EP0287991B1 - Circuit arrangement for the automatic function-checking of a monitoring device - Google Patents

Circuit arrangement for the automatic function-checking of a monitoring device Download PDF

Info

Publication number
EP0287991B1
EP0287991B1 EP88106147A EP88106147A EP0287991B1 EP 0287991 B1 EP0287991 B1 EP 0287991B1 EP 88106147 A EP88106147 A EP 88106147A EP 88106147 A EP88106147 A EP 88106147A EP 0287991 B1 EP0287991 B1 EP 0287991B1
Authority
EP
European Patent Office
Prior art keywords
circuit
capacitor
alarm
test
relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88106147A
Other languages
German (de)
French (fr)
Other versions
EP0287991A1 (en
Inventor
Peter Wenter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT88106147T priority Critical patent/ATE67621T1/en
Publication of EP0287991A1 publication Critical patent/EP0287991A1/en
Application granted granted Critical
Publication of EP0287991B1 publication Critical patent/EP0287991B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/097Supervising of traffic control systems, e.g. by giving an alarm if two crossing streets have green light simultaneously

Definitions

  • Circuit arrangement for the automatic function check of a monitoring device is provided.
  • the invention relates to a circuit arrangement for automatically checking the function of a monitoring device for light signal systems, errors being simulated by a test system by deliberately influencing the monitoring device and an alarm caused thereby being suppressed during the test time.
  • DE-A-3 428 444 describes a monitoring device for a traffic signal system in which the respective signaling states are checked for their admissibility.
  • the object of the invention is to provide a circuit arrangement for automatic and fail-safe implementation for such a check.
  • the circuit arrangement is formed by a fail-safe exclusive-OR circuit which has a self-holding alarm relay and two pump circuits, each with an associated capacitor, an RC element arranged in the input circuit, and switching transistors that the Pump circuits generate the excitation voltage for the alarm relay, that the first pump circuit is energized by the alarm signal and the second pump circuit by the alarm suppression signal, and that one pump circuit in each case charges its capacitor, while the other pump circuit discharges its capacitor via the alarm relay, the alarm relay dropping when the drop voltage falls below the alarm relay.
  • the circuit arrangement according to the invention it is ensured that an automatic test of the monitoring device is possible on the safe side, because the fail-safe exclusive-OR circuit restores the alarm path after the end of the influencing, but during the influencing the absence of the by Failure simulation triggered alarms let the alarm relay drop out so that an alarm is displayed.
  • the alarm relay drops out when the negative capacitor voltage falls below the drop voltage.
  • the automatic check takes place at certain time intervals and within a certain time span, the exclusive-or circuit according to the invention being the minimum and maximum distance at which the influencing, that is to say the test, that is to say the test distance, must take place and also the minimum and maximum duration of the test.
  • the capacitor of the first pump circuit is charged with a short time constant and the second capacitor of the second pump circuit is discharged with a short time constant during the time period for the test.
  • the capacitor of the first pump circuit is discharged with a large time constant and the capacitor of the second pump circuit is charged with a large time constant.
  • the time for the test duration is determined by the value of a resistance in the charging circuit of the capacitor of the 1st pump circuit and its value, as well as by the resistance value of the relay winding of the alarm relay and the value of the capacitor of the 2nd pump circuit.
  • the relatively large time constant for the time for the test distance becomes determined by the resistance value of the relay winding of the alarm relay K and the value of the capacitor of the 1st pump circuit and the resistance value of another resistor in the charging circuit of the capacitor of the 2nd pump circuit.
  • the exclusive-or circuit monitors these time intervals itself, so that the test distance and the test duration cannot be exceeded or undershot.
  • the exclusive-or circuit has an RC element in the respective input circuit, the RC element of the first pump circuit shifting the switching time of the first pump circuit and the second RC element of the second pump circuit shifting the switching time of the second pump circuit.
  • a monitoring device UWE is indicated in FIG. 1, into which the various signaling states of a light signal system arrive via the inputs E. With the help of a manually operated test button PRT, the monitoring device is influenced in a certain way, which is indicated by the reference symbol BE and the corresponding arrow.
  • the monitoring device UWE issues an alarm ALA which would reach a signaling element MG via an alarm contact, which is no longer shown, if the alarm is not suppressed by a switch S provided for this purpose.
  • the block diagram shown in Figure 2 is similar to that of Figure 1.
  • the monitoring device UWE is supplied with the signaling states via the inputs E.
  • the monitoring device UWE is specifically influenced by a test system PRS, which can be implemented, for example, by a microprocessor, which is shown by the arrow BE.
  • a test system PRS which can be implemented, for example, by a microprocessor, which is shown by the arrow BE.
  • an alarm suppression signal ALU is given to the exclusive-OR circuit EXOR according to the invention, to which the alarm signal ALA is applied at a further input.
  • the exclusive-OR circuit EXOR has an alarm contact AK, which is designated here in FIG. 2 by K2 and which gives an alarm to a signaling element MG, not shown here.
  • a restart button WET which is designated S1, is connected to the fail-safe exclusive-OR circuit.
  • the exclusive-OR circuit according to the invention is shown as a possible exemplary embodiment in FIG. 3 and has two pump circuits A and B.
  • the pump circuit has an input to which the alarm signal ALA arrives.
  • the pump circuit B has an input at which the alarm suppression signal ALU arrives.
  • Pump circuit A has a first RC element in the input circuit, which is formed by resistor R1 and capacitor C1
  • pump circuit B has a second RC element in the input circuit, which is formed by resistor R14 and capacitor C2.
  • Both pump circuits A and B are connected with their respective pump capacitors C3 and C4 to the alarm relay K, which has a latching contact K1 and an alarm contact AK with K2, which is normally closed and only opens in the event of an alarm, so that an alarm via the connection points L and M come to a message element MG.
  • the resistance is in the charging circuit of pump circuit A. R8 and the switching transistor T3 arranged.
  • the resistor R9 is arranged in the charging circuit of the pump circuit B.
  • the restart button llt which is denoted by S1 and, in the simplest case, is arranged parallel to the latching contact K1 in a very simple manner.
  • an alarm is triggered, i.e. the alarm contact K1 opens.
  • the monitoring device UWE not shown in FIG. 3 (according to FIG. 2) triggers an alarm by itself, the alarm is switched through immediately or after the end of a test that is currently running. After an alarm is given, the S1 button must be pressed to restart. This process can also be automated by means of a relay contact, which is not shown here.
  • the fail-safe exclusive-or circuit keeps the alarm contact closed in the event of an alarm and alarm suppression or no alarm and no alarm suppression.
  • Component errors be it the capacitors of the RC element or the capacitors C3, C4, or an increased + 5V supply voltage, lead to an alarm or to an increased sensitivity.
  • the circuit also responds when there is a short or an open at the semiconductor circuits or capacitors. Likewise, an interruption in the resistance and connecting lines and an increase in the values of resistors lead to the circuit responding or to an increased sensitivity.
  • the time constants of pump circuit A and B already mentioned above are adapted to test duration PD (pump circuit B) and test interval PA (pump circuit A).
  • the two pump circuits A and B generate the negative voltage Uc required to excite the alarm relay.
  • One pump circuit charges its capacitor positively, while the other pump circuit discharges its capacitor via the relay K.
  • the relay drops out when the drop voltage reaches becomes. This is the case when a pump circuit does not charge its capacitor above K or a capacitor is discharged below the drop voltage.
  • a duration of a few seconds, for example two seconds, can be provided for the test interval (PA) and approximately a tenth of this time for the test duration (PD).
  • the RC elements in the input circuit delay the switching time at points a on capacitor C3 and at point b on capacitor C4.
  • the first diagram shows the voltage value U of the alarm signal ALA, which is positive during the test duration PD, which is relatively short, for example 0.2 seconds, then the test distance PA follows, for example, two seconds without an alarm signal and then the alarm signal ALA comes again.
  • the alarm suppression signal ALU is shown inverted, ie during the test period PD the signal is negative, during the test distance PA it is positive.
  • the voltage values are shown for the switching points a on the capacitor C3 and the switching point b on the capacitor C4.
  • the two RC elements in the input circuit of the pump circuit A and B cause a delay in the switching times, as can be seen from the drawing, delayed at switching point a by the rising edge of ALA and at switching point b by the falling edge of ALU.
  • This delay leads to switching time tolerances SZT for the signals ALA and ALU. If the time offset between the alarm signal ALA and the alarm suppression signal ALU is greater than the tolerance limit SZT plus the drop-out delay time of the alarm relay K, the relay drops out.
  • FIG. 4 shows the negative holding voltage U c , which drops relatively quickly with a correspondingly delayed increase with the rising edge of ALA, that is to say with a small time constant.
  • the capacitor C4 is discharged, the time constant is formed by the resistance value of the relay winding and C4.
  • the unloading process must be greater than or equal to the duration of the test.
  • the capacitor C3 is also charged with a short time constant in this process.
  • the time constant depends on the resistance of resistor R8 and capacitor C3 and must be less than the test duration.
  • the test duration PD that is to say with the rising edge of the alarm signal ALA
  • the voltage at the relay drops slowly, ie with a large time constant, up to the relay holding voltage.
  • the capacitor C3 is discharged.
  • the time constant is determined by the relay winding and the capacitor C3 and must be greater than or equal to the test distance PA.
  • the capacitor C4 is charged, also with a large time constant, which is dependent on the resistance value R9 and the capacitor C4.
  • the charging process must be completed in a time that is shorter than the test distance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Alarm Systems (AREA)
  • Fire Alarms (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

