hohlkörper 687 gegen die äußere Umfangsfläche des Formkerns 614 dichtend angepreßt. Beim Entschalungsvorgang wird der Hohlraum 688 vom Druck des Druckmediums entlastet. In diesem Stadium ist die Reibung zwischen dem Hohlkörper 687 und dem Formkern 614 beim Entschalungsvorgang gering, so daß dieser möglichst störungsfrei und ohne zusätzlichen Verschleiß des Hohlkörpers 687 vonstatten gehen kann. Ist die Dichtungseinrichtung 685 aktiviert, so ist dadurch wirksam verhindert, daß zwischen dem Formkern 614 und dem Bodenring 626 etwaiger Beton austreten kann.FIG. 10 shows a sixth exemplary embodiment of a device 610, which corresponds in principle to that in FIGS. 1 to 3. Deviating from this, the shaped jacket 615 is also cylindrical at the lower end and there is provided with a welded ring 683, to which a further ring 684 is screwed from below, which is designed as a wear ring on the underside and also as a centering ring for the bottom ring 626. Between the mandrel 614 and the bottom ring 626 there is arranged a sealing device 685 which is variable and adjustable with regard to its sealing effect and which is an integral part of the ejection device 622. For this purpose, the ejection plate 624 of the ejection device 622 carries a holder 686 in the form of an approximately S-shaped ring in cross section, in the upper region of which a flexible hollow body 687 is accommodated, which is designed, for example, as a hose and is made of rubber. The hollow body 687 is fitted into the upper region of the annular holder 686 and is encompassed by the latter. With its inner side facing the outer circumferential surface of the mandrel 614, the hollow body 687 can rest on the outer surface of the mandrel 614. The hollow body 687 has an inner cavity 688 into which a pressure medium under pressure can be introduced via a feed line 689. If the sealing device 685 is to be activated, then pressure medium with increased pressure is introduced into the cavity 688 via the feed line 689 and the hollow body 687 is thus acted upon by the pressure medium. This enables the contact pressure of the seal to be adjusted. It is also advantageous that the seal created in this way is practically adjustable, so that even if there is any wear, the hollow body 687 can always achieve the same contact pressure. With The sealing device 685 is preferably only activated during the filling process and the compression process, and only then is the hollow body 687 pressed against the outer peripheral surface of the mold core 614 in a sealing manner. During the demoulding process, the cavity 688 is relieved of the pressure of the pressure medium. At this stage, the friction between the hollow body 687 and the mandrel 614 during the demoulding process is low, so that this can be carried out as trouble-free as possible and without additional wear on the hollow body 687. If the sealing device 685 is activated, this effectively prevents any concrete from escaping between the mandrel 614 and the bottom ring 626.

Das in Fig. 11 und 12 gezeigte siebte Ausführungsbeispiel ähnelt dem ersten Ausführungsbeispiel in Fig. 4 und 5. Die Verteilvorrichtung 756 weist abweichend von Fig. 4 und 5 eine um die Exzenterachse 751 umlaufend angetriebene Verteilerscheibe 790 auf, die sich zentrisch zum Exzenter 748 dreht. Die Verteilerscheibe 790 erstreckt sich flächig über die Oberseite der Scheibe 755 des Ringes 750, so daß die Verteilerscheibe 790 den Exzenter 748 zumindest etwa überdeckt. Bei einem nicht gezeigten Ausführungsbeispiel ist die Verteilerscheibe 790 im Durchmesser größer als der Exzenter 748 und ragt somit umfangsseitig über letzteren hinaus. Bei einem anderen, nicht gezeigten Ausführungsbeispiel ist der Durchmesser der Verteilerscheibe 790 kleiner.The seventh exemplary embodiment shown in FIGS. 11 and 12 is similar to the first exemplary embodiment in FIGS. 4 and 5. In contrast to FIGS. 4 and 5, the distribution device 756 has a distributor disk 790 which rotates around the eccentric axis 751 and rotates centrally to the eccentric 748 . The distributor disk 790 extends flatly over the top of the disk 755 of the ring 750, so that the distributor disk 790 at least approximately covers the eccentric 748. In one embodiment, not shown, the distributor disk 790 is larger in diameter than the eccentric 748 and thus projects circumferentially beyond the latter. In another embodiment, not shown, the diameter of the distributor disk 790 is smaller.

