EP0327828B1 - Resistance masses for firing under nitrogen - Google Patents

Resistance masses for firing under nitrogen Download PDF

Info

Publication number
EP0327828B1
EP0327828B1 EP89100576A EP89100576A EP0327828B1 EP 0327828 B1 EP0327828 B1 EP 0327828B1 EP 89100576 A EP89100576 A EP 89100576A EP 89100576 A EP89100576 A EP 89100576A EP 0327828 B1 EP0327828 B1 EP 0327828B1
Authority
EP
European Patent Office
Prior art keywords
mol
resistance material
material according
srru
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89100576A
Other languages
German (de)
French (fr)
Other versions
EP0327828A3 (en
EP0327828A2 (en
Inventor
Jerry Dr. Steinberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WC Heraus GmbH and Co KG
Original Assignee
WC Heraus GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WC Heraus GmbH and Co KG filed Critical WC Heraus GmbH and Co KG
Publication of EP0327828A2 publication Critical patent/EP0327828A2/en
Publication of EP0327828A3 publication Critical patent/EP0327828A3/en
Application granted granted Critical
Publication of EP0327828B1 publication Critical patent/EP0327828B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/06533Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of oxides
    • H01C17/0654Oxides of the platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/06553Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of a combination of metals and oxides

Definitions

  • the invention relates to resistance materials which can be burned in under nitrogen.
  • Resistance paste usually consists of a conductor phase (perovskite), a glass phase (binder or glass frit), additives and an organic carrier.
  • resistors that can be burned in under nitrogen A problem with resistors that can be burned in under nitrogen is frequently that the resistor and the metal (for example copper, connecting terminals) react with one another at the contact points, which leads to an unfavorable geometric ratio.
  • the object of the invention is therefore to provide a thick film resistor which does not have a large contact resistance when connected to copper lines, which can lead to a poor geometry ratio and thus to poor laser trimming properties.
  • Another object of the invention is to provide a thick film resistor that can be burned in a reducing (non-oxidizing) atmosphere, for example nitrogen, while maintaining good properties, for example the temperature coefficient of the resistor.
  • a reducing (non-oxidizing) atmosphere for example nitrogen
  • Figure 1 shows a schematic representation of a resistor.
  • FIG. 2 shows a schematic illustration of an electrical resistance circuit corresponding to FIG. 1.
  • additives can be used to optimize various properties of the resistors, e.g. the temperature coefficient of the resistor, the sensitivity to electrostatic discharges, the voltage stability and the laser trimmability.
  • Surface modifiers for improving the external appearance and as glass reinforcing agents can be considered as further additives. These change the glass flow during firing and form places where the cracking is interrupted, which improves the laser trim stability.
  • these additives consist of ceramic oxides with a large surface area, such as Al2O3, TiO2 and SiO2.
  • All of the above-mentioned substances are dispersed in an organic medium, which mainly serves as a carrier for the application of the dissolved particles to a corresponding base.
  • the medium must also volatilize without residues during the burning process and may itself have only minimal effects, for example in the form of a reduction in the conductive phase.
  • a suitable organic carrier for the purposes of the present invention would be an organic material that volatilizes at a fairly low temperature (200 to 500 ° C).
  • a resin for example an acrylate resin, preferably polyisobutyl methacrylate, and a solvent, for example "TEXANOL®” from Eastman Kodak, Rochester, N.Y., USA, are used as the carrier.
  • the resin can be any polymer that decomposes at temperatures up to 400 ° C in a nitrogen atmosphere containing less than 10 ppm oxygen.
  • Terpineol and tridecyl alcohol are suitable as further solvents.
  • TDA Terpineol and tridecyl alcohol
  • any solvent or plasticizer that dissolves the resin in question and a suitable one the following dispersion and Application processes have adapted vapor pressure.
  • the organic solvent consists of 30 to 50% by weight of polyisobutyl methacrylate and 50 to 70% by weight of "TEXANOL®”.
  • compositions for the perovskite are: SrRuO3, Sr 0.9 La 0.1 RuO3, SrRu 0.95 Ti 0.05 O3, Sr 0.9 La 0.1 Ru 0.95 Ti 0.05 O3, BaRuO3, Ba 0.9 La 0.1 RuO3, BaRu 0.95 Ti 0.05 O3 and Ba 0.9 La 0.1 Ru 0.95 Ti 0.05 O3.
  • the BET Monosorb method is a method for measuring the surface of a powder. It consists in measuring the volume of gas required to cover the powder with a monomolecular layer and then calculating the surface from the gas taken up and the molecule diameter.
  • compositions with a good geometry ratio The geometry ratio says something about the ratio of the resistance values to the size of the resistance. For example, if the length of a thick film resistor increases five times at a constant width, ideally the resistance should also increase five times. Any deviation from this rule in the case of a thick-film resistor indicates that a chemical reaction takes place at the interface between the resistor and the conductor termination, which causes contact resistance in series with the resistor body (see FIGS. 1 and 2).
  • the glass tends to dissolve the perovskite according to the following reaction: a) SrRuO3 + glass -> RuO2 + SrO (2) b) RuO2 -> Ru + O2 (in reducing atmospheres).
  • reaction (1) or (2) occurs and a large amount of RuO2 or ruthenium is generated, resistors with a poor geometry ratio are obtained. On the other hand, preventing these reactions also creates poor contact resistance.
  • the addition of copper-metal or nickel-metal or copper (II) oxide leads to a compromise between these two extremes and to a good geometry ratio.
  • the copper or nickel or copper (II) oxide powder should preferably have a particle size (sedigraph) in the range of 50% 2 to 7.0 ⁇ m and a surface area of 0.25 to 3.0 m2 / g.
  • the proportion of copper or nickel or copper (II) oxide relative to the total weight of the conductive phase is 5 to 30% by weight, preferably 8 to 20% by weight. If copper or nickel or copper (II) oxide powder is added below this ratio, the resistance properties change from circuit to circuit. Above this range, the temperature coefficient of resistance (TCR) changes with the temperature and reaches outside the range (400 ppm) which is useful for thick film applications.
  • the glass frit is generally important because it helps to sinter the conductive phase particles into a dense homogeneous film and because it chemically bonds to the substrate. In addition, the glass frit serves to dilute the conductive phase and therefore results in resistors with different resistivities.
  • the special glass composition is important for the special resistances dealt with in the application in that it contributes to the control of the reaction (2). It has been shown that, in order to avoid complete dissolution of the conductive phase, at least 40 mol% of the cation located in the A'-position should be contained in the glass. In the cases described here, this is SrO or BaO. A content between 47 and 58 mol% is preferred. At higher quantities, the glass tends to devitrify and poor adhesion to the substrate. In addition, the glass should preferably contain TiO2 as a modifier in amounts from 0.25 to 2.00 mol%, preferably from 0.7 to 1.5 mol%.
  • the glass-forming oxides can consist of B2O3 or SiO2.
  • the glass should come from one or two families of glass, namely SrO-B2O3-SiO2 or BaO-B2O3-SiO2, modified with ZnO and TiO2 (glass family I), and SrO-B2O3-Al2O3 or BaO-B2O3-Al2O3, modified with TiO2 (Glass family II).
  • composition ranges are preferred for these glass families: Glass family I Preferred mol% proportions SrO or BaO 42 to 52 B2O3 28 to 40 ZnO 2 to 5 TiO2 0.7 to 1.5 SiO2 7 to 12 Glass family II Preferred mol% proportions SrO or BaO 45 to 58 B2O3 28 to 40 Al2O3 8 to 18 TiO2 0.7 to 1.5
  • the SrO component can consist of SrO, BaO or SrO + BaO.
  • the specific surface areas are between 0.5 and 3.0 m2 / g.
  • the perovskite powder was prepared by mixing the appropriate oxides in deionized water in a ball mill over a four hour period. The dried powders were then baked in an alumina crucible at 1200 ° C for two hours. The material was then sieved through a 200 mesh sieve and baked a second time at 1200 ° C. for two hours. This process was followed by a further processing in the ball mill in deionized water to reduce the size accordingly.
  • the corresponding oxides were weighed into a kyanite crucible.
  • the powders were preheated at 600 ° C for one hour and then melted at 1200 ° C for 30 minutes.
  • the molten material was then quenched in water at room temperature. This process favored the glass formation and subsequent size reduction.
  • the powder of the appropriate size was typically obtained by ball milling in isopropyl alcohol.
  • the powders were first mixed with the organic carrier either by hand or using an electrical Hobart mixer kneaded and then dispersed in a paint grinder or a three-roll mill.
  • the paste thus produced was applied to a substrate, typically made of 96% Al2O3, using a 325 mesh screen, which was already provided with appropriate contacts, typically made of copper.
  • the resistors were then dried at 150 ° C for 10 minutes to remove volatile solvents.
  • the dried resistors were then fired in a thick film continuous furnace with a reducing atmosphere, typically nitrogen with less than 10 ppm oxygen, at a peak temperature of 900 ° C ⁇ 10 ° C.
  • the burned circuits were then checked for compliance with the desired properties.
  • the resistance was determined by the two-point probe method using a suitable ohmmeter.
  • the temperature coefficient of the resistance was determined by first measuring the resistance at 25 ° C, then placing the circuit in a corresponding test chamber at 125 ° C, then measuring the resistance again and then performing the calculation according to equation (3). To determine the geometric ratio, the resistance value of a resistor of size (R1) of 50 mm x 50 mm and then a resistance of size (R5) of 50 mm x 250 mm was measured.
  • Resistors that are suitable for thick film circuits must also have other properties. These properties depend in part on that special application, so that they are not dealt with in detail here. These include power consumption, dielectric strength, sensitivity to electrostatic discharge, resistance to environmental influences and miscibility.
  • Table 2 shows that the addition of copper powder to the perovskite / glass combination gives compositions with a good geometry ratio. When replacing the copper with nickel powder (Example X), acceptable results were obtained.
  • Table 3 shows the limit values for the addition of copper powder to given glass compositions. In the range of about 21%, the HTCR value rises above 400 ppm; this is the maximum usable value for most applications.
  • the glass compositions should preferably contain titanium oxide.

