EP0322428A1 - Kondensatorelement mit elektrodenflächen-muster für kapazitive messwertgeber - Google Patents

Kondensatorelement mit elektrodenflächen-muster für kapazitive messwertgeber

Info

Publication number
EP0322428A1
EP0322428A1 EP88905175A EP88905175A EP0322428A1 EP 0322428 A1 EP0322428 A1 EP 0322428A1 EP 88905175 A EP88905175 A EP 88905175A EP 88905175 A EP88905175 A EP 88905175A EP 0322428 A1 EP0322428 A1 EP 0322428A1
Authority
EP
European Patent Office
Prior art keywords
electrode surfaces
capacitor element
substrate layer
electrode
contact holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP88905175A
Other languages
English (en)
French (fr)
Inventor
Hans Rudolf Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0322428A1 publication Critical patent/EP0322428A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/01Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • G01D5/2412Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying overlap
    • G01D5/2415Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying overlap adapted for encoders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/43Electric condenser making
    • Y10T29/435Solid dielectric type

Definitions

  • the present invention relates to a capacitor element with an electrode surface pattern for capacitive sensors according to the preamble of claim 1.
  • each electrode surface is included at least one contact point.
  • these are bores or holes through the electrode surface and the substrate carrying the substrate, through which the electrode surfaces are contacted from the back of the capacitor element. The size and position of these bores or holes not only influence the capacitance of each electrode area, provided that they are in the active capacitor area, but also significantly determine the smallest possible dimensions of the electrode areas.
  • the present invention is therefore based on the object of creating a capacitor element with an electrode surface pattern for capacitive transducers which eliminates these disadvantages and makes it possible to arrange a plurality of electrode surfaces on such elements with comparable dimensions. This must not be at the expense of the clearly determinable capacitance of the capacitor in any position of the sensor.
  • this object is achieved by a capacitor element with an electrode surface pattern, as defined in claim 1.
  • An advantageous embodiment variant of a capacitor element according to the invention is described below with reference to the drawing. In the latter shows
  • FIG. 4 shows an advantageous embodiment variant of a capacitor element according to the invention with an electrode surface pattern with circular segment-shaped electrode surfaces with a central bore and centrally arranged connections, on an enlarged scale in plan view, and
  • FIG. 1 to 3 illustrate a capacitor element with an electrode surface pattern according to the prior art.
  • FIG. 1 shows that due to the inner contact holes 2 arranged on the circular segment tips of the electrode surfaces 1, which, as illustrated in FIG. 3, both through the substrate 3 and through the copper layers of the electrode surfaces applied thereon 1 on the front of the capacitor element and the conductor tracks 4 on the back of the same (FIG. 2), it is not possible to make the circular segment electrode surfaces 1 as narrow as desired. As a result, however, it is also not possible to arrange much more than the sixteen circular segment electrode surfaces 1 shown here in such a capacitor element with an outer diameter of approximately 20 mm. How 2 shows, these are connected on the back of the capacitor element both to one another and to connections 5 by means of the conductor tracks 4.
  • a substrate disc 13 drilled before coating with the electrode surfaces and conductor tracks is used, onto which the electrode surfaces 11 are laminated on one side or by others Means are applied in such a way that the conductive layer, which is, for example, a metal layer, completely covers the contacting holes or channels.
  • the conductor tracks 14 to be arranged on the rear side of the substrate wafer 13 are then advantageously metallized, the metallization layer likewise being located in the contacting holes or channels 12 of the substrate wafer 13 and on the conductive layer covering it against the front side, or. the back of the electrode surfaces 11 visible there forms, whereby these are contacted.
  • the capacitor element according to the invention with an electrode surface pattern can also be implemented for linear capacitive sensors.
  • a is advantageously used Electrode surface patterns with rectangular electrode surfaces are used, which are arranged as parallel strips transversely to the measuring direction, whereas the conductor tracks run independently of this.
  • the contacting holes or channels or locations no longer have to be outside the active electrode surfaces in the case of such a construction of a capacitor element with an electrode surface pattern, since they are not shown here for this ⁇ not to see complementary capacitor element of the capacitor. Since the electrode surfaces remain completely undamaged due to the type of contact described, the contact holes or channels or locations in the capacitor element according to the invention also have no influence on the capacitance of the capacitor and are no longer detected electrically. In the case of a round capacitor element with electrode segments in the form of a segment of a circle, this also makes it possible to lay the inner contact holes or channels 12 against the outer edge of the capacitor element as far as is necessary so that they are completely covered even with very narrow segment electrode surfaces 11.
  • the capacitor elements according to the invention can be provided with an electrode surface pattern which has a multiple of electrode surfaces than comparable conventional capacitor elements of this type, it is possible for the first time, even with small-sized capacitive sensors, to be a multiple achieve greater measurement accuracy and resolution than before. Due to the fact that the entire existing electrode surfaces can be used as active electrode surfaces, since they no longer have any disturbing contact holes or channels, it is even possible to dimension the transducer with a predetermined resolution smaller than before. this applies naturally also for capacitor elements according to the invention for linear sensors.
  • the invention also makes it possible to move the connections which are arranged on the periphery of the capacitor elements with circular segment-shaped electrode surfaces and are often disturbing there, in the central region of the capacitor element, since the circular segment electrode surfaces are active electrode surfaces up to their outermost edge can be used, which has the advantage that their most effective areas can be used for capacitance measurement. As a result, the use of the relatively ineffective tips of the circular segment electrode surfaces can be dispensed with without losses.
  • the connections can be arranged in their place, advantageously contactable from the rear of the pane.
  • the capacitor elements with electrode surface patterns can thus be circularly limited both in their center and at their periphery, without having to be made larger as a result.
  • An angle encoder which is manufactured with a capacitor element according to the invention, can thus be smaller than a conventional angle encoder with a significantly increased measurement accuracy and resolution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