Wie ersichtlich ist, liegt die Verteilerscheibe 790 auf der Scheibe 755 unter Belassung eines Bewegungsspieles auf. Sie weist am Umfang einen unterseitig überstehenden Ring 791 auf, der mit seiner äußeren Umfangsfläche mit der Verteilerscheibe 790 abschließt und in eine Ringnut 792 auf der Oberseite des Exzenters 748 ebenfalls unter Belassung eines Bewegungsspieles und unter Bildung etwa einer Labyrinthdichtung eingreift. Dadurch ist in diesem Bereich das Eintreten von Beton zwischen den Ring 750 und die Verteilerscheibe 790 verhindert. Die Verteilerscheibe 790 ist über eine Schraube 793 fest mit der Exzenterwelle 749 verbunden und dreht sich zentrisch zum Ring 750. Beim gezeigten Ausführungsbeispiel weist die Verteilerscheibe 790 auf ihrer Oberseite etwa radial gerichtete Leisten 794 auf, die damit einstückig sind. Diese reichen beim gezeigten Ausführungsbeispiel radial bis zur äußeren Umfangsfläche der Verteilerscheibe 790. In Fig. 12 ist gestrichelt angedeutet, daß die Verteilerscheibe 790 außerdem auf ihrer äußeren Umfangsfläche zusätzlich noch abstehende Vorsprünge 795 tragen kann. Gleichartige abstehende Vorsprünge 796 sind schematisch auch auf der Oberseite der Verteilerscheibe 790 in Fig. 12 angedeutet. Die Vorsprünge 795, 796 bestehen z.B. aus runden Nocken. Bei einem anderen, nicht gezeigten Ausführungsbeispiel sind oberseitig und/oder auf der äußeren Umfangsfläche der Verteilerscheibe 790 statt dessen andersgestaltete, abstehende Vorsprünge, wie Stege, Leisten, Nocken, oder statt dessen eingetiefte Vertiefungen, wie Nuten, Senken od. dgl., vorgesehen.As can be seen, the distributor disk 790 rests on the disk 755 while leaving a play in motion. It has on the circumference a ring 791 protruding on the underside, which, with its outer circumferential surface, terminates with the distributor disk 790 and engages in an annular groove 792 on the upper side of the eccentric 748, also while leaving play of movement and forming a labyrinth seal, for example. As a result, the occurrence of Concrete between the 750 ring and the 790 distributor disc prevented. The distributor disk 790 is fixedly connected to the eccentric shaft 749 via a screw 793 and rotates centrally to the ring 750. In the exemplary embodiment shown, the distributor disk 790 has approximately radially directed strips 794 on its upper side, which are integral therewith. In the exemplary embodiment shown, these extend radially to the outer circumferential surface of the distributor disk 790. In FIG. 12, it is indicated by dashed lines that the distributor disk 790 can additionally also have protruding projections 795 on its outer circumferential surface. Similar protruding projections 796 are also indicated schematically on the upper side of the distributor disk 790 in FIG. 12. The projections 795, 796 consist, for example, of round cams. In another embodiment, not shown, on the upper side and / or on the outer circumferential surface of the distributor disk 790, protruding projections, such as webs, strips, cams, or instead recessed depressions, such as grooves, depressions or the like, are provided.

