EP0295445B1 - Circuit de refroidissement par liquide pour machines, notamment pour moteurs à combustion interne - Google Patents

Circuit de refroidissement par liquide pour machines, notamment pour moteurs à combustion interne Download PDF

Info

Publication number
EP0295445B1
EP0295445B1 EP88107940A EP88107940A EP0295445B1 EP 0295445 B1 EP0295445 B1 EP 0295445B1 EP 88107940 A EP88107940 A EP 88107940A EP 88107940 A EP88107940 A EP 88107940A EP 0295445 B1 EP0295445 B1 EP 0295445B1
Authority
EP
European Patent Office
Prior art keywords
pressure
valve
coolant
cooling circuit
air separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88107940A
Other languages
German (de)
English (en)
Other versions
EP0295445A2 (fr
EP0295445A3 (en
Inventor
Erwin Schweiger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP0295445A2 publication Critical patent/EP0295445A2/fr
Publication of EP0295445A3 publication Critical patent/EP0295445A3/de
Application granted granted Critical
Publication of EP0295445B1 publication Critical patent/EP0295445B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/0204Filling
    • F01P11/0209Closure caps
    • F01P11/0247Safety; Locking against opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/0204Filling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/0204Filling
    • F01P11/0209Closure caps
    • F01P11/0238Closure caps with overpressure valves or vent valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/028Deaeration devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/0285Venting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/029Expansion reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P2005/105Using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements
    • F01P2005/125Driving auxiliary pumps electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/0204Filling
    • F01P11/0209Closure caps
    • F01P11/0247Safety; Locking against opening
    • F01P2011/0252Venting before opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/0204Filling
    • F01P11/0209Closure caps
    • F01P11/0247Safety; Locking against opening
    • F01P2011/0261Safety; Locking against opening activated by temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/0204Filling
    • F01P11/0209Closure caps
    • F01P11/0247Safety; Locking against opening
    • F01P2011/0266Safety; Locking against opening activated by pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater

Definitions

  • the invention relates to a liquid cooling circuit in engines and machines, in particular internal combustion engines, according to the type of claim 1. Furthermore, the invention relates to cooling circuits of similar types of claims 4 and 6.
  • the air separation container is via a return suction line as a filling line with the suction side of the Coolant pump connected.
  • the coolant flows from the bottom area of the air separation tank via the return line to the low-lying coolant pump and from there into the cooling jacket of the machine. Since the direct connection between the coolant pump and the return water tank of the cooler is closed by the cooler valve with the thermostat arranged in the cooler return line when the machine, which is always largely cold, is filled, the coolant can initially only flow into the cooling jacket and fill it.
  • This filling process is also in the case of thermostat arrangements at the cooling jacket outlet due to the narrow internal cross section of the Vent line from the cooler flow to the filler neck is delayed, through which the air to be displaced can only escape from the cooling jacket and from the cooler.
  • the resulting low filling speed not only increases the amount of work required, but also the volume of residual air remaining in the cooling jacket and other line sections with little or no gradient.
  • the coolant only enters the cooler after the cooling jacket has been completely filled, via the flow line, which usually has hardly any gradient, which further reduces the filling speed and also favors residual air volumes in the cooler. An additional lengthy venting process with the machine running and the cover removed is therefore necessary.
  • Residual air still remaining in the cooling circuit can only be discharged to the atmosphere via the expansion tank acting as an air lock even after its failure from the solution at high temperature and its upstream at the pressure relief valves if the pressure relief valve opening values are exceeded.
  • the advantages of an air-free cooling circuit such as steeper pressure build-up when the coolant temperature rises and the reduced risk of corrosion for the cooling circuit components and the coolant itself, due to its extensive degassing, are therefore hardly or mostly delayed after numerous machine hot / cold cycles .
  • the operating temperature Due to the thermal expansion of the coolant that occurred before the closing of the closure cap without pressure build-up, the operating temperature then increases as the temperature rises further the boiling limit or the pump cavitation limit is quickly reached and machine overheating is unavoidable when operating immediately afterwards under high load.
  • the object of the invention is to overcome the disadvantages described above in the area of the operating boundary conditions - filling, venting, degassing, pump cavitation, overheating, shutdown reheating, for the course of the coolant temperature unnecessarily excessive course of the coolant pressure at low start or ambient temperatures and when fuel gases penetrate into the Cooling circuit in the medium operating temperature range - to be overcome by liquid-cooled machines and at the same time to reduce construction costs, costs, weight, variety of components, and possibilities for incorrect operation. Furthermore, overdimensioning of cooling circuit components and, above all, the cooling capacity, which have so far been necessary to compensate for the described interference, are to be avoided.
  • the temperature-controlled vent valve improves both venting and degassing as well as the system pressure build-up via temperature and speed, and the cooling circuit pressure which is excessive due to fuel gas leakages is reduced again during cooling phases.
  • the line connection from the air separation tank to the expansion tank, which is opened by the thermo valve at low operating temperature, also enables a very simple venting process after filling, with a constant change in engine speed when the cover is closed, which means that coolant and residual air flow to the expansion tank and coolant flow into the air separation tank becomes. This results from the increase in the pump suction pressure when the speed drops and its drop when the speed increases.
  • the progressive ventilation can be tracked or assessed by the start of the lighting of a switched on indicator light at ever higher speed.
  • the closing temperature of the ventilation valve which is dependent on the pressure build-up dependent on the cooling circuit elasticity, especially hose length and elasticity, the temperature and the pump speed, avoids unnecessarily high cooling circuit overpressure values with relatively low coolant temperature values and on the other hand, ensures a sufficient distance between the pump suction pressure curve and the pump cavitation limit.
  • the features of claim 2 enable a particularly compact spatial allocation of the air separation container to the cooler flow and to the filler neck, whereby a very small space requirement is achieved.
  • the assignment of a coolant level sensor to the air separation container according to claim 3 results in a safe level monitoring of the overpressure cooling circuit and a warning display even if the coolant content is still safe to operate, because the temperature-related change in volume of the coolant triggers a display when the cooling circuit is cold when the coolant that warms up during operation again exceeds the display level and guarantees operational safety.
  • the fill level warning display forms a monitoring display when the cooling circuit is vented after it has been refilled or refilled.
  • the features of claim 4 contain the basic arrangement of the air separation container with filler neck and filler cap at the high point of the cooler flow in the course of the venting bypass line, whereby a large part of the advantages regardless of the arrangement and design of the overpressure, underpressure and venting valves according to claim 1 is achieved, namely advantageous filling and venting and rapid warm-up.
  • the valves can be selected in any known or previously proposed configuration and arrangement or connection, namely on the air separation tank, on the expansion tank or on both in series connection, with the latter two arrangements requiring an expansion tank with an air expansion volume.
  • Claim 5 provides for the additional control of a pressure relief valve from the pressure in the cooler flow for the immediate limitation of the pressure value acting on the cooler, since the valves are effective in the cooler return in all arrangements according to claim 4.
  • the features of claim 6 provide a temperature-controlled vent valve, which is located in the connecting line from the air separation tank to the expansion tank regardless of its arrangement. Apart from a small additional construction effort and weight, this design enables all other functional advantages of the features according to claim 1, in particular in connection with an additional filling lid arranged in a known manner at the high point of the cooler flow.
  • the design of the vent valve according to claim 7 has a particularly low construction cost and provides the simplest maintenance and repair options by checking and / or replacing the sealing cover as a unit. Individual components that have been tried and tested in automotive engineering are used. The assignment of the components of the valve also favors its function, since the snap spring is only acted upon by the coolant temperature after the air has been completely pushed out, so that the venting is promoted by the coolant itself when the closing / switching temperature is reached. A float instead of a closing spring is therefore only necessary in particularly difficult ventilation conditions.
  • the closed vent valve also increases with increasing coolant pressure increasingly favored in its sealing function, because the thermal snap spring is pressed more and more against the sealing ring.