Kondensatorelemente mit Elektrodenflächen-Mustern, wobei die Elektrodefläche (11) kontaktlöcherfrei sind und auf eine Substratschicht (13) mit vorgefertigten Kontaktierungslöchern (12) aufgebracht sind. Auf der anderen Seite der Substratschicht (13) sind die Leiterbahnen (14) durch die Kontaktierungslöcher (12) in der Substratschicht (13) hindurch aufgebracht und mit den Elektrodenflächen (11) verbunden.
Abstract
The invention concerns capacitor elements with electrode surface patterns in which the electrode surfaces (11) are free of contact holes and are applied to a substrate layer (13) with pre-existing contacting holes (12). The tracks (14) pass through the contacting holes (12) in the substrate layer (13) onto the other side of the substrate layer (13) and are connected to the electrode surfaces (11).

Description

BESCHREIBUNG
KONDENSATORELEMENT MIT ELEKTRODENFLAECHEN-MUSTER FOER KAPA¬ ZITIVE MESSWERTGEBER
Die vorliegende Erfindung betrifft ein Kondensatorelement mit Elektrodenflächen-Muster für kapazitive Messwertgeber gemäss dem Oberbegriff des Patentanspruchs 1.
Es sind Anwendungen bekannt, bei denen kapazitive Messwert¬ geber mit gegeneinander verdrehbaren Kondensatorteilen als Messelement für rotative Bewegungen verwendet werden. Auch lineare Anwendungen kapazitiver Messwertgeber sind bekannt, bei denen Teile eines Kondensators linear relativ zueinander verschoben werden. Die Messgenauigkeit und/oder Auflösung solcher Winkel- und Längen-Messwertgeber im jeweils verwen¬ deten Messbereich hängt bei diesen Anwendungen im wesentli¬ chen von der Feinheit der Abstufung der Kapazität dieses Messelementes ab. Dies bedeutet, dass, bei einem Winkelgeber mit Kreissegment- Elektrodenflächen die Auflösung oder Ab¬ stufung der messbaren Winkelunterschiede um so besser ist, je mehr Kreissegmente auf dem Winkelgeber, resp. Kreisseg¬ ment-Elektrodenflächen auf seinem Kondensatorelement defi¬ niert werden können. Identisch gilt, dass für lineare Län¬ gen-Messwertgeber die Auflösung oder Abstufung der messbaren Distanzunterschiede um so besser ist, je mehr Elektrodenflä¬ chen pro Längeneinheit auf dem Kondensatorelement angeordnet sind.
Aufgrund der Tatsache, dass die einzelnen Elektrodenflächen elektrisch miteinander und mit der die einer beliebigen Lage des Messwertgebers entsprechende Kapazität desselben auswer¬ tenden Elektronik verbunden werden müssen, was aufgrund der Anordnung und Geometrie der Elektrodenflächen normalerweise auf der Rückseite des Kondensatorelementes geschieht, ist jede Elektrodenfläche mit zumindest einem Kontaktierungs- punkt versehen. Herkömmlicherweise handelt es sich dabei um durch die Elektrodenfläche und das diese tragende Substrat hindurch gehende Bohrungen oder Löcher, durch die hindurch die Elektrodenflächen von der Rückseite des Kondensatorele¬ mentes her kontaktiert sind. Die Grosse und Lage dieser Boh¬ rungen oder Löcher beeinflusst nicht nur die Kapazität einer jeden Elektrodenfläche, sofern sie im aktiven Kondensatorbe¬ reich liegen, sondern bestimmen auch ganz wesentlich die kleinstmδglichen Dimensionen der Elektrodenflächen mit. In der Praxis führt dies dazu, dass es schwierig ist, Kondensa¬ torelemente mit Kreissegment-Elektrodenflächen-Mustern mit kleinem Durchmesser