The arrangement is for optical signal systems with a test system (PRS) which simulates faults by appropriately influencing (BE) the monitoring unit (UWE). An alarm (ALA) thereby triggered is suppressed during the period of the test. The circuit arrangement consists of a fail-safe exclusive OR circuit (EXOR) which has a locking (Kl) alarm relay (K) and two pump circuits (A and B) each with an associated capacitor (C3, C4), and an RC element (RI, Cl and R14, C2) fitted in the input circuit and switching transistors (Tl to T6). The pump circuits (A, B) generate the excitation voltage for the alarm relay (K). The first pump circuit (A) receives the alarm signal (ALA) and the second pump circuit (B) receives the alarm suppression signal (ALU). In each case, one pump circuit (A or B) charges its capacitor (C3 or C4) whilst the other pump circuit (B or A) discharges its capacitor (C4 or C3) via the alarm relay (K), the alarm relay (K) dropping out when the negative capacitor voltage goes below the drop-out voltage. <IMAGE>

Description

Schaltungsanordnung zur automatischen Funktionsüberprüfung einer Überwachungseinrichtung.Circuit arrangement for the automatic function check of a monitoring device.

Die Erfindung bezieht sich auf eine Schaltungsanordnung zur automatischen Funktionsüberprüfung einer Überwachungseinrichtung für Lichtsignalanlagen, wobei von einem Prüfsystem Fehler durch gezielte Beeinflussung der Überwachungseinrichtung simuliert und ein dadurch hervorgerufener Alarm während der Prüfungszeit unterdrückt wird.The invention relates to a circuit arrangement for automatically checking the function of a monitoring device for light signal systems, errors being simulated by a test system by deliberately influencing the monitoring device and an alarm caused thereby being suppressed during the test time.

