EP0295295A1 - Process for data transmission by means of a geo-stationary satellite and at least one sub-satellite - Google Patents

Process for data transmission by means of a geo-stationary satellite and at least one sub-satellite

Info

Publication number
EP0295295A1
EP0295295A1 EP88900949A EP88900949A EP0295295A1 EP 0295295 A1 EP0295295 A1 EP 0295295A1 EP 88900949 A EP88900949 A EP 88900949A EP 88900949 A EP88900949 A EP 88900949A EP 0295295 A1 EP0295295 A1 EP 0295295A1
Authority
EP
European Patent Office
Prior art keywords
satellite
satellites
transmission
sub
earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP88900949A
Other languages
German (de)
French (fr)
Inventor
Manfred Schukat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Messerschmitt Bolkow Blohm AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messerschmitt Bolkow Blohm AG filed Critical Messerschmitt Bolkow Blohm AG
Publication of EP0295295A1 publication Critical patent/EP0295295A1/en
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/195Non-synchronous stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L23/00Apparatus or local circuits for systems other than those covered by groups H04L15/00 - H04L21/00
    • H04L23/02Apparatus or local circuits for systems other than those covered by groups H04L15/00 - H04L21/00 adapted for orthogonal signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/19Earth-synchronous stations

Definitions

  • the invention relates to a method for transmitting data by means of a geostationary satellite and at least one sub-satellite, the sub-satellites being in lower orbits.
  • Communication satellites generally describe a geostationary orbit at a height of approximately 36,000 km above the equator. There they have a fixed orbit position, so that the same transmission frequency can be used for each satellite due to the distance between two neighboring satellites. As the geostationary orbit fills up slowly, other satellite orbits are planned, e.g. Subsatellite orbits with a height of a few hundred km or so-called quasi-stationary orbits. More details are e.g. the reference
  • this is achieved in that at least two data streams of the same frequency with different power / Hz are used for message transmission, the first data stream with higher power / Hz being used for connection to the geostationary satellite and the further data streams by means of PN (pseudo-noise) sequences are transmitted and serve to connect with the subsatellites.
  • PN pseudo-noise
  • 1 schematically shows the arrangement of the satellite orbits and the range of interference during transmission with the same frequency f ß ,
  • FIG. 3b shows the conditions in the transponder of the geostationary satellite with reception of the interference power.
  • Figure 1 shows schematically the arrangement of the satellite orbits.
  • the communications satellite S is located on a geostationary orbit at a distance of approximately 36,000 km, and the subsatellite S 2 on a subsatellite orbit at a distance of approximately 400 km - the former receives data from an earth station E, and the latter from another Earth station E ⁇ .
  • there is an interference area in which the two cones of the transmitting antennas overlap For this reason, as mentioned at the beginning, it is not readily possible to use the same frequencies for the two earth stations.
  • the structure of the PN sequences is constructed according to FIG 2 is that they have good correlation properties, which enables an exact De 'tetechnisch of Sig ⁇ Nals possible.
  • Each data bit is spread over the length of a PN sequence. If the length of the PN sequence is 1000 chips, for example, a data bit is represented by these 1000 chips.
  • the power per Hz to be applied in this way is therefore only 1/1000 of the power required in conventional methods. Both data streams are therefore decoupled from one another by a factor of 1000 in terms of their performance.
  • the transmissible useful bit rate is reduced by the factor of the spread compared to the conventional data stream by spreading the transmission spectrum, ie by using PN sequences.
  • PN sequences ie by using PN sequences.
  • a communication link with the same transmission frequency of 14 GHz is to be set up via a satellite S 2 , which is in a different orbit, for example in a circular orbit of lower height or an elliptical orbit.
  • the antenna may cover a certain area of the geostationary orbit on which the other satellite S is located and disrupts its message transmissions.
  • the ground station E now transmit according to FIG. 3a with a bandwidth of 10 MHz to the geostationary satellite S, and the ground station E 2 with the same bandwidth to the sub-satellite S 2 - but for transmission it uses PN sequences with a spreading factor of 1 1000 '.
  • the ground station E 2 can only transmit a useful bit rate of approx. 10 K bits compared to the 10 M bits of the ground station E,.
  • the transmission power required for the 10 KBits is distributed over 10 MHz, so that within the 10 MHz bandwidth of the geostationary satellite S-, its own signal is only disturbed by a factor of 1/1000. According to FIG. 3b, only the background noise of the transponder is increased.
  • +20 is steamed about 10.
  • Particularly expedient applications of the invention consist in that the additional data streams transmit information for controlling and / or regulating the message traffic between satellite-satellite and / or earth-satellite-earth or for controlling and / or regulating the satellites with respect to their orbit become.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radio Relay Systems (AREA)