  • This valve design can also be used advantageously in cooling circuits of a type which differs from that according to claims 1 and 6, but has at least one atmospheric expansion tank.
  • the features of claim 8 also favor the filling and the operating ventilation by discharging the residual air to the air separation tank, which remains when filling in the return water tank of cross-flow coolers or which collects there during operation. A passage of cold coolant is prevented in normal warm-up operation and thus an influence on the warm-up time is avoided.
  • the ventilation valve by opening the ventilation valve after warming up at a coolant temperature above the ambient temperature of, for example, 60 ° C in the return water tank, fuel gas leaks and residual air volume parts which are preferably collected therein are immediately discharged into the air separation container.
  • the features of claim 9 contain a functional and structurally particularly advantageous embodiment of the vent / degassing valve according to claim 8 in accordance with the vent valve according to claim 7, apart from the exclusive float arrangement and the reverse temperature control with opening instead Closing above the switching temperature of the valve.
  • a conventional closing spring and a separate ball or Schwengel vent valve can also be used, as is common in coolant thermostatic valves.
  • the features of claim 10 enable a constant flow pressure control of the pressure relief valve in the closure cover without the pressure increase in the flow area increasing with the pump delivery rate without having to adapt this separately to the necessary highest pressure opening value of the respective application.
  • the overpressure valve for the forward and return areas can be designed with the same overpressure opening value, which additionally favors the construction effort and avoids or at least reduces the variety of valve and closure covers for different engine and vehicle models.
  • the claim 12 includes a manually operable venting device which without - with the venting rotary position of the closure cover - or with very little construction effort - with a vent screw -
  • cooling circuit ventilation is possible in particularly difficult conditions.
  • the venting process is limited to operating the machine at a rapidly changing speed, possibly with short switch-off pauses, in order to allow any air bubbles to accumulate at the pump inlet to the pump pressure side.
  • claim 13 make it possible in a simple manner and secured against pressure overloading of the expansion tank to ensure the projected operating pressure of the cooling circuit even when the cooling circuit is closed at such a high coolant temperature during maintenance and / or repair work that the required pressure build-up is no longer possible due to thermal expansion of the coolant. This is particularly true in connection with the manually operated venting device according to claim 12 and difficult venting conditions in the case of cooling circuits which are inadequately designed in this regard.
  • An additional one Construction costs for the proposed construction details can be completely avoided according to the training options according to claims 14 and 15 compared to known cooling circuits, since only existing known components are to be dimensioned accordingly, namely the pressure resistance of the expansion tank, the attachment of the associated filler cap and the dimensions of the connector for the associated overflow hose.
  • An internal combustion engine 1 contains a cooling jacket 2 (arrow), into which the coolant is conveyed under pressure by a coolant pump 3.
  • a cooler flow 5 is connected with a free passage to a cross-flow cooler 6 and opens into its flow water tank 7.
  • a short circuit 8 branches off from the cooler flow 5 to a mixing thermostat 9.
  • a return line 11 also leads from the return water tank 10 out of the cooler 6 into the thermostat 9.
  • a pump suction line 12 connects the thermostat 9 to the suction side 13 of the pump 3.
  • a bypass vent line 14 is connected, which is unthrottled in a flow pressure control chamber 15 and via a throttle point 16 opens into the bottom area of an air separation container 17. This mouth is turned away from the bottom area to secure the air separation from the mouth of the bypass vent line 14, which leads to the suction side 13 of the pump 3.
  • An electrical level sensor 18 is arranged on the underside of the air separation container 17, which controls a warning instrument in a commercially available design in the event of an air and / or gas accumulation in the air separation container 17 which endangers the function.
  • the air separator tank 17 concentrically surrounds the area of the high point 5 'of the cooler flow 5 and the area of the bypass vent line 14 connected to it increasing (Fig. 2).
  • This area of the bypass vent line 14 is at the same time designed as a filler neck 19 and partially arranged within a closure cover 20.
  • the filler neck 19, the control chamber 15 and the throttle point 16 in the closure cover 20 and the line part in the bottom region of the air separation container 17 are flowed through in succession.
  • the usual overpressure and underpressure valves 21 and 22 are arranged in the closure cover 20, but are substantially modified and functionally developed according to the invention.
  • the pressure relief valve 21 is on the one hand directly controlled via a line connection 21 'to the high point of the air separation container 17 from the overpressure in the latter and on the other hand indirectly by means of a control membrane 15' from the supply overpressure in the control chamber 15 and in both cases opens the line connection 21 'from the high point of the Air separation container 17 to the atmosphere.
  • the vacuum valve 22 is installed in the usual way in the valve housing of the pressure relief valve 21 and at the same time is designed as a temperature and alternatively additionally float-controlled vent valve (FIG. 2). Except when there is negative pressure in the air separation container 17, the vacuum valve 22 closes by the interaction of a bimetallic snap plate spring 23 with an O-ring seal on the one hand and alternatively with a spring 24 or a float 24 'on the other hand only if both the switching temperature of the bimetal -Feather 23 exceeded and the air separation container 17 is vented, because the bimetallic spring 23 is always switched to the closed position only when it is acted upon by coolant at a sufficiently high temperature. Bleeding is additionally promoted.
  • a float also opens the vent valve when the air system is renewed, regardless of its switching status, as long as there is no pressure difference and leads to even more residual venting.
  • An overpressure in the air separation container keeps the bimetallic spring 23 in the closed position even when air and / or fuel gas accumulates in the air separation container 17, thereby preventing a dangerous drop in the coolant pressure during operation of the machine 1.
  • the air separation container 17 and thus the entire cooling circuit are completely vented. Furthermore, due to its switching temperature (50 ° C. in FIG.
  • the bimetallic spring 23 closes the cooling circuit only at a temperature of the coolant displaced from the air separating container 17 by the vacuum valve 21, at which the build-up at idle speed and the machine being switched off effective static system pressure SD by further thermal expansion of the coolant in cooperation with the elasticity of the entire cooling circuit, in particular of the coolant hose lines, in relation to the pump cavitation limit KG and the coolant boiling limit SG, there is a sufficient profile of the lowest possible pump suction pressure PD at maximum speed (FIG. 4).
  • both a dangerously low pump suction pressure PD and an unnecessarily high cooler supply pressure VD are thus excluded.
  • a line connection 25 to the atmosphere is led to the overpressure and underpressure valves 21 and 22 via a temperature-controlled additional overpressure valve 26 to the bottom area of an atmospheric expansion, storage and air-blocking container 27.
  • This further pressure relief valve 26 contains - like the vacuum valve 22 - a bimetallic snap disc spring 28 which interacts with an O-ring seal and is pressed against the seal by a cone spring 29 which determines the pressure value.
  • the housing of this pressure relief valve 26 is arranged in thermal connection with the flow line 5 and / or the housing of the air separation container 17 in such a way that the temperature of the coolant there acts on the bimetal spring 28.
  • Their switching temperature is set approximately according to the upper limit of the control temperature range of the thermostat 9, usually approximately 90-100 ° C.
  • the sum of the overpressure values of the overpressure valves 21 and 26 thus only comes into effect (FIG. 4) if the thermostat control range is exceeded, that is only if high ambient temperature and high engine load occur at the same time. Even due to fuel gas leaks at high engine loads, the cooling circuit is not unnecessarily loaded with excessive system pressure SD, flow pressure VD and pump suction pressure PD, but the fuel gas leaks are continuously increased by the only effective first pressure relief valve 21 excreted via the expansion tank 27 to the atmosphere.
  • the expansion tank 27 contains a part of its volume a coolant supply 30 and the rest of an expansion volume 31.
  • the filler cap 32 of the expansion tank 27 is equipped with a conventional locking bead attachment, which, however, is coordinated according to the invention such that an overpressure valve function is achieved by detaching the cover 32 at a certain excess pressure in the expansion tank 27.
  • the cover 32 is provided with a hose connector 33, which both carries an overflow hose 34 and after its removal for the connection of a tire inflation device or an air pump suitable is.
  • the functional reliability of the cooling circuit can be guaranteed in a simple, cost-effective manner even after it has been closed while the machine is already at operating temperature, in particular after a lengthy venting process or after a pressure-releasing process that requires repair and subsequent high-load operation at a high ambient temperature.
  • a further vent line 37 is connected to the bypass vent line 14 via a vent valve 35 and a throttle point 36.
  • the vent valve 35 in turn consists of a bimetallic snap disc spring 38 which interacts with an O-ring seal and which is brought into and out of operation by a float 39 when coolant or air or fuel gas is at the high point 10 ' is present.
  • the bimetal disc spring 38 has a switching temperature of about 60 ° C, so that at normal operating temperature of the cooling circuit there is a constant venting and degassing bypass flow to the air separation container 17.
  • the vent valve 35 is always closed after the outflow of air or fuel gas, so that the warm-up of the machine is not prolonged by a cooling effect of this vent stream.
  • a vehicle interior heater with a left and right heater heat exchanger 42 and 43 and a left and right heater control valve 44 and 45, respectively, is connected to the cooling circuit via a heater supply and return line 40 and 41, respectively and an additional electric heater pump 46 connected in a conventional manner.
  • the heating flow line 40 branches off from the cooler flow 5 and the heating return line 41 opens into the elevated thermostat 9.
  • a changeover valve 47 is arranged, which by means of a not shown electrical control circuit when the machine 1 is turned off at a high operating temperature, the heating flow line 40 is reversed into a cylinder head return line 48.
  • the coolant flow through the hot cylinder head that can be achieved when the machine 1 is switched off immediately flushes away coolant vapor bubbles that occur at hot spots and achieves their immediate subsequent condensation in the further coolant flow, as a result of which local vapor bubble accumulations with corresponding pressure build-up in the entire cooling circuit and consequent ejection of coolant, in extreme cases even up to overflow of the expansion tank 27 is avoided.
  • FIGS. 5 to 10 show different assignment options for the cooling circuit components according to the invention using the same basic principle.
  • FIGS. 1 to 3 the arrangements of the air separation tank 17 at the high point 5 'of the cooler flow 5, the atmospheric expansion tank 27 in a separate design and the vent valve 35 on the return water tank 10 are shown in accordance with FIGS. 1 to 3.
  • the cooler flow 5 at its high point 5 ' is only equipped with a filler neck 19 and a valveless cap 20'.
  • the air separator tank 17 is attached or molded to the return water tank 10 and combined with the expansion tank 27.
  • Whose filling cover 32 has a molded cover 32 'for the closure cover 20 of the expansion tank 27, which largely precludes incorrect operation when refilling the expansion tank 27 and thus a loss of overpressure when the coolant is warm.
  • the air separation tank 17 and the atmospheric expansion tank 27 are combined in accordance with FIG. 6, but are arranged separately from the cooler 6.
  • an additional filling line 19 ' is branched off from the cooler flow 5, which is completed by the cap 20 immediately.
  • a filler neck 19 is arranged next to the air separation container 17, while in Fig. 10 the filling line 19 'within the air separation container 17 connects to the closure cap 20.
  • the cooler inlet 5 on the one hand and the air separation container 17 and the filler neck 19 on the other hand are not arranged coaxially and concentrically with one another but mutually intersecting and arranged side by side.
  • the filler neck 19 can also be arranged centrally within an annularly branched section of the cooler inlet 5, the insert 49 closing a connection opening between the filler neck 19 and the radiator inlet 5, which is then also circular.
  • the filler neck 19 opens in both cases down into the coaxial air separator tank 17 and to the side in the cooler flow 5, so that each a large connection opening 17 'and 5' are available with the cap 20 removed for rapid filling.
  • the closure cover 20 closes in addition to the filling opening of the filler neck 19 and the connection openings 17 'and 5' against each other.
  • a hollow cylindrical insert 49 closes tightly on the underside of the closure cover 20 and is supported with its lower end face by an O-ring 50 at the upper edge of the air separation container 17. The interior of the insert 49 continues the air separation container 17 upwards towards the underside of the closure cover 20.
  • the inner structure of the closure cover 20 corresponds to that of FIG.
  • a float chamber 57 of an electrical coolant level sensor 18 is connected at the bottom to the air separation container 17 and at the top to the valves 21 and 22 in the closure cover 20.
  • Another vent line 37 which starts from the return water tank 10 of the cross-flow cooler 6 (FIGS. 1 and 3), can be connected to the float chamber 57 in a simple manner, since its connections are also suitable as an effective venting and degassing volume.
  • a one-piece design with the filler neck 19, the air separating container 17 and the cooler flow section (5) can also be advantageously carried out.
  • each a fine screen 58 is arranged, which are acted upon exclusively by the coolant flowing in and out through the valves 21 and 22 and are therefore not subject to unnecessary contamination from the circulating coolant.
  • the filler cap 32 (FIG. 1) of the expansion tank 27 can be equipped with corresponding overpressure and underpressure valves which replace the valves 21 and 22 in the closure cover 20 of the filler neck 19 or are in line with these, so that there is an overpressure reservoir with air cushion.
  • the mode of operation of the air separation container 17 with improved filling and venting and shortened warm-up of the machine cooling circuit is also used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Temperature-Responsive Valves (AREA)

