EP0323114B1 - Zusammenbau zum Datenverteilen - Google Patents

Zusammenbau zum Datenverteilen Download PDF

Info

Publication number
EP0323114B1
EP0323114B1 EP88312093A EP88312093A EP0323114B1 EP 0323114 B1 EP0323114 B1 EP 0323114B1 EP 88312093 A EP88312093 A EP 88312093A EP 88312093 A EP88312093 A EP 88312093A EP 0323114 B1 EP0323114 B1 EP 0323114B1
Authority
EP
European Patent Office
Prior art keywords
shielded
assembly
interconnection
data
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88312093A
Other languages
English (en)
French (fr)
Other versions
EP0323114A1 (de
Inventor
George H. Foster, Jr.
David Lane
Ned Alan Sigmon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TE Connectivity Corp
Original Assignee
Whitaker LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Whitaker LLC filed Critical Whitaker LLC
Publication of EP0323114A1 publication Critical patent/EP0323114A1/de
Application granted granted Critical
Publication of EP0323114B1 publication Critical patent/EP0323114B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/648Protective earth or shield arrangements on coupling devices, e.g. anti-static shielding  
    • H01R13/658High frequency shielding arrangements, e.g. against EMI [Electro-Magnetic Interference] or EMP [Electro-Magnetic Pulse]
    • H01R13/6581Shield structure
    • H01R13/6582Shield structure with resilient means for engaging mating connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/648Protective earth or shield arrangements on coupling devices, e.g. anti-static shielding  
    • H01R13/658High frequency shielding arrangements, e.g. against EMI [Electro-Magnetic Interference] or EMP [Electro-Magnetic Pulse]
    • H01R13/6591Specific features or arrangements of connection of shield to conductive members
    • H01R13/65912Specific features or arrangements of connection of shield to conductive members for shielded multiconductor cable
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/648Protective earth or shield arrangements on coupling devices, e.g. anti-static shielding  
    • H01R13/658High frequency shielding arrangements, e.g. against EMI [Electro-Magnetic Interference] or EMP [Electro-Magnetic Pulse]
    • H01R13/6591Specific features or arrangements of connection of shield to conductive members
    • H01R13/6596Specific features or arrangements of connection of shield to conductive members the conductive member being a metal grounding panel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/28Contacts for sliding cooperation with identically-shaped contact, e.g. for hermaphroditic coupling devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/62Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
    • H01R13/627Snap or like fastening
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/648Protective earth or shield arrangements on coupling devices, e.g. anti-static shielding  
    • H01R13/658High frequency shielding arrangements, e.g. against EMI [Electro-Magnetic Interference] or EMP [Electro-Magnetic Pulse]
    • H01R13/6581Shield structure
    • H01R13/659Shield structure with plural ports for distinct connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R29/00Coupling parts for selective co-operation with a counterpart in different ways to establish different circuits, e.g. for voltage selection, for series-parallel selection, programmable connectors