Abstract

Dans le procédé décrit les satellites secondaires sont placés sur des orbites plus basses. Pour la transmission des communications, on utilise au moins deux flux de données de différentes puissances/Hz, le premier flux, à puissance plus forte/Hz étant utilisé pour assurer la liaison avec le satellite géostationnaire (S1) et les autres flux étant transmis au moyen de séquences de bruits aléatoires. Deux transmissions de données ont ainsi lieu dans la même gamme de fréquences, par utilisation toutefois de deux satellites différents qui se trouvent à portée de vue d'une station terrestre. Une application particulièrement adéquate de l'invention est la transmission par flux de données appropriée des informations nécessaires au contrôle et/ou à la régulation de l'échange de communications d'un satellite à l'autre et/ou par les voies terre-satellite-terre ou pour contrôler ou régler l'orbite des satellites.In the process described, the secondary satellites are placed in lower orbits. For the transmission of communications, at least two data streams of different powers / Hz are used, the first stream, at higher power / Hz, being used to provide the link with the geostationary satellite (S1) and the other streams being transmitted to the using random noise sequences. Two data transmissions thus take place in the same frequency range, however by the use of two different satellites which are within sight of a ground station. A particularly suitable application of the invention is the transmission by appropriate data flow of the information necessary for controlling and / or regulating the exchange of communications from one satellite to another and / or by the earth-satellite channels. - earth or to control or adjust the orbit of the satellites.