Claims (17)

  1. Circuit de refroidissement à liquide, de moteurs et machines, notamment moteurs à combustion interne, comportant un réservoir séparateur d'air (17) placé dans une conduite de purge d'air (14) de dérivation d'un point haut (5') dans l'arrivée (5) du radiateur (comprenant la chemise de refroidissement (2) du moteur et le réservoir supérieur du radiateur (7)) vers la sortie du radiateur (11) (comprenant le réservoir inférieur du radiateur (10) et le côté aspiration (13) d'une pompe de circulation du liquide de refroidissement (3)) à l'entrée de la chemise de refroidissement du moteur), qui comporte à son point haut un ajutage de remplissage (19) vers un orifice de remplissage et un bouchon d'obturation (20), et
    dont le point haut est relié par un clapet de surpression et un clapet de dépression (21, 22) du bouchon (20) à la zone de fond d'un vase d'expansion atmosphérique (27) par une conduite,
    au moins un clapet de pression (21) limitant la pression dans le séparateur d'air (17) et à l'aide d'une conduite de commande, dans l'arrivée (5) du radiateur,
    circuit caractérisé en ce que :
    le séparateur d'air (17) est prévu au point haut (5') de l'arrivée (5) du radiateur,
    l'ajutage de remplissage (19) comporte des orifices de liaison vers les points hauts ainsi que vers l'arrivée du radiateur (5) et vers le séparateur d'air (17),
    le bouchon d'obturation (20) ferme non seulement l'orifice de remplissage de l'ajutage de remplissage (19) mais également les orifices de liaison les uns par rapport aux autres,
    du point haut (5') de l'arrivée (5) du radiateur vers la zone proche du fond du séparateur d'air (17), on a une conduite de liaison à étranglement (étranglement (16) faisant partie de la conduite de purge d'air de dérivation (14),
    le bouchon de fermeture (20) comporte une conduite de liaison directe d'une part comme conduite de commande entre l'orifice de liaison de l'ajutage de remplissage (19) et l'arrivée (5) du radiateur et d'autre part entre le clapet de surpression (21) ou son moteur de réglage (membrane de commande (15') limitant la pression régnant dans l'arrivée (5) du radiateur, d'autre part, et dans la conduite de liaison entre le point haut du séparateur d'air (17) et le vase d'expansion (27), on a un clapet de purge d'air commandé en température (ressort à déclic thermique (23)) avec une température de commutation de fermeture, en-dessous de la température normale de fonctionnement réglée de manière thermostatique, du liquide de refroidissement et à partir de la courbe de pression du liquide de refroidissement conditionné par la dilatation thermique, l'élasticité et le fonctionnement de la pompe, du côté aspiration (13) de la pompe de circulation (3) du liquide de refroidissement, il assure le fonctionnement du circuit sans cavitation.
  2. Circuit de refroidissement selon la revendication 1, caractérisé en ce que l'ajutage de remplissage (19) débouche directement au point haut (5') de l'arrivée (5) du radiateur,
    le séparateur d'air (17) entoure concentriquement l'ajutage de remplissage (19) ainsi que son orifice de liaison dont le point haut est relié aux clapets (21 et 22) du bouchon d'obturation (20) et
    l'arrivée (5) du radiateur traverse le séparateur d'air (17) à l'endroit où débouche l'ajutage de remplissage (19).
  3. Circuit de refroidissement selon la revendication 1, caractérisé en ce que le séparateur d'air (17) comporte un capteur de niveau de liquide de refroidissement (18).
  4. Circuit de refroidissement à liquide pour les machines et moteurs, notamment des moteurs de combustion interne,
    comportant un ajutage de remplissage (19) et un bouchon d'obturation (20) dans son orifice de remplissage au point haut (5') de l'arrivée (5) du radiateur,
    un vase d'expansion (27) avec un bouchon de remplissage (32), des volumes d'expansion et de réserve (30, 31),
    avec un bouchon de fermeture (20 et 32) muni de clapets de surpression et de dépression (21, 22) et
    une conduite de liaison (25) entre le point haut de l'ajutage de remplissage (19) et la zone de fond du vase d'expansion (27),
    caractérisé en ce que :
    un réservoir séparateur d'air (17) est prévu sur l'ajutage de remplissage (19) de l'arrivée (5) du radiateur, ce réservoir se trouvant dans une conduite de purge d'air de dérivation (14) entre le point haut (5') de l'arrivée (5) du radiateur et la sortie (11) du radiateur avec un point d'étranglement de section (16) entre l'arrivée (5) du radiateur et le séparateur d'air (17) et
    son point haut est relié à la conduite de liaison de l'ajutage de remplissage (19) et de la zone de fond du vase d'expansion (27).
  5. Circuit de refroidissement selon la revendication 4, caractérisé par un clapet de surpression (21) prévu dans le bouchon de fermeture (20) et qui est commandée par une conduite de commande par la pression régnant dans l'arrivée (5) du radiateur.
  6. Circuit de refroidissement à liquide pour machines et moteurs, notamment moteurs à combustion interne, comportant un réservoir séparateur d'air (17) branché dans la conduite de purge d'air de dérivation (14) d'un point haut (5') de l'arrivée (5) du radiateur vers la sortie (11) du radiateur,
    qui comporte à son point haut un ajutage de remplissage (19) avec un orifice de remplissage et un bouchon d'obturation (20), et
    dont le point haut est relié par une conduite à un clapet de surpression et un clapet de dépression respectifs (21, 22) du bouchon d'obturation (20) au fond d'un vase d'expansion atmosphérique (27),
    la conduite de purge d'air (14) ayant un point d'étranglement (16) en amont de l'arrivée dans le séparateur d'air (17),
    caractérisé en ce que :
    dans la conduite de liaison (25) entre le point haut du séparateur d'air (17) et le vase d'expansion (27), il est prévu un clapet de purge d'air (23) commandé en température, avec température de commutation de fermeture, et qui, est en-dessous de la température normale de fonctionnement, à régulation thermostatique du liquide de refroidissement et assure le fonctionnement sans cavitation à partir de la courbe de pression du liquide de refroidissement en fonction de la dilatation thermique, de l'élasticité et du fonctionnement de la pompe, au niveau du côté d'aspiration (13) de la pompe de circulation (3) du liquide de refroidissement.
  7. Circuit de refroidissement à liquide pour machines et moteurs, notamment moteurs à combustion interne comportant un vase d'expansion atmosphérique (27) muni de clapets de surpression, de dépression et de purge d'air (21, 22) vers l'atmosphère, circuit selon la revendication 1 ou 6, caractérisé en ce que :
    le clapet de purge d'air (23) commandé en température est en même temps un clapet de dépression (22) prévu dans le bouchon d'obturation (20), et son corps de clapet forme un ressort à déclic thermostatique (23), ce clapet coopérant avec un joint d'étanchéité du siège de clapet et avec l'ouverture et est sollicité vers le joint d'étanchéité par un ressort (24) et/ou un flotteur (24'),