Diese Ausgestaltung der Verteilvorrichtung 756 hat den Vorteil eines außerordentlich geringen Verschleisses, da das Eindringen von Beton zwischen den Ring 750 und der Verteilvorrichtung 756 gänzlich vermieden ist. Beim Einfüllen von Beton fällt dieser auf die Verteilerscheibe 790, über die der Beton in Drehbewegung versetzt wird. Bedingt durch diese Drehbewegung entsteht eine Fliehbeschleunigung des Betons, der dadurch nach außen in den Hohlraum geschleudert wird. Durch die Leisten 794 und ggf. Vorsprünge 795 und 796 wird diese Beschleunigung des Betons nach außen noch gesteigert, so daß der Beton umso stärker in Drehbewegung versetzt und nach außen geschleudert wird. Sollte die Form überfüllt sein, z.B. wenn zu viel Beton auf der Verteilerscheibe 790 liegt, hat dies ein Ansteigen des Drehmoments zur Folge, das gemessen wird, so daß regelungstechnisch z.B. die Beschickungseinrichtung 35 (Fig. 1) zurückgeregelt werden kann. Somit bildet die Verteilvorrichtung 756 zugleich einen Fühler für eine solche Überlastungsregelung.This configuration of the distribution device 756 has the advantage of extremely low wear, since the penetration of concrete between the ring 750 and the distribution device 756 is completely avoided. When pouring concrete, it falls onto the distributor disc 790, via which the concrete is rotated. This rotational movement causes the concrete to accelerate away, which is thrown outwards into the cavity. This acceleration of the concrete to the outside is increased further by the strips 794 and possibly projections 795 and 796, so that the concrete is rotated all the more and is thrown outwards. If the shape is overfilled, for example if there is too much concrete on the distributor disc 790, this leads to an increase in the torque that is measured, so that the control technology For example, the loading device 35 (FIG. 1) can be regulated back. The distribution device 756 thus also forms a sensor for such an overload control.

Claims (28)