herzustellen, auf denen eine grosse An¬ zahl von Kreissegment-Elektrodenflächen angeordnet sind. Auch bei linearen Messwertgebern müssen daher die einzelnen Elektrodenflächen Minimalbreiten aufweisen, die gross genug sind, um die Kontaktierungslδcher im Substrat sicher über¬ decken zu können. Damit sind aber der Auflösung einer Dreh¬ bewegung und einer Linearbewegung recht enge Grenzen ge¬ setzt, da es für eine Wertänderung der Kapazität des Mess¬ wertgebers einer relativ grossen mechanischen Bewegung be¬ darf. Dass diese Tatsache speziell in der Präzisions-Mess- technik Nachteile aufweist, ist für jeden Fachmann nahelie¬ gend.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Kondensatorelement mit Elektrodenflächen-Muster für ka¬ pazitive Messwertgeber zu schaffen, das diese Nachteile eli¬ miniert und es ermöglicht, auf solchen Elementen bei ver¬ gleichbaren Dimensionen ein Mehrfaches an Elektrodenflächen anzuordnen. Dies darf dabei nicht zu Lasten der klar be¬ stimmbaren Kapazität des Kondensators bei jeder beliebigen Stellung des Messwertgebers gehen.
Erfindungsgemäss wird diese Aufgabe durch ein Kondensatore¬ lement mit Elektrodenflächen-Muster gelöst, wie es im Pa¬ tentanspruch 1 definiert ist. Eine vorteilhafte Ausführungsvariante eines erfindungsgemäs- sen Kondensatorelementes ist nachfolgend anhand der Zeich¬ nung beschrieben. In letzterer zeigt
Fig. 1 ein konventionelles Kondensatorelement mit Elektro¬ denflächen-Muster in vergrössertem Massstab in Draufsicht,
Fig. 2 das Kondensatorelement nach Fig. 1 in Ansicht von hinten,
Fig. 3 einen Querschnitt durch einen Teil desselben Konden¬ satorelementes,
Fig. 4 eine vorteilhafte Ausführungsvariante eines erfin- dungsgemässen Kondensatorelementes mit einem Elektrodenflä¬ chen-Muster mit kreissegmentförmigen Elektrodenflächen mit zentraler Bohrung und zentral angeordneten Anschlüssen, in vergrössertem Masstab in Draufsicht, und
Fig. 5 das Kondensatorelement nach Fig. 4 von unten.
Die Fig. 1 bis 3 illustrieren ein Kondensatorelement mit Elektrodenflächen-Muster gemäss dem Stand der Technik. Fig. 1 zeigt, dass es aufgrund der jeweils an den Kreissegment¬ spitzen der Elektrodenflächen 1 angeordneten inneren Kontak- tierungslöcher 2, die, wie Fig. 3 veranschaulicht, sowohl durch das Substrat 3 als auch durch die auf dieses aufge¬ brachten Kupferschichten der Elektrodenflächen 1 auf der Vorderseite des Kondensatorelementes und der Leiterbahnen 4 auf der Rückseite desselben (Fig. 2) hindurchgehen, nicht möglich ist, die Kreissegment-Elektrodenflächen 1 beliebig schmal zu machen. Dadurch ist es aber auch nicht möglich, bei einem derartigen Kondensatorelement mit ca 20 mm äusse- rem Durchmesser wesentlich mehr als die hier dargestellten sechzehn Kreissegment-Elektrodenflächen 1 anzuordnen. Wie Fig. 2 zeigt, sind diese auf der Rückseite des Kondensatore¬ lementes sowohl untereinander als auch mit Anschlüssen 5 mittels der Leiterbahnen 4 verbunden. Aufgrund der weiter oben erwähnten Tatsache, dass sich innerhalb der aktiv be¬ nützten Elektrodenflächen der einzelnen Segmente befindliche Kontaktierungslδcher die Genauigkeit der pro Elektrodenflä¬ che erzeugten Kapazität des Kondensators negativ beeinflus¬ sen, ist es zumindest bei Präzisions-Messwertgebern nicht möglich, die inneren Kontaktierungslöcher 2 beliebig weit gegen aussen zu verlegen. Sie müssen gegen das Zentrum des Kondensatorelementes hin ausserhalb der aktiv benützten Elektrodenfläche angeordnet sein. Aus diesem Grunde ist es nicht möglich, mit herkömmlichen Winkelgebern dieser Art die Messgenauigkeit und Auflösung wesentlich zu verbessern.