Definitions

  • the invention relates to a data distribution assembly for the interconnection of a plurality of electrically shielded data connectors which are interconnected to shielded data cables.
  • Data connectors of the type shown in U.S. Reissue Patent 32,760 are utilized within data distribution systems where the various distribution end points are subject to change. For example, several computer terminals could be interconnected to various associated printing stations. If the data cable is continuous between a first point, which could be a terminal, and between a second end, which could be a printing station, the cable would have to be severed at some position within the cable length to interconnect one terminal to a different printing station.
  • data distribution panels are incorporated within the system acting as links to the various end points. These panels are located intermediate the destinations, typically in a wiring closet, and include shielded cable coming from one destination, such as a terminal, which is terminated to an electrical connector and mounted within a panel. A second shielded cable coming from a second destination, such as from a printing station, is interconnected to a second electrical connector and the second electrical connector is mounted within the panel adjacent to the first electrical connector.
  • a patch cable is utilized which includes a short length of shielded data cable having two electrical connectors at opposite ends which are matable with the first and second electrical connectors mounted within the panel. In all likelihood, a mass array of first electrical connectors and a mass array of second electrical connectors are disposed in a matrix and mounted to the panel.
  • a requirement of these distribution panels is that the shielded cable of the first and second cables is commoned together and to the conductive panel to which the first and second connectors are mounted.
  • the present invention consists in a data distribution assembly as defined in claim 1.
  • a data distribution assembly according to the preamble of claim 1 is the subject of "IBM Cabling System Planning and Installation Guide, seventh edition (June 1986)".
  • US-A-4 619 494 discloses a shielded electrical connector having an insulative housing, a compartment of which is electrically shielded including a conductive member having a conductive wall between said compartment and a second compartment.
  • the housing has latch arms for attaching the connector to a panel.
  • the distribution panel is much less expensive and much easier to install.
  • FIG. 1 shows the data distribution panel of the instant invention as generally including a conductive panel, such as 250, which would include upper and lower panels, such as 250a and 250b.
  • Shielded data cable, such as 180a and 180b would be terminated to an electrical connector and latched to the rear of the panels 250a and 250b, and each of the shielded data cables 180a and 180b would be terminated at their opposite ends to a user point. It should be noted that all cables such as 180a follow a similar route through a building to a similar destination while the cables such as 180b follow an opposite route and terminate in another location.
  • Patch cables such as 120 are included which electrically interconnect a selected shielded data cable 180a to a selected shielded data cable 180b.
  • the electrical interconnection between data cables 180a and 180b may be changed by merely disconnecting one or both ends of the patch cable 120 and selecting a new interconnection point to a new shielded data cable.
  • the conductive panel will be described in greater detail, although the description will be to a conductive panel generally termed 250 and will be identical whether used as panel 250a or 250b.
  • Conductive panel 250 includes a front mating face, such as 252, and a rear face 254 having a plurality of connector receiving openings 256 therein.
  • Each of the openings 256 is generally defined by sidewalls 258 and upper and lower walls 260.
  • a plurality of fingers 272 extend upwardly and downwardly, respectively, from the lower and upper walls 260, and each finger 272 includes a contact portion 274 and a free end 276.
  • the shielded subassembly 2 generally includes a housing member 5, a stuffer cap 50, and shield members 70 and 100.
  • the data connector housing 5 will be described in greater detail, with reference to Figures 3A and 4.
  • the housing 5 generally comprises a terminal support floor 10 having a plurality of channels 12 therein for receiving terminals 30. Extending upwardly from the terminal support floor are sidewalls 14 having internal grooves 22 and external ribs 20. A bridge portion 6 extends across the two sidewalls and below the bridge 6 is a rib 25 which extends from the rear edge of the bridge ( Figure 4) to the forward edge of the bridge ( Figure 3A). The rib 25 defines two windows 8 which also extend from the rear edge of the bridge to the forward edge of the bridge to define two shield receiving surfaces 24 ( Figure 3A). The sidewalls 14 extend from the rear of the data connector 5 to the front mating face of the data connector to define two 45 degree surfaces at the front mating face, referred to generally as 18.