  1. Arrangement for producing concrete parts, in particular concrete pipes, yard and road gullies, shaft rings, shaft necks or the like, in a mould having an outer mould shell and a vibrator with a radial pressing arrangement having at least one pressing head which is transversely movable within a radial plane relative to the longitudinal central axis of the mould shell, exerts a radial pressure on the concrete material and comprises at least one cam which is eccentric with respect to the longitudinal central axis of the mould shell and being driven via a drive, characterised in that the mould has an internal mould core (14; 114; 214; 314; 414; 614; 714) in the interior of the mould shell (15), in that the vibrator (17; 117; 417; 717) is arranged in the interior of the mould core (14; 114; 214; 314; 414; 614; 714), in that the pressing head (143; 243; 343; 434; 534; 743) is arranged at the upper end of the mould core (14; 114; 214; 314; 414; 614; 714) and is kept sealed and in that the drive for the pressing head (143; 243; 343; 434; 534; 743) consists of a driving motor (144, 244, 344, 444; 744) arranged in the interior of the mould core (14; 114; 214; 314; 414; 614; 714).
  2. Arrangement according to claim 1, characterised in that the driving motor (144; 244; 344; 444; 744) is arranged coaxially to the longitudinal central axis (145; 245; 345; 445; 545) of the mould core (114; 214; 314; 414; 614; 714) and preferably centrally in the interior of the mould core.
  3. Arrangement according to claim 1 or 2, characterised in that the vibrator (17; 117; 417; 717) in the mould core (14; (114; 214; 314; 414; 614; 714) consists of a central vibrator.
  4. Arrangement according to one of claims 1 to 3, characterised in that the driving direction of the vibrator (17; 117; 417; 717) and that of the driving motor (144; 244; 344; 444; 744) of the cam (148; 248; 348; 469; 569; 748) are opposed to one another.
  5. Arrangement according to one of claims 1 to 4, characterised in that the cam (469; 569) is arranged non-rotatably on the driving shaft (447) of the driving motor (444).
  6. Arrangement according to one of claims 1 to 5, characterised in that the pressing head (143; 243; 343; 443; 543; 743) has a distributing device (156; 356; 556; 756) on its upper side.
  7. Arrangement according to claim 6, characterised in that the distributing device (156) has at least one distributing finger (157; 257; 457) which is driven rotatably round the longitudinal central axis (145; 445) of the mould shell, mould core (114; 414) or the like or round a cam axis (251), and preferably in that the distributing finger (157; 257; 457) essentially rests on the upper side of the pressing head (143; 243; 443).
  8. Arrangement according to claim 7, characterised in that the distributing finger (157; 257; 457) is set obliquely in or against the driving direction.
  9. Arrangement according to one of claims 6 to 8, characterised in that the distributing finger (157; 257; 457) is arranged non-rotatably directly on the cam or on a lengthening shoulder (147; 267; 447) adjoining the cam.
  10. Arrangement according to claim 6, characterised in that the pressing head (343) has, on its upper side, a conical cover (368) of which the central axis (351) extends eccentrically with respect to the longitudinal central axis (345) of the mould shell, mould core (314) or the like, preferably coaxially to the cam axis, the cover (368) being designed as a distributing device (356).
  11. Arrangement according to one of claims 1 to 6, characterised in that the distributing device (756) has a distributing disc (790) which is driven rotatably round the cam axis (751), rotates centrally to the cam (748), extends facially over the entire upper side of the cam (748) and covers it at least to a certain extent.
  12. Arrangement according to claim 11, characterised in that the distributing disc (790) rests on the upper side of a disc (755) of the cam (748) leaving play for movement therebetween and, with a ring (791) which projects on the underside and ends with the outer peripheral face of the distributing disc (790), engages in an associated annular groove (792) on the upper side of the cam (748) leaving play for movement therebetween and forming a substantially labyrinthine seal.
  13. Arrangement according to claim 11 or 12, characterised in that the distributing disc (790) has projections (794 to 796) protruding on its upper side and/or outer peripheral face such as ridges, strips, cogs and/or indented recesses such as grooves, depressions or the like.
  14. Arrangement according to claim 13, characterised in that the ridges or strips (794) on the upper side are directed substantially radially.
  15. Arrangement according to claims 11 to 14, characterised in that the distributing disc (790) is greater or smaller in diameter than the cam (748).
  16. Arrangement according to one of claims 1 to 15, characterised in that the cam (148; 248; 348) has a ring (150; 250; 350) of which the central axis (151; 251; 351) extends eccentrically to the longitudinal central axis (145; 245; 345) of the mould shell, the mould core (114; 214; 314) or the like.
  17. Arrangement according to claim 16, characterised in that the ring (150; 250; 350) is held on an eccentric shaft (149; 249; 349) which is coaxial thereto and extends eccentrically to the longitudinal central axis (145; 245; 345) of the mould shell, mould core (114; 214; 314) or the like.
  18. Arrangement according to claim 17, characterised in that the ring (150; 250; 350) is mounted freely rotatably on the eccentric shaft (149; 249; 349), for example by means of bearings (152, 153) which are arranged on the eccentric shaft (149; 249; 349), are coaxial to the ring (150; 250; 350) and are received in a central bearing bush (154) of the ring (150).
  19. Arrangement according to claim 18, characterised in that the ring (150; 250; 350) is rigidly connected to the central bearing bush (154) by means of individual radial spokes or by means of a disc (155; 255; 355), and preferably in that the spokes or the disc (155; 255; 355) are spaced above the terminal end face (146; 246; 346) of the mould core (114; 214; 314), moulded part or the like.
  20. Arrangement according to one of claims 16 to 19, characterised in that the ring (150; 250; 350) together with the disc (155; 255; 355) forms a substantially dish-shaped rotated pressing head (143; 243; 343).
  21. Arrangement according to one of claims 16 to 20, characterised in that the ring (150), with its underside pointing toward the mould core (114), mould core part or the like, rests substantially on the terminal end face (146) of the mould core (114), mould core part or the like and is moved relative thereto.
  22. Arrangement according to one of claims 16 to 20, characterised in that the ring (250; 350) with its underside pointing toward the mould core (214; 314), mould core part or the like extends at a distance above the terminal end face (246; 346) of the mould core, mould core part or the like and is moved relative thereto.
  23. Arrangement according to claim 22, characterised in that the ring (250; 350) is externally surrounded by an annular sealing socket (260; 360), for example of rubber, synthetic rubber, plastics material or a similar material which is wear-resistant in conjunction with concrete, the sealing socket being connected on one side to the ring (250; 350) and extending with a lower annular rim (261; 361) to the terminal end face (246; 346) of the mould core (214; 314), mould core part or the like and being connected to it there, the sealing socket (260; 360) externally closing the space (262; 362) surrounded by the ring (250; 350) and limited by the terminal end face (246; 346) of the mould core, mould core part or the like.
  24. Arrangement according to one of claims 1 to 10, characterised in that the cam is formed from an eccentric unbalanced arm (469; 569) held non-rotatably on the driving shaft (447).
  25. Arrangement according to claim 24, characterised in that the pressing head (443, 543) has a closed housing (470; 570) in whose interior the unbalanced arm (469; 569) is contained and which is supported at the upper end of the mould core (414), mould core part or the like by means of an elastic bearing arrangement (471), the elastic bearing arrangement (471) preferably having at least one rubber bearing (472).
  26. Arrangement according to claim 25, characterised in that the housing (570) of the pressing head (543) is itself designed as a distributing device (556).
  27. Arrangement according to claim 26, characterised in that at least the upper wall (578) of the housing (570) is designed as a stepped plate (579).
  28. Arrangement according to claim 27, characterised in that the stepped plate (579) is staggered so as to fall outwardly from the interior.
EP88121815A 1988-02-24 1988-12-29 Apparatus for making concrete articles Expired - Lifetime EP0329856B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3805720 1988-02-24
DE3805720A DE3805720A1 (en) 1988-02-24 1988-02-24 METHOD FOR PRODUCING CONCRETE PARTS AND DEVICE FOR CARRYING OUT THE METHOD