Die Fig. 4 bis 6 veranschaulichen, wie dieses Problem anhand eines erfindungsgemässen Kondensatorelementes mit Elektro¬ denflächen-Muster gelöst werden kann und gleichzeitig die oft störend über die Peripherie des sonst kreisrunden Kon¬ densatorelementes hinaus ragenden Anschlüsse nach innen, in den zentralen Bereich des Kondensatorelementes, der für die aktive Nutzung als Elektrodenflächen ungeeignet ist, verlegt werden können. Man erkennt bei diesem erfindungsgemässen Kondensatorelement, dass keinerlei durch die Schicht des Ξlektrodenflächen-Musters, die vorteilhafterweise aus Kup¬ fer, aber auch aus jedem anderen geeigneten elektrisch lei¬ tenden Material besteht, hindurchgehende Kontaktierungslö¬ cher oder, bei anderer Ausführung des Teiles Kontaktierungs- kanäle, vorhanden sind. Die Kreissegment-Elektrodenflächen sind von ihrem äussersten bis zu ihrem innersten Rand homo¬ gen und nicht unterbrochen, obwohl sie auf der Rückseite des Kondensatroelementes mittels Leiterbahnen 14 untereinander und mit den innen angeordneten Anschlüssen 15 verbunden sind.
Damit können dank der Erfindung nicht nur feiner auflösende kapazitive Messwertgeber realisiert werden als bisher, son¬ dern diese können erst noch kleiner dimensioniert werden als dies bis heute möglich war. Zudem lässt sich dadurch eine harmonische Geometrie der Leiterbahnen 14 verwenden, die zu einer für alle Elektrodenflächen gleichen gegenseitigen Be¬ einflussung führt, was die Genauigkeit eines Messwertgebers in positivem Sinne beeinflusst.
Um die Elektrodenflächen 11 von hinten kontaktieren zu kön¬ nen, wird für die Herstellung dieser erfindungsgemässen Kon¬ densatorelemente beispielsweise eine vor dem Beschichten mit den Elektrodenfläαhen und Leiterbahnen gebohrte Substrat¬ scheibe 13 verwendet, auf welche einseitig die Elektroden¬ flächen 11 auflaminiert oder durch andere Mittel aufgebracht werden, derart, dass die leitende Schicht, bei der es sich beispielsweise um eine Metallschicht handelt, die Kontaktie- rungslöcher oder -kanäle vollständig überdeckt. Die auf der Rückseite der Substratscheibe 13 anzuordnenden Leiterbahnen 14 werden dann vorteilhafterweise aufmetallisiert, wobei die Metallisationsschicht sich ebenfalls in den Kontaktierungs- löcher oder -kanälen 12 der Substratscheibe 13 und an der diese gegen die Vorderseite abdeckenden leitenden Schicht, resp. der dort sichtbaren Rückseite der Elektrodenflächen 11 bildet, wodurch diese kontaktiert werden.
Auch andere Herstellverfahren, beispielsweise eines, bei dem keine gebohrten Kontaktierungslöcher notwendig sind, da die¬ se durch im Substrat angeordnete leitende Kanäle ersetzt sind, sind möglich.
Das erfindungsgemässe Kondensatorelement mit Elektrodenflä¬ chen-Muster ist im Gegensatz zu den an Hand der vorangehen¬ den Figuren beschriebenen Ausführungsvariante eines Konden¬ satorelementes mit kreissegmentförmigen Elektrodenflächen auch für lineare kapazitive Messwertgeber realisierbar. In dieser Ausführungsvariante wird vorteilhafterweise ein Elektrodenflächen-Muster mit rechteckigen Elektrodenflächen verwendet, die als parallele Streifen quer zur Messrichtung angeordnet sind, wogegen die Leiterbahnen unabhängig davon verlaufen.
Der Fachmann erkennt leicht, dass sich die Kontaktierungslö- cher oder -kanäle oder -stellen bei derartigem erfindungsge- mässem Aufbau eines Kondensatorelementes mit Elektrodenflä¬ chen-Muster nicht mehr ausserhalb der aktiven Elektrodenflä¬ chen befinden müssen, sind sie doch für das hier nicht dar¬ gestellte komplementäre Kondensatorelement des Kondensators nicht zu erkennen. Da die Elektrodenflächen durch die be¬ schriebene Art der Kontaktierung völlig unbeschädigt blei¬ ben, haben die Kontaktierungslδcher oder -kanäle oder -stel¬ len beim erfindungsgemässen Kondensatorelement auch keiner¬ lei Einfluss auf die Kapazität des Kondensators und werden elektrisch nicht mehr festgestellt. Dies ermöglicht es, bei einem runden Kondensatorelement mit kreissegmentfδrmigen Elektrodenflächen auch die inneren Kontaktierungslöcher oder -kanäle 12 soweit gegen den Aussenrand des Kondensatorele¬ mentes hin zu verlegen, wie dies notwendig ist, damit sie auch bei sehr schmalen Kreissegment-Elektrodenflächen 11 ganz abgedeckt werden.
Dank der Möglichkeit, dass die erfindungsgemässen Kondensa¬ torelemente mit einem Elektrodenflächen-Muster versehen wer¬ den können, das ein Vielfaches an Elektrodenflächen aufweist als vergleichbare herkömmliche derartige Kondensatorelemen¬ te, ist es erstmals möglich, auch bei klein dimensionierten kapazitiven Messwertgebern eine um ein Vielfaches grössere Messgenauigkeit und Auflösung zu erreichen als bisher. Da¬ durch, dass die gesamten vorhandenen Elektrodenflächen als aktive Elektrodenflächen verwendet werden können, da sie keine störenden Kontaktierungslöcher oder -kanäle mehr auf¬ weisen, ist es sogar möglich, Messwertgeber mit vorgegebener Auflösung kleiner zu dimensionieren als bisher. Dies gilt selbstverständlich auch für erfindungsgemässe Kondensatore¬ lemente für lineare Messwertgeber.
Die Erfindung ermöglicht es aber auch, die an der Peripherie der Kondensatorelemente mit kreissegmentförmigen Elektroden¬ flächen angeordneten und dort oft störenden Anschlüsse in den zentralen Bereich des Kondensatorelementes zu verlegen, da ja die Kreissegment-Elektrodenflächen bis zu ihrem äus- sersten Rand hin als aktive Elektrodenflächen verwendbar sind, was den Vorteil hat, dass ihre wirkungsvollsten Berei¬ che für die Kapazitätsmessung verwendet werden können. Da¬ durch kann, ohne Verluste, auf die Nutzung der relativ wir¬ kungsarmen Spitzen der Kreissegment-Elektrodenflächen ver¬ zichtet werden. An ihre Stelle können die Anschlüsse, vor¬ teilhafterweise von der Scheibenrückseite her kontaktierbar, angeordnet werden. Damit können die Kondensatorelemente mit Elektrodenflächen-Mustern sowohl in ihrem Zentrum als auch an ihrer Peripherie zirkulär begrenzt sein, ohne dass sie dadurch grösser ausgeführt werden müssten. Ein Winkelgeber, der mit einem erfindungsgemässen Kondensatorelement herge¬ stellt wird, kann somit bei wesentlich erhöhter Messgenauig¬ keit und Auflösung kleiner sein als ein herkömmlicher Win¬ kelgeber.