  • Terminals 30 include insulation displacement wire barrels 32, a blade portion 34, a resilient contact portion 36 and a commoning foot 38.
  • the resilient contact portion 36 is looped back upon itself and spaced above the terminal support floor.
  • the resilient contact portion 36 is disposed at the front mating face of the housing 5 for overlapping interconnection with like terminals, the two resilient contact portions of mating connectors contacting each other to deflect respective resilient contact portions towards the blade portion of respective terminals.
  • Stuffer cap 50 includes alignment ribs 52 along the sides, wire receiving slots 54 and stuffer cylinders 56, the stuffer cylinders 56 having an inside diameter larger than the outside diameter of the barrels 32 of the terminals 30.
  • the shield member 70 includes a plate member 72 with continuous shield members 90 extending from the plate member 72 through a bent portion 92, the two shield members 90 defining a slot 94 therebetween.
  • the plate member 72 further includes two locking lances 74.
  • the shield member 70 is shown in Figure 5 as including a rear wall 78 extending from the plate member 72 with a semicircular shielding tail 76 extending from the rear wall 78.
  • the shield member 70 further includes integral sidewalls 80 having apertures 84 and 86 stamped therefrom. The forward edges of the sidewalls 80 are defined by two 45 degree surfaces 82.
  • Shield member 100 is shown as including a plate member 102 with integral shielding portions 110 extending from the front edge thereof, the two shield members 110 defining a slot 112 therebetween.
  • the shield member 100 further includes a rear wall portion 114 having a semicircular shield tail 116 extending from the rear wall 114.
  • Plate member 102 further comprises locking lances 106, and tabs 104 and 108 extending from the side edges thereof.
  • the assembly further includes a ferrule 170 having semicircular portions 172 and collapsible portions 174.
  • the shielded cable 180 includes outer insulation 182, a shielding braid 184, inner insulation 188 and individual insulated conductors 186.
  • the housing portion 5, of Figure 4 is a first assembled. With the shorting bars 60 removed, the terminals 30 are slidably received in respective channels 12 until latched in place. The shorting bars 60 are then inserted in respective grooves 23, the shorting bars 60 contacting the commoning foot 38 on alternate terminals to common alternate terminals when the data connector 4 is an unmated condition. Also, prior to preparing the end of the cable, the collapsible ferrule 170 is slid over the end of the cable and is placed back upon the cable for later use.
  • the end of the shielded cable can then be prepared by stripping a portion of the outer insulation 182 from the end of the cable to expose a portion of the shield 184, the exposed shielding braid 184 is dressed over the outer insulation 182, as shown in Figure 3A. Stripping the outer insulation 182 exposes the insulated conductors 186 and each individual wire 186 is placed in the stuffer cap 50 through a respective slot 54, with the ends of the wire 186 extending into the barrels 56 through the slot 58.
  • the stuffer cap 50 and the individual wire 186 are then placed over the insulative housing 5 such that ribs 52 on the stuffer cap 50 are aligned with channels 22 in the insulative housing 5, which in turn aligns the stuffer cap barrels 56 with the insulation displacement wire barrels 32 on the terminals 30.
  • the stuffer cap 50 is then pushed downwardly until each of the individual conductors 186 is terminated within respective wire barrels 32 of terminals 30.
  • the shield members 70 and 100 can be assembled to the housings.
  • the shield member 70 is first assembled to the insulative housing 5 such that the apertures 84 in the shield member overlie the ribs 20 on the exterior of the insulative housing.
  • the shield extension tail 76 overlies the dressed braid 184.
  • the shield member 100 is then assembled to the insulative housing 5 with the shield contact portions 110 disposed within the windows 8 ( Figure 4) of the insulative housing such that the shield contact portions 110 lie adjacent to surfaces 24, as shown in Figure 3B.
  • Shield member 100 is held in place to shield member 70 with tabs 104 on each side edge of plate member 102 being disposed within apertures 86 in the sidewalls 80 of the shield member 70.
  • the shielding extension tail 116 also overlies the shielding braid as the two shielding tails 76 and 116 are complementary semicircular portions.
  • the plate member 102 of the shield member 100 overlies the terminals 30 within the connector housing 5.
  • the rear wall 114 of the shield member 100 encloses the rear edge of the connector housing 5 with edge 115 of the rear wall 114 substantially adjacent to edge 79 ( Figure 5) of rear wall 78 to totally enclose the connector housing.
  • the semicircular shield tail 116 overlies and is substantially adjacent to the dressed braid.
  • the previously installed ferrule 170 can then be slid forwardly to overlie the semicircular shield tails 76 and 116, and the ferrule 170 can be crimped to a configuration as shown in Figure 3B.