Description

Verfahren zur Übertragung von Daten mittels eines geostationären Satel¬ liten und wenigstens eines Subsatelliten. Method for the transmission of data by means of a geostationary satellite and at least one sub-satellite.
Die Erfindung betrifft ein Verfahren zur Übertragung von Daten mittels eines geostationären Satelliten und wenigstens eines Subsatelliten, wo¬ bei die Subsatelliten sich auf niedrigeren Umlaufbahnen befinden.The invention relates to a method for transmitting data by means of a geostationary satellite and at least one sub-satellite, the sub-satellites being in lower orbits.
Nachrichtensatelliten beschreiben im allgemeinen eine geostationare Kreisbahn in ca. 36000 km Höhe über dem Äquator. Dort haben sie eine fest zugeteilte Orbitposition, so daß für jeden Satelliten die gleiche Übertragungsfrequenz aufgrund der Entfernung zwischen zwei benachbarten Satelliten benutzt werden kann. Da sich der geostationare Orbit langsam füllt, werden andere Satellitenbahnen geplant, wie z.B. Subsatelliten- bahnen mit einer Höhe von einigen hundert km oder sogenannte quasistati¬ onäre Bahnen. Näheres dazu ist z.B. der LiteraturstelleCommunication satellites generally describe a geostationary orbit at a height of approximately 36,000 km above the equator. There they have a fixed orbit position, so that the same transmission frequency can be used for each satellite due to the distance between two neighboring satellites. As the geostationary orbit fills up slowly, other satellite orbits are planned, e.g. Subsatellite orbits with a height of a few hundred km or so-called quasi-stationary orbits. More details are e.g. the reference
P. Dondl : "LOOPUS erschließt dem Satellitenfunk eine neue Dimen¬ sion"; NTZ-Archiv Band 5 (1983), Heft 12, S. 327 - 335P. Dondl: "LOOPUS opens up a new dimension for satellite radio"; NTZ Archives Volume 5 (1983), No. 12, pp. 327 - 335
zu entnehmen.refer to.
Der gravierendste Nachteil dabei ist, daß unterschiedliche Frequenzbe¬ reiche verwendet werden müssen, um gegenseitige Störungen auszuschlie¬ ßen. Mit herkömmlichen Übertragungsverfahren ist es nämlich nicht ohne weiteres möglich, die gleiche Frequenz für den geostationären Satelliten und den Subsatelliten zu verwenden, da dadurch der geostationare Satel¬ lit gestört würde, zumal da Satelliten mit niedrigeren Bahnen während ihrer Sichtbarkeit mehrere geostation re Satelliten (bezogen auf die Abstrahlrichtung der Sende-Erdfunkstelle) , die ggf. das gleiche Fre¬ quenzband benutzen, passieren. Frequenzbereiche bzw. Übertragungs¬ bandbreiten sind jedoch international streng reglementiert und auf- geteilt, so daß sie nicht ohne weiteres verwendet werden können. Um den zukünftigen Bedarf an Kommunikation zu decken, müssen also zusätzliche Möglichkeiten geschaffen werden.The most serious disadvantage is that different frequency ranges have to be used in order to exclude mutual interference. With conventional transmission methods, it is not readily possible to use the same frequency for the geostationary satellite and the sub-satellite, since this would interfere with the geostationary satellite, especially since satellites with lower orbits have several geostationable satellites during their visibility (based on the direction of radiation of the transmitting earth station), which may use the same frequency band. However, frequency ranges and transmission bandwidths are strictly regulated internationally and divided so that they cannot be used easily. In order to meet the future need for communication, additional options must be created.
Es ist das Ziel der Erfindung, ein Verfahren der eingangs genannten Art zu schaffen, das es ermöglicht, mit den augenblicklichen (oder: vorgege¬ benen) Frequenzbereichen auszukommen.It is the aim of the invention to create a method of the type mentioned at the beginning which makes it possible to get by with the instantaneous (or: specified) frequency ranges.
Gemäß der Erfindung wird dies dadurch erreicht, daß zur Nachrichten¬ übertragung wenigstens zwei in ihrer Leistung/Hz unterschiedliche Daten¬ ströme gleicher Frequenz verwendet werden, wobei der erste Datenstrom mit höherer Leistung/Hz zur Verbindung mit dem geostationären Satelliten dient und die weiteren Datenströme mittels PN(Pseudo-Noise)-Folgen über¬ tragen werden und der Verbindung mit den Subsatelliten dienen.According to the invention, this is achieved in that at least two data streams of the same frequency with different power / Hz are used for message transmission, the first data stream with higher power / Hz being used for connection to the geostationary satellite and the further data streams by means of PN (pseudo-noise) sequences are transmitted and serve to connect with the subsatellites.
Es finden somit zwei Datenübertragungen im gleichen Frequenzbereich statt, wobei jedoch unterschiedliche Satelliten bedient werden.There are thus two data transmissions in the same frequency range, but different satellites are served.