Description

Die Erfindung betrifft unter Stickstoff einbrennbare Widerstandsmassen.The invention relates to resistance materials which can be burned in under nitrogen.

Das US-Patent 4 536 328 beschreibt eine Masse für die Herstellung elektrischer Widerstandselemente.U.S. Patent 4,536,328 describes a composition for making electrical resistance elements.

Eine Widerstandspaste besteht normalerweise aus einer Leiterphase (Perowskit), einer Glasphase (Bindemittel oder Glasfritte), Zuschlagstoffen und einem organischen Träger.Resistance paste usually consists of a conductor phase (perovskite), a glass phase (binder or glass frit), additives and an organic carrier.

Ein Problem bei unter Stickstoff einbrennbaren Widerständen besteht häufig darin, daß der Widerstand und das Metall (zum Beispiel Kupfer, Anschlußklemmen) an den Berührungspunkten miteinander reagieren, was zu einem ungünstigen Geometrieverhältnis führt.A problem with resistors that can be burned in under nitrogen is frequently that the resistor and the metal (for example copper, connecting terminals) react with one another at the contact points, which leads to an unfavorable geometric ratio.

Aufgabe der Erfindung ist es deshalb, einen Dickfilm-Widerstand bereitzustellen, der beim Anschluß an Kupferleitungen keinen großen Kontaktwiderstand aufweist, was zu einem schlechten Geometrieverhältnis und damit zu schlechten Laser-Trimmeigenschaften führen kann.The object of the invention is therefore to provide a thick film resistor which does not have a large contact resistance when connected to copper lines, which can lead to a poor geometry ratio and thus to poor laser trimming properties.

Ein weiteres Ziel der Erfindung ist es, einen Dickfilm-Widerstand zu schaffen, der in einer reduzierenden (nicht-oxidierenden) Atmosphäre, zum Beispiel Stickstoff, unter Beibehaltung guter Eigenschaften, zum Beispiel des Temperaturkoeffizienten des Widerstandes, gebrannt werden kann.Another object of the invention is to provide a thick film resistor that can be burned in a reducing (non-oxidizing) atmosphere, for example nitrogen, while maintaining good properties, for example the temperature coefficient of the resistor.

Erfindungsgemäß werden ausgehend von der aus US-A-4 536 328 bekannten Widerstands masse die vorstehenden Aufgaben und weitere Ziele und Vorteile erreicht durch eine verbesserte, unter Stickstoff einbrennbare Widerstandsmasse, bestehend aus

  • a) einer leitenden Phase mit
    • (1) einem Perowskit in Form von A′l-xxB′l-yy0₃ mit A' gleich Sr oder Ba, wobei wenn A′ gleich Sr ist, A˝ eines oder mehrere der Elemente Ba, La, Y, Ca und Na ist, und wenn A′ gleich Ba ist, A˝ eines oder mehrere der Elemente Sr, La, Y, Ca und Na ist, B′ gleich Ru und B˝ eines oder mehrere der Elemente Ti, Cd, Zr, V und Co und O ≦ x ≦ 0,2 und 0 ≦ y ≦ 0,2 ist,
      und
    • (2) 5 bis 30 Gewichts-%, bezogen auf das Gesamtgewicht der leitenden Phase, Kupfer-Pulver, Nickel-Pulver oder Kupfer (II) oxid
    und
  • b) einer aus der folgenden Gruppe ausgewählten Glasphase:
    • a) 40 bis 60 Mol-% SrO oder BaO, 25 bis 45 Mol-% B₂O₃, 0 bis 6 Mol-% ZnO, 0,25 bis 2,0 Mol-% TiO₂, 2 bis 14 Mol-% SiO₂ und
    • b) 40 bis 60 Mol-% SrO oder BaO, 25 bis 45 Mol-% B₂O₃, 5 bis 20 Mol-% Al₂O₃, 0,25 bis 2,0 Mol-% TiO₂.
According to the invention, starting from the resistance mass known from US Pat. No. 4,536,328, the above objects and further objectives and advantages are achieved by an improved resistance mass which can be burned in under nitrogen, consisting of
  • a) with a leading phase
    • (1) a perovskite in the form of A ′ lxx B ′ lyy 0₃ with A ′ equal to Sr or Ba, where if A ′ is equal to Sr, A˝ one or more of the elements Ba, La, Y, Ca and Na is, and when A ′ is Ba, A˝ is one or more of Sr, La, Y, Ca and Na, B ′ is Ru and B˝ is one or more of Ti, Cd, Zr, V and Co and O is ≦ x ≦ 0.2 and 0 ≦ y ≦ 0.2,
      and
    • (2) 5 to 30% by weight, based on the total weight of the conductive phase, copper powder, nickel powder or copper (II) oxide
    and
  • b) a glass phase selected from the following group:
    • a) 40 to 60 mol% SrO or BaO, 25 to 45 mol% B₂O₃, 0 to 6 mol% ZnO, 0.25 to 2.0 mol% TiO₂, 2 to 14 mol% SiO₂ and
    • b) 40 to 60 mol% of SrO or BaO, 25 to 45 mol% of B₂O₃, 5 to 20 mol% of Al₂O₃, 0.25 to 2.0 mol% of TiO₂.