  • the collapsible ferrule provides for a permanent electrical connection between the shielding components, that is, the shielding braid 184 is trapped beneath the metallic shield tails 76 and 116. It should be understood that the crimped connection also provides for an excellent strain relief as the shield members are crimped directly to the outer insulation of the data cable.
  • Type 9 data cable includes an outer diameter which is smaller than other data cables, a NYLON (R) spacer, such as 178 ( Figures 3A and 6) can be used as a spacer.
  • R NYLON
  • the assembly as previously described can be installed within the user's facility without any assembly equipment. At most, a pocket knife is required to strip the cable and a pair of pliers is required to push the stuffer cap down to terminate the insulated conductors, and to crimp the ferrule 170.
  • the shielded subassembly 2 With the shielded subassembly 2 assembled as previously described, the shielded subassembly is prepared for receipt within the conductive panel 250.
  • a shielded subassembly 2 can be inserted through the rear face 254 into each of the openings 256 such that the tabs 88 on either side of the shielded subassembly snap past the sidewalls 258 (shown in phantom in Figure 8) retaining the shielded subassembly from moving in one direction.
  • the fingers 272 which extend from the upper and lower edges 260 of the conductive panel 250 serve two functions.
  • the free ends 276 of the fingers 272 abut the ends of the tabs 74 and 106, as shown in Figure 8, which retain the shielded subassembly from moving forward within the openings 256 of the conductive panel 250.
  • the tabs 88, 74 and 106 cooperatively retain the shielded subassembly 2 in retention within the conductive panel 250.
  • the fingers 272 have contact portions 274 which abut the upper and lower shield portions, thereby commoning the shielded subassembly 2 to the conductive panel 250.
  • the distribution panel can be programmed by the use of patch cables 120 to direct the interconnections between shielded cables, such as between data cables 180a and 180b shown in Figure 1.
  • the patch cable 120 can generally include an insulative housing, such as 124, which incorporates therein a shielded data cable 180 which is similar and complementary with the data cable which is used in the data distribution panel.
  • the inner core of the patch connector 122 is identical to the shielded subassembly 2 which was previously described.
  • the insulative housing 124 would generally include a connector receiving cavity, such as 123, having sidewalls 144 and a lower floor 148 with an upper wall 146.
  • the housing generally includes a forward latching portion 128, a central body portion 130 and a rear cable receiving section 132.
  • the rear portion 132 includes two ribs, such as 152, disposed on the lower and the upper walls having stop surfaces such as 154.
  • the rear wall of the insulative housing 124 has a cable receiving opening, such as 150 therethrough, for the entry of the shielded data cable, such as 180.
  • the patch cables 120 would be similarly assembled as the shielded subassemblies previously described, although the shielded data cable 180 must be inserted through the cable receiving opening 150 of the insulative housing 124 prior to its preparation. After the cable is inserted through the opening 150, a collapsible ferrule 170 is placed over the end of the cable. The outer insulation could then be stripped and the shielded braid, such as 184, could be dressed over the outer insulation. The conductors, such as 186, are then terminated to the respective terminals 30 as previously described with reference to the assemblage of the shielded subassemblies 2.
  • one of the connectors 122 will be at each end of the patch cable for interconnection to selected shielded subassemblies 2 in the panel 250.
  • the insulative housing 124 can be slid forwardly until the rear walls of the shield members 70 and 100 abut the stop surfaces 154 of the housing. The shielded subassembly 2 and the housing 124 are interferingly fit such that the struck out tabs 74 and 106 are deflected inwardly which retain the shielded subassemblies 2 within the insulative housings.
  • the housings can be molded from a single draw mold which greatly simplifies the molding procedures and which greatly reduces the cost of the molds to be produced. Said differently, the housings 124 do not require latching shoulders to retain the housings in place, latches which would require side draw dies within the mold.
  • the patch cables 120 can be interconnected to selected shielded subassemblies 2 contained within the data distribution panel 250 to interconnect selected data cables 180a to 180b.
  • the latches 134 are resiliently deflectable inwardly such that upon movement of the housing 124 into registration with the conductive panel 250, the latches bias inwardly until the latch surfaces 138 ( Figure 7) are engaged with the rear face 254 of the conductive panel.
  • connectors 300 can also be used as ends to patch cables.
  • connectors 300 have latch plates 320 and 322 having a T-bar 310 and a T-slot 302 which are hermaphroditically interconnectable to a T-slot and a T-bar on an associated data connector.