Überwachungseinrichtungen für Lichtsignalanlagen sind bekannt. Beispielsweise ist in DE-A-3 428 444 eine Überwachungseinrichtung für eine Verkehrssignalanlage beschrieben, bei der die jeweiligen Signalisierungszustände auf ihre Zulässigkeit überprüft werden.Monitoring devices for light signal systems are known. For example, DE-A-3 428 444 describes a monitoring device for a traffic signal system in which the respective signaling states are checked for their admissibility.

Es wurde bereits vorgeschlagen (deutsche Patentanmeldung P 36 21 305.5), derartige Überwachungseinrichtungen auf konfliktfreie Signalisierung und Fehlersicherheit der Schaltkreise in regelmäßigen Zeitabständen derart zu beeinflussen, daß ein Fehler kurzzeitig simuliert wird, der einen Alarm hervorruft, welcher jedoch während der Dauer der Überprüfung unterdrückt wird.It has already been proposed (German patent application P 36 21 305.5) to influence such monitoring devices on conflict-free signaling and error safety of the circuits at regular intervals in such a way that an error is briefly simulated, which causes an alarm, but which is suppressed during the duration of the check .

Aufgabe der Erfindung ist es, für eine solche Überprüfung eine Schaltungsanordnung zur automatischen und fehlersicheren Durchführung anzugeben.The object of the invention is to provide a circuit arrangement for automatic and fail-safe implementation for such a check.

Diese Aufgabe wird bei einer obengenannten Überwachungseinrichtung dadurch gelöst, daß die Schaltungsanordnung von einer fehlersicheren Exclusiv-Oder-Schaltung gebildet ist, die ein selbsthaltendes Alarmrelais und zwei Pumpschaltungen mit jeweils einem zugehörigen Kondensator, einem im Eingangskreis angeordnetem RC-Glied und Schalttransistoren aufweist, daß die Pumpschaltungen die Erregerspannung für das Alarmrelais erzeugen, daß die erste Pumpschaltung vom Alarmsignal und die zweite Pumpschaltung vom Alarmunterdrückungssignal beaufschlagt sind, und daß jeweils eine Pumpschaltung ihren Kondensator auflädt, während die andere Pumpschaltung ihren Kondensator über das Alarmrelais entlädt, wobei das Alarmrelais abfällt, wenn die Abfallspannung das Alarmrelais unterschreitet.This object is achieved in a monitoring device mentioned above in that the circuit arrangement is formed by a fail-safe exclusive-OR circuit which has a self-holding alarm relay and two pump circuits, each with an associated capacitor, an RC element arranged in the input circuit, and switching transistors that the Pump circuits generate the excitation voltage for the alarm relay, that the first pump circuit is energized by the alarm signal and the second pump circuit by the alarm suppression signal, and that one pump circuit in each case charges its capacitor, while the other pump circuit discharges its capacitor via the alarm relay, the alarm relay dropping when the drop voltage falls below the alarm relay.

Mit der erfindungsgemäßen Schaltungsanordnung wird sichergestellt, daß eine automatische Prüfung der Überwachungseinrichtung nach der sicheren Seite hin möglich ist, denn die fehlersichere Exclusiv-Oder-Schaltung stellt nach dem Ende der Beeinflussung den Alarmweg wieder her, wobei jedoch während der Beeinflussung das Ausbleiben des durch die Fehlersimulation ausgelösten Alarms das Alarmrelais abfallen läßt, so daß ein Alarm angezeigt wird. Dabei fällt das Alarmrelais ab, wenn die negative Kondensatorspannung die Abfallspannung unterschreitet.With the circuit arrangement according to the invention it is ensured that an automatic test of the monitoring device is possible on the safe side, because the fail-safe exclusive-OR circuit restores the alarm path after the end of the influencing, but during the influencing the absence of the by Failure simulation triggered alarms let the alarm relay drop out so that an alarm is displayed. The alarm relay drops out when the negative capacitor voltage falls below the drop voltage.

In einer vorteilhaften Weiterbildung der Erfindung erfolgt die automatische Überprüfung in bestimmten Zeitabständen und innerhalb einer bestimmten Zeitspanne, wobei die erfindungsgemäße Exclusiv-Oder-Schaltung den minimalen und maximalen Abstand, in dem die Beeinflussung, d.h. die Prüfung, also der Prüfungsabstand, erfolgen muß und ferner die minimale und maximale Zeitdauer der Prüfung. Dabei wird in der Zeitdauer für die Prüfung der Kondensator der ersten Pumpschaltung mit einer kurzen Zeitkonstanteng geladen und der zweite Kondensator der zweiten Pumpschaltung mit einer kurzen Zeitkonstanten entladen. Des weiteren wird in der Zeit zwischen zwei Prüfungen, also im Zeitabstand von Beeinflussung zu Beeinflussung, der Kondensator der ersten Pumpschaltung mit einer großen Zeitkonstante entladen und der Kondensator der zweiten Pumpschaltung mit einer großen Zeitkonstanten geladen. Hierbei wird die Zeit für die Prüfungsdauer vom Wert eines Widerstandes im Ladekreis des Kondensators der 1. Pumpschaltung und deren Wert sowie vom Widerstandswert der Relaiswicklung des Alarmrelais und dem Wert des Kondensators der 2. Pumpschaltung bestimmt. Die relativ große Zeitkonstante für die Zeit für den Prüfabstand wird dabei vom Widerstandswert der Relaiswicklung des Alarmrelais K und dem Wert des Kondensators der 1. Pumpschaltung sowie dem Widerstandswert eines weiteren Widerstandes im Ladekreis des Kondensators der 2. Pumpschaltung bestimmt. Mit Ausnahme kleiner Schaltzeittoleranzen überwacht die erfindungsgemäße Exclusiv-Oder-Schaltung diese Zeitabstände selbst, so daß der Prüfabstand und die Prüfdauer nicht über- oder unterschreitbar ist.In an advantageous development of the invention, the automatic check takes place at certain time intervals and within a certain time span, the exclusive-or circuit according to the invention being the minimum and maximum distance at which the influencing, that is to say the test, that is to say the test distance, must take place and also the minimum and maximum duration of the test. The capacitor of the first pump circuit is charged with a short time constant and the second capacitor of the second pump circuit is discharged with a short time constant during the time period for the test. Furthermore, in the time between two tests, that is to say in the time interval from influencing to influencing, the capacitor of the first pump circuit is discharged with a large time constant and the capacitor of the second pump circuit is charged with a large time constant. The time for the test duration is determined by the value of a resistance in the charging circuit of the capacitor of the 1st pump circuit and its value, as well as by the resistance value of the relay winding of the alarm relay and the value of the capacitor of the 2nd pump circuit. The relatively large time constant for the time for the test distance becomes determined by the resistance value of the relay winding of the alarm relay K and the value of the capacitor of the 1st pump circuit and the resistance value of another resistor in the charging circuit of the capacitor of the 2nd pump circuit. With the exception of small switching time tolerances, the exclusive-or circuit according to the invention monitors these time intervals itself, so that the test distance and the test duration cannot be exceeded or undershot.