    le ressort (24) ou le flotteur (24'), le corps de clapet (23) et le joint d'étanchéité étant superposés dans cet ordre, verticalement, de manière coaxiale dans le corps du clapet de surpression (21) avec une ouverture de clapet parallèle à cette ouverture de clapet.
  8. Circuit de refroidissement selon la revendication 1, 4 ou 6, caractérisé en ce que :
    une autre conduite de purge d'air (37) débouche dans le séparateur d'air (17), cette conduite partant du point haut (10') du réservoir inférieur d'eau de sortie (10) du radiateur et ayant à l'embranchement correspondant, au moins un clapet de purge d'air/dégazage (35) commandé d'une part par l'air/gaz et d'autre part par la température, l'installation d'air et/ou de gaz ou une température de réchauffage prédéterminée ouvrant le circuit de refroidissement.
  9. Circuit de refroidissement selon la revendication 8, caractérisé en ce que le clapet de purge d'air/dégazage (35) comporte un flotteur (39) comme organe d'obturation, un ressort à déclic thermostatique (38) comme corps de clapet et un joint torique comme siège de clapet et d'ouverture, superposés verticalement de manière coaxiale et dans cet ordre dans une chambre de clapet.
  10. Circuit de refroidissement selon la revendication 1 ou 5, caractérisé en ce que le branchement de la conduite de commande (14) sur l'arrivée (5) du radiateur comporte une réalisation analogue à une pompe aspirante radiale, et lorsque la vitesse de rotation du moteur augmente ou le débit de la pompe du liquide de refroidissement augmente, la pression croissante est modifiée dans l'arrivée (5) du radiateur pour être appliquée à la conduite de commande (14).
  11. Circuit de refroidissement selon la revendication 1 ou 6, caractérisé en ce que :
    un autre clapet de surpression (26) qui se ferme en fonction de la température est branché en série sur la ou les clapets de surpression (21) de la conduite de liaison (25) entre le séparateur d'air (17) et le vase d'expansion (27),
    sa température de fermeture étant supérieure à la température normale de fonctionnement à régulation thermodynamique du liquide de refroidissement,
    les clapets de surpression (21 et 26) ayant des ouvertures accordées,
    et pour la température de fermeture de l'autre clapet de surpression (26) et en même temps la vitesse de rotation maximale du moteur ou le débit maximum de la pompe, la surpression à l'entrée de la pompe (13) est suffisamment éloignée de la limite de cavitation de la pompe et
    pour la température de fonctionnement la plus élevée, prévue, la condition précédente est atteinte par la valeur d'ouverture additionnée des clapets de surpression (21 et 26) et cette valeur est supérieure à la pression d'ébullition qui correspond après l'arrêt du moteur (1) en pleine charge, à la température du liquide de refroidissement la plus haute prévisible, susceptible de se produire localement.
  12. Circuit de refroidissement selon la revendication 1 ou 6, caractérisé en ce que la conduite de liaison (25) entre le séparateur d'air (17) et le vase d'expansion (27) comporte un dispositif de purge d'air à commande manuelle, qui en position de purge d'air ouvre par une vis de purge d'air ou par la position de pivotement de purge d'air du bouchon d'obturation (20), un clapet de surpression, de dépression, de purge d'air et/ou des thermovannes et une ouverture d'évacuation en parallèle.
  13. Circuit de refroidissement selon la revendication 1, 6 ou 12, caractérisé en ce que :
    le vase d'expansion (27) comporte au-dessus de son niveau de remplissage, un raccord (33) pour un transfert de gaz sous pression qui peut passer provisoirement au-dessus du niveau du liquide de refroidissement, assurant un passage du liquide de refroidissement à travers la conduite de liaison (25) vers le séparateur d'air (17) et par les clapets de dépression, d'aération et/ou les thermovannes (22, 23) ou l'orifice de purge d'air, s'opposant dans le circuit de refroidissement par une montée en pression correspondante.
  14. Circuit de refroidissement selon la revendication 13, caractérisé en ce que le vase d'expansion (17) résistante à une pression allant sensiblement à la pression moyenne de fonction-nement du circuit de refroidissement et comporte un clapet de sécurité de surpression.
  15. Circuit de refroidissement selon la revendication 14, caractérisé en ce que le bouchon de remplissage (32) du vase d'expansion (27) est réalisé sous la forme du clapet de sécurité de surpression, et sa fixation sur le vase d'expansion (27) est choisie pour son desserrage lorsque la valeur de la pression est augmentée, et pour le branchement pour le passage de gaz comprimé, le couvercle comporte un ajutage de raccordement (33) amovible pour un tuyau de trop plein (34).
  16. Circuit de refroidissement selon les revendications 1, 4 ou 6, caractérisé en ce que :
    le séparateur d'air (17) et le vase d'expansion (27) ainsi que son bouchon de remplissage (20 et 32) sont directement juxtaposés et
    le bouchon de remplissage (32) du vase d'expansion (27) recouvre en position de fermeture, le bouchon (20) du réservoir séparateur d'air (17).
  17. Circuit de refroidissement à liquide selon l'une des revendications 1, 4 ou 6, caractérisé en ce que dans un circuit auxiliaire de chauffage (40, 41) qui dérive de la sortie au point haut de la chemise de refroidissement, il est prévu une pompe électrique supplémentaire (46) et un dispositif de chauffage (42, 43),
    la pompe supplémentaire (46) se mettant en route lors de l'arrêt à chaud du moteur (1) en fonction de la température minimale du liquide de refroidissement et/ou des pièces,
    et en ce qu'un clapet de commutation (47) qui est actionné, renvoie le liquide de refroidissement sortant de la chemise de refroidissement (2) non pas dans le dispositif de chauffage (42, 43) mais dans la chemise de refroidissement (2) à travers une entrée en regard de la sortie et,
    l'écoulement du liquide de refroidissement à travers la chemise de refroidissement (2) est dimensionné notamment à travers l'enveloppe de refroidissement de la culasse des moteurs à combustion interne pour avoir aux points chauds une intensité d'écoulement qui décroche les bulles de vapeur et en assure la condensation.
EP88107940A 1987-05-18 1988-05-18 Circuit de refroidissement par liquide pour machines, notamment pour moteurs à combustion interne Expired - Lifetime EP0295445B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3716555 1987-05-18
DE19873716555 DE3716555A1 (de) 1987-05-18 1987-05-18 Befuell-, entlueftungs- und drucksteuer-vorrichtung fuer den fluessigkeits-kuehlkreis von kraft- und arbeitsmaschinen, insbesondere brennkraftmaschinen