  • an interface or adapter, such as 200 must be incorporated into the data distribution panel 250.
  • the interface 200 generally comprises a shroud member 204 forming a peripheral wall surrounding the data connection opening to partially insulate the electrical connection between the two mating electrical components.
  • the shroud member 204 defines an internal upper surface 210, a lower surface 208 and side surfaces 214 and 212.
  • Also within the periphery of the shroud 204 are back wall sections 226, and 228.
  • an opening defined by edge 234 of rear wall 226, edge 236 of rear wall 228 and the sidewalls 212 and 214 is defined to allow the placement of the interface 200 over the shielded subassemblies 2 which are latched to the rear face 254 of the panel 250.
  • the shroud member 204 is a T-bar member 220 and a T-slot member 240.
  • the T-bar 220 and the T-slot 240 are profiled to simulate the T-bar and T-slot of the data connectors as previously described, for example in U.S. Patent US-A-4,501,459.
  • the member generally includes a bar member 224 interconnected to the internal surface 210 and to the rear wall 226.
  • the rear surface of the bar 224 defines a latching surface, and directly behind the latching surface of the bar 224 and defined in the rear wall 226 is a pair of apertures 230 which extend through the wall and are generally defined by the retractable pins which define the rear latching surfaces during the molding process.
  • the T-slot extends between sidewalls 212 and 214 and is integrally molded therein.
  • the rear portion of the T-slot is integrally molded with the back wall portion 228 and include arms 242 extending inwardly from the sidewalls 212 and 214 towards the center of the interface.
  • Each of the arms 242 is spaced from each other as defined by end surfaces 244 which define a slot therebetween.
  • the rear edge of the arms 242 each define a latching surface, which is similarly formed by retracting pins of the dies during the molding process thereby leaving a window 238 behind the rear edge of the arms 242.
  • the interface member 200 includes latches 216 which are complementary with the apertures 268, 270 for retaining the interface member 200 to the panel 250.
  • latches 216 which are complementary with the apertures 268, 270 for retaining the interface member 200 to the panel 250.
  • the opening within the interface member 200 surrounds the shielded subassembly.
  • the T-bar 220 and the T-slot 240 of the interface member simulate the T-bar 310 and T-slot 302 of a matable hermaphroditic connector, identical with connector 300.
  • the interface member 200 provides a complementary latching arrangement for the interconnection of the patch cable having a data connector such as 300 at each end.
  • a further distribution panel 400 which includes a distribution box such as 402 which includes a base portion 408, sidewalls 404, and a rear wall 406. Cable leadouts such as 410 would be included which would open to the exterior of the box 402.
  • the interior of the box 402 would include mounting panels 412 which include sections 414 interconnected to the base wall 408 by means such as spot welding, or the like.
  • the mounting panels include walls such as 416 which extend across the box 402 at an angle relative to the base wall 408.
  • Each of the walls 416 would include a plurality of openings 422 which would be profiled as the openings 256 described above and would include fingers such as 418 which are integral therewith.
  • the openings 422 would be staggered which facilitates easy cable management through the rear wall 406 through openings 410 and through the front face 405.
  • This distribution panel 400 could be centrally located within a portion of a building where interconnections are likely to rapidly or periodically change and where continual access to the wire closet would be inconvenient. This may be located within a computer room having a plurality of network tied to computer terminals or it may be located out on the floor within a centrally located work station area. In any event it should be appreciated that this distribution box would allow easy access to the network interconnections.
  • a plurality of shielded subassemblies would be assembled as before and would be interconnected to the rear of the walls 416 in a similar manner to the patch panel of Figure 2.
  • a plurality of connectors 124 would be employed which are identical to those shown in Figure 2 and could be interconnected to the shielded subassemblies 2. As the connectors 124 are easily removed, the connectors could be unlatched and simply reconnected to another location within the same distribution box 402. As the walls 416 are at a slight angle relative to vertical, approximately 25°, the connectors 124 are easily reached for removal and for reconnection.
  • an adapter such as 200 shown in Figure 9 could be incorporated to the walls 416 and the adapters could be snap latched to the walls to facilitate interconnection of connectors such as 300 shown in Figure 10. This would allow connectors which already incorporate connectors such as 300 to be utilized within the network.
  • a plastic cover (not shown) would complete the assembly to insulatively surround the box and to enclose the connections.