Zur Gewährleistung bestimmter Schaltzeittoleranzen weist die erfindungsgemäße Exclusiv-Oder-Schaltung im jeweiligen Eingangsschaltkreis ein RC-Glied auf, wobei das RC-Glied der ersten Pumpschaltung den Schaltzeitpunkt der ersten Pumpschaltung und das zweite RC-Glied der zweiten Pumpschaltung den Schaltzeitpunkt der zweiten Pumpschaltung verschiebt.To ensure certain switching time tolerances, the exclusive-or circuit according to the invention has an RC element in the respective input circuit, the RC element of the first pump circuit shifting the switching time of the first pump circuit and the second RC element of the second pump circuit shifting the switching time of the second pump circuit.

Weitere Vorteile ergeben sich aus den weiteren Unteransprüchen und aus der Erläuterung der Erfindung anhand eines Ausführungsbeispiels. Dabei zeigen

  • Fig. 1 schematisch eine Blockschaltung für eine bekannte manuelle Prüfung,
  • Fig. 2 schematisch ein Blockschaltbild mit der erfindungsgemäßen Exclusiv-Oder-Schaltung für eine automatische Überprüfung,
  • Fig. 3 ein Schaltbeispiel der erfindungsgemäßen Exclusiv-Oder-Schaltung und
  • Fig. 4 ein dazu entsprechendes Zeitdiagramm.
Further advantages result from the further subclaims and from the explanation of the invention using an exemplary embodiment. Show
  • 1 schematically shows a block circuit for a known manual test,
  • 2 schematically shows a block diagram with the exclusive-OR circuit according to the invention for an automatic check,
  • Fig. 3 is a circuit example of the exclusive-OR circuit according to the invention and
  • 4 shows a corresponding time diagram.

In Fig. 1 ist eine Überwachungseinrichtung UWE angedeutet, in die über die Eingänge E die verschiedenen Signalisierungszustände einer Lichtsignalanlage gelangen. Mit Hilfe eines manuell betätigbaren Prüftasters PRT wird die Überwachungseinrichtung in bestimmter Weise beeinflußt, was mit dem Bezugszeichen BE und dem entsprechenden Pfeil angedeutet ist.A monitoring device UWE is indicated in FIG. 1, into which the various signaling states of a light signal system arrive via the inputs E. With the help of a manually operated test button PRT, the monitoring device is influenced in a certain way, which is indicated by the reference symbol BE and the corresponding arrow.

Die Überwachungseinrichtung UWE gibt einen Alarm ALA aus, der über einen nicht mehr dargestellten Alarmkontakt zu einem Meldeglied MG gelangen würde, wenn nicht mit einem eigens dafür vorgesehenen Schalter S der Alarm unterdrückt wird.The monitoring device UWE issues an alarm ALA which would reach a signaling element MG via an alarm contact, which is no longer shown, if the alarm is not suppressed by a switch S provided for this purpose.

Das in Fig.2 dargestellte Blockschaltbild ist dem der Fig.1 ähnlich. Die Überwachungseinrichtung UWE ist mit den Signalisierungszuständen über die Eingänge E beaufschlagt. Von einem Prüfsystem PRS, das beispielsweise von einem Mikroprozessor realisiert werden kann, wird die Überwachungseinrichtung UWE gezielt beeinflußt, was mit dem Pfeil BE dargestellt ist. Während des Prüfvorgangs (Beeinflussung BE) wird ein Alarmunterdrückungssignal ALU an die erfindungsgemäße Exclusiv-Oder-Schaltung EXOR gegeben, die an einem weiteren Eingang mit dem Alarmsignal ALA beaufschlagt wird. Unter anderem weist die Exclusiv-Oder-Schaltung EXOR einen Alarmkontakt AK auf, der hier in der Fig.2 mit K2 bezeichnet ist und der einen Alarm zu einem hier nicht dargestelltem Meldeglied MG gibt. Ferner ist an die fehlersichere Exclusiv-Oder-Schaltung eine Wiedereinschalttaste WET angeschlossen, die mit S1 bezeichnet ist.The block diagram shown in Figure 2 is similar to that of Figure 1. The monitoring device UWE is supplied with the signaling states via the inputs E. The monitoring device UWE is specifically influenced by a test system PRS, which can be implemented, for example, by a microprocessor, which is shown by the arrow BE. During the test process (influencing BE), an alarm suppression signal ALU is given to the exclusive-OR circuit EXOR according to the invention, to which the alarm signal ALA is applied at a further input. Among other things, the exclusive-OR circuit EXOR has an alarm contact AK, which is designated here in FIG. 2 by K2 and which gives an alarm to a signaling element MG, not shown here. Furthermore, a restart button WET, which is designated S1, is connected to the fail-safe exclusive-OR circuit.

