EP0261450B1 - Guiding system for individual traffic - Google Patents

Guiding system for individual traffic Download PDF

Info

Publication number
EP0261450B1
EP0261450B1 EP87112682A EP87112682A EP0261450B1 EP 0261450 B1 EP0261450 B1 EP 0261450B1 EP 87112682 A EP87112682 A EP 87112682A EP 87112682 A EP87112682 A EP 87112682A EP 0261450 B1 EP0261450 B1 EP 0261450B1
Authority
EP
European Patent Office
Prior art keywords
destination
target
guide
areas
beacon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87112682A
Other languages
German (de)
French (fr)
Other versions
EP0261450A1 (en
Inventor
Karla Oberstein
Peter Dipl.-Ing. Aicher (Fh)
Hermann Dipl. Ing. Fickenscher (Fh)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0261450A1 publication Critical patent/EP0261450A1/en
Application granted granted Critical
Publication of EP0261450B1 publication Critical patent/EP0261450B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/0969Systems involving transmission of navigation instructions to the vehicle having a display in the form of a map

Definitions

  • the invention relates to a guidance system for individual traffic in a road network with stationary beacons arranged on the roads, which transmit guidance information cyclically to all passing vehicles, which are selectable from their location, to all passing vehicles equipped with a corresponding receiver, with the guidance information in each beacon Target areas are stored in an orderly manner and are each transmitted to the vehicles with an identification of the associated target area, wherein in the individual vehicles a specific target point can be selected by inputting its coordinates into an input device, furthermore in the vehicle using a comparison device initially containing the selected target point Target area is determined and finally the guide information assigned to this target area is selected and stored from the entirety of the guide information transmitted by a guide beacon.
  • Such a system is the subject of EP-A-00 25 193.
  • the roadside devices are kept relatively simple in that the target information is not exchanged in dialog traffic between the vehicle and the road device, but rather all target information in question is sent cyclically to all passing vehicles are transmitted, wherein each vehicle selects the associated information for itself and for its specific destination from the totality of the information received.
  • This makes it possible to have the charisma to carry out the target information in a non-directional manner from the lead beacon, so that the use of complex coupling loops for dialog traffic can be dispensed with.
  • the vehicles Since the vehicles have each saved the scheme of this selection network and each time they pass a lead beacon they can match their own selection network with that of the beacon, the destination point entered in the vehicle can be easily assigned to a specific selection field (target area) and thus its guidance information. In this way, the information can be transmitted for a very large target area with a reasonable amount of data.
  • the object of the invention is to provide a system of the type mentioned, in which the assignment of target points to guidance information is made possible in such a way that the data expenditure for the identification of target areas is as low as possible, but at the same time an optimal, in terms of the actual geographical Reliability-based routing is guaranteed for each destination.
  • this object is achieved in the system of the type mentioned at the outset in that the total area comprising all the selectable target points is divided into individual target segments each formed from a convex polygon is divided, the side lines of which are oriented to geographical boundary lines and which are defined by the coordinates of their corner points, that a network of target areas is calculated individually for each guide beacon and stored in the guide beacon, with each different guide information to be followed from the beacon one or several target areas are assigned, which are formed from the target segments to be reached with the relevant guidance information, that the guidance information is transmitted to the vehicles together with the coordinates of the corner points of their associated target areas and that in the vehicles the comparison of the destination point coordinates with the corner point Coordinates of the target areas the relevant guidance information is selected.
  • the assignment of target points to common target areas is thus detached from the previous systems, which each use regular coordinate grids.
  • the present division into target segments, which can then be combined into target areas, is based solely on the geographical and traffic conditions, so that in a target segment and thus also in a target area only those target points are contained that actually use the same route and can be optimally controlled with the same control information.
  • the target segments are thus in each case identical, but largely irregular polygons, in the preferred embodiment each quadrilaterals, which are defined by the coordinates of their corner points.
  • the target segments are expediently defined in a number of hierarchy levels, so that, for example, a square target segment of a higher order is in each case formed by a plurality of square target segments of the next lower order.
  • the target segments of the lowest order are defined in size and structure so that within these target segments Traffic-dependent routing is no longer required, so that the driver can get to his destination without major detours by means of self-sufficient navigation (see EP-A-00 27 232).
  • the target area that is assigned to specific guidance information is usually formed by a single target segment of the lowest order, while in the far area, a target area is formed by a target segment of higher order, by combining several target segments of higher order, or by combining target segments of different order can be formed.
  • the target areas are designed as polygons in the same way as the target segments, for example as quadrilaterals if the target segments are quadrilaterals.
  • each target area like each target segment, is defined by square points.
  • the amount of data required to define a target area and to compare a target area with a selected target point is higher. Since, moreover, the corner points can often be assigned to several target areas, it is expedient to transfer the target areas with the numbers of their corner points and separately the coordinates of all required corner points during the transfer.
  • the target areas together with the associated guidance information are stored in the beacons from where they are transmitted to the passing vehicles. Since the routing should take place depending on the traffic, it is provided in an expedient embodiment of the system that the target areas and the associated routing information are determined in each case by a higher-level or a central routing computer for each beacon Intervals recalculated and given to the beacons.
  • the comparison of the selected target point with the transmitted target surface data in the vehicle can be carried out in different ways depending on the structure of the evaluation device in the vehicle. For example, it is possible to successively compare all of the individual target areas that have been transferred from the beacon and are temporarily stored in the vehicle with the coordinates of the target point. This is particularly necessary if there is sufficient computing time for the comparison, but there is little storage space in the vehicle device.
  • Another possibility is to additionally use a regular search grid, the data of which, together with the other information, are transmitted from the beacon to the vehicle and temporarily stored there. In this case, the assignment of the search grid meshes to the target areas contained in whole or in part in the mesh in question must also be transmitted.
  • FIG. 1 shows, in a simplified representation, the principle of the division of a target area into individual target segments or target areas according to the invention.
  • the entire target area which thus includes all target points that can be selected with the control system, is delimited by points P1, P2, P3, P4, P5, P6, P8 and P9.
  • This area is divided into several hierarchical levels in target segments, all of which are designed as (irregular) squares in the present example.
  • three target segments are provided, of which one target segment ZS1 through points P1, P2, P3 and P4, the target segment ZS2 through points P3, P7, P8, P9 and the target segment ZS3 through points P4, P5 , P6 and P7 is defined.
  • the target segment ZS1 is further divided into four smaller, square target segments, namely the target segment ZS11 with the corner points P1, P11, P14 and P10, the target segment ZS12 with the corner points P11, P2, P12 and P14 etc.
  • the division into hierarchical levels is continued as necessary until the smallest target segments are large enough that central routing is no longer necessary, i.e. the driver can find his target point in this target segment with autonomous navigation without making mistakes when he reaches the target segment in question .
  • the corner points and side lines of the individual target segments are each determined according to geographical and traffic aspects, so that natural boundaries, such as rivers without bridges in the relevant section, railway lines, mountain ranges, etc. also represent the boundary lines between the target segments.
  • the respective size of a target segment of the lowest level also depends on the geographical circumstances, since it is in the Definition of these target segments always depends on having a homogeneously accessible and accessible area in a target segment in order to be able to make a clear assignment to certain route information.
  • the guidance system is based on a vehicle's own dead reckoning device, with the aid of which the vehicle independently locates its position, and a system of guidance beacons, which are distributed over the entire target area the streets are arranged. Routing recommendations are transmitted from the guidance beacons BK into the vehicle, selected there with regard to a keyed-in destination point and displayed in the correct position during the journey. These routing recommendations preferably consist of routing vector chains as described in EP-A-00 21 060. Such a vector chain guides the vehicle from a beacon, which serves as the starting point, to a target area containing the selected target point.
  • a guide vector chain leads the vehicle from the start guide beacon to the guide beacon closest to the destination. If, for example in the example of FIG. 1, it is assumed that the vehicle is at a starting point at the guide beacon BK1 near the corner point P5 and wants to drive to a destination point ZP in the target segment ZS101 with the corner points P21, P22, P23 and P24, it is sufficient if the vehicle receives a guidance vector chain LVK1 which leads from the guidance beacon BK1 to the guidance beacon BK2.
  • the target area that can be reached with this guide vector chain LVK1 is, however, considerably larger than the target segment ZS101.
  • the target segment ZS1 with the corner points P1, P2, P3 and P9 could be assigned as the largest square target area to the guide vector chain LVK1 in the guide beacon BK1; because the way to all possible target points in the target segment ZS1 leads from the beacon BK1 via the guide vector chain LVK1.
  • the target segment ZS2 with the corner points P9, P3, P8 and P7 can also be optimally reached from the beacon BK1 only via the leading vector chain LVK1 and the beacon BK2, then the target segment ZS2 would also be the target area of the leading vector chain LVK1 assign.
  • Target areas are therefore always those areas which can be assigned to a very specific route information, it being assumed in the above description that the target areas as well as the target segments should each be quadrilaterals. If it follows from the program structure that the target areas should not be limited to quadrilaterals, then one could also define a target area with the corner points P1, P2, P3, P7, P8 and P9 for the case described above, which in total for the beacon BK1 a common vector chain LVK1 can be reached.
  • the guide vector chain LVK2 would lead in the direction of the guide beacon BK3 for a further target area with the corner points P15, P16, P7 and P17, while a guide vector chain LVK3 would lead to the target area P5, P6, P16, P15 in the direction of the guide beacon BK4 would. It can be seen, therefore, that the target areas are inevitably kept smaller in the close range than in the far range.
  • the target segment ZS101 from FIG. 1 with the corner points P21, P22, P23 and P24 is shown enlarged in order to make the principles of the boundary clear.
  • the side line P21-P22 divides a residential area between two main roads. It determines from which of the main roads the access to any destination within this area is to take place.
  • a railway line or a motorway can form the boundary of a target segment.
  • the target segment ZS101 is now in the close range and is the target area for the last section to which the guide vector chain LVK21 leads.
  • the vehicle device determines that the target area, which now corresponds to the target segment ZS101, has been reached, and it switches to autonomous navigation, so it does not require any further routing information from outside.
  • a guidance vector chain LVK22 leads to beacon BK23 or a guidance vector chain LVK23 to beacon BK24.
  • the evaluation of the guidance information in the vehicle is shown schematically in FIG. 3 in a block diagram.
  • the master computer LR in the central office Z calculates the target areas in question and the associated guide information, i.e. guide vector chains and, if necessary, additional information for reaching the respective target points for each guide beacon BK1, BK2 ... BKn in the individual street devices STG in a target area, e.g. which exit to take at the end of the vector chain. This determination is made depending on the traffic, so that each time the traffic situation changes, the relevant beacons receive new data about target areas and guidance information.
  • the beacon, BK1 in FIG. 3 sends the entire guidance information for all selectable destinations, as they apply from the beacon BK1.
  • This information is received by the vehicle via the receiver FE, for example an infrared receiver, and fed to a buffer ZWS in the evaluation device AW.
  • This buffer store ZWS thus contains a list of all target areas ZF1, ZF2 to ZFn defined for the beacon in question, with the associated control information, for example the guide vector chains LVK1, LVK2 to LVKn.
  • the target areas ZF1 to ZFn are defined by their corner points P1 to Pm, some of the corner points being assigned to several target areas. Finally, its (absolute) coordinates are also transferred and saved for each corner point.
  • a destination was selected in the vehicle itself when starting the journey by entering the coordinates x z and y z of the destination point ZP with the input device EG.
  • These target point coordinates are stored in the target point memory ZPS and compared each time a beacon is passed with the information data that has been taken over and has now been saved.
  • the comparison device VG thus determines in which target area ZF1 to ZFn the target point ZP lies. This can be done using suitable mathematical methods, since the target areas are determined by the coordinates of their corner points. If the target area for the target point is then determined, the guide information belonging to this target area, that is to say, for example, the data of the corresponding guide vector chain LVK, is entered into the guide information memory LSP and kept ready there.
  • each guidance information is provided with a position specification (see EP-A-00 21 060), it is output via the display device AG when the position in question has been reached. This is determined by the position memory PSP, which contains the current vehicle position. When passing a beacon, the exact position with the coordinates of the beacon is also transmitted via the vehicle receiver FE and used to correct the position memory.
  • the vehicle position contained in the position memory is continuously updated with the autonomous navigation device.
  • the distance traveled is measured with a displacement encoder WG and the direction of travel with a magnetic field probe MS.
  • the respective path vector is then determined in a vector determination device VB.
  • This path vector is the ADD in the adder added to the respective old vehicle position from the position memory PSP; the resulting new vehicle position is entered into the position memory again.
  • the selected target point ZP with its coordinates is compared in the comparison device VG in the vehicle device with the stored target areas ZF1 to ZFn until a match has been found. This can either be done by processing all target areas in sequence. If the computing time is to be kept short and there is enough storage space available, it is possible to additionally divide the entire target area into a coarse-mesh search grid, as shown in Fig. 1 with the horizontal columns A, B, C, D, C and the vertical columns Columns 1, 2 and 3 is shown. In this case, the search grid is transferred from the beacon to the vehicle and stored. In addition, an assignment between each grid mesh and all or part or all of the target surfaces lying in the grid mesh is also calculated and transferred into the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Description