Landscapes

  • Details Of Connecting Devices For Male And Female Coupling (AREA)
  • Connections Arranged To Contact A Plurality Of Conductors (AREA)
  • Connector Housings Or Holding Contact Members (AREA)

Claims (8)

  1. Datenverteilungsanordnung zur Verbindung einer Vielzahl elektrisch abgeschirmter Datenverbinder (2), die mit einem abgeschirmten Datenkabel (180) verbunden sind, wobei die Anordnung eine leitfähige Plattenanordnung (250, 400) aufweist, die wenigstens teilweise umschlossen ist und die wenigstens eine Verbindungswand (250A, 250B, 412) hat, die von einer Bodenwand nach oben ragt und sich wenigstens teilweise über die Bodenwand erstreckt, wobei die Verbindungswand (250A, 250B, 412) eine Vielzahl von Öffnungen (256, 422) zur Aufnahme der elektrisch abgeschirmten Datenverbinder (2) aufweist, wobei das abgeschirmte Kabel (180) mit der leitfähigen Plattenanordnung (250, 400) verbunden ist, jeder abgeschirmte Datenverbinder (2) ein isolierendes Gehäuse (5) aufweist, das eine Anschlußstützplattform (10) hat, zwei Seitenwände (14) von der Plattform (10) nach oben ragen und eine offene obere Fläche des Gehäuses (5) bilden, eine Vielzahl von elektrischen Anschlüssen (30) längs der Anschlußstützplattform (10) positioniert und durch diese abgestützt ist und wobei jeder der elektrischen Anschlüsse (30) einen nachgiebigen Kontaktabschnitt (36) zur Verbindung mit einem gleichen Kontaktabschnitt (36) in einem komplementären elektrischen Verbinder aufweist, wobei die Datenverteilungsanordnung dadurch gekennzeichnet ist, daß die abgeschirmten Datenverbinder (2) Abschirmmittel (70, 100) haben, die direkt mit der Abschirmlitze des abgeschirmten Kabels verbunden und direkt mit der Verbindungswand (250A, 250B, 412) verbunden sind.
  2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß zwei Verbindungswände (250A, 250B, 412) sich wenigstens teilweise über die Bodenwand erstrecken.
  3. Anordnung nach Anspruch 2, dadurch gekennzeichnet, daß die Öffnungen (422) in einer der Verbindungswände (412) seitlich gegenüber den Öffnungen in der anderen Verbindungswand (412) versetzt sind.
  4. Anordnung nach einem der Ansprüche 1, 2 oder 3, dadurch gekennzeichnet, daß die Anordnung ferner ein isolierendes Glied (200) aufweist, das wenigstens teilweise den abgeschirmten Verbinder (200) umgibt, wobei das isolierende Glied (200) mit der Verbindungswand (250A, 250B, 412) verriegelbar ist und eine Verriegelungsstruktur (220, 240) zur verriegelbaren Verbindung mit einem hinzufügbaren elektrischen Verbinder (300) aufweist.
  5. Anordnung nach Anspruch 4, dadurch gekennzeichnet, daß das isolierende Glied (200) als Frontplatte profiliert ist, die an der Verbindungswand (250A, 250B, 412) befestigbar ist und die einstückig darin das zusammenpassende Profil von Zwitterverriegelungsgliedern eines Zwitterdatenverbinders aufweist.
  6. Anordnung nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß das Glied (200) aus isolierendem Material besteht und eine komplementäre T-Stange (310) und einen T-Schlitz (302) aufweist, die mit einem entsprechenden T-förmigen Schlitz und einer T-Stange des hinzufügbaren Zwitterdatenverbinders zusammenfügbar sind.
  7. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß wenigstens ein Teil der Abschirmmittel (70, 100) längs wenigstens einer ihrer Seitenkanten zur Verbindung mit der Verbindungswand (250A, 250B, 412) freiliegt.
  8. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die abgeschirmten Datenverbinder Mittel aufweisen, um die Abschirmmittel (70,100) an dem Gehäuse (5) festzuhalten.
EP88312093A 1987-12-21 1988-12-21 Zusammenbau zum Datenverteilen Expired - Lifetime EP0323114B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13622087A 1987-12-21 1987-12-21
US136220 1987-12-21

Publications (2)

Publication Number Publication Date
EP0323114A1 EP0323114A1 (de) 1989-07-05
EP0323114B1 true EP0323114B1 (de) 1994-03-09

Family

ID=22471888

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88312093A Expired - Lifetime EP0323114B1 (de) 1987-12-21 1988-12-21 Zusammenbau zum Datenverteilen

Country Status (3)