Publications (3)

Publication Number Publication Date
EP0295445A2 EP0295445A2 (fr) 1988-12-21
EP0295445A3 EP0295445A3 (en) 1989-05-03
EP0295445B1 true EP0295445B1 (fr) 1991-12-27

Family

ID=6327768

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88107940A Expired - Lifetime EP0295445B1 (fr) 1987-05-18 1988-05-18 Circuit de refroidissement par liquide pour machines, notamment pour moteurs à combustion interne

Country Status (6)

Country Link
US (1) US4913107A (fr)
EP (1) EP0295445B1 (fr)
JP (1) JPH01503320A (fr)
DE (2) DE3716555A1 (fr)
ES (1) ES2028939T3 (fr)
WO (1) WO1988009429A1 (fr)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2640315B1 (fr) * 1988-12-14 1991-02-08 Peugeot Dispositif de refroidissement a combustion interne
DE4001208A1 (de) * 1990-01-17 1991-07-18 Bayerische Motoren Werke Ag Verdampfungskuehlsystem fuer eine fluessigkeitsgekuehlte brennkraftmaschine
US5241926A (en) * 1991-08-09 1993-09-07 Mazda Motor Corporation Engine cooling apparatus
US5410991A (en) * 1994-05-05 1995-05-02 Standard-Thomson Corporation Coolant fill housing with integral thermostat
DE19607638C1 (de) * 1996-02-29 1997-06-19 Porsche Ag Kühlkreislauf einer Brennkraftmaschine
DE19611095A1 (de) * 1996-03-21 1997-09-25 Bayerische Motoren Werke Ag Kühlsystem für eine flüssigkeitsgekühlte Brennkraftmaschine
US6447491B1 (en) 1999-06-18 2002-09-10 Genzyme Corporation Rolling seal suction pressure regulator, apparatus and system for draining a body cavity and methods related thereto
DE19948160B4 (de) * 1999-10-07 2010-07-15 Wilhelm Kuhn Kühlvorrichtung für eine flüssigkeitsgekühlte Brennkraftmaschine eines Kraftfahrzeuges
FR2804719B1 (fr) * 2000-02-03 2002-06-21 Peugeot Citroen Automobiles Sa Dispositif de refroidissement d'un moteur de vehicule automobile
FR2804722B1 (fr) * 2000-02-03 2002-03-08 Peugeot Citroen Automobiles Sa Dispositif de refroidissement d'un moteur de vehicule automobile
FR2804720B1 (fr) 2000-02-03 2002-06-21 Peugeot Citroen Automobiles Sa Dispositif de refroidissement d'un moteur de vehicule automobile
FR2806444B1 (fr) 2000-03-17 2002-06-07 Peugeot Citroen Automobiles Sa Dispositif de refroidissement d'un moteur de vehicule automobile
FR2816004B1 (fr) * 2000-10-27 2003-06-20 Mark Iv Systemes Moteurs Sa Ensemble de refroidissement pour vehicules a moteur
US7152555B2 (en) * 2001-02-20 2006-12-26 Volvo Trucks North America, Inc. Engine cooling system
US6532910B2 (en) * 2001-02-20 2003-03-18 Volvo Trucks North America, Inc. Engine cooling system
US6997284B1 (en) 2001-06-26 2006-02-14 Spicer Technology, Inc. Lubricant cooling system for a motor vehicle axle
DE102005007781B4 (de) * 2005-02-19 2013-01-31 Man Truck & Bus Ag Verfahren und Anordnung zum schnellen Aufbau des Systemdrucks im Kühlmittelkreislauf von Brennkraftmaschinen
SE529541C2 (sv) * 2005-12-05 2007-09-11 Volvo Lastvagnar Ab Kylsystem
DE102007058575B4 (de) * 2007-12-05 2013-08-01 Man Truck & Bus Ag Kraftfahrzeug mit Druckluft gestütztem Kühlsystem
DE102008033024B4 (de) 2008-07-14 2010-06-10 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren zur Entlüftung eines Kühlmittelkreislaufes einer Brennkraftmaschine und Kühlmittelkreislauf für eine Brennkraftmaschine
FR2938298B1 (fr) * 2008-11-13 2010-11-12 Peugeot Citroen Automobiles Sa Circuit de refroidissement moteur
DE102009048997A1 (de) * 2009-10-09 2011-04-14 Behr Industry Gmbh & Co. Kg Kühlsystem, insbesondere für einen Verbrennungsmotor
DE102012213262A1 (de) 2012-07-27 2014-05-22 Bayerische Motoren Werke Aktiengesellschaft Sensor mit integrierter Entlüftungsschraube
DE102012218392A1 (de) * 2012-10-09 2014-04-10 Reutter Gmbh Druck- oder temperaturgesteuertes Wegeventil für einen Ausgleichsbehälter und Kühlsystem einer Brennkraftmaschine
DE202013003370U1 (de) * 2013-04-04 2013-04-29 Reutter Gmbh Verschlussdeckel mit einem druck- oder temperaturgesteuerten Wegeventil für einen Ausgleichsbehälter und Kühlsystem einer Brennkraftmaschine
DE102014201170A1 (de) * 2014-01-23 2015-07-23 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zur Entlüftung eines Wärmemanagementsystems einer Verbrennungskraftmaschine
CN103867282A (zh) * 2014-03-10 2014-06-18 中国北方发动机研究所(天津) 一种主动式增压蒸汽压力***
DE102015105921B4 (de) * 2015-04-17 2024-05-08 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Kühlsystem für ein Fahrzeug und Verfahren zum Betreiben desselben
FR3043719B1 (fr) * 2015-11-13 2019-07-05 Novares France Circuit de refroidissement pour un vehicule automobile
CN105298622B (zh) * 2015-11-19 2017-12-01 中国北车集团大连机车车辆有限公司 柴油机冷却水***的自动排气***
JP2019089524A (ja) * 2017-11-17 2019-06-13 アイシン精機株式会社 車両用熱交換装置
DE102022128616B3 (de) 2022-10-28 2024-01-04 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Phasenwechselkühlkreislauf mit Drucksteuereinrichtung