Einzelheiten der Erfindung ergeben sich aus den Unteransprüchen und der Beschreibung, in der anhand der Zeichnung ein Ausführungsbeispiel erör¬ tert wird. Es zeigenDetails of the invention emerge from the subclaims and the description in which an exemplary embodiment is discussed with reference to the drawing. Show it
Fig. 1 schematisch die Anordnung der Satellitenbahnen und den Bereich der Störungen bei Übertragung mit der gleichen Frequenz fß,1 schematically shows the arrangement of the satellite orbits and the range of interference during transmission with the same frequency f ß ,
Fig. 2 schematisch das Prinzip der Spreizung mittels PN-Folgen,2 schematically shows the principle of spreading by means of PN sequences,
Fig. 3a die Verhältnisse im Transponder des geostationären Satelliten ohne Empfang der Störleistung undFig. 3a, the conditions in the transponder of the geostationary satellite without receiving the interference power and
Fig. 3b die Verhältnisse im Transponder des geostationären Satelliten mit Empfang der Störleistung. Figur 1 zeigt schematisch die Anordnung der Satellitenbahnen. Auf einer geostationären Bahn im Abstand von ca. 36 000 km Höhe befindet sich der Nachrichtensatellit S, und auf einer Subsatellitenbahn im Abstand von etwa 400 km Höhe der Subsatellit S2- Der erstere empfängt Daten von einer Erdstation E, , der letztere von einer weiteren Erdstation E~. Wie der Figur zu entnehmen ist, ergibt sich ein Störungsbereich, in dem sich die beiden Kegel der Sendeantennen überschneiden. Aus diesem Grunde ist es, wie eingangs erwähnt, nicht ohne weiteres möglich, gleiche Frequenzen für die beiden Erdstationen zu verwenden.3b shows the conditions in the transponder of the geostationary satellite with reception of the interference power. Figure 1 shows schematically the arrangement of the satellite orbits. The communications satellite S is located on a geostationary orbit at a distance of approximately 36,000 km, and the subsatellite S 2 on a subsatellite orbit at a distance of approximately 400 km - the former receives data from an earth station E, and the latter from another Earth station E ~. As can be seen in the figure, there is an interference area in which the two cones of the transmitting antennas overlap. For this reason, as mentioned at the beginning, it is not readily possible to use the same frequencies for the two earth stations.
Gemäß der Erfindung wird dies jedoch dadurch ermöglicht, daß zwei in ihrer Leistung/Hz unterschiedliche Datenströme gleicher Frequenz benutzt werden, wobei der erste Datenstrom mit höherer Leistung/Hz zur Verbin¬ dung mit dem geostationären Satelliten (S,) dient und die weiteren Datenströme mittels PN(Pseudo-Noise)-Folgen übertragen werden und der Verbindung mit den Subsatelliten (S~) dienen.According to the invention, however, this is made possible by using two data streams of the same frequency which have different power / Hz, the first data stream with higher power / Hz being used for connection to the geostationary satellite (S,) and the further data streams by means of PN (pseudo-noise) sequences are transmitted and serve to connect to the subsatellites (S ~).
Durch die leistungsmäßige Entkopplung beider Satellitensysteme kann der gleiche Frequenzbereich benutzt werden, ohne nennenswerte Störungen hervorzurufen.By decoupling the performance of both satellite systems, the same frequency range can be used without causing any significant interference.
Die Struktur der PN-Folgen ist gemäß Figur 2 so aufgebaut, daß sie gute Korrelationseigenschaften besitzen, was eine exakte De'tektion des Sig¬ nals ermöglicht. Jedes Datenbit wird dabei auf die Länge einer PN-Folge gespreizt. Beträgt die Länge der PN-Folge z.B. 1000 Chips, so wird ein Datenbit durch eben diese 1000 Chips dargestellt. Die so aufzubringende Leistung pro Hz beträgt demnach nur 1/1000 der Leistung, die bei konven¬ tionellen Verfahren erforderlich ist. Beide Datenströme sind also bezüg¬ lich ihrer Leistungum den Faktor 1000 voneinander entkoppelt.The structure of the PN sequences is constructed according to FIG 2 is that they have good correlation properties, which enables an exact De 'tektion of Sig¬ Nals possible. Each data bit is spread over the length of a PN sequence. If the length of the PN sequence is 1000 chips, for example, a data bit is represented by these 1000 chips. The power per Hz to be applied in this way is therefore only 1/1000 of the power required in conventional methods. Both data streams are therefore decoupled from one another by a factor of 1000 in terms of their performance.
Werden gleiche Bandbreiten benutzt, so reduziert sich durch Spreizung des Sendespektrums, d.h. durch Verwendung von PN-Folgen die übertragbare Nutzbitrate um den Faktor der Spreizung gegenüber dem konventionellen Datenstrom. Im folgenden wird davon ausgegangen, daß eine Nachrichtenverbindung zwi¬ schen Bodenstationen und einem geostationären Satelliten S^ (z.B. ECS) im 14-GHz-Bereich besteht.If the same bandwidths are used, the transmissible useful bit rate is reduced by the factor of the spread compared to the conventional data stream by spreading the transmission spectrum, ie by using PN sequences. In the following it is assumed that there is a communication link between ground stations and a geostationary satellite S ^ (eg ECS) in the 14 GHz range.