Claims

PATENTANSPRÜECHE
1. Kondensatorelement mit Elektrodenflächen-Muster für kapa¬ zitive Messwertgeber mit relativ zueinander verschiebbaren Kondensatorteilen zwecks Veränderung der Kapazität des Mess¬ wertgebers in Abhängigkeit von der relativen Lage der Kon¬ densatorteile zueinander, wobei die einzelnen Elektrodenflä¬ chen (11) auf einer Seite einer isolierenden Substratschicht (13) angeordnet sind, wogegen diese Elektrodenflächen (11) untereinander und mit zu der elektrischen Schaltung führen¬ den Anschlüssen (15) durch Leiterbahnen (14) elektrisch ver¬ bunden sind, die auf der anderen Seite der Substratschicht (13) angeordnet sind, dadurch gekennzeichnet, dass die Elek¬ trodenflächen (11) kontaktlöcherfrei sind und die Leiterbah¬ nen (14) von der Rückseite der Substratschicht (13) her durch in dieser vorhandenen Kontaktierungslöcher oder -kanä- len (12) hindurch mit den sich über diese Kontaktierungslö¬ cher (12) hinweg erstreckenden, nicht durchbrochenen Elek¬ trodenflächen (11) rückseitig elektrisch verbunden sind.
2. Kondensatorelement nach Anspruch 1, dadurch gekennzeich¬ net, dass die Elektrodenflächen (11) aus auf eine aus elek¬ trisch isolierendem Material bestehenden Substratschicht (13) einseitig über die darin vorhandenen Kontaktierungslö¬ cher oder -kanälen (12) sich erstreckenden aufgebrachten elektrisch leitenden Schicht bestehen, wogegen die Leiter¬ bahnen (14) aus einem sich auf der anderen Seite der Sub¬ stratschicht (13) und durch die Kontaktierungslöcher oder -kanäle (12) hindurch bis an die Rückseite der Elektroden¬ flächen (11) reichenden elektrisch leitenden Material beste¬ hen.
3« Kondensatorelement nach Anspruch 1, dadurch gekennzeich¬ net, dass die Anschlüsse (15) vo Ξlektrodenflächen-Muster weg gegen das Zentrum hin angeordnet sind.
EP88905175A 1987-06-29 1988-06-23 Kondensatorelement mit elektrodenflächen-muster für kapazitive messwertgeber Withdrawn EP0322428A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2446/87A CH673172A5 (de) 1987-06-29 1987-06-29
CH2446/87 1987-06-29

Publications (1)