Country Link
EP (1) EP0323114B1 (de)
JP (1) JP2727006B2 (de)
DE (1) DE3888333T2 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5365658A (en) * 1990-06-27 1994-11-22 Digital Equipment Corporation Method for forming an electrical interconnection
US5125854A (en) * 1991-07-16 1992-06-30 Molex Incorporated Modular electrical connector
DE59201963D1 (de) * 1991-07-25 1995-05-24 Siemens Ag Geschirmte Anschlusseinrichtung.
DE59301991D1 (de) * 1992-08-31 1996-04-25 Siemens Ag Geschirmter elektrischer baugruppenträger
DE4334615C1 (de) * 1993-10-05 1994-09-08 Krone Ag Elektrischer Steckverbinder
GB2304237A (en) * 1995-08-04 1997-03-12 Ford Motor Co Mounting electrical components
DE19537531C1 (de) * 1995-09-29 1997-02-06 Krone Ag Anschlußvorrichtung für die Telekommunikations- und Datentechnik
JPH10335001A (ja) * 1997-06-03 1998-12-18 Nec Corp シールド付き同型コネクタ
EP1577985A1 (de) * 2004-03-11 2005-09-21 Fischer Connectors Holding S.A. Verbinderelement
JP5794715B2 (ja) * 2014-03-07 2015-10-14 日本航空電子工業株式会社 コネクタ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1429859A (fr) * 1964-04-09 1966-02-25 Elco Corp Connecteur pour appareillage électrique
FR2576457B1 (fr) * 1985-01-23 1987-02-06 Cit Alcatel Boitier metallique de connecteur multicontact enfichable
US4619494A (en) * 1985-10-07 1986-10-28 Thomas & Betts Corporation Shielded electrical connector
US4681386A (en) * 1986-01-22 1987-07-21 Lance Wire And Cable, Inc. Integral connector having plastic spring-clips

Also Published As

Publication number Publication date
DE3888333D1 (de) 1994-04-14
JP2727006B2 (ja) 1998-03-11
DE3888333T2 (de) 1994-09-08
JPH01231278A (ja) 1989-09-14
EP0323114A1 (de) 1989-07-05

Similar Documents

Publication Publication Date Title
US4990094A (en) Data distribution panel
US4891022A (en) Shielded data connector
US4859201A (en) Data communications outlet
EP0282534B1 (de) Steckverbinderaufbau
EP0094173B1 (de) Elektrischer Verbinder mit gemeinsamem Verbindungselement
KR930003562B1 (ko) 시일드 데이타 코넥터
US4653825A (en) Shielded electrical connector assembly
EP0523491B1 (de) Modularer elektrischer Verbinder
JP3362930B2 (ja) コネクタ
US5586911A (en) Shielding data connector
US4917629A (en) Electrical connector and termination method thereto
EP0928046A1 (de) Abgeschirmte elektrische Verbinderanordnung
US4883433A (en) Electrical connector for data distribution panel
EP0456396A2 (de) Elektrischer Verbinder
US6582255B2 (en) High-density plug connector for twisted pair cable
EP0653815B1 (de) Elektrischer Verbinder mit Erdklemme für Kabelabschirmung
EP0614248B1 (de) Schnittstelle für ein lokales Netz (LAN)
EP0294460B1 (de) Abgeschirmter datenverbinder
EP0323114B1 (de) Zusammenbau zum Datenverteilen
US5626490A (en) Wire stuffer cap/strain relief for communication network outlet
GB2182507A (en) Adaptor and method of inserting contacts therein
EP0865113B1 (de) Abgeschirmter Verbinder für Datenübertragung
EP0638961B1 (de) Kabelverbinder mit feinem Kontaktabstand und für einzelne Drähte
US4553800A (en) Low profile modular plug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AMP INCORPORATED (A NEW JERSEY CORPORATION)

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AMP INCORPORATED

17P Request for examination filed

Effective date: 19900104

17Q First examination report despatched

Effective date: 19920331

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THE WHITAKER CORPORATION

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 3888333

Country of ref document: DE

Date of ref document: 19940414

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: PROROGA CONCESSA IN DATA: 01.08.94;GUZZI E RAVIZZ

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980914

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011102

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011203

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011228

Year of fee payment: 14

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20021221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051221