Publications (3)

Publication Number Publication Date
EP0329856A2 EP0329856A2 (en) 1989-08-30
EP0329856A3 EP0329856A3 (en) 1991-01-09
EP0329856B1 true EP0329856B1 (en) 1992-12-02

Family

ID=6348034

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88121815A Expired - Lifetime EP0329856B1 (en) 1988-02-24 1988-12-29 Apparatus for making concrete articles

Country Status (3)

Country Link
US (1) US5040968A (en)
EP (1) EP0329856B1 (en)
DE (2) DE3805720A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1230976B (en) * 1989-07-03 1991-11-08 Croci Mario & Figli Srl PROCEDURE AND EQUIPMENT FOR THE REALIZATION OF REINFORCED CONCRETE PIPES.
US5248248A (en) * 1989-11-13 1993-09-28 Adly Tarek A Machine for making concrete pipes
DK71191D0 (en) * 1991-04-19 1991-04-19 Pedershaab Maskinfabrik As MACHINE FOR WITH TWO INCLUDED AXIALLY MOVABLE FORMATS TO CAST HOLE BODIES, ISRAEL CONCRETE
DK71391D0 (en) * 1991-04-19 1991-04-19 Pedershaab Maskinfabrik As MACHINE FOR IN A FORMER SYSTEM WITH DISTRIBUTOR WHEELS VERTICALLY CASTING PIPES OF CONCRETE OR SIMILAR MATERIAL
US5234331A (en) * 1991-07-12 1993-08-10 Hawkeye Concrete Products Co. Automated pipe making machine
US5215673A (en) * 1992-02-03 1993-06-01 Roger Beacom Apparatus for the production of a symmetrical oval concrete pipe
DE4322785A1 (en) * 1992-08-17 1995-01-19 Zueblin Ag Process for the production of concrete pipes and device for carrying out the process
ATA212093A (en) * 1993-10-21 1996-07-15 Schluesselbauer Johann DEVICE FOR PRODUCING RING OR TUBULAR WORKPIECES FROM CONCRETE
DE4432333A1 (en) * 1994-09-10 1996-03-14 Iloma Automatisierungstechnik Method and device for producing molded articles from polymer concrete
US20050269747A1 (en) * 2004-06-04 2005-12-08 Wuelfing Otto J Press head assembly for concrete pipe making machine
WO2013123608A1 (en) * 2012-02-20 2013-08-29 一诺仪器(威海)有限公司 Optical fiber cutter
CN112809884A (en) * 2019-11-15 2021-05-18 新沂新南资源综合利用技术研究院有限公司 Device for producing plate wall by using solid waste resources
CN113856558B (en) * 2021-10-13 2024-06-11 中南钻石有限公司 High-performance composite pressure transmission component and preparation method thereof