Die erfindungsgemäße Exclusiv-Oder-Schaltung ist als ein mögliches Ausführungsbeispiel in Fig.3 dargestellt und weist zwei Pumpschaltungen A und B auf. Neben den Spannungsversorgungsanschlüssen weist die Pumpschaltung einen Eingang auf, an den das Alarmsignal ALA gelangt. Die Pumpschaltung B weist einen Eingang auf, an dem das Alarmunterdrückungssignal ALU gelangt. Die Pumpschaltung A weist im Eingangskreis ein erstes RC-Glied auf, das von dem Widerstand R1 und dem Kondensator C1 gebildet ist, die Pumpschaltung B weist im Eingangskreis ein zweites RC-Glied auf, das vom Widerstand R14 und dem Kondensator C2 gebildet ist. Beide Pumpschaltungen A und B sind mit ihren jeweiligen Pumpkondensatoren C3 und C4 an dem Alarmrelais K angeschlossen, das einen Selbsthaltekontakt K1 und einen Alarmkontakt AK mit K2 bezeichnet aufweist, der im Normalfall geschlossen ist und nur im Alarmfall öffnet, so daß ein Alarm über die Anschlußpunkte L und M zu einem Meldeglied MG gelangt. Im Ladekreis der Pumpschaltung A ist der Widerstand R8 und der Schalttransistor T3 angeordnet. Im Ladekreis der Pumpschaltung B ist der Widerstand R9 angeordnet. Ferner ist hier in sehr einfacher Weise die Wiedereinschalttaste llt, die mit S1 bezeichnet ist und eben im einfachsten Fall parallel zum Selbsthaltekontakt K1 angeordnet ist.The exclusive-OR circuit according to the invention is shown as a possible exemplary embodiment in FIG. 3 and has two pump circuits A and B. In addition to the voltage supply connections, the pump circuit has an input to which the alarm signal ALA arrives. The pump circuit B has an input at which the alarm suppression signal ALU arrives. Pump circuit A has a first RC element in the input circuit, which is formed by resistor R1 and capacitor C1, pump circuit B has a second RC element in the input circuit, which is formed by resistor R14 and capacitor C2. Both pump circuits A and B are connected with their respective pump capacitors C3 and C4 to the alarm relay K, which has a latching contact K1 and an alarm contact AK with K2, which is normally closed and only opens in the event of an alarm, so that an alarm via the connection points L and M come to a message element MG. The resistance is in the charging circuit of pump circuit A. R8 and the switching transistor T3 arranged. The resistor R9 is arranged in the charging circuit of the pump circuit B. Furthermore, the restart button llt, which is denoted by S1 and, in the simplest case, is arranged parallel to the latching contact K1 in a very simple manner.

Findet nun aus irgendeinem Grunde die Überprüfung nicht oder zeitlich fehlerhaft statt, so wird ein Alarm ausgelöst, d.h. der Alarmkontakt K1 öffnet. Löst die in Fig.3 nicht gezeigte Überwachungseinrichtung UWE (gemäß Fig.2) von sich aus einen Alarm aus, so wird der Alarm sofort oder nach Beendigung einer gerade laufenden Prüfung durchgeschaltet. Nach einer Alarmgabe muß zur Wiedereinschaltung die Taste S1 betätigt werden. Dieser Vorgang kann auch mittels eines Relaiskontakts automatisiert werden, was hier weiter nicht dargestellt ist. Die fehlersichere Exclusiv-Oder-Schaltung hält bei Alarm und Alarmunterdrückung oder bei keinem Alarm und keiner Alarmunterdrückung den Alarmkontakt geschlossen.If for some reason the check does not take place or is incorrect in time, an alarm is triggered, i.e. the alarm contact K1 opens. If the monitoring device UWE, not shown in FIG. 3 (according to FIG. 2) triggers an alarm by itself, the alarm is switched through immediately or after the end of a test that is currently running. After an alarm is given, the S1 button must be pressed to restart. This process can also be automated by means of a relay contact, which is not shown here. The fail-safe exclusive-or circuit keeps the alarm contact closed in the event of an alarm and alarm suppression or no alarm and no alarm suppression.

Bauteilefehler, seien es die Kondensatoren des RC-Gliedes oder die Kondensatoren C3,C4, oder eine erhöhte +5V-Versorgungsspannung, führen zu einem Alarm oder zu einer erhöhten Ansprechempfindlichkeit.Component errors, be it the capacitors of the RC element or the capacitors C3, C4, or an increased + 5V supply voltage, lead to an alarm or to an increased sensitivity.

Die Schaltung spricht auch an, wenn ein Kurzschluß oder eine Unterbrechung an den Halbleiterschlüssen oder Kondensatoren auftritt. Ebenso führt eine Unterbrechung der Widerstands- und Verbindungsleitungen sowie eine Erhöhung der Werte von Widerständen zum Ansprechen der Schaltung oder zu einer erhöhten Ansprechempfindlichkeit. Die oben schon erwähnten Zeitkonstanten der Pumpschaltung A und B sind der Prüfdauer PD (Pumpschaltung B) und dem Prüfabstand PA (Pumpschaltung A) angepaßt.The circuit also responds when there is a short or an open at the semiconductor circuits or capacitors. Likewise, an interruption in the resistance and connecting lines and an increase in the values of resistors lead to the circuit responding or to an increased sensitivity. The time constants of pump circuit A and B already mentioned above are adapted to test duration PD (pump circuit B) and test interval PA (pump circuit A).

Die beiden Pumpschaltungen A und B erzeugen die zum Erregen des Alarmrelais erforderliche negative Spannung Uc. Jeweils eine Pumpschaltung lädt ihren Kondensator positiv auf, während die andere Pumpschaltung ihren Kondensator über das Relais K entlädt. Das Relais fällt ab, wenn die Abfallspannung erreicht wird. Dies ist der Fall, wenn eine Pumpschaltung ihren Kondensator nicht über K lädt oder ein Kondensator bis unter die Abfallspannung entladen wird. Dabei kann für den Prüfabstand (PA) eine Dauer von einigen Sekunden, z.B. zwei Sekunden, und für die Prüfdauer (PD) ca. ein Zehntel dieser Zeit vorgesehen sein. Die im Eingangsschaltkreis befindlichen RC-Glieder verzögern den Schaltzeitpunkt an den Punkten a am Kondensator C3 und am Punkt b am Kondensator C4. Dadurch ergibt sich für den Wechsel der stromliefernden Pumpkondensatoren eine Schaltzeit-Toleranz (SZT) bis zu deren Grenze die Spannung (Haltespannung Uc) am Alarmrelais K nicht unterbrochen wird. Dies wird anhand der Fig.4 noch erläutert. Da die beiden Kondensatoren C1 und C2 im jeweiligen Eingangskreis bei höheren Frequenzen auch noch eine Filterfunktion erfüllen, wird verhindert, daß bei fehlerhaftem Schaltspiel im 100-Hz-Bereich (entsprechend der Abfallszeit des Relais K) noch eine ausreichende Haltespannung am Alarmrelais K anliegt.The two pump circuits A and B generate the negative voltage Uc required to excite the alarm relay. One pump circuit charges its capacitor positively, while the other pump circuit discharges its capacitor via the relay K. The relay drops out when the drop voltage reaches becomes. This is the case when a pump circuit does not charge its capacitor above K or a capacitor is discharged below the drop voltage. A duration of a few seconds, for example two seconds, can be provided for the test interval (PA) and approximately a tenth of this time for the test duration (PD). The RC elements in the input circuit delay the switching time at points a on capacitor C3 and at point b on capacitor C4. This results in a switching time tolerance (SZT) for the change of the current-supplying pump capacitors up to the limit of which the voltage (holding voltage U c ) at the alarm relay K is not interrupted. This will be explained with reference to FIG. 4. Since the two capacitors C1 and C2 in the respective input circuit also perform a filter function at higher frequencies, it is prevented that a sufficient holding voltage is still present at the alarm relay K in the 100 Hz range if the switching cycle is faulty (corresponding to the decay time of the relay K).

In Fig.4 sind mehrere Zeitdiagramme dargestellt. Im ersten Diagramm ist der Spannungswert U des Alarmsignals ALA dargestellt, das während der Prüfungsdauer PD, die relativ kurz ist, beispielsweise 0,2 Sekunden positiv, dann folgt der Prüfabstand PA von beispielsweise zwei Sekunden ohne Alarmsignal und dann kommt wieder das Alarmsignal ALA. Darunter ist entsprechend das Alarmunterdrückungssignal ALU invertiert dargestellt, d.h. während der Prüfdauer PD ist das Signal negativ, während des Prüfabstandes PA ist es positiv. Entsprechend darunter sind für die Schaltungspunkte a am Kondensator C3 und der Schaltungspunkt b am Kondensator C4 die Spannungswerte gezeigt. Wie schon erwähnt, verursachen die beiden RC-Glieder im Eingangskreis der Pumpschaltung A und B eine Verzögerung der Schaltzeitpunkte, wie aus der Zeichnung ersichtlich, am Schaltungspunkt a verzögert durch die Anstiegsflanke von ALA und am Schaltungspunkt b verzögert durch die Abstiegsflanke von ALU. Diese Verzögerung führt zu Schaltzeittoleranzen SZT für die Signale ALA und ALU. Wird der Zeitversatz zwischen dem Alarmsignal ALA und dem Alarmunterdrückungssignal ALU größer als die Toleranzgrenze SZT
plus die Abfallverzögerungszeit des Alarmrelais K, so fällt das Relais ab. Unter diesen Diagrammen ist in Fig.4 noch ein weiteres Diagramm dargestellt, das die negative Haltespannung Uc zeigt, die entsprechend verzögert mit der Anstiegsflanke von ALA verhältnismäßig schnell, also mit einer kleinen Zeitkonstante, abfällt. Dabei wird der Kondensator C4 entladen, die Zeitkonstante ist vom Widerstandswert der Relaiswicklung und C4 gebildet. Der Entladevorgang muß größer oder gleich der Prüfungsdauer sein. Ferner wird bei diesem Vorgang der Kondensator C3 ebenfalls mit einer kurzen Zeitkonstante geladen. Die Zeitkonstante ist vom Widerstandswert des Widerstandes R8 und dem Kondensator C3 abhängig und muß kleiner als die Prüfungsdauer sein. Nach der Prüfungsdauer PD, also mit der Abstiegsflanke des Alarmsignals ALA fällt die Spannung am Relais langsam, d.h. mit einer großen Zeitkonstante bis zur Relais-Haltespannung ab. Dabei wird der Kondensator C3 entladen. Die Zeitkonstante ist von der Relaiswicklung und dem Kondensator C3 bestimmt und muß größer oder gleich dem Prüfabstand PA sein. Gleichzeitig wird der Kondensator C4 geladen, ebenfalls mit einer großen Zeitkonstante, die vom Widerstandswert R9 und dem Kondensator C4 abhängig ist. Der Ladevorgang muß in einer Zeit beendet sein, die kleiner als der Prüfabstand ist.
Several timing diagrams are shown in FIG. The first diagram shows the voltage value U of the alarm signal ALA, which is positive during the test duration PD, which is relatively short, for example 0.2 seconds, then the test distance PA follows, for example, two seconds without an alarm signal and then the alarm signal ALA comes again. Below this, the alarm suppression signal ALU is shown inverted, ie during the test period PD the signal is negative, during the test distance PA it is positive. Correspondingly below this, the voltage values are shown for the switching points a on the capacitor C3 and the switching point b on the capacitor C4. As already mentioned, the two RC elements in the input circuit of the pump circuit A and B cause a delay in the switching times, as can be seen from the drawing, delayed at switching point a by the rising edge of ALA and at switching point b by the falling edge of ALU. This delay leads to switching time tolerances SZT for the signals ALA and ALU. If the time offset between the alarm signal ALA and the alarm suppression signal ALU is greater than the tolerance limit SZT
plus the drop-out delay time of the alarm relay K, the relay drops out. A further diagram is shown below these diagrams in FIG. 4, which shows the negative holding voltage U c , which drops relatively quickly with a correspondingly delayed increase with the rising edge of ALA, that is to say with a small time constant. The capacitor C4 is discharged, the time constant is formed by the resistance value of the relay winding and C4. The unloading process must be greater than or equal to the duration of the test. Furthermore, the capacitor C3 is also charged with a short time constant in this process. The time constant depends on the resistance of resistor R8 and capacitor C3 and must be less than the test duration. After the test duration PD, that is to say with the rising edge of the alarm signal ALA, the voltage at the relay drops slowly, ie with a large time constant, up to the relay holding voltage. The capacitor C3 is discharged. The time constant is determined by the relay winding and the capacitor C3 and must be greater than or equal to the test distance PA. At the same time, the capacitor C4 is charged, also with a large time constant, which is dependent on the resistance value R9 and the capacitor C4. The charging process must be completed in a time that is shorter than the test distance.