Jetzt soll zusätzlich eine Nachrichtenverbindung mit der gleichen Sende¬ frequenz von 14 GHz über einen Satelliten S2 aufgebaut werden, der sich in einer anderen Bahn befindet, z.B. in einer Kreisbahn geringerer Höhe oder einer elliptischen Bahn.Now, in addition, a communication link with the same transmission frequency of 14 GHz is to be set up via a satellite S 2 , which is in a different orbit, for example in a circular orbit of lower height or an elliptical orbit.
Aufgrund der niedrigeren Höhe des Subsatelliten S„ ist sein Sichtbar¬ keitsbereich für eine Bodenstation E2 beschränkt; d.h. pro Umlauf sieht ihn die Bodenstation E2 für 'n' Minuten. Sie muß den Satelliten S2 mit ihrer Antenne am aufgehenden Horizont erfassen und bis zum un¬ tergehenden Horizont verfolgen. Dadurch überstreicht die Antenne unter Umständen einen bestimmten Bereich der geostationären Bahn, auf dem sich der andere Satellit S, befindet und stört dessen Nachrichtenüber¬ tragungen.Due to the lower height of the subsatellite S ", its visibility range for a ground station E 2 is limited; ie the ground station E 2 sees it for 'n' minutes per revolution. It must detect the satellite S 2 with its antenna on the rising horizon and track it down to the setting horizon. As a result, the antenna may cover a certain area of the geostationary orbit on which the other satellite S is located and disrupts its message transmissions.
Die Bodenstation E, sende nun gemäß Figur 3a mit einer Bandbreite von 10 MHz zum geostationären Satelliten S, und die Bodenstation E2 mit der gleichen Bandbreite zum Subsatelliten S2- Zur Übertragung verwen¬ det sie aber PN-Folgen mit einem Spreizfaktor von l1000'.The ground station E, now transmit according to FIG. 3a with a bandwidth of 10 MHz to the geostationary satellite S, and the ground station E 2 with the same bandwidth to the sub-satellite S 2 - but for transmission it uses PN sequences with a spreading factor of 1 1000 '.
Da der Spreizfaktor das Verhältnis von Länge der PN-Folge zur Dauer ei¬ nes Datenbits angibt, kann die Bodenstation E2 nur eine Nutzbitrate von ca. 10 KBits gegenüber den 10 MBits der Bodenstation E, übertra¬ gen. Die notwendige Übertragungsleistung für die 10 KBits wird aber auf 10 MHz verteilt, so daß innerhalb der 10 MHz Bandbreite des geostationä¬ ren Satelliten S-, dessen eigenes Signal nur um den Faktor 1/1000 gestört wird. Es wird also gemäß Figur 3b lediglich das Grundrauschen des Trans- ponders erhöht.Since the spreading factor indicates the ratio of the length of the PN sequence to the duration of a data bit, the ground station E 2 can only transmit a useful bit rate of approx. 10 K bits compared to the 10 M bits of the ground station E,. The transmission power required for the 10 However, KBits is distributed over 10 MHz, so that within the 10 MHz bandwidth of the geostationary satellite S-, its own signal is only disturbed by a factor of 1/1000. According to FIG. 3b, only the background noise of the transponder is increased.
Es finden somit zwei Datenübertragungen im gleichen Frequenzbereich statt, wobei jedoch unterschiedliche Satelliten bedient werden, die sich beide im Sichtbarkeitsbereich der Erdstation E2 befinden. Die in Figur 3 gezeigten Leistungsverhältnisse würden nur dann gelten, wenn beide Satelliten die gleiche Höhe hätten. Da der Subsatellit S2 aber eine geringere Höhe benutzt, muß auch entsprechend weniger Leistung abgestrahlt werden. Das reduziert die in Figur 3b dargestellte vom geo¬ stationären Satelliten empfangene Störleistung noch weiter, zumal dieseTwo data transmissions therefore take place in the same frequency range, but different satellites are operated, both of which are located in the visibility range of the earth station E 2 . The power ratios shown in FIG. 3 would only apply if both satellites were at the same height. However, since the subsatellite S 2 uses a lower height, less power has to be emitted. This further reduces the interference power shown in FIG. 3b received by the geo-stationary satellite, especially since this
Störleistung aufgrund der Strahlenreduktion generell um den Faktor vonInterference due to radiation reduction generally by a factor of
+20 ca. 10 gedämpft wird.+20 is steamed about 10.
Besonders zweckmäßige Anwendungen der Erfindung bestehen darin, daß mit¬ tels der zusätzlichen Datenströme Informationen zum Steuern und/oder Regeln des Nachrichtenverkehrs zwischen Satellit-Satellit und /oder Erde-Satellit-Erde bzw. zum Steuern und/oder Regeln der Satelliten bezüglich ihrer Bahn übertragen werden. Particularly expedient applications of the invention consist in that the additional data streams transmit information for controlling and / or regulating the message traffic between satellite-satellite and / or earth-satellite-earth or for controlling and / or regulating the satellites with respect to their orbit become.