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1050262B (en) *
US1684858A (en) * 1923-07-25 1928-09-18 Concrete Products Company Of A Method of and apparatus for forming concrete pipe
US1895740A (en) * 1931-07-06 1933-01-31 Bozidar J Ukropina Method of making concrete pipe
DE623264C (en) * 1932-09-20 1935-12-17 Edward Henry Bishop Machine for the production of pipes from cementitious material or for lining pipes with this material
BE454559A (en) * 1941-09-19
GB560138A (en) * 1942-05-20 1944-03-22 Jakob Stussi A centrifugal moulding machine for the production of pipes, masts and the like
US2786252A (en) * 1951-07-27 1957-03-26 American Pipe & Constr Co Apparatus for forming dense coating on pipe
DE1083167B (en) * 1958-12-27 1960-06-09 Richard Heinz Device for smoothing the inner surfaces according to the vibration method of compacted concrete pipes or the like.
DE1131584B (en) * 1959-06-05 1962-06-14 Pfeiffer Maschf Ettlingen Method and device for manufacturing concrete pipes
DE1143750B (en) * 1959-06-11 1963-02-14 Liselotte Gueth Geb Wiegert Device for producing pipes of any cross-section from concrete
US3083433A (en) * 1960-12-19 1963-04-02 Concrete Pipe Machinery Co Machine for making concrete pipe
US3096556A (en) * 1961-06-23 1963-07-09 Randell C Woods Concrete pipe forming apparatus
US3141222A (en) * 1963-02-04 1964-07-21 Steiro Harry Concrete pipe making apparatus
NL300264A (en) * 1963-11-08 1965-09-10
US3383742A (en) * 1964-11-30 1968-05-21 Beloit Corp Machine for making concrete pipes
FR1472820A (en) * 1966-03-29 1967-03-10 Ohg Mario Croci Eccentric roller mandrel for forming tamped concrete tubes
DE6606406U (en) * 1966-09-17 1970-09-17 Ettlingen Friedrich Maschf PIPE FORMING MACHINE FOR THE PRODUCTION OF CONCRETE PIPES
AT277035B (en) * 1968-03-20 1969-12-10 Ettlingen Pfeiffer Kg Maschf Method and device for the manufacture of cement pipes
DE1924932A1 (en) * 1969-05-16 1970-11-26 Henke Maschf Gmbh Machine for the production of concrete pipes
USRE28902E (en) * 1969-10-17 1976-07-13 Concrete Pipe Machinery Company Vibratory core for concrete pipe making machine
DE2131898A1 (en) * 1971-06-26 1973-01-11 Horst Kern RADIAL PRESS FOR THE PRODUCTION OF CONCRETE PIPES
DE2507498A1 (en) * 1975-02-21 1976-08-26 Horst Kern Radial press head for concrete piped prodn. - has machine glaze cylinder constructed of tensioned circular plates
DE2513032A1 (en) * 1975-03-25 1976-10-07 Omag Maschinenbau Ag Concrete compaction for production of tubes - has vibration moulding and centrifuging with interior mould and conical float
DE2739000A1 (en) * 1977-08-30 1979-03-15 Horst Ing Grad Kern Concrete pipe radial press roller head - has rollers of stepped section with smallest at top and smoothing cylinder at bottom
DE7726780U1 (en) * 1977-08-30 1979-12-06 Kern, Horst, Ing.(Grad.), 7522 Philippsburg Pipe press for the production of a concrete pipe
US4123033A (en) * 1977-09-09 1978-10-31 Joelson Carl R Apparatus for forming hollow cylindrical pipes of reinforced concrete
SU942992A2 (en) * 1978-10-06 1982-07-15 Всесоюзный Государственный Проектный Институт По Строительному Машиностроению Для Сборного Железобетона "Гипростроммаш" Head for radial moulding of concrete products
US4253814A (en) * 1979-01-29 1981-03-03 Hydrotile Canada Limited Packerhead and core control system
SU1004114A1 (en) * 1980-08-22 1983-03-15 Горьковский Завод Железобетонных Конструкций N5 Промышленного Треста N1 "Железобетон" Head to radial-pressing tube-moulding machine
SU973373A1 (en) * 1981-04-06 1982-11-15 Брестский инженерно-строительный институт Core of installation for moulding tubular articles of concrete mixes
US4540539A (en) * 1982-12-21 1985-09-10 International Pipe Machinery Corp. Method and apparatus for production of concrete pipe by the packerhead method
US4639342A (en) * 1984-06-11 1987-01-27 Hydrotile Machinery Company Combined concrete feed and packerhead lift control
DE3429601C3 (en) * 1984-08-10 1994-08-04 Peter Reinschuetz Method and device for producing hollow cylindrical bodies made of concrete, in particular palisade stones
SU1252183A1 (en) * 1984-12-06 1986-08-23 Таджикский политехнический институт Arrangement for shaping tubular articles
DE8616610U1 (en) * 1986-06-21 1986-08-28 Omag Ostfriesische Maschinenbau Ag, 2970 Emden Concrete molding machine for the production of tubular concrete castings, in particular manhole rings and bell socket pipes
DE3803637A1 (en) * 1988-02-06 1989-08-17 Prinzing Georg Gmbh Co Kg Arrangement for manufacturing concrete parts