Mit der erfindungsgemäßen Schaltungsanordnung ist es möglich, sowohl den Alarmweg zu unterbrechen und ihn sicher wiederherzustellen als auch den Prüfabstand und die Prüfdauer auf minimalen und maximalen Abstand hin zu überwachen. Wie schon erwähnt, führen auch bestimmte Versorgungsspannungsfehler und Bauteilefehler zu einem sicheren Abfall des Relais oder zu einer erhöhten Ansprechempfindlichkeit. Wird in diesem Schaltbeispiel beispielsweise die Versorgungsspannung von +5 Volt größer, so wird die Schaltschwelle vom Transistor T1 bzw. Transistor T6 nicht mehr erreicht und K1 öffnet. Ist beispielsweise die Diode D1 unterbrochen, so kann C3 nicht mehr geladen werden und das Alarmrelais K fällt ab, wenn C3 entladen ist oder C4 wieder lädt. Ein weiteres Beispiel für einen Bauteilefehler wird angenommen, wenn z.B. die Diode D2 nicht sperrt. Dann fällt ebenfalls das Relais K sofort ab. Diese Fehlerbetrachtung kann für alle Bauteile der Schaltung vorgenommen werden und führt jeweils zu dem Ergebnis, daß das Alarmrelais K abfällt oder die Ansprechempfindlichkeit erhöht wird. Das Relais K muß für Sicherheitsanwendungen geeignet sein, z.B. Doppelanker-Relais.With the circuit arrangement according to the invention, it is possible both to interrupt the alarm path and restore it safely and to monitor the test distance and the test duration for minimum and maximum distance. As already mentioned, certain supply voltage errors and component errors also lead to a safe drop in the relay or to an increased sensitivity. If, for example, the supply voltage of +5 volts increases in this switching example, the switching threshold of transistor T1 or transistor T6 is no longer reached and K1 opens. If, for example, the diode D1 is interrupted, C3 can no longer be charged and the alarm relay K drops out when C3 is discharged or C4 is charging again. Another example of a component fault is assumed if, for example, diode D2 does not block. Then the relay K also drops out immediately. This error analysis can be carried out for all components of the circuit and leads to the result that the alarm relay K drops out or the response sensitivity is increased. Relay K must be suitable for safety applications, eg double armature relays.

Claims (5)

  1. Circuit arrangement for the automatic function-checking of a monitoring device (UWE) for traffic light installations, faults being simulated by a test system (PRS) by the selective influencing (BE) of the monitoring device (UWE) and an alarm (ALA) brought about thereby being suppressed during the test time, characterised in that the circuit arrangement is formed by a fail-safe exclusive - OR circuit (EXOR) which has a latching (K1) alarm relay (K) and two pumping circuits (A and B) each with an associated capacitor (C3,C4), an RC element (R1,C1 and R14,C2) arranged in the input circuit and switching transistors (T1 to T6), in that the pumping circuits (A,B) generate the exciter voltage for the alarm relay (K), in that the first pumping circuit (A) is supplied with the alarm signal (ALA) and the second pumping circuit (B) with the alarm suppression signal (ALU), and in that in each case a pumping circuit (A or B) charges its capacitor (C3 or C4) whilst the other pumping circuit (B or A) discharges its capacitor (C4 or C3) via the alarm relay (K), the alarm relay (K) dropping out when the drop-out voltage of the alarm relay K is undershot.
  2. Circuit arrangement according to Claim 1, characterised in that the automatic testing takes place at specific time intervals (test interval PA) and within a specific time period (test duration PD), in that in the period for the test duration (PD) the capacitor (C) of the first pumping circuit (A) is charged and the capacitor (C4) of the second pumping circuit (B) is discharged, in that in the time interval (test interval) (PA) the capacitor (C3) of the first pumping circuit (A) is discharged and the capacitor (C4) of the second pumping circuit (B) is charged, in that the time of the test duration (PD) is determined by a resistor (R8) in the charging circuit of the first capacitor (C3) of the first pumping circuit (A) and the value of this capacitor (C3) as well as the resistance value of the relay winding of the alarm relay (K) and the value of the capacitor (C4) of the second pumping circuit (B), in that the time for the test interval (PA) is determined by the resistance value of the relay winding of the alarm relay (K) and the value of the capacitor (C3) of the first pumping circuit (A) as well as of a further resistor (R9) in the charge circuit of the capacitor (C4) of the second pumping circuit (B) and the value of this capacitor (C4), and in that the test interval (PA) and the test duration (PD) cannot be overshot or undershot, with the exception of small switching time tolerances (SZT).
  3. Circuit arrangement according to Claim 1 or 2, characterised in that the RC element (R1,C1) of the first pumping circuit (A) delays the switching time point at the associated capacitor (C3) (at the switching point a), and in that the RC element (R14,C2) of the second pumping circuit (B) delays the switching time point at the associated capacitor (C4) (at the switching point b) in order to ensure a specific switching time tolerance (SZT) for the latching voltage (Uc) of the alarm relay (K).
  4. Circuit arrangement according to one of the preceding claims, characterised in that the exclusive - OR circuit (EXOR) switches through a genuine alarm after the end of the test.
  5. Circuit arrangement according to one of the preceding claims, characterised in that the alarm relay (K) is assigned a resetting button (S1) which is formed by an automatically switchable relay contact.
EP88106147A 1987-04-21 1988-04-18 Circuit arrangement for the automatic function-checking of a monitoring device Expired - Lifetime EP0287991B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88106147T ATE67621T1 (en) 1987-04-21 1988-04-18 CIRCUIT ARRANGEMENT FOR AUTOMATIC FUNCTIONAL TESTING OF A MONITORING DEVICE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3713392 1987-04-21
DE3713392 1987-04-21