Die Erfindung betrifft ein Leitsystem für den Individualverkehr in einem Straßennetz mit an den Straßen angeordneten ortsfesten Leitbaken, welche Leitinformationen zur Erreichung aller von ihrem Standort aus wählbaren Zielpunkte zyklisch an alle passierenden, mit einem entsprechenden Empfänger ausgestatteten Fahrzeuge übermitteln, wobei die Leitinformationen in jeder Bake nach Zielflächen geordnet gespeichert sind und jeweils mit einer Kennzeichnung der zugehörigen Zielfläche an die Fahrzeuge übermittelt werden, wobei in den einzelnen Fahrzeugen jeweils ein bestimmter Zielpunkt durch Eingabe seiner Koordinaten in ein Eingabegerät wählbar ist, wobei ferner im Fahrzeug mittels einer Vergleichseinrichtung zunächst die den gewählten Zielpunkt enthaltende Zielfläche ermittelt wird und schließlich aus der Gesamtheit der von einer Leitbake übermittelten Leitinformationen die dieser Zielfläche zugeordnete Leitinformation ausgewählt und gespeichert wird.The invention relates to a guidance system for individual traffic in a road network with stationary beacons arranged on the roads, which transmit guidance information cyclically to all passing vehicles, which are selectable from their location, to all passing vehicles equipped with a corresponding receiver, with the guidance information in each beacon Target areas are stored in an orderly manner and are each transmitted to the vehicles with an identification of the associated target area, wherein in the individual vehicles a specific target point can be selected by inputting its coordinates into an input device, furthermore in the vehicle using a comparison device initially containing the selected target point Target area is determined and finally the guide information assigned to this target area is selected and stored from the entirety of the guide information transmitted by a guide beacon.

Ein derartiges System ist Gegenstand der EP-A-00 25 193. Bei einem solchen System werden die straßenseitigen Geräte dadurch verhältnismäßig einfach gehalten, daß die Zielinformationen nicht im Dialogverkehr zwischen Fahrzeug und Straßengerät ausgetauscht, sondern alle in Betracht kommenden Zielinformationen zyklisch an alle passierenden Fahrzeuge übermittelt werden, wobei jedes Fahrzeug für sich und für seinen speziellen Zielwunsch die zugehörige Information aus der Gesamtheit der empfangenen Informationen auswählt. Damit ist es möglich, die Ausstrahlung der Zielinformationen von der Leitbake ungerichtet vorzunehmen, so daß auf den Einsatz aufwendiger Koppelschleifen für einen Dialogverkehr verzichtet werden kann.Such a system is the subject of EP-A-00 25 193. In such a system, the roadside devices are kept relatively simple in that the target information is not exchanged in dialog traffic between the vehicle and the road device, but rather all target information in question is sent cyclically to all passing vehicles are transmitted, wherein each vehicle selects the associated information for itself and for its specific destination from the totality of the information received. This makes it possible to have the charisma to carry out the target information in a non-directional manner from the lead beacon, so that the use of complex coupling loops for dialog traffic can be dispensed with.