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2195266A (en) * 1939-02-24 1940-03-26 Gen Motors Corp Pressure cap
FR919259A (fr) * 1945-02-17 1947-03-04 Saurer Adolph Système de refroidissement pour véhicules automobiles
US2480986A (en) * 1947-05-29 1949-09-06 Gen Motors Corp Thermostatic radiator valve
US2878794A (en) * 1957-07-29 1959-03-24 Ralph O Stromberg Automobile cooling system
US3047235A (en) * 1959-04-15 1962-07-31 Gen Motors Corp Thermosensitive radiator caps
US3139073A (en) * 1960-04-29 1964-06-30 Ford Motor Co Cooling system
US3284004A (en) * 1964-11-18 1966-11-08 Ford Motor Co Temperature and pressure responsive filler cap
AU461753B2 (en) * 1971-10-29 1975-06-05 Carl Avrea Walter Monolithic radiator cap for sealed pressurized cooling system
JPS5417900B2 (fr) * 1974-03-14 1979-07-03
DE2419266C3 (de) * 1974-04-22 1978-04-27 Daimler-Benz Ag, 7000 Stuttgart Ausgleichsgefäß fur den Volumenausgleich und die Luftabscheidung eines in einem Kreislauf insbesondere die Maschinenkühlraume einer flüssigkeitsgekühlten Brennkraftmaschine durchströmenden flüssigen Wärmeträgers
DE2631121A1 (de) * 1976-07-10 1978-01-12 Daimler Benz Ag Fluessigkeitsgekuehlte brennkraftmaschine
US4167159A (en) * 1977-04-29 1979-09-11 Deere & Company Pressurized liquid cooling system for an internal combustion engine
DE2821872B2 (de) * 1978-05-19 1980-05-14 Audi Nsu Auto Union Ag, 7107 Neckarsulm Überdruck-Kühlsystem für eine flüssigkeitsgekühlte Brennkraftmaschine, insbesondere in einem Kraftfahrzeug
DE3045357C2 (de) * 1980-12-02 1986-01-09 Daimler-Benz Ag, 7000 Stuttgart Kühlsystem für eine Brennkraftmaschine
US4358051A (en) * 1981-02-09 1982-11-09 Ford Motor Company Thermostat assembly for an engine cooling system
DE3143749A1 (de) * 1981-11-04 1983-05-11 Magirus-Deutz Ag, 7900 Ulm Vorrichtung zur absicherung des wasserdruckes im kuehlwasserkreislauf einer brennkraftmaschine
FR2529951A1 (fr) * 1982-07-08 1984-01-13 Renault Vehicules Ind Dispositif de pressurisation du circuit de refroidissement d'un moteur thermique
DE3226509A1 (de) * 1982-07-15 1984-01-26 Bayerische Motoren Werke AG, 8000 München Kuehlkreis fuer brennkraftmaschinen
DE3226508C2 (de) * 1982-07-15 1985-12-12 Bayerische Motoren Werke AG, 8000 München Kühlkreis für Brennkraftmaschinen
JPS5953281A (ja) * 1982-09-20 1984-03-27 本田技研工業株式会社 自動二輪車
US4489883A (en) * 1984-01-19 1984-12-25 General Motors Corporation Temperature regulated dual pressure device
US4532894A (en) * 1984-03-30 1985-08-06 Daimler-Benz Aktiengesellschaft Heating arrangement for electrically driven vehicles
DE3424580C1 (de) * 1984-07-04 1985-11-07 Audi AG, 8070 Ingolstadt Kühlsystem für eine flüssigkeitsgekühlte Brennkraftmaschine
DE3430115C1 (de) * 1984-08-16 1986-01-30 Bayerische Motoren Werke AG, 8000 München Dem Volumen-Ausgleich,der Entlueftung und Bevorratung dienender Behaelter fuer das Fluessigkeits-Kuehlsystem von Brennkraftmaschinen
US4591691A (en) * 1984-10-29 1986-05-27 Badali Edward A Auxiliary electric heating system for internal combustion engine powered vehicles

Also Published As

Publication number Publication date
ES2028939T3 (es) 1992-07-16
WO1988009429A1 (fr) 1988-12-01
DE3867142D1 (de) 1992-02-06
DE3716555C2 (fr) 1989-05-11
JPH01503320A (ja) 1989-11-09
US4913107A (en) 1990-04-03
DE3716555A1 (de) 1988-12-08
EP0295445A2 (fr) 1988-12-21
EP0295445A3 (en) 1989-05-03

Similar Documents

Publication Publication Date Title
EP0295445B1 (fr) Circuit de refroidissement par liquide pour machines, notamment pour moteurs à combustion interne
EP0157167B1 (fr) Circuit de refroidissement pour moteurs à combustion interne
EP1766207B1 (fr) Module huile/liquide de refroidissement avec systeme d'entretien du liquide de refroidissement
DE60019490T2 (de) Brennstofförder-und behandlungsvorrichtung
DE3436702C2 (fr)
DE3928477C2 (de) Flüssigkeitskühlanordnung für einen Verbrennungsmotor mit einem Turbolader
EP1295025B1 (fr) Circuit hydraulique
EP1832730B1 (fr) Turbosoufflante dotée d'un refroidissement par convection
DE3226509A1 (de) Kuehlkreis fuer brennkraftmaschinen
DE3424470C2 (de) Verbrennungskraftmaschine
DE102011116202B3 (de) Kühlmittelkreislauf für eine Brennkraftmaschine
DE102015119250B4 (de) Verbrennungsschutzabdeckung, die mit einem unter druck setzbaren kühlmitteltank gekoppelt ist, und unter druck setzbare kühlmitteltankanordnung, die dieselbe aufweist
DE102006014400B4 (de) Ausgleichsbehälter für ein Kühlsystem und Kühlanordnung
DE3700494C2 (fr)
EP0888494B1 (fr) Systeme de refroidissement pour moteur a combustion interne refroidi par fluide
DE3045357C2 (de) Kühlsystem für eine Brennkraftmaschine
DE3517715C2 (de) Kühlflüssigkeitsbehälter für den Kühlflüssigkeitskreislauf einer Brennkraftmaschine
DE4228185A1 (de) Vorrichtung zur Steuerung des Druckes der Kühlflüssigkeit einer Brennkraftmaschine
DE3534543C2 (fr)
DE2821872A1 (de) Ueberdruck-kuehlsystem fuer eine fluessigkeitsgekuehlte brennkraftmaschine, insbesondere in einem kraftfahrzeug
EP1130234B1 (fr) Dispositif de refroidissement pour un liquide d'un moteur de combustion interne
EP1731344A2 (fr) Agencement de réservoir pour une unité de combustion, surtout pour un moteur à combustion interne d'un véhicule
EP0905357B1 (fr) Circuit de refroidissement d'un moteur à combustion interne, notamment pour des véhicules
DE102022128616B3 (de) Phasenwechselkühlkreislauf mit Drucksteuereinrichtung
DE4315729C2 (de) Querstromkühler mit integriertem Ausgleichsbehälter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19890519

17Q First examination report despatched

Effective date: 19900328

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3867142

Country of ref document: DE

Date of ref document: 19920206

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2028939

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930505

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930513

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19930520

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930526

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940519

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940519

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940518

EUG Se: european patent has lapsed

Ref document number: 88107940.4

Effective date: 19941210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950131

EUG Se: european patent has lapsed

Ref document number: 88107940.4

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990405

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030624

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050518