Publications (2)

Publication Number Publication Date
EP0287991A1 EP0287991A1 (en) 1988-10-26
EP0287991B1 true EP0287991B1 (en) 1991-09-18

Family

ID=6326014

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88106147A Expired - Lifetime EP0287991B1 (en) 1987-04-21 1988-04-18 Circuit arrangement for the automatic function-checking of a monitoring device

Country Status (3)

Country Link
EP (1) EP0287991B1 (en)
AT (1) ATE67621T1 (en)
DE (1) DE3864884D1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3978476A (en) * 1973-12-17 1976-08-31 Hochiki Corporation Circuit conduction test arrangement for emergency alarm systems
DE2833761C3 (en) * 1978-08-01 1981-12-03 Siemens AG, 1000 Berlin und 8000 München Circuit arrangement for monitoring the status of signal systems, in particular road traffic light signal systems
GB2054923B (en) * 1979-06-30 1983-04-13 Mather & Platt Alarms Ltd Self-testing alarm systems
US4586041A (en) * 1983-12-29 1986-04-29 Carlson Donald A Portable conflict monitor testing apparatus
EP0214692B1 (en) * 1985-09-05 1991-12-04 Koninklijke Philips Electronics N.V. Monitoring a conflict detector for traffic-lights

Also Published As

Publication number Publication date
ATE67621T1 (en) 1991-10-15
EP0287991A1 (en) 1988-10-26
DE3864884D1 (en) 1991-10-24

Similar Documents

Publication Publication Date Title
DE2604148C2 (en) Monitoring device for an electronic system for storing errors for later analysis
EP0042501B1 (en) Device for the transmission of measured values in a fire warning system
DE3120986A1 (en) METHOD AND ARRANGEMENT FOR REVISION IN A DANGER, IN PARTICULAR FIRE DETECTING SYSTEM
DE2935335C2 (en) DC alarm system
DE2701614A1 (en) DISPLAY SYSTEM
WO1982001801A1 (en) Circuit for signaling defaults at a current consumer connected through an electronic coupling device
EP0287991B1 (en) Circuit arrangement for the automatic function-checking of a monitoring device
DE4232720C1 (en) Function self-monitoring and measurement signal processor for vibration-fill-state limit switches - has parallel-working microprocessors each associated with pair of safety relays, which are switched-over for each self-test while maintaining connection state with external relay
DE2142222B2 (en) Flame monitoring device
DE3637681A1 (en) Alarm signalling system according to the pulse signalling system
DE4403156B4 (en) Method and device for carrying out the method for controlling a consumer
DE4434616C2 (en) Procedure for checking the reports of vehicle units
DE2165025A1 (en) Device for sequence monitoring of redundant control signals
EP0254125A1 (en) Danger signalling system
DE1167229B (en) Room protection system with measuring electrodes included in a bridge circuit and periodic checking of the system
DE3346527A1 (en) METHOD AND ARRANGEMENT FOR THE FAULT-SAFE ALARM EVALUATION OF A DETECTING LINE OF A DANGER DETECTING SYSTEM
EP0503122B1 (en) Arrangement for commuting primary leads during faults
DE3313712A1 (en) CIRCUIT FOR ERROR MESSAGE FOR A POWER CONSUMER SWITCHED BY A CONTROLLABLE SWITCHING DEVICE
DE3513849A1 (en) Method for monitoring the insulation resistances of a group of modules of an electrical installation with a common earth-free power supply, in particular a telecommunications or signalling device
DE1271778B (en) Electronic circuit arrangement for the detection of malfunctions in amplifiers and switching arrangement on equivalent replacement devices
EP0128357B1 (en) apparatus for the remotely controlled inspection of a primary line in danger warning systems or in transmitting systems for danger warnings
DE2203706C3 (en) Circuit arrangement for monitoring a data acquisition device for analog data
DE708568C (en) Device for securing overpasses
DE2118304C (en) Fire alarm system
DE1537898C (en) Test device for a coupling arrangement comprising several coupling stages

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19890417

17Q First examination report despatched

Effective date: 19910218

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 67621

Country of ref document: AT

Date of ref document: 19911015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3864884

Country of ref document: DE

Date of ref document: 19911024

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960422

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970321

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980418

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980418

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20010314

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010412

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010620

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010709

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021101

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021101

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20021101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050418