Bei dem erwähnten System müssen also alle in Betracht kommenden Zielinformationen in so schneller Folge hintereinander abgestrahlt werden, daß ein passierendes Fahrzeug alle diese Informationen und damit auch die speziell von ihm benötigte Zielinformation in der kurzen Zeit des Vorbeifahrens empfangen und speichern kann. Um bei einer sehr großen Anzahl von möglichen Zielpunkten alle zugehörigen Informationen in der kurzen Zeit übertragen zu können, ist es deshalb notwendig, zu Zielflächen zusammenzufassen und gemeinsam der entsprechenden Leitinformation für die Übertragung zuzuordnen. Bei dem System gemäß EP-A-00 25 193 ist für diesen Zweck ein Selektionsnetz vorgesehen, dessen Maschen mit wachsender Entfernung vom Bakenstandort exponentiell zunehmen. Da die Fahrzeuge jeweils das Schema dieses Selektionsnetzes gespeichert haben und jeweils beim Passieren einer Leitbake ihr eigenes Selektionsnetz mit dem der Bake zur Deckung bringen können, kann der im Fahrzeug eingegebene Zielpunkt ohne weiteres einem bestimmten Selektionsfeld (Zielfläche) und damit dessen Leitinformation zugeordnet werden. Auf diese Weise können die Informationen für ein sehr großes Zielgebiet mit einem vertretbaren Datenumfang übertragen werden.In the system mentioned, all the target information in question must be emitted one after the other in such rapid succession that a passing vehicle can receive and store all this information and thus also the target information specifically required by it in the short time of passing. In order to be able to transmit all associated information in a short time in the case of a very large number of possible target points, it is therefore necessary to combine them into target areas and jointly assign them to the corresponding guide information for the transmission. In the system according to EP-A-00 25 193, a selection network is provided for this purpose, the meshes of which increase exponentially with increasing distance from the beacon location. Since the vehicles have each saved the scheme of this selection network and each time they pass a lead beacon they can match their own selection network with that of the beacon, the destination point entered in the vehicle can be easily assigned to a specific selection field (target area) and thus its guidance information. In this way, the information can be transmitted for a very large target area with a reasonable amount of data.

Da aber das Straßennetz nicht immer regelmäßig verläuft und insbesondere häufig nahe beieinanderliegende Zielpunkte aufgrund geographischer Gegebenheiten auf unterschiedlichen Strecken anzufahren sind, kann es zu Schwierigkeiten kommen, wenn solche Punkte in dem regelmäßig aufgebauten Selektionsnetz in einer gemeinsamen Zielfläche liegen. Dies trifft beispielsweise für Zielpunkte auf verschiedenen Seiten eines Flusses zu, wenn im Bereich der Zielpunkte keine Brücke vorhanden ist.However, since the road network does not always run regularly and, in particular, destination points that are close to each other due to geographical conditions must be approached on different routes, difficulties can arise if such points are located in a common target area in the regularly constructed selection network. This applies, for example, to target points on different sides of a river if there is no bridge in the area of the target points.

Bei einem anderen Leit- und Informationssystem (ATZ - Automobiltechnische Zeitschrift 81 (1979), Seite 3 bis 7), bei dem im Dialogverkehr zwischen dem Straßengerät und einem bestimmten Fahrzeug Leitinformationen für ein einziges Fahrtziel übertragen werden, wird zur Kodierung von Zielflächen ein geographisches, regelmäßiges Koordinatennetz verwendet. Bei entsprechender Feineinteilung können dort auch entfernte Zielflächen verhältnismäßig genau voneina nder unterschieden werden. Wollte man ein solches regelmäßiges Koordinatensystem mit Feineinteilung aber für ein System der eingangs genannten Art anwenden und dabei Leitinformationen für alle in Betracht kommenden Zielpunkte übertragen, so wäre der Datenumfang in der zur Verfügung stehenden Übertragungszeit nicht zu bewältigen. Außerdem bliebe selbst bei relativ feiner Koordinateneinteilung das oben genannte Problem ungelöst, daß nämlich durch unüberwindliche Hindernisse voneinander getrennte Zielpunkte in dieselbe Masche des regelmäßigen Koordinatensystems fallen und damit einer gemeinsamen Leitinformation zugeordnet werden, obwohl diese Leitinformation nur für einen Teil der Zielfläche brauchbar ist. Wollte man aber die Feineinteilung so weit treiben, daß dieses Problem nicht mehr auftreten kann, wäre der notwendige Speicherbedarf nicht mehr vernünftig zu decken.In another guidance and information system (ATZ - Automobiltechnische Zeitschrift 81 (1979), pages 3 to 7), in which guidance information for a single destination is transmitted in dialogue between the road device and a specific vehicle, a geographic, regular coordinate network used. With appropriate fine division, even distant target areas can be distinguished from each other with relative accuracy. However, if one wanted to use such a regular coordinate system with fine division for a system of the type mentioned at the outset and to transmit guide information for all possible target points, then the amount of data would not be manageable in the available transmission time. In addition, even with a relatively fine coordinate division, the above-mentioned problem would remain unsolved, namely that target points separated from one another by insurmountable obstacles fall into the same mesh of the regular coordinate system and are therefore assigned to a common guide information, although this guide information can only be used for part of the target area. But if you wanted to go so far that this problem could no longer occur, the necessary memory requirements would no longer be covered properly.

Aufgabe der Erfindung ist es, ein System der eingangs genannten Art zu schaffen, bei dem die Zuordnung von Zielpunkten zu Leitinformationen in der Weise ermöglicht wird, daß der Datenaufwand für die Kennzeichnung von Zielflächen möglichst gering wird, gleichzeitig aber eine optimale, an den tatsächlichen geographischen Verhältnissen orientierte Leitweglenkung für jeden Zielpunkt gewährleistet wird.The object of the invention is to provide a system of the type mentioned, in which the assignment of target points to guidance information is made possible in such a way that the data expenditure for the identification of target areas is as low as possible, but at the same time an optimal, in terms of the actual geographical Reliability-based routing is guaranteed for each destination.

Erfindungsgemäß wird diese Aufgabe bei dem System der eingangs genannten Art dadurch gelöst, daß die alle wählbaren Zielpunkte umfassende Gesamtfläche in einzelne, aus jeweils einem konvexen Vieleck gebildete Zielsegmente unterteilt ist, deren Seitenlinien an geographischen Grenzlinien orientiert sind und die durch die Koordinaten ihrer Eckpunkte definiert sind, daß für jede Leitbake individuell ein Netz von Zielflächen berechnet und in der Leitbake gespeichert wird, wobei jeder unterschiedlichen, von der Bake aus zu verfolgenden Leitinformation eine oder mehrere Zielflächen zugeordnet sind, die aus den mit der betreffenden Leitinformation zu erreichenden Zielsegmenten gebildet werden, daß die Leitinformationen zusammen mit den Koordinaten der Eckpunkte ihrer zugehörigen Zielflächen an die Fahrzeuge übermittelt werden und daß in den Fahrzeugen der Vergleich der Zielpunkt-Koordinaten mit den Eckpunkt-Koordinaten der Zielflächen die zutreffende Leitinformation ausgewählt wird.According to the invention, this object is achieved in the system of the type mentioned at the outset in that the total area comprising all the selectable target points is divided into individual target segments each formed from a convex polygon is divided, the side lines of which are oriented to geographical boundary lines and which are defined by the coordinates of their corner points, that a network of target areas is calculated individually for each guide beacon and stored in the guide beacon, with each different guide information to be followed from the beacon one or several target areas are assigned, which are formed from the target segments to be reached with the relevant guidance information, that the guidance information is transmitted to the vehicles together with the coordinates of the corner points of their associated target areas and that in the vehicles the comparison of the destination point coordinates with the corner point Coordinates of the target areas the relevant guidance information is selected.

Bei dem erfindungsgemäßen System wird also die Zuordnung von Zielpunkten zu gemeinsamen Zielflächen losgelöst von den bisherigen Systemen, die jeweils regelmäßige Koordinatengitter verwenden. Die hier vorliegende Einteilung in Zielsegmente, welche dann zu Zielflächen zusammengefaßt werden können, orientiert sich allein an den geographischen und verkehrstechnischen Verhältnissen, so daß in einem Zielsegment und damit auch in einer Zielfläche immer nur solche Zielpunkte enthalten sind, die tatsächlich auch über den gleichen Leitweg und mit der gleichen Leitinformation optimal angesteuert werden.In the system according to the invention, the assignment of target points to common target areas is thus detached from the previous systems, which each use regular coordinate grids. The present division into target segments, which can then be combined into target areas, is based solely on the geographical and traffic conditions, so that in a target segment and thus also in a target area only those target points are contained that actually use the same route and can be optimally controlled with the same control information.

Die Zielsegmente sind also jeweils gleichartige, aber weitgehend unregelmäßige Vielecke, in der bevorzugten Ausführungsform jeweils Vierecke, die durch die Koordinaten ihrer Eckpunkte definiert sind. Zweckmäßigerweise werden die Zielsegmente in mehreren Hierarchiestufen festgelegt, so daß also beispielsweise ein viereckiges Zielsegment einer höheren Ordnung jeweils durch mehrere viereckige Zielsegmente der nächstniederen Ordnung gebildet ist. Die Zielsegmente der niedrigsten Ordnung sind in ihrer Größe und Struktur so festgelegt, daß innerhalb dieser Zielsegmente ein verkehrsabhängiges Leiten nicht mehr erforderlich ist, daß also der Fahrzeugführer mittels einer autarken Navigation (siehe EP-A-00 27 232) ohne größere Umwege zum Ziel gelangt. Im Nahbereich wird in der Regel die Zielfläche, die einer bestimmten Leitinformation zugeordnet ist, durch ein einziges Zielsegment der niedrigsten Ordnung gebildet werden, während im Fernbereich eine Zielfläche durch ein Zielsegment höherer Ordnung, durch Zusammenfassung mehrerer Zielsegmente höherer Ordnung oder durch Zusammenfassung von Zielsegmenten unterschiedlicher Ordnung gebildet werden können. Für die Datenübertragung ist es am zweckmäßigsten, die Zielflächen als Vielecke gleichartig mit den Zielsegmenten auszubilden, also beispielsweise als Vierecke, wenn die Zielsegmente Vierecke sind. In diesem Fall ist also dann jede Zielfläche genauso wie jedes Zielsegment durch Viereckpunkte definiert. Denkbar wäre es allerdings auch, für die Definition von Zielflächen auch kompliziertere Vieleckformen mit einer größeren Anzahl von Eckpunkten zuzulassen, um die Zahl der Zielflächen möglichst klein zu halten. In diesem Fall ist allerdings der Datenaufwand für die Definition einer Zielfläche und für den Vergleich einer Zielfläche mit einem gewählten Zielpunkt höher. Da im übrigen die Eckpunkte häufig mehreren Zielflächen zugeordnet werden können, ist es zweckmäßig, bei der Übertragung jeweils die Zielflächen mit den Nummern ihrer Eckpunkte und getrennt davon die Koordinaten aller benötigten Eckpunkte zu übertragen.The target segments are thus in each case identical, but largely irregular polygons, in the preferred embodiment each quadrilaterals, which are defined by the coordinates of their corner points. The target segments are expediently defined in a number of hierarchy levels, so that, for example, a square target segment of a higher order is in each case formed by a plurality of square target segments of the next lower order. The target segments of the lowest order are defined in size and structure so that within these target segments Traffic-dependent routing is no longer required, so that the driver can get to his destination without major detours by means of self-sufficient navigation (see EP-A-00 27 232). In the close-up area, the target area that is assigned to specific guidance information is usually formed by a single target segment of the lowest order, while in the far area, a target area is formed by a target segment of higher order, by combining several target segments of higher order, or by combining target segments of different order can be formed. For data transmission, it is most expedient to design the target areas as polygons in the same way as the target segments, for example as quadrilaterals if the target segments are quadrilaterals. In this case, each target area, like each target segment, is defined by square points. However, it would also be conceivable to allow more complicated polygon shapes with a larger number of corner points for the definition of target areas in order to keep the number of target areas as small as possible. In this case, however, the amount of data required to define a target area and to compare a target area with a selected target point is higher. Since, moreover, the corner points can often be assigned to several target areas, it is expedient to transfer the target areas with the numbers of their corner points and separately the coordinates of all required corner points during the transfer.

Wie erwähnt, sind die Zielflächen zusammen mit den zugehörigen Leitinformationen, insbesondere mit Leitvektorketten entsprechend EP-A-00 21 060, in den Baken gespeichert, von wo sie den passierenden Fahrzeugen übertragen werden. Da die Leitweglenkung verkehrsabhängig erfolgen soll, ist in zweckmäßiger Ausgestaltung des Systems vorgesehen, daß die Zielflächen und die zugehörigen Leitinformationen jeweils für jede Bake von einem übergeordneten bzw. einem zentralen Leitrechner in bestimmten Abständen neu berechnet und an die Leitbaken gegeben werden.As mentioned, the target areas together with the associated guidance information, in particular with guidance vector chains in accordance with EP-A-00 21 060, are stored in the beacons from where they are transmitted to the passing vehicles. Since the routing should take place depending on the traffic, it is provided in an expedient embodiment of the system that the target areas and the associated routing information are determined in each case by a higher-level or a central routing computer for each beacon Intervals recalculated and given to the beacons.

Der Vergleich des gewählten Zielpunktes mit den übertragenen Zielflächendaten im Fahrzeug kann in Abhängigkeit vom Aufbau der Auswerteeinrichtung im Fahrzeug auf unterschiedliche Weise durchgeführt werden. Beispielsweise ist es möglich, sukzessive alle einzelnen Zielflächen, die von der Bake übertragen wurden und im Fahrzeug zwischengespeichert sind, einzeln mit den Koordinaten des Zielpunktes zu vergleichen. Dies ist namentlich dann geboten, wenn genügend Rechenzeit für den Vergleich, jedoch wenig Speicherplatz im Fahrzeuggerät vorhanden ist. Eine andere Möglichkeit besteht darin, zusätzlich ein regelmäßiges Suchgitter zu verwenden, dessen Daten zusammen mit den übrigen Informationen von der Bake an das Fahrzeug übertragen und dort zwischengespeichert werden. In diesem Fall muß außerdem noch die Zuordnung der Suchgittermaschen zu den ganz oder teilweise in der betreffenden Masche enthaltenen Zielflächen mitübertragen werden. Dann wird im Fahrzeug zunächst in einem groben Suchlauf festgestellt, in welcher Masche des Suchgitters der Zielpunkt liegt. Ist dies ermittelt, brauchen nur noch diejenigen Zielflächen durchsucht zu werden, die ganz oder teilweise in dieser Suchgittermasche liegen. Bei diesem zweiten Vergleichsverfahren wird somit mehr Speicherplatz im Fahrzeuggerät benötigt, andererseits kann der Vergleich in kürzerer Zeit durchgeführt werden.The comparison of the selected target point with the transmitted target surface data in the vehicle can be carried out in different ways depending on the structure of the evaluation device in the vehicle. For example, it is possible to successively compare all of the individual target areas that have been transferred from the beacon and are temporarily stored in the vehicle with the coordinates of the target point. This is particularly necessary if there is sufficient computing time for the comparison, but there is little storage space in the vehicle device. Another possibility is to additionally use a regular search grid, the data of which, together with the other information, are transmitted from the beacon to the vehicle and temporarily stored there. In this case, the assignment of the search grid meshes to the target areas contained in whole or in part in the mesh in question must also be transmitted. Then a rough search is first carried out in the vehicle to determine the mesh of the search grid in which the target point is located. Once this has been determined, only those target areas that are wholly or partially in this search grid mesh need be searched. This second comparison method therefore requires more storage space in the vehicle device, on the other hand the comparison can be carried out in a shorter time.

Die Erfindung wird nachfolgend an einem Ausführungsbeispiel anhand der Zeichnung näher erläutert. Es zeigt

  • Fig. 1 die Einteilung eines Zielgebietes in Zielsegmente in Form unregelmäßiger Vierecke
  • Fig. 2 die vergrößerte Darstellung einer Zielfläche in einem Stadtgebiet
  • Fig. 3 ein Blockschaltbild für die Auswahleinrichtung für die Leitinformationen in einem Fahrzeug.
The invention is explained in more detail using an exemplary embodiment with reference to the drawing. It shows
  • Fig. 1, the division of a target area into target segments in the form of irregular squares
  • Fig. 2 shows the enlarged view of a target area in an urban area
  • Fig. 3 is a block diagram for the selection device for the guidance information in a vehicle.

Fig. 1 zeigt in vereinfachter Darstellung das Prinzip der erfindungsgemäß vorgesehenen Einteilung eines Zielgebietes in einzelne Zielsegmente bzw. Zielflächen. Das gesamte Zielgebiet, das also alle mit dem Leitsystem wählbaren Zielpunkte umfaßt, ist durch die Punkte P1, P2, P3, P4, P5, P6, P8 und P9 umgrenzt. Dieses Gebiet ist in mehreren hierarchischen Stufen in Zielsegmente unterteilt, die im vorliegenden Beispiel alle als (unregelmäßige) Vierecke ausgebildet sind. So sind in der obersten hierarchischen Stufe drei Zielsegmente vorgesehen, von denen ein Zielsegment ZS1 durch die Punkte P1, P2, P3 und P4, das Zielsegment ZS2 durch die Punkte P3, P7, P8, P9 und das Zielsegment ZS3 durch die Punkte P4, P5, P6 un d P7 definiert ist. In der nächstniedrigeren hierarchischen Stufe ist beispielsweise das Zielsegment ZS1 weiter in vier kleinere, viereckige Zielsegmente unterteilt, nämlich in das Zielsegment ZS11 mit den Eckpunkten P1, P11, P14 und P10, das Zielsegment ZS12 mit den Eckpunkten P11, P2, P12 und P14 usw. Die Unterteilung in hierarchischen Stufen wird nach Bedarf soweit fortgesetzt, bis die kleinsten Zielsegmente eine Größe besitzen, daß in ihnen eine zentrale Leitweglenkung nicht mehr erforderlich ist, also der Fahrzeugführer beim Erreichen des betreffenden Zielsegmentes seinen Zielpunkt in diesem Zielsegment mit autarker Navigation ohne Irrwege finden kann.1 shows, in a simplified representation, the principle of the division of a target area into individual target segments or target areas according to the invention. The entire target area, which thus includes all target points that can be selected with the control system, is delimited by points P1, P2, P3, P4, P5, P6, P8 and P9. This area is divided into several hierarchical levels in target segments, all of which are designed as (irregular) squares in the present example. In the top hierarchical level, three target segments are provided, of which one target segment ZS1 through points P1, P2, P3 and P4, the target segment ZS2 through points P3, P7, P8, P9 and the target segment ZS3 through points P4, P5 , P6 and P7 is defined. In the next lower hierarchical level, for example, the target segment ZS1 is further divided into four smaller, square target segments, namely the target segment ZS11 with the corner points P1, P11, P14 and P10, the target segment ZS12 with the corner points P11, P2, P12 and P14 etc. The division into hierarchical levels is continued as necessary until the smallest target segments are large enough that central routing is no longer necessary, i.e. the driver can find his target point in this target segment with autonomous navigation without making mistakes when he reaches the target segment in question .

Die Eckpunkte und Seitenlinien der einzelnen Zielsegmente sind jeweils nach geographischen und verkehrstechnischen Gesichtspunkten festgelegt, so daß also natürliche Grenzen, wie Flüsse ohne Brücken im betreffenden Abschnitt, Bahnlinien, Gebirgszüge usw. auch die Begrenzungslinien zwischen den Zielsegmenten darstellen. Von den geographischen Umständen hängt auch die jeweilige Größe eines Zielsegmentes der niedrigsten Stufe ab, da es bei der Festlegung dieser Zielsegmente immer darauf ankommt, ein verkehrstechnisch homogen erschlossenes und zugängliches Gebiet in einem Zielsegment zu haben, um auch eine eindeutige Zuordnung zu bestimmten Leitweginformationen vornehmen zu können.The corner points and side lines of the individual target segments are each determined according to geographical and traffic aspects, so that natural boundaries, such as rivers without bridges in the relevant section, railway lines, mountain ranges, etc. also represent the boundary lines between the target segments. The respective size of a target segment of the lowest level also depends on the geographical circumstances, since it is in the Definition of these target segments always depends on having a homogeneously accessible and accessible area in a target segment in order to be able to make a clear assignment to certain route information.

Das Leitsystem, wie es auch früher bereits beschrieben wurde (EP-A-00 25 193) beruht auf einer fahrzeugeigenen Koppelnavigationseinrichtung, mit dessen Hilfe das Fahrzeug selbstständig laufend seine Position ortet, und einem System von Leitbaken BK, die über das gesamte Zielgebiet verteilt an den Straßen angeordnet sind. Von den Leitbaken BK aus werden Leitwegempfehlungen in das Fahrzeug übertragen, dort im Hinblick auf einen eingetasteten Zielpunkt ausgewählt und positionsgerecht während der Fahrt angezeigt. Diese Leitwegempfehlungen bestehen vorzugsweise aus Leitvektorketten, wie sie in der EP-A-00 21 060 beschrieben sind. Eine solche Leitvektorkette führt das Fahrzeug von einer Bake, die als Startpunkt dient, zu einer den gewählten Zielpunkt enthaltenden Zielfläche. Bei weit entfernten Zielen genügt es, wenn eine Leitvektorkette das Fahrzeug von der Start-Leitbake bis zu der in Richtung auf den Zielpunkt nächstgelegenen Leitbake führt. Nimmt man etwa im Beispiel von Fig. 1 an, daß das Fahrzeug an einem Startpunkt bei der Leitbake BK1 in der Nähe des Eckpunktes P5 steht und zu einem Zielpunkt ZP in dem Zielsegment ZS101 mit den Eckpunkten P21, P22, P23 und P24 fahren will, so genügt es, wenn das Fahrzeug eine Leitvektorkette LVK1 erhält, welche von der Leitbake BK1 bis zur Leitbake BK2 führt. Die Zielfläche, die mit dieser Leitvektorkette LVK1 erreichbar ist, ist aber wesentlich größer als das Zielsegment ZS101. Beispielsweise könnte das Zielsegment ZS1 mit den Eckpunkten P1, P2, P3 und P9 als größte viereckige Zielfläche der Leitvektorkette LVK1 in der Leitbake BK1 zugeordnet werden; denn der Weg zu allen möglichen Zielpunkten in dem Zielsegment ZS1 führt von der Bake BK1 aus über die Leitvektorkette LVK1. Nimmt man aber an, daß auch das Zielsegment ZS2 mit den Eckpunkten P9, P3, P8 und P7 von der Bake BK1 aus ebenfalls nur über die Leitvektorkette LVK1 und die Bake BK2 optimal zu erreichen ist, so wäre auch das Zielsegment ZS2 als Zielfläche der Leitvektorkette LVK1 zuzuordnen. Als Zielflächen sind also immer diejenigen Flächen bezeichnet, die einer ganz bestimmten Leitweginformation zuzuordnen sind, wobei in der obigen Beschreibung vorausgesetzt wurde, daß auch die Zielflächen ebenso wie die Zielsegmente jeweils Vierecke sein sollen. Ergibt sich aufgrund der Programmstruktur, daß die Zielflächen nicht auf Vierecke beschränkt sein sollen, so könnte man für den vorher geschilderten Fall auch eine Zielfläche mit den Eckpunkten P1, P2, P3, P7, P8 und P9 definieren, die insgesamt für die Bake BK1 über eine gemeinsame Leitvektorkette LVK1 zu erreichen ist. Für eine weitere Zielfläche mit den Eckpunkten P15, P16, P7 und P17 würde in diesem Fall die Leitvektorkette LVK2 in Richtung auf die Leitbake BK3 führen, während zu der Zielfläche P5, P6, P16, P15 eine Leitvektorkette LVK3 in Richtung auf die Leitbake BK4 führen würde. Es zeigt sich also, daß im Nahbereich die Zielflächen zwangsläufig kleiner gehalten sind als im Fernbereich.The guidance system, as it has already been described earlier (EP-A-00 25 193), is based on a vehicle's own dead reckoning device, with the aid of which the vehicle independently locates its position, and a system of guidance beacons, which are distributed over the entire target area the streets are arranged. Routing recommendations are transmitted from the guidance beacons BK into the vehicle, selected there with regard to a keyed-in destination point and displayed in the correct position during the journey. These routing recommendations preferably consist of routing vector chains as described in EP-A-00 21 060. Such a vector chain guides the vehicle from a beacon, which serves as the starting point, to a target area containing the selected target point. In the case of distant destinations, it is sufficient if a guide vector chain leads the vehicle from the start guide beacon to the guide beacon closest to the destination. If, for example in the example of FIG. 1, it is assumed that the vehicle is at a starting point at the guide beacon BK1 near the corner point P5 and wants to drive to a destination point ZP in the target segment ZS101 with the corner points P21, P22, P23 and P24, it is sufficient if the vehicle receives a guidance vector chain LVK1 which leads from the guidance beacon BK1 to the guidance beacon BK2. The target area that can be reached with this guide vector chain LVK1 is, however, considerably larger than the target segment ZS101. For example, the target segment ZS1 with the corner points P1, P2, P3 and P9 could be assigned as the largest square target area to the guide vector chain LVK1 in the guide beacon BK1; because the way to all possible target points in the target segment ZS1 leads from the beacon BK1 via the guide vector chain LVK1. Takes but if one assumes that the target segment ZS2 with the corner points P9, P3, P8 and P7 can also be optimally reached from the beacon BK1 only via the leading vector chain LVK1 and the beacon BK2, then the target segment ZS2 would also be the target area of the leading vector chain LVK1 assign. Target areas are therefore always those areas which can be assigned to a very specific route information, it being assumed in the above description that the target areas as well as the target segments should each be quadrilaterals. If it follows from the program structure that the target areas should not be limited to quadrilaterals, then one could also define a target area with the corner points P1, P2, P3, P7, P8 and P9 for the case described above, which in total for the beacon BK1 a common vector chain LVK1 can be reached. In this case, the guide vector chain LVK2 would lead in the direction of the guide beacon BK3 for a further target area with the corner points P15, P16, P7 and P17, while a guide vector chain LVK3 would lead to the target area P5, P6, P16, P15 in the direction of the guide beacon BK4 would. It can be seen, therefore, that the target areas are inevitably kept smaller in the close range than in the far range.

In Fig. 2 ist das Zielsegment ZS101 aus Fig. 1 mit den Eckpunkten P21, P22, P23 und P24 vergrößert dargestellt, um die Prinzipien der Grenzziehung deutlich zu machen. So teilt die Seitenlinie P21-P22 ein Wohngebiet zwischen zwei Hauptverkehrsstraßen auf. Mit ihr wird festgelegt, von welcher der Hauptverkehrsstraßen die Zufahrt zu jedem beliebigen Ziel innerhalb dieses Gebietes erfolgen soll. Ähnliches gilt für die Grenze P21-P24, die einen Flußlauf markiert. In gleicher Weise kann auch eine Bahnlinie oder eine Autobahn die Grenze eines Zielsegmentes bilden.In FIG. 2, the target segment ZS101 from FIG. 1 with the corner points P21, P22, P23 and P24 is shown enlarged in order to make the principles of the boundary clear. The side line P21-P22 divides a residential area between two main roads. It determines from which of the main roads the access to any destination within this area is to take place. The same applies to the border P21-P24, which marks a river course. In the same way, a railway line or a motorway can form the boundary of a target segment.

Nimmt man nun an, daß ein Fahrzeug FZ in Richtung auf den Zielpunkt ZP bereits die Bake BK21 (Fig. 1) passiert hat, so liegt das Zielsegment ZS101 nunmehr im Nahbereich und ist für den letzten Abschnitt die Zielfläche, zu der mit der Leitvektorkette LVK21 hingeführt wird. Beim Erreichen der Leitbake BK22 stellt das Fahrzeuggerät fest, daß die Zielfläche, die nunmehr mit dem Zielsegment ZS101 übereinstimmt, erreicht ist, und es schaltet auf autarke Navigation um, benötigt also keine weiteren Leitweginformationen von außen. Für Fahrzeuge, die aus anderen Richtungen zum Zielpunkt ZP gelangen wollen, führt beispielsweise eine Leitvektorkette LVK22 bis zur Bake BK23 oder eine Leitvektorkette LVK23 bis zur Bake BK24.Assuming that a vehicle FZ has already passed the beacon BK21 (FIG. 1) in the direction of the target point ZP, The target segment ZS101 is now in the close range and is the target area for the last section to which the guide vector chain LVK21 leads. When the beacon BK22 is reached, the vehicle device determines that the target area, which now corresponds to the target segment ZS101, has been reached, and it switches to autonomous navigation, so it does not require any further routing information from outside. For vehicles that want to get to the destination point ZP from other directions, for example, a guidance vector chain LVK22 leads to beacon BK23 or a guidance vector chain LVK23 to beacon BK24.

Die Auswertung der Leitinformationen im Fahrzeug ist schematisch in Fig. 3 in einem Blockschaltbild gezeigt. Wie bereits erwähnt, berechnet der Leitrechner LR in der Zentrale Z für jede Leitbake BK1, BK2... BKn in den einzelnen Straßengeräten STG individuell die in Frage kommenden Zielflächen und die zugehörigen Leitinformationen, also Leitvektorketten und gegebenenfalls zusätzliche Informationen für die Erreichung der jeweiligen Zielpunkte in einer Zielfläche, z.B. welche Ausfahrt am Ende der Leitvektorkette zu nehmen ist. Diese Festlegung erfolgt verkehrsabhängig, so daß bei jeder Änderung der Verkehrslage die betroffenen Leitbaken neue Daten über Zielflächen und Leitinformationen erhalten. Beim Passieren eines Fahrzeugs FZ sendet nun die Leitbake, BK1 in Fig. 3, die gesamten Leitinformationen für alle wählbaren Ziele, wie sie von der Bake BK1 aus gelten. Diese gesamten Informationen werden vom Fahrzeug über den Empfänger FE, beispielsweise einen Infrarotempfänger, aufgenommen und in der Auswerteeinrichtung AW einem Zwischenspeicher ZWS zugeführt. Dieser Zwischenspeicher ZWS enthält also eine Liste aller für die betreffende Bake definierten Zielflächen ZF1, ZF2 bis ZFn mit den jeweils zugehörigen Leitinformationen, also beispielsweise den Leitvektorketten LVK1, LVK2 bis LVKn. Die Zielflächen ZF1 bis ZFn sind durch ihre Eckpunkte P1 bis Pm definiert, wobei ein Teil der Eckpunkte mehreren Zielflächen zuzuordnen ist. Schließlich werden für jeden Eckpunkt auch dessen (absolute) Koordinaten mitübertragen und gespeichert.The evaluation of the guidance information in the vehicle is shown schematically in FIG. 3 in a block diagram. As already mentioned, the master computer LR in the central office Z calculates the target areas in question and the associated guide information, i.e. guide vector chains and, if necessary, additional information for reaching the respective target points for each guide beacon BK1, BK2 ... BKn in the individual street devices STG in a target area, e.g. which exit to take at the end of the vector chain. This determination is made depending on the traffic, so that each time the traffic situation changes, the relevant beacons receive new data about target areas and guidance information. When passing a vehicle FZ, the beacon, BK1 in FIG. 3, sends the entire guidance information for all selectable destinations, as they apply from the beacon BK1. All of this information is received by the vehicle via the receiver FE, for example an infrared receiver, and fed to a buffer ZWS in the evaluation device AW. This buffer store ZWS thus contains a list of all target areas ZF1, ZF2 to ZFn defined for the beacon in question, with the associated control information, for example the guide vector chains LVK1, LVK2 to LVKn. The target areas ZF1 to ZFn are defined by their corner points P1 to Pm, some of the corner points being assigned to several target areas. Finally, its (absolute) coordinates are also transferred and saved for each corner point.