Figur 1 zeigt eine schematische Darstellung eines Widerstandes.Figure 1 shows a schematic representation of a resistor.

Figur 2 zeigt eine schematische Darstellung einer der Figur 1 entsprechenden elektrischen Widerstandsschaltung.FIG. 2 shows a schematic illustration of an electrical resistance circuit corresponding to FIG. 1.

Die wichtigsten Substanzen der Dickfilm-Widerstandsmassen gemäß der Erfindung bestehen aus

  • a) der leitenden Phase und
  • b) der Glasfritte (Glasphase oder Bindemittel).
The most important substances of the thick film resistance materials according to the invention consist of
  • a) the leading phase and
  • b) the glass frit (glass phase or binder).

Zur Optimierung verschiedener Eigenschaften der Widerstände, zum Beispiel des Temperaturkoeffizienten des Widerstandes, der Empfindlichkeit gegenüber elektrostatischen Entladungen, der Spannungsstabilität und der Laser-Trimmbarkeit, können verschiedene Zuschlagstoffe eingesetzt werden, u.a. MnO₂, TiO₂, ZrO₂, CuO und SrTiO₃. Als weitere Zuschlagstoffe können Oberflächen-Modifikatoren zur Verbesserung des äußeren Aussehens und als Glas-Verstärkungsmittel in Frage kommen. Diese verändern den Glasfluß während des Brennens und bilden Stellen, an denen die Rißbildung unterbrochen wird, wodurch die Laser-Trimmstabilität verbessert wird. Typischerweise bestehen diese Zuschlagstoffe aus keramischen Oxiden mit großer Oberfläche, wie Al₂O₃, TiO₂ und SiO₂.Various additives can be used to optimize various properties of the resistors, e.g. the temperature coefficient of the resistor, the sensitivity to electrostatic discharges, the voltage stability and the laser trimmability. MnO₂, TiO₂, ZrO₂, CuO and SrTiO₃. Surface modifiers for improving the external appearance and as glass reinforcing agents can be considered as further additives. These change the glass flow during firing and form places where the cracking is interrupted, which improves the laser trim stability. Typically, these additives consist of ceramic oxides with a large surface area, such as Al₂O₃, TiO₂ and SiO₂.

Alle vorgenannten Stoffe werden in einem organischen Medium, das hauptsächlich als Träger für das Aufbringen der gelösten Partikel auf eine entsprechende Unterlage dient, dispergiert. Das Medium muß sich außerdem während des Brennvorganges ohne Rückstände verflüchtigen und darf selbst nur minimale Auswirkungen, zum Beispiel in Form einer Reduktion der leitenden Phase, haben.All of the above-mentioned substances are dispersed in an organic medium, which mainly serves as a carrier for the application of the dissolved particles to a corresponding base. The medium must also volatilize without residues during the burning process and may itself have only minimal effects, for example in the form of a reduction in the conductive phase.

Ein geeigneter organischer Träger für die Zwecke der vorliegenden Erfindung wäre zum Beispiel ein organisches Material, das sich bei einer recht niedrigen Temperatur (200 bis 500°C) verflüchtigt. Vorzugsweise wird für die Zwecke der vorliegenden Erfindung als Träger ein Harz, zum Beispiel ein Acrylatharz, vorzugsweise Polyisobutylmethacrylat, und ein Lösungsmittel, zum Beispiel "TEXANOL®" von Eastman Kodak, Rochester, N.Y., USA, verwendet. Bei dem Harz kann es sich um jedes Polymerisat handeln, das sich bei Temperaturen bis zu 400°C in einer weniger als 10 ppm Sauerstoff enthaltenden Stickstoff-Atmosphäre zersetzt.For example, a suitable organic carrier for the purposes of the present invention would be an organic material that volatilizes at a fairly low temperature (200 to 500 ° C). Preferably, for the purposes of the present invention, a resin, for example an acrylate resin, preferably polyisobutyl methacrylate, and a solvent, for example "TEXANOL®" from Eastman Kodak, Rochester, N.Y., USA, are used as the carrier. The resin can be any polymer that decomposes at temperatures up to 400 ° C in a nitrogen atmosphere containing less than 10 ppm oxygen.

Als weitere Lösungsmittel kommen Terpineol und Tridecylalkohol ("TDA") in Frage. Allgemein können für die Zwecke der vorliegenden Erfindung alle Lösungsmittel oder Weichmacher verwendet werden, die das betreffende Harz auflösen und einen geeigneten, den nachfolgenden Dispersions- und Aufbringungsvorgängen angepaßten Dampfdruck aufweisen. Gemäß einer bevorzugten Ausführungsform der Erfindung besteht das organische Lösungsmittel aus 30 bis 50 Gewichts-% Polyisobutylmethacrylat und 50 bis 70 Gewichts-% "TEXANOL®".Terpineol and tridecyl alcohol ("TDA") are suitable as further solvents. In general, for the purposes of the present invention, any solvent or plasticizer that dissolves the resin in question and a suitable one, the following dispersion and Application processes have adapted vapor pressure. According to a preferred embodiment of the invention, the organic solvent consists of 30 to 50% by weight of polyisobutyl methacrylate and 50 to 70% by weight of "TEXANOL®".

Besondere Zusammensetzungen des Perowskits sind in Anspruch 4 angegeben.Particular compositions of the perovskite are given in claim 4.

Bevorzugte Zusammensetzungen für den Perowskit sind:
SrRuO₃, Sr0,9La0,1RuO₃, SrRu0,95Ti0,05O₃,
Sr0,9La0,1Ru0,95Ti0,05O₃, BaRuO₃, Ba0,9La0,1RuO₃,
BaRu0,95Ti0,05O₃ und Ba0,9La0,1Ru0,95Ti0,05O₃.
Preferred compositions for the perovskite are:
SrRuO₃, Sr 0.9 La 0.1 RuO₃, SrRu 0.95 Ti 0.05 O₃,
Sr 0.9 La 0.1 Ru 0.95 Ti 0.05 O₃, BaRuO₃, Ba 0.9 La 0.1 RuO₃,
BaRu 0.95 Ti 0.05 O₃ and Ba 0.9 La 0.1 Ru 0.95 Ti 0.05 O₃.