Claims

Patentansprüche: Claims:
1. Verfahren zur Übertragung von Daten mittels eines geostationären Satelliten und wenigstens eines Subsatelliten, wobei die Subsatelliten sich auf niedrigeren Umlaufbahnen befinden, d a d u r c h g e ¬ k e n n z e i c h n e , d a ß zur Nachrichtenübertragung wenigstens zwei in ihrer Leistung/Hz unterschiedliche Datenströme gleicher Frequenz verwendet werden, wobei der erste Datenstrom mit höherer Leistung/Hz zur Verbindung mit dem geostationären Satelliten (S,) dient und die weite¬ ren Datenströme mittels PN(Pseudo-Noise)-Folgen übertragen werden und der Verbindung mit den Subsatelliten (S2) dienen.1. Method for the transmission of data by means of a geostationary satellite and at least one sub-satellite, the sub-satellites being in lower orbits, characterized in that at least two different data streams of the same frequency are used for message transmission, the first Data stream with higher power / Hz is used to connect to the geostationary satellite (S,) and the further data streams are transmitted by means of PN (pseudo-noise) sequences and serve to connect to the subsatellites (S 2 ).
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n ¬ z e i c h n e t, d a ß mittels der weiteren Datenströme Informationen2. The method according to claim 1, d a d u r c h g e k e n n ¬ z e i c h n e t, d a ß by means of the further data streams information
"zum Steuern und/oder Regeln des Nachrichtenverkehrs zwischen Satellit- Satellit und /oder Erde-Satellit-Erde übertragen werden. " for controlling and / or regulating the communication between satellite-satellite and / or earth-satellite-earth are transmitted.
3. Verfahren nach Anspruch 1, d a d u r c h g e k e n n ¬ z e i c h n e t, d a ß mittels der weiteren Datenströme Informationen zum Steuern und/oder Regeln der Satelliten bezüglich ihrer Bahn über¬ tragen werden. 3. The method according to claim 1, d a d u r c h g e k e n n ¬ z e i c h n e t d a ß by means of the further data streams information for controlling and / or regulating the satellites are transmitted with respect to their orbit.
EP88900949A 1986-12-23 1987-12-19 Process for data transmission by means of a geo-stationary satellite and at least one sub-satellite Ceased EP0295295A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863644176 DE3644176A1 (en) 1986-12-23 1986-12-23 METHOD FOR TRANSMITTING DATA BY MEANS OF A GEOSTATIONAL SATELLITE AND AT LEAST A SUBSATELLITE
DE3644176 1986-12-23

Publications (1)

Publication Number Publication Date
EP0295295A1 true EP0295295A1 (en) 1988-12-21

Family

ID=6317058

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88900949A Ceased EP0295295A1 (en) 1986-12-23 1987-12-19 Process for data transmission by means of a geo-stationary satellite and at least one sub-satellite

Country Status (5)

Country Link
US (1) US4985706A (en)
EP (1) EP0295295A1 (en)
AU (1) AU607738B2 (en)
DE (1) DE3644176A1 (en)
WO (1) WO1988004866A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110224739A (en) * 2019-06-04 2019-09-10 航天科工空间工程发展有限公司 A kind of LEO Satellite communication link frequency interferences judgment method