Im Fahrzeug selbst wurde bei Fahrtantritt ein Ziel ausgewählt, indem mit dem Eingabegerät EG die Koordinaten xz und yz des Zielpunktes ZP eingegeben wurden. Diese Zielpunktkoordinaten werden im Zielpunktspeicher ZPS gespeichert und nach jedem Passieren einer Bake mit den übernommenen und inzwischen gespeicherten Informationsdaten verglichen. In der Vergleichseinrichtung VG wird also festgestellt, in welcher Zielfläche ZF1 bis ZFn der Zielpunkt ZP liegt. Dies kann über geeignete mathematische Verfahren erfolgen, da ja die Zielflächen durch die Koordinaten ihrer Eckpunkte festliegen. Ist dann die Zielfläche für den Zielpunkt ermittelt, so werden die zu dieser Zielfläche gehörenden Leitinformationen, also beispielsweise die Daten der entsprechenden Leitvektorkette LVK, in den Leitinformationsspeicher LSP eingegeben und dort bereitgehalten. Da jede Leitinformation mit einer Positionsangabe versehen ist (siehe EP-A-00 21 060) wird sie jeweils dann über das Anzeigegerät AG ausgegeben, wenn die betreffende Position erreicht ist. Dies wird durch den Positionsspeicher PSP festgestellt, der jeweils die aktuelle Fahrzeugposition beinhaltet. Beim Passieren einer Leitbake wird über den Fahrzeugempfänger FE auch die genaue Position mit den Koordinaten der Bake übertragen und zur Korrektur des Positionsspeichers benutzt.A destination was selected in the vehicle itself when starting the journey by entering the coordinates x z and y z of the destination point ZP with the input device EG. These target point coordinates are stored in the target point memory ZPS and compared each time a beacon is passed with the information data that has been taken over and has now been saved. The comparison device VG thus determines in which target area ZF1 to ZFn the target point ZP lies. This can be done using suitable mathematical methods, since the target areas are determined by the coordinates of their corner points. If the target area for the target point is then determined, the guide information belonging to this target area, that is to say, for example, the data of the corresponding guide vector chain LVK, is entered into the guide information memory LSP and kept ready there. Since each guidance information is provided with a position specification (see EP-A-00 21 060), it is output via the display device AG when the position in question has been reached. This is determined by the position memory PSP, which contains the current vehicle position. When passing a beacon, the exact position with the coordinates of the beacon is also transmitted via the vehicle receiver FE and used to correct the position memory.

Während der Fahrt wird die im Positionsspeicher enthaltene Fahrzeugposition laufend mit der autarken Navigationseinrichtung aktualisiert. Dabei wird der zurückgelegte Fahrtweg mit einem Wegimpulsgeber WG und die Fahrtrichtung mit einer Magnetfeldsonde MS gemessen. Darauf wird in einer Vektorbestimmungseinrichtung VB der jeweilige Wegvektor ermittelt. Dieser Wegvektor wird in einem Addierer ADD der jeweiligen alten Fahrzeugposition aus dem Positionsspeicher PSP zuaddiert; die daraus resultierende neue Fahrzeugposition wird in den Positionsspeicher wieder eingegeben.While driving, the vehicle position contained in the position memory is continuously updated with the autonomous navigation device. The distance traveled is measured with a displacement encoder WG and the direction of travel with a magnetic field probe MS. The respective path vector is then determined in a vector determination device VB. This path vector is the ADD in the adder added to the respective old vehicle position from the position memory PSP; the resulting new vehicle position is entered into the position memory again.

Wie erwähnt, wird in der Vergleichseinrichtung VG im Fahrzeuggerät der gewählte Zielpunkt ZP mit seinen Koordinaten solange mit den gespeicherten Zielflächen ZF1 bis ZFn verglichen, bis eine Übereinstimmung festgestellt wurde. Dies kann entweder dadurch erfolgen, daß der Reihe nach alle Zielflächen abgearbeitet werden. Soll dabei die Rechenzeit kurz gehalten werden und ist genügend Speicherplatz vorhanden, so ist es möglich, das gesamte Zielgebiet zusätzlich in ein grobmaschiges Suchgitter einzuteilen, wie dies in Fig. 1 mit den waagerechten Spalten A,B,C,D,C und den senkrechten Spalten 1, 2 und 3 gezeigt ist. Dieses Suchgitter wird in diesem Fall von der Bake mit in das Fahrzeug übertragen und gespeichert. Außerdem wird dabei noch jeweils eine Zuordnung zwischen jeder Gittermasche und allen ganz oder teilweise in der Gittermasche liegenden Zielflächen errechnet und mit in das Fahrzeug übertragen. Dort kann dann in einem ersten Suchlauf zunächst festgestellt werden, in welcher Gittermasche des Suchgitters der Zielpunkt liegt, während in einem zweiten Suchlauf dann lediglich noch die Zielflächen durchsucht werden müssen, die Anteil an der betreffenden Gittermasche haben. So würde also beispielsweise in Hinblick auf Fig. 1 eine Information mitübertragen, daß die Gittermasche A2 Anteil an den Zielsegmenten ZS11 und ZS12 besitzt. Wird nun im Fahrzeug beim ersten Suchlauf festgestellt, daß ein Zielpunkt in der Gittermasche A2 liegt, so brauchen in dem zweiten Suchlauf lediglich noch die Zielsegmente ZS11 und ZS12 untersucht werden.As mentioned, the selected target point ZP with its coordinates is compared in the comparison device VG in the vehicle device with the stored target areas ZF1 to ZFn until a match has been found. This can either be done by processing all target areas in sequence. If the computing time is to be kept short and there is enough storage space available, it is possible to additionally divide the entire target area into a coarse-mesh search grid, as shown in Fig. 1 with the horizontal columns A, B, C, D, C and the vertical columns Columns 1, 2 and 3 is shown. In this case, the search grid is transferred from the beacon to the vehicle and stored. In addition, an assignment between each grid mesh and all or part or all of the target surfaces lying in the grid mesh is also calculated and transferred into the vehicle. There it can then be determined in a first search run in which grid mesh of the search grid the target point is located, while in a second search run only the target areas that have a share in the relevant grid mesh then have to be searched. Thus, for example with regard to FIG. 1, information would also be transmitted that the mesh A2 has a share in the target segments ZS11 and ZS12. If it is now determined in the vehicle during the first search run that a target point lies in the grid mesh A2, then only the target segments ZS11 and ZS12 need be examined in the second search run.

Claims (8)

  1. Guiding system for the individual traffic in a road network having fixed guide beacons (BK) arranged on the roads, which guide beacons transmit guide information cyclically to all passing vehicles (FZ) equipped with a corresponding receiver (FE), with the aim of reaching all the destinations (ZP) which can be selected from their location, the guide information being stored in each guide beacon (BK) ordered according to destination areas and being transmitted in each case to the vehicles (FZ) with an identification code of the associated destination area or areas, it being possible to select in the individual vehicles (FZ) in each case a specific destination (ZP) by entering its co-ordinates (xz,yz ) using an input device (EG), the destination area (ZF) containing the selected destination (ZP) also being initially identified in the vehicle using a comparator device (VG), and finally the item of guide information assigned to this destination area being selected from the totality of guide information transmitted by a guide beacon (BK) and stored, characterised in that the system is designed in such a way that the total area comprising all the selectable destinations (ZP) is divided into individual destination segments (ZS) formed from a convex polygon, the sidelines of said destination segments being oriented towards geographical dividing lines and the said destination segments being defined by the co-ordinates of their corner points (P1, P2 etc.),
    in that for each guide beacon (BK) a network of destination areas is individually calculated and stored in the guide beacon, each different item of guide information to be followed from the guide beacon being assigned one or more destination areas which are formed from the destination segments (ZS) to be reached with the respective guide information, in that the guide information is transmitted together with the co-ordinates of the corner points of its associated destination areas to the vehicles (FZ), and in that the appropriate guide information is selected in the vehicles by comparison of the destination co-ordinates (xz, yz,) with the corner point co-ordinates of the destination areas.
  2. Guiding system according to Claim 1, characterised in that the destination segments (ZS1, ZS2, ZS3; ZS11, ZS12 etc; ZS101 etc.) are defined in a plurality of hierarchy levels, in such a way that in each case a destination segment of a higher order is formed from a plurality of destination segments of the same kind of the next lower order.
  3. Guiding system according to Claim 1 or 2, characterised in that the destination segments are squares in each case.
  4. Guiding system according to one of Claims 1 to 3, characterised in that the destination areas formed from one or more destination segments are polygons of the same kind as the destination segments, preferably also squares.
  5. Guiding system according to one of Claims 1 to 4, characterised in that the destination areas are calculated in each case for each guide beacon (BK) by a higher ranking master computer (LR) and then transferred to the respective guide beacon for storage.
  6. Guiding system according to one of Claims 1 to 5, characterised in that in each case the numbers of destination areas with the numbers of their corner points and, separately, the co-ordinates of all the associated corner points are transmitted by the respective guide beacon (BK).
  7. Guiding system according to one of Claims 1 to 6, characterised in that together with the destination area data in each case the data of a regular search grid (A,B,C,D,E; 1,2,3) and an item of information regarding the assignment of the individual destination areas to the meshes of the search grid are transmitted to the vehicle, in that it is initially identified in the vehicle in which mesh of the search grid the destination lies, and in that it is then tested for the destination areas assigned to the grid mesh, in which of the said destination areas the destination lies.
  8. Guiding system according to one of Claims 1 to 6, characterised in that in the individual vehicles each destination area is successively compared with the co-ordinates of the selected destination.
EP87112682A 1986-09-03 1987-08-31 Guiding system for individual traffic Expired - Lifetime EP0261450B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3630038 1986-09-03
DE3630038 1986-09-03

Publications (2)

Publication Number Publication Date
EP0261450A1 EP0261450A1 (en) 1988-03-30
EP0261450B1 true EP0261450B1 (en) 1991-07-24

Family

ID=6308852

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87112682A Expired - Lifetime EP0261450B1 (en) 1986-09-03 1987-08-31 Guiding system for individual traffic

Country Status (2)

Country Link
EP (1) EP0261450B1 (en)
DE (1) DE3771626D1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3802337C1 (en) * 1988-01-27 1989-07-13 Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De
GB2221782A (en) * 1988-08-09 1990-02-14 Plessey Co Plc Road vehicle route selection and guidance system
EP0392374B1 (en) * 1989-04-13 1994-07-20 Siemens Aktiengesellschaft Method for the transmission of guide information
ES2073091T3 (en) * 1991-10-25 1995-08-01 Siemens Ag INFORMATION AND DESTINATION GUIDE SYSTEM FOR PUBLIC TRANSPORTATION OF TRAVELERS.
JP3446930B2 (en) * 1996-09-30 2003-09-16 松下電器産業株式会社 Route selection method and route selection device
ES2157093T5 (en) * 1996-12-16 2007-03-01 Atx Europe Gmbh PROCEDURE FOR SELECTING TRAFFIC INFORMATION AFFECTING A ROAD OF A VEHICLE WITH A TERMINAL IN A COMMUNICATIONS NETWORK AND SENT BY A CENTRAL.
US6385529B1 (en) * 1998-05-11 2002-05-07 Hitachi, Ltd. Vehicle and device and method for controlling running of the same
DE19835051A1 (en) 1998-08-04 2000-02-10 Bosch Gmbh Robert Device for coding and decoding locations
DE10201519A1 (en) * 2002-01-17 2003-07-31 Bosch Gmbh Robert Method for determining card data

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2923634C2 (en) * 1979-06-11 1985-01-17 Siemens AG, 1000 Berlin und 8000 München Control system for individual traffic
DE2936062C2 (en) * 1979-09-06 1985-11-07 Siemens AG, 1000 Berlin und 8000 München Control system for individual traffic and procedures for the transmission of control information
GB2139794A (en) * 1983-05-09 1984-11-14 Hubert Ralph Waldo Rabson Comprehensive road direction indicators

Also Published As

Publication number Publication date
DE3771626D1 (en) 1991-08-29
EP0261450A1 (en) 1988-03-30

Similar Documents

Publication Publication Date Title
DE3609287C2 (en)
EP0363396B1 (en) Process and device for determining the position of a land craft
DE69828339T2 (en) Program for creating maneuvers
DE3610251C2 (en)
DE69111053T2 (en) MULTIPLE-DISTANCE NAVIGATION DEVICE FOR A LAND VEHICLE.
DE19716354B4 (en) Navigation system for vehicles
DE4324215C2 (en) Voice navigation system for vehicles
DE69938018T2 (en) Apparatus and method for displaying vehicle position information
DE10050765B4 (en) Route setting method and associated navigation device
DE4104351A1 (en) NAVIGATION SYSTEM ASSEMBLED IN VEHICLE
EP2020589A2 (en) Method for displaying a schematic representation of a maneuver in a navigation system
DE112011105829T5 (en) Autonomous driving system
EP0752692A1 (en) Method and system for updating digital road maps
DE102005020154A1 (en) Map display control method, used in navigation system, involves displaying section of geographical road map, dividing displayed map section into different areas, and displaying assigned road classes in divided areas of displayed map section
WO1998057125A1 (en) Method and device for generating, merging and updating of destination tracking data
DE102010062150A1 (en) Navigation system for a vehicle and navigation service method for the same
DE4035979A1 (en) NAVIGATION SYSTEM FOR MOTOR VEHICLES
DE4405771C2 (en) Navigation system with a route determination method for quickly and precisely determining a desired route
DE19741116A1 (en) Method for the transmission of route data, method for analyzing a traffic route network, traffic detection center and terminal
WO1995014910A1 (en) Process for producing a digitised road map
EP2507589A1 (en) Method for simplifying a description of a route
EP0261450B1 (en) Guiding system for individual traffic
DE102018108538A1 (en) Method for determining traffic information
DE102018009114A1 (en) Method for determining the position of a mobile part movable on a travel surface and installation with mobile part for carrying out the method
DE3642986C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19880830

17Q First examination report despatched

Effective date: 19901114

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 3771626

Country of ref document: DE

Date of ref document: 19910829

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010808

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010814

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010823

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011022

Year of fee payment: 15

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030301

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030430

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050831