Wenn auch die hierin beschriebenen Eigenschaften nicht unbedingt von den physikalischen Eigenschaften der leitenden Perowskit-Phase abhängen, sollten vorzugsweise alle Partikel jedoch klein genug sein, um ein 400 mesh Sieb passieren zu können, und eine Oberflächen zwischen 3 und 9 m²/g, gemessen nach dem BET-Monosorb-Verfahren, aufweisen. Bei dem BET-Monosorb-Verfahren handelt es sich um ein Verfahren zur Messung der Oberfläche eines Pulvers. Es besteht darin, daß man das Gasvolumen mißt, das benötigt wird, um das Pulver mit einer monomolekularen Schicht zu bedecken, und daß man aus dem aufgenommenen Gas und dem Molekül-Durchmesser dann die Oberfläche errechnet.Although the properties described herein do not necessarily depend on the physical properties of the conductive perovskite phase, all particles should preferably be small enough to pass through a 400 mesh sieve and have a surface area between 3 and 9 m 2 / g as measured by the BET Monosorb process. The BET Monosorb method is a method for measuring the surface of a powder. It consists in measuring the volume of gas required to cover the powder with a monomolecular layer and then calculating the surface from the gas taken up and the molecule diameter.

Die Zugabe von metallischem Kupfer oder Nickel (elementares Kupfer oder elementares Nickel) oder von Kupfer (II) oxid als Teil der leitenden Phase führt zu Zusammensetzungen mit gutem Geometrieverhältnis. Das Geometrieverhältnis sagt etwas aus über das Verhältnis der Widerstandswerte zur Größe des Widerstandes. Wenn zum Beispiel die Länge eines Dickfilm-Widerstandes bei konstanter Breite auf das Fünffache steigt, sollte im Idealfall auch der Widerstand sich um das Fünffache erhöhen. Jede Abweichung von dieser Regel zeigt bei einem Dickfilm-Widerstand an, daß an der Schnittstelle zwischen dem Widerstand und dem Leiterabschluß eine chemische Reaktion stattfindet, die einen in Reihe mit dem Widerstandskörper liegenden Kontaktwiderstand verursacht (siehe Figur 1 und Figur 2).The addition of metallic copper or nickel (elemental copper or elemental nickel) or of copper (II) oxide as part of the conductive phase leads to compositions with a good geometry ratio. The geometry ratio says something about the ratio of the resistance values to the size of the resistance. For example, if the length of a thick film resistor increases five times at a constant width, ideally the resistance should also increase five times. Any deviation from this rule in the case of a thick-film resistor indicates that a chemical reaction takes place at the interface between the resistor and the conductor termination, which causes contact resistance in series with the resistor body (see FIGS. 1 and 2).

Figur 2 zeigt die der Figur 1 entsprechende elektrische Schaltung. Würde man an die Kontaktierungen (2) der Figur 1 mit dem Widerstand (1) einen Widerstandsmesser anschließen, würde der gemessene Widerstand gleich dem Widerstand der Kupferkontaktierungen (RCU), dem Kontaktwiderstand an der Grenzfläche zwischen Kontaktierung und Widerstand (RCON) sowie dem Widerstand des Widerstandskörpers (RRES) sein. Diese Widerstände liegen, wie aus der Schaltung ersichtlich, alle in Reihe und addieren sich infolgedessen, so daß REQ = RCU + 2(RCON) + RRES ist, wobei REQ der Äquivalent-Widerstand ist, der von einem Widerstandsmesser ermittelt werden würde.Figure 2 shows the electrical circuit corresponding to Figure 1. If one connected a resistance meter to the contacts (2) of FIG. 1 with the resistor (1), the measured resistance would equal the resistance of the copper contacts (R CU ), the contact resistance at the interface between contact and resistance (R CON ) and the Resistance body resistance (R RES ). As can be seen from the circuit, these resistors are all in series and consequently add up so that R EQ = R CU + 2 (R CON ) + R RES , where R EQ is the equivalent resistance determined by a resistance meter would be.

Die Beigabe von pulverförmigen Kupfer oder Nickel oder Kupfer (II) oxid als Bestandteil der leitenden Phase führt zu guten Geometrieverhältnissen (ein Widerstandsanstieg von mehr als 4,5 bei einer Längenvergrößerung auf das Fünffache). Ohne daß hier eine bestimmte Theorie aufgestellt werden soll, wird angenommen, daß das Kupfer oder Nickel oder Kupfer (II) oxid die Zersetzung und Auflösung des Ruthenium-Perowskits steuert. Während des Brennens in einer reduzierenden Atmosphäre hat das Polymerisat die Tendenz, den Perowskit durch folgende Reaktion zu reduzieren:

a)

        SrRuO₃ + Kohlenstoff (Polymerisat) --> RuO₂ + SrO   (1)


b)

        RuO₂ --> Ru + O₂

(in reduzierenden Atmosphären).
The addition of powdered copper or nickel or copper (II) oxide as a component of the conductive phase leads to good geometrical relationships (a resistance increase of more than 4.5 with a length increase of five times). Without being bound by any theory, it is believed that the copper or nickel or copper (II) oxide controls the decomposition and dissolution of the ruthenium perovskite. During firing in a reducing atmosphere, the polymer tends to reduce the perovskite by the following reaction:

a)

SrRuO₃ + carbon (polymer) -> RuO₂ + SrO (1)


b)

RuO₂ -> Ru + O₂

(in reducing atmospheres).

Außerdem hat das Glas die Tendenz, den Perowskit gemäß folgender Reaktion aufzulösen:

a)

        SrRuO₃ + Glas --> RuO₂ + SrO   (2)


b)

        RuO₂ --> Ru + O₂

(in reduzierenden Atmosphären).
In addition, the glass tends to dissolve the perovskite according to the following reaction:

a)

SrRuO₃ + glass -> RuO₂ + SrO (2)


b)

RuO₂ -> Ru + O₂

(in reducing atmospheres).

Wenn Reaktion (1) oder (2) eintritt und eine große Menge RuO₂ oder Ruthenium erzeugt wird, erhält man Widerstände mit schlechtem Geometrieverhältnis. Andererseits entsteht durch Verhinderung dieser Reaktionen auch ein schlechter Kontaktwiderstand. Die Zugabe von Kupfer-Metall oder Nickel-Metall oder Kupfer (II) oxid führt zu einem Kompromiß zwischen diesen beiden Extremen und zu einem guten Geometrieverhältnis.If reaction (1) or (2) occurs and a large amount of RuO₂ or ruthenium is generated, resistors with a poor geometry ratio are obtained. On the other hand, preventing these reactions also creates poor contact resistance. The addition of copper-metal or nickel-metal or copper (II) oxide leads to a compromise between these two extremes and to a good geometry ratio.

Wenn auch die physikalischen Eigenschaften des Kupfer- oder Nickel- oder Kupferoxid-Pulvers für das verbesserte Geometrieverhältnis nicht kritisch sind, soll das Kupfer- oder Nickel- oder Kupfer (II) oxid-Pulver vorzugsweise zu 50% eine Partikelgröße (Sedigraph) im Bereich von 2 bis 7,0 µm und eine Oberfläche von 0,25 bis 3,0 m²/g haben.Although the physical properties of the copper or nickel or copper oxide powder are not critical for the improved geometric ratio, the copper or nickel or copper (II) oxide powder should preferably have a particle size (sedigraph) in the range of 50% 2 to 7.0 µm and a surface area of 0.25 to 3.0 m² / g.

Der Anteil an Kupfer oder Nickel oder Kupfer (II) oxid relativ zum Gesamtgewicht der leitenden Phase beträgt 5 bis 30 Gewichts-%, vorzugsweise 8 bis 20 Gewichts-%. Mit einer Beigabe von Kupfer- oder Nickel- oder Kupfer (II) oxid-Pulver unterhalb dieses Mengenverhältnisses erhält man eine von Schaltung zu Schaltung unterschiedliche Veränderung der Widerstandseigenschaften. Oberhalb dieses Bereiches verändert sich der Temperaturkoeffizient des Widerstandes (TCR) mit der Temperatur und gelangt außerhalb des für Dickfilm-Anwendungen sinnvollen Bereiches (400 ppm). Der TCR wird durch die folgende Formel definiert:

Figure imgb0001

worin RT2 der Widerstand bei der Temperatur T₂ und RT1 der Widerstand bei der Temperatur T₁ ist. Wenn T₂ = 125° C und T₁ = 25°C ist, wird dieser Wert als HTCR bezeichnet.The proportion of copper or nickel or copper (II) oxide relative to the total weight of the conductive phase is 5 to 30% by weight, preferably 8 to 20% by weight. If copper or nickel or copper (II) oxide powder is added below this ratio, the resistance properties change from circuit to circuit. Above this range, the temperature coefficient of resistance (TCR) changes with the temperature and reaches outside the range (400 ppm) which is useful for thick film applications. The TCR is defined by the following formula:
Figure imgb0001

wherein R T2 is the resistance at temperature T₂ and R T1 is the resistance at temperature T₁. If T₂ = 125 ° C and T₁ = 25 ° C, this value is called HTCR.

Die Glasfritte ist im allgemeinen deswegen wichtig, weil sie dazu beiträgt, die Partikel der leitenden Phase zu einem dichten homogenen Film zu sintern, und weil sie eine chemische Bindung zum Substrat herstellt. Außerdem dient die Glasfritte zur Verdünnung der leitenden Phase und ergibt daher Widerstände mit unterschiedlichen spezifischen Widerständen.The glass frit is generally important because it helps to sinter the conductive phase particles into a dense homogeneous film and because it chemically bonds to the substrate. In addition, the glass frit serves to dilute the conductive phase and therefore results in resistors with different resistivities.

Für die speziellen in der Anmeldung behandelten Widerstände ist die besondere Glas-Zusammensetzung insofern wichtig, als sie zur Steuerung der Reaktion (2) beiträgt. Es hat sich gezeigt, daß, um eine völlige Auflösung der leitenden Phase zu vermeiden, mindestens 40 Mol-% des sich in der A′-Position befindenden Kations im Glas enthalten sein sollen. In den hier beschriebenen Fällen ist dies SrO bzw. BaO. Bevorzugt wird ein Gehalt zwischen 47 und 58 Mol-%. Bei höheren Mengen neigt das Glas zur Entglasung und zu schlechter Haftung am Substrat. Außerdem sollte das Glas vorzugsweise TiO₂ als Modifikator in Mengen von 0,25 bis 2,00 Mol-%, vorzugsweise von 0,7 bis 1,5 Mol-%, enthalten. Als weitere Modifikatoren für andere Eigenschaften der Widerstände kommen Al₂O₃, MnO₂, PbO, ZrO₂, CuO, CaO, ZnO, Bi₂o₃, CdO und Na₂O in Frage. Die glasbildenden Oxide können aus B₂O₃ oder SiO₂ bestehen.The special glass composition is important for the special resistances dealt with in the application in that it contributes to the control of the reaction (2). It has been shown that, in order to avoid complete dissolution of the conductive phase, at least 40 mol% of the cation located in the A'-position should be contained in the glass. In the cases described here, this is SrO or BaO. A content between 47 and 58 mol% is preferred. At higher quantities, the glass tends to devitrify and poor adhesion to the substrate. In addition, the glass should preferably contain TiO₂ as a modifier in amounts from 0.25 to 2.00 mol%, preferably from 0.7 to 1.5 mol%. As further modifiers for other properties of the resistors are Al₂O₃, MnO₂, PbO, ZrO₂, CuO, CaO, ZnO, Bi₂o₃, CdO and Na₂O in question. The glass-forming oxides can consist of B₂O₃ or SiO₂.

Vorzugsweise soll das Glas aus einer oder zwei Glasfamilien stammen, nämlich SrO-B₂O₃-SiO₂ oder BaO-B₂O₃-SiO₂, modifiziert mit ZnO und TiO₂ (Glasfamilie I), und SrO-B₂O₃-Al₂O₃ oder BaO-B₂O₃-Al₂O₃, modifiziert mit TiO₂ (Glasfamilie II). Bevorzugt werden für diese Glasfamilien die folgenden Zusammensetzungs-Bereiche: Glasfamilie I Bevorzugte Mol-%-Anteile SrO oder BaO 42 bis 52 B₂O₃ 28 bis 40 ZnO 2 bis 5 TiO₂ 0,7 bis 1,5 SiO₂ 7 bis 12 Glasfamilie II Bevorzugte Mol-%-Anteile SrO oder BaO 45 bis 58 B₂O₃ 28 bis 40 Al₂O₃ 8 bis 18 TiO₂ 0,7 bis 1,5 Preferably, the glass should come from one or two families of glass, namely SrO-B₂O₃-SiO₂ or BaO-B₂O₃-SiO₂, modified with ZnO and TiO₂ (glass family I), and SrO-B₂O₃-Al₂O₃ or BaO-B₂O₃-Al₂O₃, modified with TiO₂ (Glass family II). The following composition ranges are preferred for these glass families: Glass family I Preferred mol% proportions SrO or BaO 42 to 52 B₂O₃ 28 to 40 ZnO 2 to 5 TiO₂ 0.7 to 1.5 SiO₂ 7 to 12 Glass family II Preferred mol% proportions SrO or BaO 45 to 58 B₂O₃ 28 to 40 Al₂O₃ 8 to 18 TiO₂ 0.7 to 1.5

Bei den hier beschriebenen Glasfamilien kann die SrO-Komponente aus SrO, BaO oder SrO + BaO bestehen.In the glass families described here, the SrO component can consist of SrO, BaO or SrO + BaO.

Die physikalischen Eigenschaften des Glaspulvers sind für die Verbesserung des Geometrieverhältnisses nicht ausschlaggebend. Typischerweise liegen die spezifischen Oberflächen (BET-Monosorb) jedoch zwischen 0,5 und 3,0 m²/g.The physical properties of the glass powder are not decisive for the improvement of the geometric ratio. Typically, however, the specific surface areas (BET Monosorb) are between 0.5 and 3.0 m² / g.

Nachstehend wird die Erfindung anhand der folgenden Beispiele, die jedoch als nicht einschränkend zu verstehen sind, beschrieben.The invention is described below with reference to the following examples, which, however, are not to be understood as restrictive.

Beispiel 1example 1 Herstellung des PerowskitsProduction of the perovskite

Das Perowskit-Pulver wurde durch Mischen der entsprechenden Oxide in entionisiertem Wasser in einer Kugelmühle über einen Zeitraum von vier Stunden hergestellt. Die getrockneten Pulver wurden dann zwei Stunden bei 1200°C in einem Tonerdetiegel gebrannt. Anschließend wurde das Material durch ein 200 mesh Sieb gesiebt und ein zweites Mal zwei Stunden bei 1200°C gebrannt. Diesem Arbeitsgang folgte eine nochmalige Bearbeitung in der Kugelmühle in entionisiertem Wasser zur entsprechenden Größenreduktion.The perovskite powder was prepared by mixing the appropriate oxides in deionized water in a ball mill over a four hour period. The dried powders were then baked in an alumina crucible at 1200 ° C for two hours. The material was then sieved through a 200 mesh sieve and baked a second time at 1200 ° C. for two hours. This process was followed by a further processing in the ball mill in deionized water to reduce the size accordingly.

Beispiel 2Example 2 Herstellung des GlasesProduction of the glass

Zur Herstellung des Glases wurden die entsprechenden Oxide in einen Kyanittiegel eingewogen. Die Pulver wurden eine Stunde bei 600°C vorgewärmt und dann 30 Minuten bei 1200°C geschmolzen. Danach wurde das geschmolzene Material in Wasser bei Raumtemperatur abgeschreckt. Dieser Vorgang begünstigte die Glasbildung und nachfolgende Größenreduktion. Das Pulver der entsprechenden Größe wurde typischerweise durch Mahlen in der Kugelmühle in Isopropylalkohol erhalten.To produce the glass, the corresponding oxides were weighed into a kyanite crucible. The powders were preheated at 600 ° C for one hour and then melted at 1200 ° C for 30 minutes. The molten material was then quenched in water at room temperature. This process favored the glass formation and subsequent size reduction. The powder of the appropriate size was typically obtained by ball milling in isopropyl alcohol.

Beispiel 3Example 3 Herstellung der Paste und SiebdruckProduction of the paste and screen printing

Zur Herstellung einer Paste wurden die Pulver zusammen mit dem organischen Träger zunächst entweder von Hand oder mit einem elektrischen Hobart-Mischer geknetet und anschließend in einem Farbzerreiber oder einer Dreiwalzenmühle dispergiert. Die so hergestellte Paste wurde mittels eines 325 mesh Siebes auf ein Substrat, typischerweise aus 96-%igem Al₂O₃, aufgebracht, das bereits mit entsprechenden Kontaktierungen, typischerweise aus Kupfer, versehen war. Die Widerstände wurden dann zur Entfernung flüchtiger Lösungsmittel 10 Minuten bei 150°C getrocknet.To prepare a paste, the powders were first mixed with the organic carrier either by hand or using an electrical Hobart mixer kneaded and then dispersed in a paint grinder or a three-roll mill. The paste thus produced was applied to a substrate, typically made of 96% Al₂O₃, using a 325 mesh screen, which was already provided with appropriate contacts, typically made of copper. The resistors were then dried at 150 ° C for 10 minutes to remove volatile solvents.

Beispiel 4Example 4 Einbrennen und Prüfen der WiderständeBurning in and testing the resistors

Die getrockneten Widerstände wurden anschließend in einem Dickfilm-Durchlaufofen mit reduzierender Atmosphäre, typischerweise Stickstoff mit weniger als 10 ppm Sauerstoff, bei einer Spitzentemperatur von 900°C ± 10°C gebrannt. Anschließend wurden die gebrannten Schaltungen auf Übereinstimmung mit den gewünschten Eigenschaften überprüft. Der Widerstand wurde nach dem Zweipunkt-Sondenverfahren unter Verwendung eines geeigneten Widerstandsmessers bestimmt. Der Temperaturkoeffizient des Widerstandes wurde in der Weise ermittelt, daß zunächst der Widerstand bei 25°C gemessen, dann die Schaltung in eine entsprechende Prüfkammer mit 125°C eingebracht, danach der Widerstand erneut gemessen und anschließend die Berechnung gemäß Gleichung (3) durchgeführt wurde. Zur Ermittlung des Geometrieverhältnisses wurde der Widerstandswert eines Widerstandes der Größe (R₁) von 50 mm x 50 mm und anschließend eines Widerstandes der Größe (R₅) von 50 mm x 250 mm gemessen. Die Division des letzteren Wertes durch den ersteren (R₅/R₁) hätte theoretisch den Wert 5 ergeben müssen. Es hat sich gezeigt, daß bei Werten ab etwa 4,5 die Widerstand für Dickfilm-Schaltungen geeignet waren. Werte unterhalb 4,5 waren für das Laser-Trimmen auf die gewünschten Werte nicht geeignet. Beim Laser-Trimmen handelt es sich um ein Herstellungsverfahren, bei dem mit einem Laserstrahl in einen gebrannten Widerstand eingeschnitten und dabei Widerstandsmaterial verdampft wird. Der Widerstandswert erhöht sich dadurch einen vorbestimmten Wert.The dried resistors were then fired in a thick film continuous furnace with a reducing atmosphere, typically nitrogen with less than 10 ppm oxygen, at a peak temperature of 900 ° C ± 10 ° C. The burned circuits were then checked for compliance with the desired properties. The resistance was determined by the two-point probe method using a suitable ohmmeter. The temperature coefficient of the resistance was determined by first measuring the resistance at 25 ° C, then placing the circuit in a corresponding test chamber at 125 ° C, then measuring the resistance again and then performing the calculation according to equation (3). To determine the geometric ratio, the resistance value of a resistor of size (R₁) of 50 mm x 50 mm and then a resistance of size (R₅) of 50 mm x 250 mm was measured. The division of the latter value by the former (R₅ / R₁) should theoretically have resulted in the value 5. It has been shown that the resistance was suitable for thick-film circuits at values above about 4.5. Values below 4.5 were not suitable for laser trimming to the desired values. Laser trimming is a manufacturing process in which a laser beam is used to cut into a fired resistor, thereby evaporating resistor material. The resistance value thereby increases a predetermined value.

Widerstände, die für Dickfilm-Schaltungen geeignet sind, müssen jedoch noch andere Eigenschaften erfüllen. Diese Eigenschaften hängen zum Teil von dem besonderen Anwendungsfall ab, so daß sie hier nicht im einzelnen behandelt werden. Unter anderem sind dies Leistungsaufnahme, Spannungsfestigkeit, Empfindlichkeit gegenüber elektrostatischen Entladungen, Beständigkeit gegen Umwelteinflüsse und Mischbarkeit.Resistors that are suitable for thick film circuits, however, must also have other properties. These properties depend in part on that special application, so that they are not dealt with in detail here. These include power consumption, dielectric strength, sensitivity to electrostatic discharge, resistance to environmental influences and miscibility.

