EP0310506B1 - Dispositif de production d'un effluent contenu dans une formation géologique sous-marine et méthode de production mise en oeuvre à partir d'un tel dispositif - Google Patents

Dispositif de production d'un effluent contenu dans une formation géologique sous-marine et méthode de production mise en oeuvre à partir d'un tel dispositif Download PDF

Info

Publication number
EP0310506B1
EP0310506B1 EP88402454A EP88402454A EP0310506B1 EP 0310506 B1 EP0310506 B1 EP 0310506B1 EP 88402454 A EP88402454 A EP 88402454A EP 88402454 A EP88402454 A EP 88402454A EP 0310506 B1 EP0310506 B1 EP 0310506B1
Authority
EP
European Patent Office
Prior art keywords
production
wells
effluent
jet pump
pumping module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88402454A
Other languages
German (de)
English (en)
Other versions
EP0310506A1 (fr
Inventor
Jacques Corteville
Frédéric Hoffmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0310506A1 publication Critical patent/EP0310506A1/fr
Application granted granted Critical
Publication of EP0310506B1 publication Critical patent/EP0310506B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/124Adaptation of jet-pump systems
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/01Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/01Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
    • E21B43/017Production satellite stations, i.e. underwater installations comprising a plurality of satellite well heads connected to a central station
    • E21B43/0175Hydraulic schemes for production manifolds

Definitions

  • the present invention relates to an effluent production device contained in an underwater geological formation and a production method implemented from such a device. It applies in particular to the submarine transfer of petroleum production over short and medium distances, for example between a hydrocarbon deposit and an existing hydrocarbon processing platform on a larger deposit previously developed.
  • the effluent production devices contained in an underwater geological formation comprise at least one drilled well, each of said wells extending from a low end in a hydrocarbon reservoir to an upper end forming a well head located substantially above the seabed, at least one head of said wells being connected to a production conduit supplying a treatment area such as in particular a platform.
  • a production conduit supplying a treatment area such as in particular a platform.
  • the present invention therefore aims to overcome the aforementioned drawbacks by providing a device for producing effluent which is less expensive and which benefits from ease of use, in particular as regards the change of damaged parts.
  • the main idea of the present invention is to propose a device and a method using a jet pump, also called a pump-ejector, placed substantially at the bottom of the water, at the outlet of the well heads, or after the group of valves (manifold) which allows the production of several wells to be grouped together, to improve the extraction of effluents from an underwater geological formation and allow transfer to distant treatment facilities.
  • a jet pump also called a pump-ejector
  • a jet pump which can be used notably in the context of the present invention is of the type described in French patent application EN 87 / 08.919 filed by the present applicant.
  • This pump makes it possible to raise fluids in a well through the interior of the tubing, and in addition to the lower cost of installation, maintenance and handling, ensures, due to the simplicity and robustness thereof, great reliability. operating, especially better than those of electric pumps.
  • such pumps allow better conservation of the pumping energy efficiency under multiphase suction conditions, when the relative quantities of gas and liquid to be recompressed vary.
  • these pumps allow good adjustment flexibility as a function of the suction conditions, in particular by adjusting the flow rate of the working fluid, a short reaction time when the settings are modified, as well as a good ability to pump viscous or corrosive fluids. or forming deposits.
  • the present invention therefore relates to an effluent production device contained in an underwater geological formation comprising at least one drilled well, each of said wells extending from a low end in a hydrocarbon tank to a high end forming a well head located substantially above the seabed soil, at least one head of said wells being connected to a production conduit supplying a treatment zone such that in particular a platform, characterized in that at least one of said wells comprises a jet pump disposed at a given height inside said well so as to pump the effluent from the formation to the wellhead and in that it further comprises a pumping module arranged on the seabed provided with a jet pump connecting the well heads to the production conduit, said hydrocarbon being pumped at the outlet of the well heads towards the area of treatment by said jet pump.
  • the present invention is particularly advantageous when used with the technique of tools and pumped instruments, such as that commonly designated by the initials TFL (from the Anglosaxon Through Flow Line). Indeed, by this technique, it is possible to set up and remove at will the jet pump (s) to adjust their adjustment parameters or carry out control and maintenance operations.
  • the effluent production device is characterized in that at least one of said wells comprises a jet pump disposed at a given height inside said well so as to pump the effluent from the formation up to 'at the wellhead.
  • Such a device makes it possible to exploit a geological formation in an evolutionary and appropriate manner for each of the wells, in particular when the formation is heterogeneous and has already been exploited and decompressed.
  • a switching device for example, each of the branches of which is connected to a wellhead and the reunification element of which is connected to the jet pump.
  • a line of working fluid coming from the treatment zone supplies the pumping module as well as each of the well heads.
  • the wells drilled each comprise a casing coaxial outside a production tube in which is disposed a jet pump, the production tube being connected at the level of the well head with a branch of the device switch and the annular volume located between the casing and the production tube being connected to the driving fluid line.
  • the drilled wells each comprise a casing in which is disposed a first tube receiving the jet pump for the production of the effluent and connected at the wellhead to a branch of the referral device and a second tube connected at the wellhead with the driving fluid line for the supply of the jet pump.
  • the jet pump of the pumping module and the jet pumps situated respectively in each of said wells are controlled simultaneously by the driving fluid line.
  • the jet pumps being of the type of tools and instruments pumped, said pumps are lowered and reassembled from the platform in the production duct to the pumping module, then to each of said wells through the referral device.
  • a tool diameter changing device is used.
  • Figure 1 describes one of the modes of activation of subsea crude oil production.
  • Figure 1 shows the marine element 1 as a whole, the sea floor 2, the geological formation 3 impregnated with fluids that one wishes to extract, such as crude oil mixed with natural gas possibly associated with reservoir water.
  • Production takes place through different wells 10, 11, 12, 13 distributed so as to efficiently drain the entire extent of the deposit.
  • the number of wells represented in the example chosen is limited to four, which makes it possible to show the possible equipment differences within the framework of the effluent production process.
  • the wells shown 10, 11, 12, 13 are grouped wells "cluster" in an area with insufficient bottom pressure, all four requiring activation inside the well. These wells are then connected via a production conduit 25 to a treatment installation 30 remote from the site.
  • Each of the wells extends from a low end in a hydrocarbon tank to a high end forming a well head 9 located substantially above the ground 2 of the seabed.
  • the wells 10 and 11 represent such a type of embodiment in which the casing 13 internally comprises a production tube 14, the annular volume between the two tubes serving for 1 injection of the working fluid.
  • the invention could find the same advantages with the use of two tubes inside the casing 15, a first tube 34 serving as production tubing and a second tube 35 for injecting the working fluid into the jet pump.
  • the well heads 9 identical on each well are of the TFL type, comprising a single lyre 16 for implanting and removing pumped tools, in particular allowing the passage of TFL jet pumps whose articulated equipment has well-defined dimensions.
  • the moving heads 16 are connected to an underwater switching module 17 of the pumped tools, also ensuring the grouping of the production of each of the wells.
  • This switch module can be the "Rotatif Diverter Module” developed by the ciosohn's et Chantier de Bretagne. It allows you to direct the circulation of tools to or from each of the TFL wells at will.
  • This module is installed on an adapted underwater base plate 18, comparable to that of the U.M.C. ("Underwater Manifold Center” by Shell and Esso, used on the Cormorant deposit in the North Sea).
  • U.M.C. Underwater Manifold Center
  • Esso Used on the Cormorant deposit in the North Sea.
  • This base plate makes it possible to group and connect the main elements of control, command and transfer of underwater production.
  • This pumping module essentially comprises a jet pump 4 of dimensions and geometrical shapes close to those of the well bottom jet pumps, but of larger dimensions to allow the production of each well, effluents from the deposit and engine fluids having to be recompressed. enabled the activation of wells equipped with jet pumps.
  • This jet pump is equipped with connection and disconnection devices inside the pumping module comparable to those used in the TFL technique, possibly using attached pumpable tools, allowing it to be brought back through the production line. 25 to the treatment platform 30, then put it back in place at the bottom of the sea by reverse circulation. These movements can be controlled by auxiliary hydraulic or electro-hydraulic control systems, through umbilical connections.
  • the pumping module 19 is equipped with a device for storing and connecting organs of 'tightness on pumped tools, to allow TFL jet pumps in particular to circulate in the collection of diameter larger than that of petroleum tubing, according to a process developed by the company OTIS and become classic in TFL technique.
  • TFL well pumps it is then necessary, by means of the appropriate commands, to first remove the underwater jet pump 4 from the pumping module according to the method indicated above, then trigger the return of the well bottom 20, 21, 22, 23, either by reversing the circulation of the working fluid (which is a conventional operation when production takes place through the annular space), or preferably using tools Appropriate removal TFL.
  • the TFL downhole pumps then flow through the well heads, the routing module, the submarine pumping module and the production line. They are replaced at the bottom of the well using a procedure based on the same principles.
  • the production line 25, the driving fluid line 26 of the other connections can be buried between the base and the platform 11, so as to avoid incidents, due for example to hooking with a fishing net, or any other object. moving to near the bottom of the water.
  • the platform 30 (FIG. 1) comprises a separator 31 fed by the production line 30 which separates the gaseous part from the liquid part of the effluent.
  • a fraction of the liquid part of the effluent (water or raw) is repressurized in the pump 33 to produce the working fluid necessary for the operation of the downhole jet pumps 10, 11, 12, 13 and the submarine pump of the pumping module 4.
  • the non-recycled liquid hydrocarbons as well as the gas are generally sent by separate lines, either to storage means, or to other installations such as treatment installations or another platform.
  • the working fluid is for example pressurized from 200 to 300 bar (20 to 30 MPa) when it is desired to produce at the level of the first jet pump an overpressure of 30 bar (3 MPa) of the effluent: this overpressure corresponds approximately to that required to transfer production over a distance of around 30 km.
  • This working fluid feeds, by a high pressure pipe 26, of diameter which may be less than that of the production pipe (for example 6 "5/8 against 8" 5/8 for the production pipe) the various jet pumps pumping module or downhole module.
  • Valves 27 judiciously placed at the well head and on the base plate 18 make it possible to ensure operational safety, possibly switching off the pumping of the wells whose production stop is decided.
  • the working fluid can thus operate two functions: during the operation of installing or removing jet pumps or other tools, circulation of this equipment; In normal operation, supply or working fluid according to a distribution controlled by the size of the nozzles fitted to the jet pumps of the various jet pumps, downhole or underwater.
  • each of the pumps 20, 21, 22, 23 can operate at characteristics of flow rates and pressures of working fluid adapted to production specifications.
  • Each of the casings, lyres 16 or hydraulic connections in the well, at the wellhead, or in the vicinity of the wellheads as well as the various lines are equipped with valves and bypass conduits, not shown in the figure for more clarity, and of which the man of the art knows the location perfectly.
  • the operating diagram presented in this example offers the advantage of enabling production to be activated both at the bottom of the well and at the bottom of the sea with a minimum of connecting pipes between the deposit and the platform.
  • the method can also operate with independent activation systems for the well bottom and the underwater station, the working fluid being able to be supplied by multiple pumping lines, one for the underwater station and one for the set of wells or one for each well.
  • the completion of the wells may present other variants. In particular, more conventional double TFL completions, with two tubes in each well, can be adopted without changing the indicated operating possibilities.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Earth Drilling (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

  • La présente invention concerne un dispositif de production d'effluent contenu dans une formation géologique sous-marine et une méthode de production mise en oeuvre à partir d'un tel dispositif. Elle s'applique notamment au transfert sous-marin de la production pétrolière sur de courtes et moyennes distances, par exemple entre un gisement d'hydrocarbures et une plateforme de traitement d'hydrocarbures existante sur un gisement de taille plus importante développpé antérieurement.
  • Les dispositifs de production d'effluent contenu dans une formation géologique sous-marine, habituellement mis en oeuvre sur des sites pétroliers, comportent au moins un puits foré, chacun desdits puits s'étendant d'une extrémité basse dans un réservoir d'hydrocarbures à une extrémité haute réalisant une tête de puits située sensiblement au dessus du sol du fond marin, au moins une tête desdits puits étant connectée à un conduit de production alimentant une zone de traitement telle que notamment une plateforme. Une installation de ce type est notamment décrite dans le brevet US-A-4.152.088.
  • Dans de tels types de production sous-marine, il est connu d'utiliser des pompes électriques, ou un procédé d'injection de gaz communément appelé "gaS-lift", pour améliorer l'extraction des effluents de la formation et faciliter un transfert vers une plateforme éloignée. Ces procédés de production assistée sont coûteux, notamment en investissement à l'installation et en utilisation.
  • La présente invention vise donc à pallier les inconvénients précités en réalisant un dispositif de production d'effluent moins coûteux et bénéficiant d'une facilité d'utilisation notamment quant au changement de pièces endommagées.
  • L'idée mère de la présente invention est de proposer un dispositif et une méthode utilisant une pompe à jet, appelée aussi pompe-éjecteur, placée sensiblement au fond de l'eau, à la sortie des têtes de puits, ou après le groupe de vannes (manifold) qui permet de regrouper la production de plusieurs puits, pour améliorer l'extraction des effluents d'une formation géologique sous-marine et permettre un transfert vers des installations de traitement éloignées.
  • Une pompe à jet pouvant être notablement utilisée dans le cadre de la présente invention est du type de celle décrite dans la demande de brevet français EN 87/08.919 déposée par la présente demanderesse. Cette pompe permet de remonter des fluides dans un puits par l'intérieur du tubing, et outre le moindre coût d'installation, d'entretien et de manipulation, assure du fait de la simplicité et de la robustesse de celle-ci une grande fiabilité de fonctionnement, supérieure notamment à celles des pompes électriques. De plus, de telles pompes permettent une meilleure conservation du rendement énergétique de pompage en conditions d'aspiration polyphasique, lorsque les quantités relatives de gaz et de liquide à recomprimer varient. Enfin ces pompes permettent une bonne souplesse de réglage en fonction des conditions d'aspiration notamment par ajustement du débit de fluide moteur, un faible temps de réaction lors de la modification des réglages, ainsi qu'une bonne aptitude au pompage de fluides visqueux ou corrosifs ou formant des dépôts.
  • La présente invention a donc pour objet un dispositif de production d'effluent contenu dans une formation géologique sous-marine comportant au moins un puits foré, chacun desdits puits s'étendant d'une extrémité basse dans un réservoir d'hydrocarbures à une extrémité haute réalisant une tête de puits située sensiblement au-dessus du sol du fond marin, au moins une tête desdits puits étant connectée à un conduit de production alimentant une zone de traitement telle que notamment une plateforme, caractérisé en ce qu'au moins l'un desdits puits comporte une pompe à jet disposée à une hauteur donnée à l'intérieur dudit puits de manière à pomper l'effluent de la formation jusqu'à la tête de puits et en ce qu'il comporte en outre un module de pompage disposé sur le fond marin muni d'une pompe à jet reliant les têtes de puits au conduit de production, ledit hydrocarbure étant pompé à la sortie des têtes de puits vers la zone de traitement par ladite pompe à jet.
  • La présente invention est particulièrement intéressante lorsqu'on l'utilise avec la technique des outils et instruments pompés, telle celle communément désignée par les initiales TFL (de l'anglosaxon Through Flow Line). En effet, par cette technique, il est possible de mettre en place et de retirer à volonté la ou les pompes à jet pour ajuster leurs paramètres de réglage ou effectuer les opérations de contrôle et entretien.
  • Dans un mode de réalisation particulier le dispositif de production d'effluent est caractérisé en ce que au moins un desdits puits comporte une pompe à jet disposée à une hauteur donnée à l'intérieur dudit puits de manière à pomper l'effluent de la formation jusqu'à la tête de puits.
  • Un tel dispositif permet d'exploiter une formation géologique de manière évolutive et appropriée à chacun des puits, notamment lorsque la formation est hétérogène et a été déjà exploitée et décomprimée.
  • En effet, après avoir regroupé la production de plusieurs têtes de puits dans un collecteur, on pourra disposer une première pompe a jet en aval de ce collecteur pour recomprimer l'ensemble de la production. Simultanément ou par la suite, selon les évolutions de la production de chacun des puits, on pourra placer à la profondeur appropriée, fonction de la complétion des puits, de la pression hydrostatique de l'effluent, ou en fond des puits, une ou plusieurs pompes à jet (une seule par puits), dont les caractéristiques hydrauliques sont adaptées aux pressions et débits des fluides à pomper. Ces pompes à jets pourront être mises en place et enlevées par la technique dite de TFL.
  • Avantageusement à l'amont du module de pompage disposé sur le fond marin est disposé un dispositif d'aiguillage dont chacune des branches est connectée à une tête de puits et dont l'élément réunificateur est reliée à la pompe à jet.
  • Dans un mode de réalisation particulier, une conduite de fluide moteur provenant de la zone de traitement alimente le module de pompage ainsi que chacune des têtes de puits.
  • Selon un premier mode de réalisation, les puits forés comportent chacun un tubage coaxial extérieurement à un tube de production dans lequel est disposé une pompe à jet, le tube de production étant connecté au niveau de la tête de puits avec une branche du dispositif d'aiguillage et le volume annulaire situé entre le tubage et le tube de production étant connecté à la conduite de fluide moteur.
  • Selon un second mode de réalisation, les puits forés comportent chacun un tubage dans lequel est disposé un premier tube recevant la pompe à jet pour la production de l'effluent et relié en tête de puits à une branche du dispositif d'aiguillage et un second tube connecté en tête de puits avec la conduite de fluide moteur pour l'alimentation de la pompe à jet.
  • La présente invention englobe également une méthode de production d'effluent contenu dans une formation géologique sous-marine mise en oeuvre dans le dispositif tel que précédemment décrit, caractérisée en ce que
    • ― on injecte un fluide moteur dans la conduite de fluide à partir de la plateforme vers la pompe à jet du module de pompage;
    • ― on recueille par la conduite de production, l'effluent pompé dans la formation et remonté vers le module de pompage dans le tube de production.
  • Avantageusement on commande simultanément par la conduite de fluide moteur la pompe à jet du module de pompage et les pompes à jet situées respectivement dans chacun desdits puits.
  • Dans un mode de réalisation préféré, les pompes à jets étant du type d'outils et d'instruments pompés, lesdites pompes sont descendues et remontées à partir de la plateforme dans le conduit de production vers le module de pompage, puis vers chacun desdits puits par l'intermédiaire du dispositif d'aiguillage.
  • Avantageusement on utilise lors de la descente des outils pompés à l'intérieur du module de pompage, un dispositif de changement de diamètre d'outil.
  • On décrira maintenant plus en détail une forme de réalisation particulière de l'invention qui en fera mieux comprendre les caractéristiques essentielles et les avantages, étant entendu toutefois que cette forme de réalisation est choisie à titre d'exemple et qu'elle n'est nullement limitative. Sa description est illustrée par les dessins annexés dans lesquels:
    • ― la figure 1 représente le dispositif de production d'effluent selon la présente invention,
    • ― la figure 2 représente le dispositif de production au niveau du fond marin comportant les différents puits forés.
  • L'exemple choisi et illustré à la figure 1 décrit l'un des modes d'activation de la production sous-marine de brut. La figure 1 présente l'élément marin 1 dans son ensemble, le fond de la mer 2, la formation géologique 3 imprégnée de fluides que l'on veut extraire, tels du pétrole brut mélangé avec le gaz naturel associé éventuellement à de l'eau de gisement. La production s'opére par l'intermédiaire de différents puits 10, 11, 12, 13 répartis de manière à drainer efficacement toute l'étendue du gisement. Le nombre de puits représentés dans l'exemple choisi est limité à quatre, ce qui permet de faire apparaître les différences d'équipements possibles dans le cadre du procédé de production d'effluent.
  • Les puits représentés 10, 11, 12, 13 sont des puits groupés "cluster" dans une zone à pression de fond insuffisante nécessitant tous les quatre une activation à l'intérieur du puits. Ces puits sont ensuite reliés par l'intermédiaire d'un conduit de production 25 à une installation de traitement 30 éloignée du site.
  • Chacun des puits s'étend d'une extrémité basse dans un réservoir d'hydrocarbure à une extrémité haute réalisant une tête de puits 9 située sensiblement au-dessus du sol 2 du fond marin.
  • Ils sont équipés de pompes à jet non classiques, respectivement 20, 21, 22, 23 disposées à des profondeurs convenables adaptées aux conditions de chacun de ces puits, aptes à être mises en place et retirées par la technique des outils pompés tout en assurant la production par l'intérieur du tubing central, l'espace annulaire servant à l'injection du fluide moteur, selon par exemple le procédé décrit dans le brevet FR 2581427.
  • Les puits 10 et 11 (figure 2) représentent un tel type de réalisation dans lequel le tubage 13 comporte intérieurement un tube de production 14, le volume annulaire entre les deux tubes servant a 1 injection du fluide moteur.
  • Cependant comme représenté dans le cas du puits 12, l'invention pourrait trouver les mêmes avantages avec une utilisation de deux tubes à l'intérieur du tubage 15, un premier tube 34 servant de tubing de production et un second tube 35 pour l'injection du fluide moteur dans la pompe à jet.
  • Les têtes de puits 9 identiques sur chaque puits sont de type TFL, comportant une seule lyre 16 d'implantation et retrait d'outils pompés, permettant notamment le passage des pompes à jet TFL dont les équipements articulés ont des dimensions bien délimitées. Les lyres 16 sont connectées à un module sous-marin d'aiguillage 17 des outils pompés, assurant également le regroupement de la production de chacun des puits.
  • Ce module aiguilleur peut être le "Rotatif Diverter Module" développé par la Société Française Ateliers et Chantier de Bretagne. Il permet d'orienter à volonté la circulation des outils vers ou depuis chacun des puits TFL. Ce module est installé sur une plaque de base 18 sous-marine adaptée, comparable à celle de l'U.M.C. ("Underwater Manifold Center" des Sociétés Shell et Esso, utilisé sur le gisement de Cormorant en Mer du Nord). Cette plaque de base permet de regrouper et de connecter les principaux éléments de contrôle, commande et transfert de la production sous marine. Sur cette plaque de base, en liaison avec le module aiguilleur 17 situé en amont, est disposé un module de pompage 19 des fluides produits par les différents puits. Ce module de pompage comporte essentiellement une pompe à jet 4 de dimensions et formes géométriques voisines de celles des pompes à jet de fond de puits, mais de dimensions supérieures pour permettre de recomprimer la production de chacun des puits, effluents du gisement et fluides moteur ayant permis l'activation des puits équipés de pompes à jet.
  • Cette pompe à jet est équipée de dispositifs de connection et déconnection à l'intérieur du module de pompage comparables à ceux utilisés en technique TFL, éventuellement à l'aide d'outils pompables annexés, permettant de la ramener à travers la conduite de production 25 jusqu'à la plateforme de traitement 30, puis de la remettre en place en fond de mer par circulation inverse. Ces déplacements peuvent être commandés par des systèmes de commande hydraulique ou électrohydraulique annexes, à travers des liaisons ombilicales.
  • Cette disposition permet ainsi d'opérer facilement le réglage et la maintenance de cette pompe à jet, moyennant des brèves interruptions de la production dépendant notamment de la distance entre la station sous-marine et la plateforme. Pour permettre aux pompes de fond de puits TFL d'être également ramenées ou ré-installées par la même méthode au travers de la conduite de production 25, le module de pompage 19 est équipé d'un dispositif de stockage et connection d'organes d'étanchéité sur outils pompés, pour permettre aux pompes à jet TFL notamment de circuler dans la collecte de diamètre supérieur à celui des tubings pétroliers, selon un procédé développé par la société OTIS et devenu classique en technique TFL.
  • Pour ramener à la plateforme les pompes de puits TFL, il faut alors, moyennant les commandes appropriées d'abord enlever la pompe à jet sous-marine 4 du module de pompage selon la méthode indiquée précédemment, puis déclencher le retour des pompes à jet de fond de puits 20, 21, 22, 23, soit par inversion de la circulation du fluide moteur (ce qui est une opération classique lorsque la production s'opère par l'espace annulaire), soit de préférence à l'aide d'outils TFL de dépose appropriés. Les pompes de fond TFL circulent alors au travers des têtes de puits, du module d'aiguillage, du module de pompage sous-marin et de la conduite de production. Leur remise en place au fond de puits s'opère selon une procédure tenant aux mêmes principes.
  • La conduite de production 25, la conduite de fluide moteur 26 des autres liaisons peuvent être ensouillées entre l'embase et la plateforme 11, de manière à éviter des incidents, dus par exemple à l'accrochage avec un filet de pêche, ou tout objet se déplaçant au voisinage du fond de l'eau.
  • La plateforme 30 (figure 1) comporte un séparateur 31 alimenté par la ligne de production 30 qui sépare la partie gazeuse de la partie liquide de l'effluent. Une fraction de la partie liquide de l'effluent (eau ou brut) est repressurisé dans la pompe 33 pour réaliser le fluide moteur nécessaire au fonctionnement des pompes à jet de fond de puits 10, 11, 12, 13 et pompe sous-marine du module de pompage 4. Les hydrocarbures liquides non recyclés ainsi que le gaz sont envoyés généralement par des lignes séparées, soit vers des moyens de stockage, soit vers d'autres installations telles des installations de traitement ou une autre plateforme.
  • Le fluide moteur est par exemple pressurisé de 200 à 300 bar (20 à 30 MPa) lorsque l'on veut produire au niveau de la première pompe à jet une surpression de 30 bar (3 MPa) de l'effluent: cette surpression correspond approximativement à celle nécessaire pour transférer la production sur une distance de l'ordre de 30 km. Ce fluide moteur alimente, par une conduite sous haute pression 26, de diamètre pouvant être inférieur à celui de la conduite de production (par exemple 6"5/8 contre 8"5/8 pour la conduite de production) les différentes pompes à jet sous-marines du module de pompage ou de fond de puits. Des vannes 27 judicieusement placées en tête de puits et sur la plaque de base 18 permettent d'assurer la sécurité du fonctionnement, de mettre éventuellement hors circuit de pompage les puits dont l'arrêt de production est décidé. Le fluide moteur peut ainsi opérer deux fonctions: pendant les opération de mise en place ou retrait des pompes à jet ou autres outils, circulation de ces équipements; En fonctionnement normal, alimentation ou fluide moteur selon une répartition commandée par la taille des duses équipant les pompes à jet des différentes pompes à jet, de fond de puits ou sous-marine.
  • Ainsi chacune des pompes 20, 21, 22, 23 peut fonctionner à des caractéristiques de débits et pressions de fluide moteur adaptés aux spécifications de la production.
  • Chacun des tubages, des lyres 16 ou des liaisons hydrauliques dans le puits, en tête de puits, ou au voisinage des têtes de puits ainsi que les différentes lignes sont équipés de vannes et de conduits de dérivation, non représentés sur la figure pour plus de clarté, et dont l'homme de l'art connaît parfaitement l'emplacement.
  • Le schéma de fonctionnement présenté dans cet exemple offre l'avantage de permettre l'activation de la production à la fois en fond de puits et en fond de mer avec un minimum de conduites de liaison entre le gisement et la plateforme. Mais le procédé peut aussi fonctionner avec des systèmes d'activation indépendants pour le fond de puits et la station sous-marine, le fluide moteur pouvant être amené par des lignes de pompages multiples, une pour la station sous-marine et une pour l'ensemble des puits ou une pour chacun des puits. Enfin, la complétion des puits peut présenter d'autres variantes. En particulier, des complétions TFL doubles plus classiques, avec deux tubes dans chaque puits, peuvent être adoptées sans changer les possibilités de fonctionnement indiquées.

Claims (8)

1. Dispositif de production d'effluent contenu dans une formation géologique sous-marine (3) comportant au moins un puits foré (10, 11, 12, 13), chacun desdits puits s'étendant d'une extrémité haute réalisant une tête de puits située sensiblement au-dessus du sol (2) du fond marin, au moins une tête desdits puits étant connectée à un conduit de production (25) alimentant une zone de traitement (30) telle que, notamment une plateforme, caractérisé en ce qu'au moins l'un desdits puits (10, 11, 12, 13) comporte une pompe à jet (20, 21, 22, 23) disposée à une hauteur donnée à l'intérieur dudit puits de manière à pomper l'effluent de la formation jusqu'à la tête de puits et en ce qu'il comporte en outre un module de pompage (19) muni d'une pompe à jet (4) reliant les têtes de puits au conduit de production, ledit hydrocarbure étant pompé à la sortie des têtes de puits vers la zone de traitement par ladite pompe à jet.
2. Dispositif de production d'effluent selon la revendication 1, caractérisé en ce que à l'amont du module de pompage (19) situé sur le fond marin est placé un dispositif d'aiguillage (17) dont chacune des branches est connectée à une tête de puits (9) et dont l'élément réunificateur est reliée à la pompe à jet (4) du module de pompage.
3. Dispositif de production d'effluent selon l'une quelconque des revendications 1 à 2, caractérisé en ce que l'alimentation du module de pompage (19) ainsi que de chacune des têtes de puits (9) est assurée par une conduite de fluide moteur (26) provenant de la zone de traitement et des buses (28).
4. Dispositif de production d'effluent selon l'une quelconque des revendications 1 à 3, caractérisé en ce que les puits forés (10) comporte chacun un tubage (13) coaxial extérieurement à un tube de production (14) dans lequel est descendue une pompe à jet (20), le tube de production étant connecté au niveau de la tête de puits (9) avec une branche du dispositif d'aiguillage (17) et le volume annulaire situé entre le tubage et le tube de production étant connecté à la conduite de fluide moteur (26).
5. Dispositif de production d'effluent selon l'une quelconque des revendications 1 à 3, caractérisé en ce que les puits forés (12) comportent chacun un tubage (15) dans lequel est disposé un premier tube (23) recevant la pompe à jet (22) pour la production de l'effluent et relié en tête de puits à une branche du dispositif d'aiguillage (17) et un second tube (23) connecté en tête de puits avec la conduite de fluide moteur (26) pour l'alimentation de la pompe à jet.
6. Méthode de production d'effluent contenu dans une formation géologique sous-marine mise en oeuvre dans le dispositif selon l'une quelconque des revendications 1 à 5, caractérisée en ce que
― on injecte un fluide moteur dans la conduite de fluide à partir de la plateforme vers la pompe à jet du module de pompage.
― on commande simultanément par la conduite de fluide moteur la pompe à jet du module de pompage et les pompes à jet situées respectivement dans chacun desdits puits,
― on recueille par la conduite de production l'effluent pompé dans la formation et remonté vers le module de pompage dans le tube de production.
7. Méthode de production d'effluent selon la revendication 6, caractérisée en ce que les pompes à jets étant du type d'outils et d'instruments pompés, lesdites pompes sont descendues et remontées à partir de la plateforme dans le conduit de production vers le module de pompage d'une part et vers chacun desdits puits par l'intermédiaire du dispositif d'aiguillage.
8. Méthode de production d'effluent selon la revendication 7, caractérisée en ce que l'on utilise lors de la descente des outils pompés à l'intérieur du module de pompage, un dispositif de changement de diamètre d'outil.
EP88402454A 1987-09-29 1988-09-28 Dispositif de production d'un effluent contenu dans une formation géologique sous-marine et méthode de production mise en oeuvre à partir d'un tel dispositif Expired - Lifetime EP0310506B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8713468A FR2621071B1 (fr) 1987-09-29 1987-09-29 Methode et systeme de production d'un effluent contenu dans une formation geologique sous-marine
FR8713468 1987-09-29

Publications (2)

Publication Number Publication Date
EP0310506A1 EP0310506A1 (fr) 1989-04-05
EP0310506B1 true EP0310506B1 (fr) 1991-11-13

Family

ID=9355342

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88402454A Expired - Lifetime EP0310506B1 (fr) 1987-09-29 1988-09-28 Dispositif de production d'un effluent contenu dans une formation géologique sous-marine et méthode de production mise en oeuvre à partir d'un tel dispositif

Country Status (6)

Country Link
US (1) US4967843A (fr)
EP (1) EP0310506B1 (fr)
CA (1) CA1331558C (fr)
DE (1) DE3866207D1 (fr)
FR (1) FR2621071B1 (fr)
NO (1) NO300022B1 (fr)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0470883T3 (da) * 1990-08-10 1995-11-27 Inst Francais Du Petrole Fremgangsmåde og indretning til udnyttelse af små oliefelter i havbunden
FR2674902A1 (fr) * 1991-04-04 1992-10-09 Inst Francais Du Petrole Installation et methode pour l'exploitation en mer de petits gisements petroliers.
US5199496A (en) * 1991-10-18 1993-04-06 Texaco, Inc. Subsea pumping device incorporating a wellhead aspirator
FR2694785B1 (fr) * 1992-08-11 1994-09-16 Inst Francais Du Petrole Méthode et système d'exploitation de gisements pétroliers.
GB9402708D0 (en) * 1994-02-11 1994-04-06 Vortoil Separation Systems Ltd Fluid pumping
BR9602747A (pt) * 1996-06-12 1998-09-08 Petroleo Brasileiro Sa Método e aparelhagem para produç o submarina de petróleo através da injeç o intermitente de gás
FR2776702B1 (fr) * 1998-03-24 2000-05-05 Elf Exploration Prod Methode de conduite d'une installation de production d'hydrocarbures
US6702025B2 (en) 2002-02-11 2004-03-09 Halliburton Energy Services, Inc. Hydraulic control assembly for actuating a hydraulically controllable downhole device and method for use of same
WO2006068929A1 (fr) * 2004-12-20 2006-06-29 Shell Internationale Research Maatschappij B.V. Procede et dispositif pour systeme de production sous-marin d’hydrocarbures a ecoulement a froid
KR100599338B1 (ko) * 2005-07-05 2006-07-19 모딘코리아 유한회사 헤더파이프 제조방법과, 헤더탱크 및 이를 포함한 열교환기
EA012681B2 (ru) * 2005-07-29 2012-03-30 Роберт А. Бенсон Устройство для добычи, охлаждения и транспортирования вытекающих потоков из подводной скважины (варианты)
US20070284110A1 (en) * 2006-06-08 2007-12-13 Harris William F Downhole flow improvement
NO325931B1 (no) * 2006-07-14 2008-08-18 Agr Subsea As Anordning og fremgangsmate ved stromningshjelp i en rorledning
BRPI0703726B1 (pt) * 2007-10-10 2018-06-12 Petróleo Brasileiro S.A. - Petrobras Módulo de bombeio e sistema para bombeio submarino de produção de hidrocarbonetos com alta fração de gás associado
US8919449B2 (en) * 2008-06-03 2014-12-30 Shell Oil Company Offshore drilling and production systems and methods
WO2011037478A1 (fr) * 2009-09-25 2011-03-31 Aker Subsea As Ensemble manifold de production
GB201202904D0 (en) * 2012-02-20 2012-04-04 Caltec Ltd Extra production gain with SJP system and gaslift
GB201320202D0 (en) * 2013-11-15 2014-01-01 Caltec Ltd A flowmeter
BR102015003532A2 (pt) * 2015-02-19 2016-09-13 Fmc Technologies Do Brasil Ltda unidades de separação gás-líquido e compressão/bombeio montáveis em poço de produção e poço de injeção
BR112018012807A2 (pt) * 2015-12-22 2018-12-04 Shell Int Research aparelho de elevação à gás com base em riser aprimorado
GB2549365B (en) * 2016-04-14 2020-09-09 Caltec Production Solutions Ltd Improved lift system for use in the production of fluid from a well bore
CN106499368B (zh) * 2016-10-26 2019-01-11 西南石油大学 一种深海海底表层天然气水合物开采方法
BR102017021444B1 (pt) * 2017-10-06 2021-11-03 Petróleo Brasileiro S.A. - Petrobras Sistema e método submarino para pressurização de um reservatório de petróleo submarino através de injeção independente de água e gás
US20220290541A1 (en) * 2019-08-23 2022-09-15 Petróleo Brasileiro S.A. - Petrobrás Integrated system for subsea heating and pumping of oil and water injection for reservoir pressurization, and method of heating, of subsea pumping hydraulically actuated and water injection
CN111734359A (zh) * 2020-07-28 2020-10-02 广州海洋地质调查局 一种基于深水吸力锚的天然气水合物水平分支井开采方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2594105A (en) * 1948-05-14 1952-04-22 Socony Vacuum Oil Co Inc System for gathering and loading oil from underwater oil wells
US3261398A (en) * 1963-09-12 1966-07-19 Shell Oil Co Apparatus for producing underwater oil fields
US3638720A (en) * 1968-09-24 1972-02-01 Ocean Systems Method and apparatus for producing oil from underwater wells
US3777812A (en) * 1971-11-26 1973-12-11 Exxon Production Research Co Subsea production system
US4152088A (en) * 1976-06-30 1979-05-01 Enterprise d'Equipments Mecaniques et Hydrauliques EMH Off-shore oil field production equipment
US4378848A (en) * 1979-10-02 1983-04-05 Fmc Corporation Method and apparatus for controlling subsea well template production systems
US4381175A (en) * 1980-09-11 1983-04-26 Kobe, Inc. Jet electric pump
FR2493423A1 (fr) * 1980-10-31 1982-05-07 Flopetrol Etudes Fabric Procede et systeme de commande hydraulique, notamment de vannes sous-marines
US4603735A (en) * 1984-10-17 1986-08-05 New Pro Technology, Inc. Down the hole reverse up flow jet pump
FR2581427B1 (fr) * 1985-05-06 1987-07-10 Inst Francais Du Petrole Pompe a jet articulee, utilisable notamment en technique tfl pour activer les puits producteurs d'hydrocarbures ou d'eaux
GB2177739B (en) * 1985-07-15 1988-06-29 Texaco Ltd Offshore hydrocarbon production system
BR6501116U (pt) * 1985-08-12 1987-03-17 Cbv Ind Mecanica Modulo de valvulas,especialmente para pocos de petroleo submarinos
DE3534723A1 (de) * 1985-09-28 1987-04-16 Simka Ges Fuer Apparatebau Mbh Verfahren und vorrichtung zum foerdern einer fluessigkeit

Also Published As

Publication number Publication date
DE3866207D1 (de) 1991-12-19
FR2621071A1 (fr) 1989-03-31
US4967843A (en) 1990-11-06
EP0310506A1 (fr) 1989-04-05
NO884267L (no) 1989-03-30
NO300022B1 (no) 1997-03-17
CA1331558C (fr) 1994-08-23
FR2621071B1 (fr) 1996-01-12
NO884267D0 (no) 1988-09-27

Similar Documents

Publication Publication Date Title
EP0310506B1 (fr) Dispositif de production d'un effluent contenu dans une formation géologique sous-marine et méthode de production mise en oeuvre à partir d'un tel dispositif
US8469101B2 (en) Method and apparatus for flow assurance management in subsea single production flowline
US6752214B2 (en) Extended reach tie-back system
EP2198120B1 (fr) Système et module de pompage
US10344549B2 (en) Systems for removing blockages in subsea flowlines and equipment
FR2628142A1 (fr) Dispositif de separation huile gaz en tete d'un puits sous-marin
US7314084B2 (en) Subsea pumping module system and installation method
CA2833650C (fr) Dispositif d'extraction de materiau solide sur le fond d'une etendue d'eau et procede associe
US20110232912A1 (en) System and method for hydraulically powering a seafloor pump for delivering produced fluid from a subsea well
NO313767B1 (no) Fremgangsmåte for å oppnå samtidig tilförsel av drivfluid til flere undersjöiske brönner og undersjöisk petroleums-produksjons-arrangement for samtidig produksjon av hydrokarboner fra flereundersjöiske brönner og tilförsel av drivfluid til de s
WO2005112574A2 (fr) Connecteur de câble volant et méthode pour créer des connexions sous-marines
AU2009330553A1 (en) System and method for delivering material to a subsea well
US20040244980A1 (en) System and method for injecting water into an underwater hydrocarbon reservoir
US8757932B2 (en) Apparatus and method for securing subsea devices to a seabed
AU2017370677B2 (en) Subsea skid for chemical injection and hydrate remediation
EP0694676A1 (fr) Installation pour puits pétrolier
RU2818350C1 (ru) Способ очистки гибких трубопроводов с использованием гибкого шланга от промысловой буровой установки
FR2498674A1 (fr) Outil de stationnement pour systeme de completion de puits a outils pompes
RU2818350C9 (ru) Способ очистки гибких трубопроводов с использованием гибкого шланга от промысловой буровой установки
CN116066030A (zh) 一种基于水平井降压开采的可燃冰水下采集***及方法
FR2880910A1 (fr) Dispositif de remontee de produits petroliers a partir de puits de production en mer
NO345890B1 (en) Supplying water in subsea installations
NO315576B1 (no) Fremgangsmåte for å utföre pigging av en undersjöisk manifold og et undersjöisk petroleums-produksjonsarrangement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19881005

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

17Q First examination report despatched

Effective date: 19900727

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 3866207

Country of ref document: DE

Date of ref document: 19911219

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19961022

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010823

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010930

Year of fee payment: 14

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050928

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070716

Year of fee payment: 20