Publication Number Publication Date
EP0322428A1 true EP0322428A1 (de) 1989-07-05

Family

ID=4234013

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88905175A Withdrawn EP0322428A1 (de) 1987-06-29 1988-06-23 Kondensatorelement mit elektrodenflächen-muster für kapazitive messwertgeber

Country Status (5)

Country Link
US (1) US4937694A (de)
EP (1) EP0322428A1 (de)
JP (1) JPH02500614A (de)
CH (1) CH673172A5 (de)
WO (1) WO1989000277A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512836A (en) * 1994-07-26 1996-04-30 Chen; Zhenhai Solid-state micro proximity sensor
EP0741398A2 (de) * 1995-04-27 1996-11-06 Applied Materials, Inc. Variabler Kondensator
US11695405B2 (en) * 2019-06-18 2023-07-04 Abb Schweiz Ag Short circuit protection for semiconductor switches
EP3992867A1 (de) * 2020-10-30 2022-05-04 IQM Finland Oy Abstimmbarer koppler mit koppelerweiterung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2674729A (en) * 1950-04-13 1954-04-06 Edward G Martin Measuring apparatus
US3681828A (en) * 1970-05-21 1972-08-08 Frank G J Mezey Method of making rotors for variable capacitors
US4182981A (en) * 1977-12-08 1980-01-08 Westinghouse Electric Corp. Apparatus for gauging the shape of a conducting surface
JPS568508A (en) * 1979-07-02 1981-01-28 Nippon Soken Inc Rotation detector
US4633249A (en) * 1983-05-18 1986-12-30 Mitutoyo Mfg. Co., Ltd. Displacement detector utilizing change of capacitance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8900277A1 *

Also Published As

Publication number Publication date
WO1989000277A1 (fr) 1989-01-12
CH673172A5 (de) 1990-02-15
US4937694A (en) 1990-06-26
JPH02500614A (ja) 1990-03-01

Similar Documents

Publication Publication Date Title
EP1222471B1 (de) Gebersystem mit einem beschleunigungsgeber und einem positionsgeber
EP1573280B1 (de) Vorrichtung und verfahren zur kapazit tsmessung sowie einric htung zum ermitteln des f llstandes einer fl ssigkeit m it einer solchen vorrichtung
AT398245B (de) Kapazitiver drehwinkelsensor
DE3310327C2 (de)
EP2622311B1 (de) Kapazitiver drehgeber
EP0660263A1 (de) Mehrstelliges Rollenzählwerk für ein Volumenmessgerät
EP0271103A2 (de) Anordnung zur Messung von Kraftverteilungen
DE102017130379A1 (de) Sensoreinrichtung mit kapazitivem Sensor für Kraftfahrzeuge
EP3227162B1 (de) Sensorsystem für ein lenkrad eines kraftfahrzeugs, lenkrad mit einem solchen sensorsystem und verfahren zum betrieb eines solchen sensorsystems
EP2657645B1 (de) Vorrichtung zum Detektieren einer Kante einer Materialbahn
DE19530092A1 (de) Überprüfbarer Foliendrucksensor
DE4414529C2 (de) Drehwinkelsensor vom Kapazitätstyp
EP1804557A1 (de) Elektronik-Sicherheits-Modul
EP0950884B1 (de) Kapazitiver Sensor
EP0322428A1 (de) Kondensatorelement mit elektrodenflächen-muster für kapazitive messwertgeber
EP1804559A2 (de) Elektronik-Sicherheits-Modul
DE19858828A1 (de) Kapazitiver Sensor
DE3604120C2 (de)
DE4034991C2 (de)
AT504406B1 (de) Messvorrichtung
EP1126249A2 (de) Kapazitives Zahlrad
WO2013000737A1 (de) Kapazitives sensorelement zur detektion einer verschiebung
DE19823190B4 (de) Füllstandssensor mit Schwimmer
EP1804560A2 (de) Elektronik-Sicherheits-Modul
EP0347747B1 (de) Kondensator für kapazitive Messwertgeber

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890224

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19910416

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19920303

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.