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5327572A (en) * 1990-03-06 1994-07-05 Motorola, Inc. Networked satellite and terrestrial cellular radiotelephone systems
US5433726A (en) * 1991-04-22 1995-07-18 Trw Inc. Medium-earth-altitude satellite-based cellular telecommunications system
US5439190A (en) * 1991-04-22 1995-08-08 Trw Inc. Medium-earth-altitude satellite-based cellular telecommunications
US5668556A (en) * 1991-10-02 1997-09-16 Alcatel Espace Low-orbit satellite communications system for terminals
FR2682238B1 (en) * 1991-10-02 1994-10-07 Alcatel Espace LOW ORBIT SATELLITE COMMUNICATION SYSTEM FOR TERMINALS.
DE4223995A1 (en) * 1992-07-21 1994-02-03 Kolbe & Co Hans Controlling network for satellite supported signal transmission system - subjecting low bit rate control signal flow, or extra signal of low bit rate, to spectral expansion
US5666648A (en) * 1993-11-09 1997-09-09 Leo One Ip, L.L.C. Polar relay system for satellite communication
TW239242B (en) * 1994-03-28 1995-01-21 Leo One Ip L L C Satellite system using equatorial & polar orbit relays
TW274170B (en) * 1994-06-17 1996-04-11 Terrastar Inc Satellite communication system, receiving antenna & components for use therein
US5745084A (en) * 1994-06-17 1998-04-28 Lusignan; Bruce B. Very small aperture terminal & antenna for use therein
US6400926B1 (en) * 1994-06-22 2002-06-04 Ericsson Ge Mobile Communications Inc. Radiocommunication system using geostationary and non-geostationary satellites
WO1996012356A2 (en) * 1994-10-12 1996-04-25 Leo One Ip, L.L.C. Optimal coverage satellite system for a low earth orbit store-and-forward telecommunication network
US5602838A (en) * 1994-12-21 1997-02-11 Lucent Technologies Inc. Global multi-satellite network
FR2730369B1 (en) * 1995-02-02 1997-04-25 Bruno Louis Blachier PERSONAL COMMUNICATIONS USING GEOSTATIONARY SATELLITES AND LOW ORBIT RUNNERS
JPH08213945A (en) * 1995-02-06 1996-08-20 Atr Kodenpa Tsushin Kenkyusho:Kk Satellite communication system
US5894590A (en) * 1995-07-31 1999-04-13 Motorola, Inc. Independent satellite-based communications systems sharing common frequency spectrum and method of operation thereof
FR2737627B1 (en) * 1995-08-02 1997-10-03 Europ Agence Spatiale RADIO SIGNAL TRANSMISSION SYSTEM VIA A GEOSTATIONARY COMMUNICATION SATELLITE, ESPECIALLY FOR COMMUNICATIONS WITH PORTABLE MOBILE TERMINALS
US5971324A (en) * 1995-10-03 1999-10-26 Trw Inc. Multiple altitude satellite relay system and method
US5906337A (en) * 1995-10-03 1999-05-25 Trw Inc. Multiple altitude satellite relay system and method
ATE233449T1 (en) * 1995-12-07 2003-03-15 Vistar Telecomm Inc WIRELESS DISTRIBUTED DATA PACKET TRANSMISSION SYSTEM
US5943608A (en) * 1996-07-19 1999-08-24 At&T Corp. Traffic management methods for mitigation of interference between signals of satellite systems in relative motion
IL121764A0 (en) * 1996-11-25 1998-02-22 Motorola Inc Space-based communication systems
US5887257A (en) * 1996-12-05 1999-03-23 Motorola, Inc. Hybrid constellation satellite comunication systems and methods with efficient signaling and control
US6226494B1 (en) * 1997-09-23 2001-05-01 Teledesic Llc System and method for intermittent satellite communication with a fixed antenna
US6029935A (en) * 1998-01-22 2000-02-29 Trw Inc. Method for adding a geostationary component to a non-geostationary satellite network
US6859652B2 (en) * 2000-08-02 2005-02-22 Mobile Satellite Ventures, Lp Integrated or autonomous system and method of satellite-terrestrial frequency reuse using signal attenuation and/or blockage, dynamic assignment of frequencies and/or hysteresis
AU2001284688B2 (en) * 2000-08-02 2006-07-06 Atc Technologies, Llc Coordinated satellite-terrestrial frequency reuse
US7792488B2 (en) * 2000-12-04 2010-09-07 Atc Technologies, Llc Systems and methods for transmitting electromagnetic energy over a wireless channel having sufficiently weak measured signal strength
DE10214977A1 (en) * 2002-04-04 2003-10-30 Deutsch Zentr Luft & Raumfahrt Global communication system involving geostationary communication satellites
JP4870764B2 (en) * 2005-08-09 2012-02-08 エイティーシー・テクノロジーズ,リミテッド・ライアビリティ・カンパニー Satellite communication system and method using feeder link antennas arranged at approximately the same position
FR2906423B1 (en) * 2006-09-27 2008-12-26 Astrium Sas Soc Par Actions Si METHOD AND SYSTEM FOR TRANSMITTING DATA BETWEEN A SATELLITE AND A BASE STATION, AND SAILING STACK WITH RELAY TERMINAL AND BASE STATION FOR IMPLEMENTING THE METHOD
US8090312B2 (en) * 2006-10-03 2012-01-03 Raytheon Company System and method for observing a satellite using a satellite in retrograde orbit
RU2486676C2 (en) * 2010-12-20 2013-06-27 Государственное образовательное учреждение высшего профессионального образования Московский технический университет связи и информации (ГОУ ПВО МТУСИ) Method of merging satellite communication systems
WO2016145326A1 (en) * 2015-03-11 2016-09-15 The Aerospace Corporation Co-orbiting laser communications relay satellite
CA3119469A1 (en) 2018-11-19 2020-05-28 Viasat Inc. Fractionated satellite constellation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3518547A (en) * 1966-06-14 1970-06-30 Ibm Digital communication system employing multiplex transmission of maximal length binary sequences
US4178550A (en) * 1977-06-03 1979-12-11 Bell Telephone Laboratories, Incorporated Method and apparatus to permit substantial cancellation of interference between a received first and second signal
US4145658A (en) * 1977-06-03 1979-03-20 Bell Telephone Laboratories, Incorporated Method and apparatus for cancelling interference between area coverage and spot coverage antenna beams
US4839656A (en) * 1984-08-16 1989-06-13 Geostar Corporation Position determination and message transfer system employing satellites and stored terrain map

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8804866A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110224739A (en) * 2019-06-04 2019-09-10 航天科工空间工程发展有限公司 A kind of LEO Satellite communication link frequency interferences judgment method

Also Published As

Publication number Publication date
US4985706A (en) 1991-01-15
AU1152388A (en) 1988-07-15
AU607738B2 (en) 1991-03-14
DE3644176A1 (en) 1988-07-14
DE3644176C2 (en) 1989-04-06
WO1988004866A1 (en) 1988-06-30

Similar Documents

Publication Publication Date Title
EP0295295A1 (en) Process for data transmission by means of a geo-stationary satellite and at least one sub-satellite
DE3121146C2 (en)
DE60034163T2 (en) Arrangement with satellites in inclined, eccentric geosynchronous orbit
EP0567889B1 (en) System for bidirectional data transmission between several fixed stations and one mobile station
DE69229179T2 (en) BROADCASTING SYSTEMS AND METHODS, WITH TWO CHEAP GEOSTATIONARY SATELLITES
DE60126792T3 (en) CONSTRUCTION OF A BACK CONNECTION WITH LIMITED PERFORMANCE SPECTRUM DENSITY FOR MOBILE SATELLITE COMMUNICATION SYSTEM
DE69418087T2 (en) Radio-electric transmission method using relay stations with spectrum version
DE60213355T2 (en) A method and apparatus for identifying which of a plurality of mobile terminals causes interference with one or more satellites adjacent to a target satellite
DE3223408A1 (en) COMMUNITY ANTENNA ARRANGEMENT FOR RECEIVING AND DISTRIBUTING TELEVISION AND DIGITAL AUDIO SIGNALS
DE60006375T2 (en) BIDIRECTIONAL MULTIMEDIA COMMUNICATION TERMINAL
EP0915577B1 (en) System for the use of mobile phones in a passenger aircraft
EP0237009B1 (en) Satellite communication system using quasi-stationary orbits
DE69118777T2 (en) Onboard payload for communication, switchable for multi-band and multi-beam applications
DE2817836A1 (en) SYSTEM FOR MULTIPLE TRANSMISSION OF DIGITAL SIGNALS
EP0772923B1 (en) Radio link system for point to multi-point communication
DE19537044A1 (en) Broadband mobile radio system
DE69109601T2 (en) Method for reducing the risk of poor reception in a time-division multiplex radio transmission system.
DE69519523T2 (en) TRANSMISSION ARRANGEMENT WITH LOW-HEIGHT SATELLITES AND OPTIMAL EARTH LIGHTING FOR A TELECOMMUNICATION NETWORK WITH STORAGE AND CIRCUIT
DE60309792T2 (en) Control of the upward frequency for DOCSIS satellite arrangements
DE3789775T2 (en) Radio transmission system with reduced interference.
EP0612460B1 (en) Method for radio transmission using a fixed base station and a plurality of independent fixed subscriber stations
EP0151281B1 (en) Time-multiplex digital cellular radio system
DE69611774T2 (en) Interband frequency hopping in a cellular radio communication arrangement with mobile stations and stations therefor
DE69417745T2 (en) CHOICE OF A CONNECTING SATELLITE
DE3644168C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880819

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB SE

17Q First examination report despatched

Effective date: 19911002

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19920918