Also Published As

Publication number Publication date
EP0329856A3 (en) 1991-01-09
DE3876419D1 (en) 1993-01-14
US5040968A (en) 1991-08-20
EP0329856A2 (en) 1989-08-30
DE3805720A1 (en) 1989-09-07

Similar Documents

Publication Publication Date Title
EP0329856B1 (en) Apparatus for making concrete articles
DE1817452A1 (en) Self-separating vibratory polishing machine
EP0779855B1 (en) Method and device for producing pipes or tubular moulded bodies from polymer concrete
EP2628581A1 (en) Device and method for manufacturing precast concrete blocks
EP0175930B1 (en) Process and apparatus for making hollow slabs and similar construction elements, preferably out of concrete
DE3036698A1 (en) METHOD AND DEVICE FOR PRODUCING CONCRETE PIPES BY FILLING AND COMPACING FRESH CONCRETE IN AN UPRIGHT FORM
DE2500405A1 (en) INJECTION BLOW METHOD AND DEVICE
DE1667038A1 (en) Method and device for the production of spheres from mixtures
EP0015469B1 (en) Apparatus for pressing a concrete pipe in an underlying socket by centrifugal force
DE69233490T2 (en) Method for vertically casting tubes of concrete or similar material in a molding plant with a distributor disc
EP0476245B2 (en) Process for making concrete products
EP0589196B1 (en) Device for making concrete pipes
EP2011615B1 (en) Method and device for producing lower shaft parts with variable channels.
EP1308254B1 (en) Apparatus for the production of concrete pipes
DE69004015T2 (en) Method and device for producing reinforced concrete pipes.
DE2921652A1 (en) Concrete tube prodn. by centrifugal casting - with mould part including end rings one of which is part of the extraction tool
DE2365254A1 (en) DEVICE FOR MANUFACTURING PIPES
DE3323340A1 (en) Moulding apparatus for producing concrete mouldings
DE3442977A1 (en) Worm screw pump and method and apparatus for manufacturing it
EP0670763A1 (en) Method and device for producing concrete pipes of uniform length
DE1174668B (en) Device for the production of hollow moldings from concrete or similar masses
DE1934594C (en) Device for manufacturing concrete pipes
CH666792A5 (en) METHOD AND DEVICE FOR THE SHAPING PROCESSING OF VEGETABLES.
DE4429792C2 (en) Process and pan mill for crushing mineral raw materials
DE458231C (en) Process for the production of molded bodies from plastic mass, in particular clay tubes, in the extrusion press

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890513

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

RHK1 Main classification (correction)

Ipc: B28B 21/76

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19910614

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19921201

REF Corresponds to:

Ref document number: 3876419

Country of ref document: DE

Date of ref document: 19930114

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: DL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19961118

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19961210

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970219

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19971231

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19971229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST