EP0308306A1 - Thermistance CTP pour le montage en surface - Google Patents

Thermistance CTP pour le montage en surface Download PDF

Info

Publication number
EP0308306A1
EP0308306A1 EP88402281A EP88402281A EP0308306A1 EP 0308306 A1 EP0308306 A1 EP 0308306A1 EP 88402281 A EP88402281 A EP 88402281A EP 88402281 A EP88402281 A EP 88402281A EP 0308306 A1 EP0308306 A1 EP 0308306A1
Authority
EP
European Patent Office
Prior art keywords
thermistor according
conductive coating
electrical
ceramic element
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP88402281A
Other languages
German (de)
English (en)
Inventor
Françoise Mallez
Alain Lagrange
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie Europeenne de Composants Electroniques LCC CICE
Original Assignee
Compagnie Europeenne de Composants Electroniques LCC CICE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Europeenne de Composants Electroniques LCC CICE filed Critical Compagnie Europeenne de Composants Electroniques LCC CICE
Publication of EP0308306A1 publication Critical patent/EP0308306A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/1406Terminals or electrodes formed on resistive elements having positive temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/006Apparatus or processes specially adapted for manufacturing resistors adapted for manufacturing resistor chips

Definitions

  • the invention relates to thermistors with a positive temperature coefficient or PTC and which can be mounted on the surface.
  • the basic products used are essentially perovskite ceramics (alkaline earth titanates) which have been made conductive by valence induction (doping with 3+ or 5+ ions).
  • the CTP effect results from the combination of three causes: a polycrystalline microstructure, a semiconductor material and the ferroelectric / paraelectric phase change. It is due to the formation of electrical potential barriers at the grain boundaries.
  • the overall result is a sharp and abrupt increase in resistivity when passing the Curie point.
  • a thermistor with a positive coefficient hence sometimes the name of posistance.
  • the positive temperature coefficient domain is located just above the Curie point. Its width is of the order of a few tens of degrees and it is all the more narrower the higher the temperature coefficient.
  • the Siemens Company has marketed PTC thermistors consisting of a metallized parallelepiped at its ends. Each electrical termination has two layers: a layer of an alloy of silver, indium and gallium to have good ohmic contact with the ceramic and, this layer being difficult to weld, a layer of silver to provide a surface having good weldability (silver alone providing poor ohmic contact).
  • the disadvantage of these products is that they do not hold up to wettability tests and dewetting tests.
  • the present invention provides PTC thermistors as a component for surface mounting, each electrical termination of which comprises a metallization intended to ensure ohmic contact on the ceramic and a connection or a cover fixed on the metallization and allowing the soldering of the component on a circuit.
  • the invention therefore relates to a thermistor with a positive temperature coefficient for surface mounting, consisting of a ceramic element and two electrical terminations, characterized in that each electrical termination is formed of a conductive coating deposited directly on ceramic and providing good ohmic contact, and a weldable electrical connection attached to the ceramic element and ensuring good electrical contact with the conductive coating.
  • the components for surface mounting can be, in their most basic structure, in two forms: in the form of a parallelepiped supporting metallizations at the ends (chip) or in the form of a rod or a tube supporting weldable metallizations at the ends (melf).
  • FIG. 1 represents a chip comprising a parallelepiped 1 and two metallizations 2 and 3 at its ends.
  • FIG. 2 represents a melf comprising a stick 4 and two metallizations 5 and 6 at its ends.
  • the invention proposes to deposit an ohmic layer, at the places reserved for the terminations to obtain a chip or a melf, then to fix electrical connections or covers on these terminations.
  • FIG. 3 represents a PTC thermistor according to the invention, consisting of a parallelepiped 10 the ends of which are covered with conductive coatings 11 and 12. On these conductive coatings covers 13 and 14 have been fixed. The covers 13 and 14 are weldable and they must ensure good electrical contact with this coating. In Figure 3, they have been given a U-shaped section but other shapes are suitable. One can for example use covers which cover all the metallized sides.
  • the conductive coatings can consist of metallizations deposited by dipping from an ink ensuring good ohmic contact. It is thus possible to deposit a layer of aluminum or of an alloy of silver, indium and gallium, for example. This dip metallization method provides good returns. Metallizations can also be deposited by spraying processes.
  • FIG. 4 represents, in profile view, a detail of PTC thermistor according to the invention.
  • a cover is engaged by pressure which is a clip 22, for example made of nickel-plated and tinned iron.
  • Contact can be made directly on the metallization or else by means of a soldering cream 23 deposited at the bottom of the clip before its engagement.
  • the soldering cream must have a higher melting temperature than that of the solder which will be used for transfer to the printed circuit.
  • FIG. 5 represents, in profile view, a detail of another PTC thermistor according to the invention.
  • a cover 32 of the type shown in FIG. 3 has been engaged.
  • This cover may be made of iron nickel-plated and tinned.
  • the contact can be made by means of a soldering cream 33 deposited at the bottom of the cover before its engagement.
  • the soldering cream must have a higher melting temperature than that of the solder which will be used for transfer to the printed circuit.
  • hoods simple hoods or clips
  • cylindrical rods of Figure 2 can be attached to the same types of hoods (simple hoods or clips) to the cylindrical rods of Figure 2, taking into account of course their geometry.
  • FIG. 6 is a sectional view of a PTC thermistor according to the invention and formed from a ceramic tube 40.
  • the internal and external metallizations are carried out with an aluminum ink.
  • a brush is used for internal metallization.
  • the value of the thermistor can be adjusted by machining a metallization (sandblast, laser beam, etc.).
  • a first conductive coating 41 is thus obtained which covers almost the entire interior of the tube, emerges from one end of the tube and covers a small outer annular portion as shown in FIG. 6.
  • a second conductive coating 42 which also covers most of the outer cylindrical surface of the tube and one of its ends.
  • Hoods 43 and 44 can then be placed at each end using soldering cream.
  • the hoods that can be used can also be circular clips or rings. They are advantageously made of nickel-plated and tinned iron.
  • the tube makes it possible to obtain thermistors with a low ohmic value.
  • FIG. 7 is a side view of a PTC thermistor according to the invention.
  • the largest faces of the parallelepiped 50 are covered with metallizations 51 and 52 which allow alternating margins to remain.
  • the metallizations are for example made of aluminum and obtained by screen printing.
  • the screen printing can relate to a relatively large ceramic plate which will then be cut to obtain individual elements such as that defined by the parallelepiped 50.
  • the layers 53 and 54 are for example silver layers deposited by dipping. Their role is to ensure good electrical contact with the covers 55 and 56 which are fixed at the ends and which can be clips made of nickel-plated and tinned iron. You can also use solder cream to fix the covers.
  • a PTC thermistor it is also part of the invention to mount a PTC thermistor in a box.
  • the thermistor being formed from a parallelepiped or a disc supporting two metallizations obtained for example by aluminum screen printing. It is then possible, using a connection strip such as that described in patent application FR 2 581 827, to manufacture components for surface mounting in series.
  • the housing then consists of a block of molded resin. Electrical connections, welded (for example by laser welding) on the metal coatings of the elements, emerge from the resin block and are pressed against it as taught by the cited patent application. When soldering the component on its circuit of use, the resin will protect the ceramic from the heat of the solder bath.
  • the components according to the invention have the advantage of withstanding wettability tests and satisfying dewetting tests.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermistors And Varistors (AREA)

Abstract

L'invention concerne une thermistance à coefficient de température positif pour le montage en surface, constituée d'un élément de céramique (10) et de deux terminaisons électriques. Chaque terminaison électrique est formée d'un revêtement conducteur (11, 12) déposé directement sur la céramique et procurant un bon contact ohmique, et d'une connexion électrique soudable (13, 14) rapportée sur l'élément de céramique et assurant un bon contact électrique avec le revêtement conducteur.

Description

  • L'invention concerne les thermistances à coefficient de température positif ou CTP et pouvant être montées en surface.
  • Les produits de base utilisés sont essentiellement des céramiques pérovskites (titanates alcalino-terreux) que l'on a rendues conductrices par induction de valence (dopage par des ions 3⁺ ou 5⁺). L'effet CTP résulte de la combinaison de trois causes : une microstructure polycristalline, un matériau semiconducteur et le changement de phase ferroélectrique/paraélectrique. Il est dû à la formation de barrières de potentiel électrique aux joints de grains. Le résultat global est une augmentation forte et brutale de la résistivité au passage du point de Curie. On a affaire dans cette zone à une thermistance à coefficient positif d'où parfois le nom de posistance. Le domaine à coefficient de température positif se trouve juste au-dessus du point de Curie. Sa largeur est de l'ordre de quelques dizaines de degrés et elle est d'autant plus étroite que le coefficient de température est plus élevé. Etant donné la grande variété des produits pérovskites (BaTiO₃ - SrTiO₃ - PbTiO₃), il est facile d'établir des posistances à point de Curie (ou point de basculement) situé à n'importe quelle température de service (25°, 50°, 120° C, etc.). Les coefficients varient, selon les cas, de + 5% à + 40% par °C.
  • On désire de plus en plus que les composants passifs traditionnels puissent être insérés automatiquement sur les circuits. Les avantages inhérents à l'insertion automatique sont la réduction des coûts de production et une meilleure sécurité d'implantation. La miniaturisation des équipements est une autre cause du développement de cette technologie.
  • Cette tendance n'est plus limitée aux seules applications professionnelles. C'est ici qu'il convient de prendre en considération la technologie CMS (composant pour le montage en surface) qui peut répondre à toutes ces exigences. Leurs faibles dimensions, la faculté de s'implanter entre les pistes d'un circuit imprimé, de passer sans dommage dans un bain de soudure sont en effet pour les CMS des atouts indiscutables.
  • De plus, grâce à l'action conjuguée de mécaniciens et de fabricants de composants, l'implantation automatique de ces composants est une technique maintenant maîtrisée convenablement.
  • Jusqu'à présent, le prix de revient d'un composant montable en surface, comparé à celui de son équivalent traditionnel, constituait un handicap. Mais l'accroissement des quantités à produire permettrait de réduire cette différence à condition de maîtriser les problèmes technologiques.
  • Dans le cas des thermistances CTP, le passage à une structure de composant montable en surface est beaucoup plus difficile qu'il n'y paraît. En effet, si on veut déposer des métallisations sur un pavé de thermistance CTP, certaines précautions doivent être prises afin d'obtenir un contact ohmique. Des connexions peuvent ensuite être fixées par soudure sur les métallisations mais cela s'avère très délicat à cause de la grande sensibilité de ces céramiques aux chocs thermiques.
  • La Société Siemens a commercialisé des thermistances CTP constituées d'un parallélépipède métallisé à ses extrémités. Chaque terminaison électrique comporte deux couches : une couche d'un alliage d'argent, d'indium et de gallium pour avoir un bon contact ohmique avec la céramique et, cette couche étant difficilement soudable, une couche d'argent pour fournir une surface présentant une bonne soudabilité (l'argent seul procurant un mauvais contact ohmique). L'inconvénient de ces produits est qu'ils ne tiennent pas aux essais de mouillabilité et aux tests de démouillage.
  • Afin de pallier ces inconvénients, la présente invention propose des thermistances CTP sous forme de composant pour le montage en surface dont chaque terminaison électrique comprend une métallisation destinée à assurer le contact ohmique sur la céramique et une connexion ou un capot fixé sur la métallisation et permettant la soudure du composant sur un circuit.
  • L'invention a donc pour objet une thermistance à coefficient de température positif pour le montage en surface, constituée d'un élément de céramique et de deux terminaisons électriques, caractérisée en ce que chaque terminaison électrique est formée d'un revêtement conducteur déposé directement sur la céramique et procurant un bon contact ohmique, et d'une connexion électrique soudable rapportée sur l'élément de céramique et assurant un bon contact électrique avec le revêtement conducteur.
  • L'invention sera mieux comprise et d'autres avantages apparaîtront grâce à la description qui va suivre, donnée à titre non limitatif, en relation avec les figures annexées parmi lesquelles :
    • - les figures 1 et 2 sont des représentations de composants respectivement sous forme de chip et de melf,
    • - la figure 3 représente une thermistance CTP selon l'invention et élaborée à partir d'un chip,
    • - les figures 4 et 5 représentent des détails de réalisation de thermistances selon l'invention,
    • - la figure 6 représente une thermistance CTP selon l'invention et élaborée à partir d'un melf,
    • - la figure 7 est une variante d'une thermistance selon l'invention.
  • Les composants pour le montage en surface peuvent se présenter, dans leur structure la plus élémentaire, sous deux formes : sous la forme d'un parallélépipède supportant des métallisations aux extrémités (chip) ou sous la forme d'un bâtonnet ou d'un tube supportant des métallisations soudables aux extrémités (melf). La figure 1 représente un chip comprenant un parallélépipède 1 et deux métallisations 2 et 3 à ses extrémités. La figure 2 représente un melf comprenant un bâtonnet 4 et deux métallisations 5 et 6 à ses extrémités.
  • Si on veut réaliser des thermistances CTP pour le montage en surface, il faut que leurs terminaisons électriques présentent des contacts ohmiques avec la céramique, qu'elles soient soudables et qu'elles présentent des retours suffisants. L'invention propose de déposer une couche ohmique, aux endroits réservés aux terminaisons pour obtenir un chip ou un melf, puis de fixer des connexions électriques ou des capots sur ces terminaisons.
  • La figure 3 représente une thermistance CTP selon l'invention, constituée d'un parallélépipède 10 dont les extrémités sont recouvertes de revêtements conducteurs 11 et 12. Sur ces revêtements conducteurs on a fixé des capots 13 et 14. Les capots 13 et 14 sont soudables et ils doivent assurer un bon contact électrique avec ce revêtement. Sur la figure 3, on leur a donné une section en forme de U mais d'autres formes conviennent. On peut par exemple utiliser des capots qui recouvrent tous les côtés métallisés.
  • Les revêtements conducteurs peuvent être constitués de métallisations déposées au trempé à partir d'une encre assurant un bon contact ohmique. On peut ainsi déposer une couche d'aluminium ou d'un alliage d'argent, d'indium et de gallium, par exemple. Cette méthode de métallisation par trempé assure de bons retours. On peut encore déposer des métallisations par des procédés de pulvérisation.
  • Plusieurs solutions sont possibles quant à la fixation des capots. Ils peuvent être selon les cas engagés en force ou fixés par un moyen quelconque sur les parties métallisées.
  • La figure 4 représente, en vue de profil, un détail de thermistance CTP selon l'invention. On y reconnaît une partie du parallélépipède de céramique 20 et l'un des revêtements conducteurs d'extrémité et portant la référence 21. Sur ce revêtement conducteur on a engagé par pression un capot qui est un clip 22 par exemple en fer nickelé et étamé. Le contact peut être pris directement sur la métallisation ou bien par l'intermédiaire d'une crème à souder 23 déposée au fond du clip avant son engagement. La crème à souder doit avoir une température de fusion supérieure à celle de la soudure qui sera utilisée pour le report sur le circuit imprimé.
  • La figure 5 représente, en vue de profil, un détail d'une autre thermistance CTP selon l'invention. On y reconnaît une partie du parallélépipède de céramique 30 et l'un des revêtements conducteurs d'extrémité et portant la référence 31. Sur ce revêtement conducteur on a engagé un capot 32 du type représenté à la figure 3. Ce capot peut être en fer nickelé et étamé. Comme précédemment, le contact peut être effectué par l'intermédiaire d'une crème à souder 33 déposée au fond du capot avant son engagement. De même, la crème à souder doit avoir une température de fusion supérieure à celle de la soudure qui sera utilisée pour le report sur le circuit imprimé.
  • Les mêmes types de capots (capots simples ou clips) pouvent être fixés sur les bâtonnets cylindriques de la figure 2 en tenant compte bien sûr de leur géométrie.
  • La figure 6 est une vue en coupe d'une thermistance CTP selon l'invention et formée à partir d'un tube de céramique 40. Les métallisations internes et externes sont réalisées avec une encre à l'aluminium. On se sert d'un goupillon pour la métallisation interne. La valeur de la thermistance peut être ajustée par usinage d'une métallisation (jet de sable, faisceau laser, etc). On obtient ainsi un premier revêtement conducteur 41 qui recouvre presque tout l'intérieur du tube, ressort par l'une des extrémités du tube et recouvre une petite portion annulaire extérieure comme le montre la figure 6. On obtient aussi un second revêtement conducteur 42 qui recouvre la majeure partie de la surface cylindrique extérieure du tube et l'une de ses extrémités. On peut poser ensuite des capots 43 et 44 à chaque extrémité en utilisant de la crème à souder. Les capots utilisables peuvent aussi être des clips circulaires ou des bagues. Ils sont avantageusement réalisés en fer nickelé et étamé. Le tube permet d'obtenir des thermistances à faible valeur ohmique.
  • D'autres configurations sont possibles pour obtenir de faibles valeurs ohmiques. On peut pour cela déposer les revêtements conducteurs sur les plus grandes faces d'un parallélépipède de céramique comme le montre la figure 7 qui est une vue de côté d'une thermistance CTP selon l'invention. Les plus grandes faces du parallélépipède 50 sont recouvertes de métallisations 51 et 52 qui laissent subsister des marges alternées. Les métallisations sont par exemple en aluminium et obtenues par sérigraphie. La sérigraphie peut concerner une plaque relativement grande de céramique qui sera ensuite découpée pour obtenir des éléments individuels tels que celui défini par le parallélépipède 50. Avant de fixer les capots, il est avantageux de déposer une couche d'un matériau conducteur pour assurer la continuité électrique entre chaque métallisation et l'extrémité correspondante du parallélépipède. On a ainsi une couche conductrice 53 qui prolonge la métallisation 51 et une couche 54 qui prolonge la métallisation 52. Les couches 53 et 54 sont par exemple des couches d'argent déposées au trempé. Leur rôle est d'assurer un bon contact électrique avec les capots 55 et 56 qui viennent se fixer aux extrémités et qui peuvent être des clips en fer nickelé et étamé. On peut aussi utiliser de la crème à souder pour fixer les capots.
  • Il entre également dans le cadre de l'invention de monter une thermistance CTP dans un boîter. La thermistance étant constituée à partir d'un parallélépipède ou d'un disque supportant deux métallisations obtenues par exemple par sérigraphie d'aluminium. On peut alors en utilisant une bande de connexion telle que celle décrite dans la demande de brevet FR 2 581 827, fabriquer en série des composants pour le montage en surface. Le boîtier est alors constitué d'un bloc de résine surmoulée. Des connexions électriques, soudées (par exemple par soudure laser) sur les revêtements métalliques des éléments, émergent du bloc de résine et sont plaquées contre lui comme l'enseigne la demande de brevet citée. Lors de la soudure du composant sur son circuit d'utilisation, la résine protégera la céramique de la chaleur du bain de soudure.
  • Les composants selon l'invention présentent l'avantage de tenir aux essais de mouillabilité et de satisfaire les tests de démouillage.

Claims (12)

1. Thermistance à coefficient de température positif pour le montage en surface, constituée d'un élément de céramique (10) et de deux terminaisons électriques, caractérisée en ce que chaque terminaison électrique est formée d'un revêtement conducteur (11, 12) déposé directement sur la céramique et procurant un bon contact ohmique, et d'une connexion électrique soudable (13, 14) rapportée sur l'élément de céramique et assurant un bon contact électrique avec le revêtement conducteur.
2. Thermistance selon la revendication 1, caractérisée en ce que le revêtement conducteur est une couche d'aluminium.
3. Thermistance selon la revendication 2, caractérisée en ce que ladite couche d'aluminium est déposée au trempé.
4. Thermistance selon l'une quelconque des revendications 1 à 3, caractérisée en ce que ladite connexion électrique est un capot (32) ou un clip (22).
5. Thermistance selon la revendication 4, caractérisée en ce que le capot ou le clip sont en fer nickelé et étamé.
6. Thermistance selon l'une des revendications 4 ou 5, caractérisée en ce que le capot ou le clip sont fixés sur leur revêtement conducteur par l'intermédiaire d'une crème à souder (23, 33).
7. Thermistance selon l'une quelconque des revendications 1 à 6, caractérisée en ce que l'élément de céramique à la forme d'un parallélépipède (10, 50).
8. Thermistance selon la revendication 7, caractérisée en ce que chaque terminaison électrique est formée d'un revêtement conducteur (51, 52) s'étendant sur l'une des grandes faces dudit élément (50) et une connexion électrique (55, 56) rapportée à l'une des extrémités de l'élément, le contact électrique entre le revêtement conducteur et la connexion se faisant par l'intermédiaire d'une couche conductrice supplémentaire (53, 54).
9. Thermistance selon la revendication 8, caractérisé en ce que ladite couche conductrice supplémentaire (53, 54) est en argent.
10. Thermistance selon l'une des revendications 1 à 6, caractérisée en ce que l'élément de céramique à la forme d'un bâtonnet ou d'un tube (40).
11. Thermistance selon la revendication 10, caractérisée en ce que l'élément de céramique est un tube (40), l'un des revêtements conducteur (41) s'étendant de l'intérieur du tube jusqu'à l'une des extrémités, l'autre revêtement conducteur (42) s'étendant sur l'extérieur du tube et sur son autre extrémité, des capots ou des clips (43, 44) étant fixés sur ces extrémités.
12. Thermistance selon l'une quelconque des revendications 1 à 11, caractérisée en ce qu'une résine de surmoulage enrobe l'élément de céramique.
EP88402281A 1987-09-15 1988-09-09 Thermistance CTP pour le montage en surface Withdrawn EP0308306A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8712776 1987-09-15
FR8712776A FR2620561B1 (fr) 1987-09-15 1987-09-15 Thermistance ctp pour le montage en surface

Publications (1)

Publication Number Publication Date
EP0308306A1 true EP0308306A1 (fr) 1989-03-22

Family

ID=9354919

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88402281A Withdrawn EP0308306A1 (fr) 1987-09-15 1988-09-09 Thermistance CTP pour le montage en surface

Country Status (2)

Country Link
EP (1) EP0308306A1 (fr)
FR (1) FR2620561B1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2222311A (en) * 1988-08-26 1990-02-28 Dale Electronics Resistor with terminal pads for surface mounting
EP0429633A1 (fr) * 1989-06-19 1991-06-05 Dale Electronics Thermistor et procede pour sa fabrication.
EP0522863A1 (fr) * 1991-07-12 1993-01-13 Daito Communication Apparatus Co. Ltd. Dispositif à coefficient de température positif
WO1994001876A1 (fr) * 1992-07-09 1994-01-20 Raychem Corporation Dispositifs electriques
GB2265761B (en) * 1992-03-30 1996-07-17 Dale Electronics Bulk metal chip resistor
US5852397A (en) * 1992-07-09 1998-12-22 Raychem Corporation Electrical devices
US5952911A (en) * 1996-10-09 1999-09-14 Murata Manufacturing Co., Ltd. Thermistor chips and methods of making same
US6081181A (en) * 1996-10-09 2000-06-27 Murata Manufacturing Co., Ltd. Thermistor chips and methods of making same
US6292088B1 (en) 1994-05-16 2001-09-18 Tyco Electronics Corporation PTC electrical devices for installation on printed circuit boards
US6640420B1 (en) 1999-09-14 2003-11-04 Tyco Electronics Corporation Process for manufacturing a composite polymeric circuit protection device
US20100090332A1 (en) * 2008-10-09 2010-04-15 Joinset Co., Ltd. Ceramic chip assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3996447A (en) * 1974-11-29 1976-12-07 Texas Instruments Incorporated PTC resistance heater
DE2816593A1 (de) * 1978-04-17 1979-10-18 Siemens Ag Elektrisches widerstandsbauelement, das aus einem hohlzylinderfoermigen keramischen kaltleiterkoerper besteht
GB2146488A (en) * 1983-09-09 1985-04-17 Tdk Corp A ptc resistor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3996447A (en) * 1974-11-29 1976-12-07 Texas Instruments Incorporated PTC resistance heater
DE2816593A1 (de) * 1978-04-17 1979-10-18 Siemens Ag Elektrisches widerstandsbauelement, das aus einem hohlzylinderfoermigen keramischen kaltleiterkoerper besteht
GB2146488A (en) * 1983-09-09 1985-04-17 Tdk Corp A ptc resistor device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2222311B (en) * 1988-08-26 1993-04-28 Dale Electronics Surface mount wirewound resistor and method of making the same
GB2222311A (en) * 1988-08-26 1990-02-28 Dale Electronics Resistor with terminal pads for surface mounting
EP0429633A1 (fr) * 1989-06-19 1991-06-05 Dale Electronics Thermistor et procede pour sa fabrication.
EP0429633A4 (en) * 1989-06-19 1992-12-23 Dale Electronics, Inc. Thermistor and method of making the same
EP0522863A1 (fr) * 1991-07-12 1993-01-13 Daito Communication Apparatus Co. Ltd. Dispositif à coefficient de température positif
GB2265761B (en) * 1992-03-30 1996-07-17 Dale Electronics Bulk metal chip resistor
DE4310288B4 (de) * 1992-03-30 2005-11-10 Vishay Dale Electronics, Inc. (n.d.Ges.d. Staates Delaware), Columbus Oberflächenmontierbarer Widerstand
US6651315B1 (en) 1992-07-09 2003-11-25 Tyco Electronics Corporation Electrical devices
WO1994001876A1 (fr) * 1992-07-09 1994-01-20 Raychem Corporation Dispositifs electriques
US5852397A (en) * 1992-07-09 1998-12-22 Raychem Corporation Electrical devices
US7355504B2 (en) 1992-07-09 2008-04-08 Tyco Electronics Corporation Electrical devices
US6292088B1 (en) 1994-05-16 2001-09-18 Tyco Electronics Corporation PTC electrical devices for installation on printed circuit boards
US5952911A (en) * 1996-10-09 1999-09-14 Murata Manufacturing Co., Ltd. Thermistor chips and methods of making same
US6100110A (en) * 1996-10-09 2000-08-08 Murata Manufacturing Co., Ltd. Methods of making thermistor chips
US6081181A (en) * 1996-10-09 2000-06-27 Murata Manufacturing Co., Ltd. Thermistor chips and methods of making same
US6640420B1 (en) 1999-09-14 2003-11-04 Tyco Electronics Corporation Process for manufacturing a composite polymeric circuit protection device
US20100090332A1 (en) * 2008-10-09 2010-04-15 Joinset Co., Ltd. Ceramic chip assembly

Also Published As

Publication number Publication date
FR2620561A1 (fr) 1989-03-17
FR2620561B1 (fr) 1992-04-24

Similar Documents

Publication Publication Date Title
FR2700416A1 (fr) Dispositif à semiconducteurs comportant un élément semiconducteur sur un élément de montage.
EP0308296B1 (fr) Circuit imprimé équipé d'un drain thermique
EP1792526B1 (fr) Dispositif electronique avec repartiteur de chaleur integre
EP0221616B1 (fr) Composant opto-électronique pour montage en surface et son procédé de fabrication
EP0683547A1 (fr) Dispositif de raccordement pour assurer un raccordement par câble coaxial sur un circuit imprimé et circuit imprimé équipé d'un tel dispositif
EP0308306A1 (fr) Thermistance CTP pour le montage en surface
FR2690003A1 (fr) Résistance pastille à couche métallique.
EP0159208B1 (fr) Procédé de fabrication de circuits électroniques de puissance miniaturisés
FR2485264A1 (fr) Dispositif semiconducteur programmable et son procede de fabrication
EP0269485B1 (fr) Dispositif de mesure formant un fluxmètre et un capteur de température combinés, constitué d'une structure multicouche, procédé de fabrication d'un tel dispositif et structure multicouche
FR2725304A1 (fr) Fusible pour microplaquette
EP1912261A1 (fr) Dispositif de raccordement électrique notamment pour panneau solaire électrique
FR2538166A1 (fr) Microboitier d'encapsulation d'un composant electronique, muni d'une pluralite de connexions repliees
FR2516311A1 (fr) Socle pour le montage d'une pastille semi-conductrice sur l'embase d'un boitier d'encapsulation, et procede de realisation de ce socle
EP0204636B1 (fr) Condensateur à fort courant, et procédé de réalisation d'un tel condensateur
FR2495837A1 (fr) Embase de microboitier d'encapsulation et microboitier comportant une telle embase
FR2561444A1 (fr) Dispositif semi-conducteur hyperfrequence a connexions externes prises au moyen de poutres
EP0142400B1 (fr) Boîtier pour composant électronique destiné notamment à la protection teléphonique
WO2006122692A2 (fr) Dispositif laser forme par un empilement de diodes laser
WO1998008363A1 (fr) Procede de fabrication d'un dispositif de dissipation de l'energie thermique produite par des composants electroniques implantes sur une carte a circuits imprimes, et dispositif ainsi obtenu
EP3942577B1 (fr) Dispositif de protection contre les surtensions
FR2790136A1 (fr) Dispositifs de protection de circuit electrique a monter en surface et leur procede de fabrication
EP0680248B1 (fr) Procédé de fabrication d'un circuit électronique de puissance et circuit électronique obtenu par ce procédé
FR2747866A1 (fr) Ensemble electronique comprenant une unite electronique reliee a une bobine
FR2723501A1 (fr) Carte electronique pour composants a montage en surface fixes par refusion, et procede de fabrication correspondant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE GB IT

17P Request for examination filed

Effective date: 19890707

17Q First examination report despatched

Effective date: 19900829

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19910312