Aus Tabelle 1 ist ersichtlich, daß ohne Anwesenheit von Kupfer Kombinationen dreier verschiedener Perowskite und dreier verschiedener Gläser aus zwei verschiedenen Glasfamilien (SrO-B₂O₃-SiO₂ oder BaO-B₂O₃-SiO₂, modifiziert mit ZnO und TiO₂, und SrO-B₂O₃-Al₂O₃ oder BaO-B₂O₃-SiO₂, modifiziert mit TiO₂) zu schlechten Geometrieverhältnissen führen.From Table 1 it can be seen that without the presence of copper combinations of three different perovskites and three different glasses from two different glass families (SrO-B₂O₃-SiO₂ or BaO-B₂O₃-SiO₂, modified with ZnO and TiO₂, and SrO-B₂O₃-Al₂O₃ or BaO -B₂O₃-SiO₂, modified with TiO₂) lead to poor geometry.

Tabelle 2 zeigt, daß die Zugabe von Kupfer-Pulver zu den Perowskit/Glas-Kombination Zusammensetzungen mit gutem Geometrieverhältnis ergibt. Bei Ersatz des Kupfers durch Nickel-Pulver (Beispiel X) erhielt man akzeptable Ergebnisse.Table 2 shows that the addition of copper powder to the perovskite / glass combination gives compositions with a good geometry ratio. When replacing the copper with nickel powder (Example X), acceptable results were obtained.

Aus Tabelle 3 sind die Grenzwerte für die Beigabe von Kupfer-Pulver zu gegebenen Glaszusammensetzungen ersichtlich. Im Bereich von etwa 21% steigt der HTCR-Wert über 400 ppm; dies ist für die meisten Anwendungsfälle der maximal brauchbare Wert.Table 3 shows the limit values for the addition of copper powder to given glass compositions. In the range of about 21%, the HTCR value rises above 400 ppm; this is the maximum usable value for most applications.

Aus Tabelle 4 ist ersichtlich, daß zur Erzielung eines guten Geometrieverhältnisses und annehmbarer HTCR-Werte die Glaszusammensetzungen vorzugsweise Titanoxid enthalten sollten.

Figure imgb0002
Figure imgb0003
Figure imgb0004
Figure imgb0005
From Table 4 it can be seen that to achieve good geometry and acceptable HTCR values, the glass compositions should preferably contain titanium oxide.
Figure imgb0002
Figure imgb0003
Figure imgb0004
Figure imgb0005

Beispiel 5Example 5

Dieses in Tabelle 5 dargestellte Beispiel illustriert, wie sich die Verwendung von Cu (A), CuO (B) und Cu₂O (C) bei der Erfindung auswirkt.

Figure imgb0006
This example shown in Table 5 illustrates how the use of Cu (A), CuO (B) and Cu₂O (C) affects the invention.
Figure imgb0006

Claims (13)

  1. A resistance material which is able to be fired under nitrogen, consisting of
    a) a conducting phase with (1) a perovskite of the form A'l-xA"xB'l-yB"yO₃ with A' equal to Sr or Ba, in which, when A' is equal to Sr, A" is one or more of the elements Ba, La, Y, Ca and Na, and when A' is equal to Ba, A" is one or more of the elements Sr, La, Y, Ca and Na, B' is equal to Ru and B" is one or more of the elements Ti, Cd, Zr, V and Co and 0 ≦ x ≦ 0.2 and 0 ≦ y ≦ 0.2,
    and (2) 5 to 30% by weight copper powder, nickel powder or copper-(II) oxide, in relation to the total weight of the conducting phase,
    and
    b) a glass phase selected from the following group: (a) 40 to 60 mol.-% SrO or BaO, 25 to 45 mol.-% B₂O₃, 0 to 6 mol.-% ZnO, 0.25 to 2.0 mol.-% TiO₂, 2 to 14 mol.-% SiO₂ and (b) 40 to 60 mol.-% SrO or BaO, 25 to 45 mol.-% B₂O₃, 5 to 20 mol.-% Al₂O₃, 0.25 to 2.0 mol.-% TiO₂.
  2. A resistance material according to Claim 1, characterised in that A' is equal to Sr.
  3. A resistance material according to Claim 1, characterised in that A' is equal to Ba.
  4. A resistance material according to Claim 1, characterised in that the perovskite is selected from the following group: SrRuO₃,
    SrRu0,8Ti0,2O₃, SrRu0,9Ti0,1O₃,Sr0,9La0.1RuO₃,
    SrRu0,95Ti0,05O₃, Sr0,9La0,1Ru0,95Ti0,05O₃,
    SrRu0,95Cd0,05O₃, Sr0,9Ba0,1RuO₃, Sr0,9Y0,1RuO₃,
    Sr0,8Na0,1La0,1RuO₃, SrRu0,8Zr0,2O₃, SrRu0,9Zr0,1O₃,
    SrRu0,75V0,25O₃, SrRu0,8Co0,2O₃, SrRu0,8Ti0,1Zr0,1O₃,
    BaRuO₃, Ba0,9La0,1RuO₃, BaRu0,95Ti0.05O₃ and
    Ba0,9La0,1Ru0,95Ti0,05O₃.
  5. A resistance material according to Claim 1, characterised in that the pervoskite is selected from the following group: SrRuO3,
    Sr0,9La0,1RuO₃, SrRu0,95Ti0,05O₃,
    Sr0.9La0.1Ru0,95Ti0.05O₃, BaRuO₃, Ba0,9La0,1RuO₃,
    BaRu0,95Ti0.05O₃ and Ba0,9La0,1Ru0,95Ti0,05O₃.
  6. A resistance material according to Claim 1, characterised in that it contains in addition an organic carrier.
  7. A resistance material according to Claim 6, characterised in that the organic carrier is a mixture of an acrylate resin and of a solvent.
  8. A resistance material according to Claim 7, characterised in that the resin is polyisobutylmethacrylate.
  9. A resistance material according to Claim 1, characterised in that 50% of the metal powder or copper (II) oxide has a particle size in the range of 2 to 7.0 µm and a surface of 0.25 to 3.0 m²/g.
  10. A resistance material according to Claim 1, characterised in that the quantity of the metal powder or copper(II) oxide relative to the total conducting phase is 8 to 20 percentage by weight.
  11. A resistance material according to Claim 1, characterised in that the glass phase has the following composition in mol.-%:
       42 to 52 SrO or BaO
       28 to 40 B₂O₃
       2 to 5 ZnO
       0.7 to 1.5 TiO₂
       7 to 12 SiO₂.
  12. A resistance material according to Claim 1, characterised in that the glass phase has the following composition in mol.-%:
       45 to 58 SrO or BaO
       28 to 40 B₂O₃
       8 to 18 Al₂O₃
       0.7 to 1.5 TiO₂.
  13. A resistance material according to Claim 1, characterised in that it contains one or more additives from the group MnO₂, TiO₂, ZrO₂,CuO, and SrTiO₃.
EP89100576A 1988-02-12 1989-01-13 Resistance masses for firing under nitrogen Expired - Lifetime EP0327828B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US155342 1988-02-12
US07/155,342 US4814107A (en) 1988-02-12 1988-02-12 Nitrogen fireable resistor compositions

Publications (3)

Publication Number Publication Date
EP0327828A2 EP0327828A2 (en) 1989-08-16
EP0327828A3 EP0327828A3 (en) 1991-03-27
EP0327828B1 true EP0327828B1 (en) 1993-09-22

Family

ID=22555057

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89100576A Expired - Lifetime EP0327828B1 (en) 1988-02-12 1989-01-13 Resistance masses for firing under nitrogen

Country Status (5)

Country Link
US (1) US4814107A (en)
EP (1) EP0327828B1 (en)
JP (1) JPH01208802A (en)
KR (1) KR0142577B1 (en)
DE (1) DE58905651D1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3941283C1 (en) * 1989-12-14 1991-01-31 W.C. Heraeus Gmbh, 6450 Hanau, De
JP2970713B2 (en) * 1991-12-25 1999-11-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Thick film resistor composition
WO1994007270A1 (en) * 1992-09-14 1994-03-31 Conductus, Inc. Improved barrier layers for oxide superconductor devices and circuits
JP3246245B2 (en) * 1994-12-30 2002-01-15 株式会社村田製作所 Resistor
JPH08186004A (en) * 1994-12-30 1996-07-16 Murata Mfg Co Ltd Resistor material, resistor paste and resistor using the same
JP2937072B2 (en) * 1995-04-18 1999-08-23 株式会社村田製作所 Resistance material composition, resistance paste and resistor
JP2937073B2 (en) * 1995-04-18 1999-08-23 株式会社村田製作所 Resistance material composition, resistance paste and resistor
JP3475749B2 (en) * 1997-10-17 2003-12-08 昭栄化学工業株式会社 Nickel powder and method for producing the same
US7211199B2 (en) * 2002-03-15 2007-05-01 The Trustees Of The University Of Pennsylvania Magnetically-and electrically-induced variable resistance materials and method for preparing same
US7507690B2 (en) * 2002-04-30 2009-03-24 Uchicago Argonne, Llc. Autothermal reforming catalyst having perovskite structure
JP3992647B2 (en) * 2003-05-28 2007-10-17 Tdk株式会社 Resistor paste, resistor and electronic components
US20050154105A1 (en) * 2004-01-09 2005-07-14 Summers John D. Compositions with polymers for advanced materials
US20070019789A1 (en) * 2004-03-29 2007-01-25 Jmar Research, Inc. Systems and methods for achieving a required spot says for nanoscale surface analysis using soft x-rays
EP1783107A1 (en) * 2005-11-08 2007-05-09 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process for the preparation of a ceramic/metal seal resistant to high temperature, composition comprising glass and ceramic and piece comprising a metal-ceramic junction
US20070244267A1 (en) * 2006-04-10 2007-10-18 Dueber Thomas E Hydrophobic crosslinkable compositions for electronic applications
US20070236859A1 (en) * 2006-04-10 2007-10-11 Borland William J Organic encapsulant compositions for protection of electronic components
US20070291440A1 (en) * 2006-06-15 2007-12-20 Dueber Thomas E Organic encapsulant compositions based on heterocyclic polymers for protection of electronic components
CN102324265B (en) * 2011-07-20 2013-01-02 彩虹集团公司 Single-layer silver paste for annular varistor and method for preparing single-layer silver paste
CN104464991B (en) * 2013-09-12 2017-06-06 中国振华集团云科电子有限公司 A kind of preparation method of linear semistor slurry
US20150228374A1 (en) 2014-02-07 2015-08-13 E I Du Pont De Nemours And Company Thermally conductive electronic substrates and methods relating thereto
RU2761338C1 (en) * 2021-02-12 2021-12-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ" Semiconductor nanostructured ceramic material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3553109A (en) * 1969-10-24 1971-01-05 Du Pont Resistor compositions containing pyrochlore-related oxides and noble metal
DE2115814C3 (en) * 1971-04-01 1975-10-30 W.C. Heraeus Gmbh, 6450 Hanau Resistance paste and process for the production of an electrical thick-film resistor
US4302362A (en) * 1979-01-23 1981-11-24 E. I. Du Pont De Nemours And Company Stable pyrochlore resistor compositions
DE3121290A1 (en) * 1981-05-29 1983-01-05 Philips Patentverwaltung Gmbh, 2000 Hamburg "NON-LINEAR RESISTANCE AND METHOD FOR THE PRODUCTION THEREOF"
US4536328A (en) * 1984-05-30 1985-08-20 Heraeus Cermalloy, Inc. Electrical resistance compositions and methods of making the same
US4600604A (en) * 1984-09-17 1986-07-15 E. I. Du Pont De Nemours And Company Metal oxide-coated copper powder
US4687597A (en) * 1986-01-29 1987-08-18 E. I. Du Pont De Nemours And Company Copper conductor compositions

Also Published As

Publication number Publication date
DE58905651D1 (en) 1993-10-28
EP0327828A3 (en) 1991-03-27
KR890013158A (en) 1989-09-21
US4814107A (en) 1989-03-21
KR0142577B1 (en) 1998-08-17
EP0327828A2 (en) 1989-08-16
JPH01208802A (en) 1989-08-22

Similar Documents

Publication Publication Date Title
EP0327828B1 (en) Resistance masses for firing under nitrogen
EP0071190B1 (en) Thick film resistor compositions
EP0000864B1 (en) Process for manufacturing thick film varistors
DE4010827A1 (en) MONOLITHIC CERAMIC CONDENSER
DE2714196C3 (en) Coated alumina substrate and powder mixture for coating such substrates
DE2946753C2 (en)
DE1253627B (en) Process for the production of a ceramic dielectric
DE602005001305T2 (en) Thick film resistor paste and a thick film resistor
DE19622690B4 (en) Process for producing a monolithic ceramic capacitor
DE1596851A1 (en) Resistance material and resistor made from this resistance material
DE3924563C2 (en) Non-reducing dielectric ceramic composition
DE1903925A1 (en) Cermet electrical resistor and process for its manufacture
EP0327816B1 (en) Non-oxidizable copper thick film conductor
DE2809818B2 (en) Conductive composition and its use
DE4005505A1 (en) MONOLITHIC CERAMIC CONDENSER
DE3033511C2 (en) Voltage dependent resistance
DE2403667C3 (en) Electrical resistance compound made of electrically conductive, bismuth-containing, polynary oxides with a pyrochlore-related crystal structure and a dielectric solid and its use for the production of electrical resistances
DE602005001242T2 (en) A thick film resistor paste, a thick film resistor made using the thick film resistor paste, and an electronic device including the thick film resistor
EP0124943B1 (en) Dielectric glass for multilayered circuits, and thick-film circuits using it
DE2640316A1 (en) MATERIAL FOR AN ELECTRICAL RESISTANCE AND METHOD FOR MANUFACTURING A RESISTOR
EP0529195B1 (en) Resistant paste for manufacturing thick-film resistors
EP0040881A2 (en) Voltage-dependent resistor and method of manufacturing it
DE3011977C2 (en)
EP0395799B1 (en) Pyrochlore related oxide and resistive paste comprising it
DE19909087A1 (en) Sintered barium titanate semiconducting ceramic for electronic components

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890123

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19930208

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 58905651

Country of ref document: DE

Date of ref document: 19931028

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931014

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

ET Fr: translation filed
ITTA It: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19981215

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990113

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990129

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000113

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050113